3/29/90 To: Rodger Bossert, John Carson, Wayne Koska, Paul Mantsch, Gale Pewitt From: Jim Strait 181 Subj: Preliminary results on teflon slip planes in DS0307 I have looked briefly at the strain gage data taken during multiple collaring cycles of DSO307 to see what effect, if any, the presence of teflon slip planes has on the force balance between the press (which presumably corresponds to the coil stress at the mid-plane) and the coil stress at the pole. The data discussed here were taken under several conditions: no teflon, 3 mil teflon adhesive tape attached to the coil "caps" similar to the method used by BNL and LBL and non-adhesive teflon plumber's tape burnished into the surfaces of the coils. The adhesive teflon tape was applied to the outer surfaces of the inner and outer coils caps. The plumber's tape was applied to the outer surface of the inner coil and both surfaces of the outer coil. There are two confounding variable: 1) For the earlier tests every other hydraulic cylinder was valved off, while in later tests the full press load was used and 2) Between the tests with adhesive teflon tape and plumber's tape the outer coils were replace because one of the original coils was damaged during disassembly. Alternate press cylinders are staggered relative to the press center line. With every other cylinder valved off, the press tended to close asymmetrically. This is not believed to compromise the quality of the data. However, because of the model magnet length is not large relative to the spacing between the hydraulic cylinders it is difficult to know what the effective press load was on the active part of the coil in the earlier tests making it difficult to make quantitative measurements of force balance under these conditions. Fortunately a complete set of data exists with the press in this asymmetric configuration so a valid comparison of the different collaring conditions can be made. More serious is the change of coils between the two different teflon tests. The original coils were molded with fiberglass tape with a high epoxy content (25%?), while the substitute coils used tape with a low epoxy content (18%?). The first coils had a smooth epoxy finish on both surfaces while the second coils had a rougher finish. It is not obvious, however, which one results in a lower friction coefficient against kapton. Part of the same set of experiments involved adding several mils of radial shim between the collars and the collaring tooling. Between the time the tooling was design and the collars were designed, the radius of the collars shrank by 2 mils. In addition the collars were punched with a radius 1 mil smaller than the design, making them 3 mils smaller than the tooling. It was conjectured that this allowed the collars to bend outwards making it harder to insert the keys and wasted some of the vertical press load. To test this DSO307 was compressed in the collaring press with radial shims of 0, 3 and 6 mils. This was done with plumber's tape applied to the coils, once with the press in the asymmetric configuration and once with all cylinders energized. Figure 1 plots the average coil stress versus the press hydraulic system pressure for the three different teflon configurations with half of the press cylinders turned off. The addition of adhesive teflon tape to the coil caps has no significant effect on the fraction of the press load that appears at the coil pole. With plumber's tape applied to the coils there is an apparent large increase in the force transfer. However, because the outer coils are different for this test, it is not certain that this is a result of the teflon. Figure 2 shows the same data for three different radial shim thicknesses now with the full press energized. There is no significan difference among the three in terms of force balance. Because the keys were inserted only on the third trial it is not know whether collar bending with no shim makes a difference for key insertion. A copy of the portion of the Excel spread sheet that contains the analysed data is attached as Table I. Because the plumber's tape, once burnished into the coils, cannot be entirely removed, the no-teflon and adhesive teflon experiments cannot be repeated with these coils. A set of 4 new test coils with "junk" ends is currently being wound to allow a complete comparison of the three teflon configurations with a common set of coils and with the press operated in the proper way. DS0307 Collaring, Assymetric Press Figurel DS0307A, Teflon On Coil, Symmetric Press Figure 2 | ГТ | AP | T 40 | AR | AS | AT | AU | AV | AW | AX | AY | AZ | . BA | BR . | BC BC | 80 | RF. | 86 | |------------|----------------------------------------------------------|-----------------|---------------|-----------------|----------------|---------------|--------------|---------------|-----------------|--------------|----------------|----------------|----------------|--------------|--------------|---------------|---------------| | 1 | PUMP PSI 2/27/90 A.M. KEYING | 7 | | #169-1 coil psi | | | | | | | | | | AND STORE | d(in)/dPv | d(out)/dPv | d(avg)/dPv | | 3 | No Tellon, Asymmetric Press | | | | | | | | | | | 2/27 No Tello | 2/27 No Tel | 2/27 No Tell | 2/27 No Tell | 2/27 No Tello | 2/27 No Tello | | 3 | Press 0 | 0 | 0 | -29 | | -78 | -180 | -270 | | | | | | | | | | | 4 | Line V | 100 | 0 | 1387 | | -373<br>-526 | 1081 | -318<br>38 | | | | | | | | 0.39 | | | 6 | 2000 V | 2000 | 0 | 2231 | | | | 772 | | | | | | | | | 0.76 | | 7 | 3000 V | 3000 | 0 | 2807 | | 98 | | 1374 | | | | | | | | 0.89 | | | | 4000 V | 4000 | 0 | 3481 | | | 3615 | 1902 | 750 | | | | | | | 0,87 | 0.75 | | 8 | 5000 V | 6000 | 0 | 3950 | | 1166 | 4308 | 2357 | 1073 | | | 2845 | | | | 0.72 | | | 10 | 6000 V | 7000 | 0 | 4468 | | 1679 | 5040<br>6848 | 2707<br>2987 | 1824 | | 9353 | | | | | 0.65 | | | 12 | 8000 V | 8000 | 0 | 5145 | 2670 | 2193 | 6185 | 3214 | 1841 | | | | | | | 0,43 | | | 13 | 9000 V | 9000 | 0 | 5366 | 2623 | 2442 | 6629 | 3407 | 2024 | | 11795 | | | | | 0.34 | | | 14 | 9800 V | 9800 | 0 | 6648 | 2948 | 2637 | 8998 | 3529 | 2132 | | 12310 | | 5976 | | | 0.32 | 0.29 | | 15 | 9800 V/400 H | 9800 | 400 | 5841 | 3159 | 2918 | 7467 | 3784 | 2343 | | 12953 | 4646 | | 5592 | | | | | 16 | 9800 V/1000 H<br>4000 V/ 1000 H | 4000 | 1000 | 6287<br>5980 | 3455<br>3266 | 3326<br>2707 | 8145<br>7308 | 4192<br>4138 | 2669<br>2544 | | 13780 | | 6867 | | | | | | 18 | Press 0 | 0 | 0 | 5259 | 2741 | 1416 | 5521 | 3535 | 1924 | | | | | | | | | | 10 | press 0 | 0 | 0 | 4901 | 2505 | 1100 | 5183 | 3324 | 1768 | 3908 | 8038 | 3422 | 4407 | 3916 | | | | | 20 | 4000V/400H | 4000 | 400 | 6029 | 2702 | 2173 | 6296 | 3281 | 1898 | | | | 6191 | | | | | | 31 | 9800V/400H | 8800 | 1000 | 6386 | 3561 | 3370 | 8285 | 4088 | 2650 | | | | | | | | | | 22 | 9800V/1000H<br>4000V/1000H | 9800 | 1000 | 6358 | 3644 | 3708<br>3068 | 8763<br>7839 | 4374 | 2862<br>2749 | | | | 6378 | | | | | | 24 | 0V/0H | 0 | 0 | 5403 | 3008 | 1911 | 8074 | 3911 | 2167 | | 9817 | | | | | | | | 26 | press 0 2/25/90 | 0 | 0 | 5328 | 2843 | 1625 | 5809 | 3709 | 2023 | | 9143 | | 4880 | | | | | | 26 | 9 | | | | | -78 | | | | | | | | | | | | | 27<br>28 T | PUMP PSI 3/5/90 KEYING | Press pal (V) | Press pel (H) | #169-1 coli psi | 1198-1 coll pa | #184-o coll p | 184-0 OON PE | 1005- CON PT | 11004-1 coll pr | 183-0 00# 01 | 188-e cell pe | Avg in Stees | Avo Out Stress | Avg Stress | d(in)/dPv | d(out)/dPv | | | 28 | ellon Over Coil Caps, Assymetric Press<br>Bench 0 3/5/90 | | . 0 | -33 | -462 | -80 | -222 | -225 | -542 | -68 | | effor over coi | | -223 | | SHOU OASL OO | ENOU DAM DO | | 30 | Line V | 100 | 0 | 879 | -73 | -143 | 296 | -185 | -394 | | | | 222 | | | 4.67 | 4,54 | | 31 | 1000 V | 1000 | 0 | 1280 | 223 | -243 | 470 | 87 | -197 | 361 | 1727 | 432 | 492 | 462 | 0,21 | 0.30 | 0.26 | | 32 | 2000 A | 2000 | 0 | 2442 | 1055 | -246 | 901 | 850 | 449 | | 2861 | | | | | 0.76 | | | 33 | 3000 Y | 3000 | 0 | 3162 | 1609 | -100 | 1228 | 1360 | 885 | | 3734 | 1475 | 1849 | | | 0.60 | | | 36 | 4000 V<br>5000 V | 4000<br>5000 | . 0 | 3880<br>4601 | 2158<br>2751 | 126<br>476 | 1603<br>2110 | 1940 | 1329<br>1750 | | 4862<br>- 5992 | 1942 | 2588 | | | 0.74 | | | 36 | 6000 V | 8000 | 0 | 6179 | 3204 | 779 | 2591 | 2894 | 2145 | | 7194 | 2938 | 3310 | | | 0,72 | | | 37 | 7000 V | 7000 | ŏ | 5705 | 3592 | 1092 | 3201 | 3271 | 2508 | | 8222 | 3397 | 4588 | | | 0.58 | | | 38 | 8000 V | 8000 | 0 | 6089 | 3837 | 1287 | 3675 | 3574 | 2823 | 4833 | 9169 | 3722 | 6100 | | | 0,61 | | | 39 | 9000 V | 9000 | 0 | 6555 | 4186 | 1584 | 4255 | 3858 | 3118 | 5264 | 9935 | 4145 | 5544 | | | 0,44 | | | 40 | 9600 V | 9800 | 0 | 6752 | 4320 | 1710 | 4525 | 3990 | 3257 | 5529 | 10414 | 4327 | 6797 | | | 0.32 | 0.27 | | 41 | \$600 V/400 H | 9800 | 1000 | 7018<br>7580 | 4515<br>4937 | 1951<br>2341 | 4989<br>5682 | 4266<br>4726 | 3511<br>3959 | 5898<br>8548 | 10924 | 4618<br>5136 | 6149 | | | | | | 43 | 4000 V/ 1000 H | 4000 | 1000 | 8558 | 3986 | 1635 | 4674 | 4014 | 3236 | 5285 | 9978 | 4213 | 6628 | | | | | | 44 | Press 0 | 0 | 0 | 5172 | 3018 | 608 | 3319 | 3213 | 2348 | | 7117 | 3029 | 4088 | | | 100000 | 2000 | | 45 | Press 0 3/6/90 | 0_ | 0 | 4799 | 2762 | 388 | 3013 | 2955 | 2140 | | 6523 | 2740 | 3769 | 3250 | | | | | 45 | 4000V/400 H | 4000 | 400 | 5646 | 3392 | 1107 | 3850 | 3684 | 2858 | 4725 | 8143 | 3499 | 4855 | 4177 | | | SCOTTAGE STOR | | 48 | 9800 V/400 H | 9800 | 1000 | 7655<br>7916 | 5179<br>5284 | 2506<br>2768 | 6821<br>6226 | 5138<br>5331 | 4265<br>4466 | 7426<br>7699 | 11661 | 5290<br>5548 | 7120<br>7402 | 6205 | | | | | 40 | 4000 V/1000 H | 4000 | 1000 | 6281 | 3908 | 1678 | 4776 | 4216 | 3420 | 5084 | 9977 | 4161 | 5674 | 4917 | | | | | 60 | Press 0 | 9 | 0 | 5141 | 3115 | 843 | 3585 | 3380 | 2488 | 4124 | 8892 | 3176 | 4721 | 3948 | | | | | 11 | press 0 3/8/90 | 0 | 0 | 4988 | 2982 | 708 | 3459 | 3191 | 2342 | 3873 | 7035 | 3034 | 4110 | | | | | | 52<br>53 | 4000V/400 H | 9800 | 400 | 5717<br>6643 | 3479<br>4237 | 1142<br>1785 | 4233<br>5179 | 3573<br>4230 | 2761<br>3425 | 4908<br>6177 | 8349<br>9867 | 3643<br>4461 | 4897<br>6925 | 4270<br>5193 | | | | | 54 | 9600 V/1000 H | 9800 | 1000 | 6604 | 4254 | 1820 | 6203 | 4263 | 3438 | 6208 | 9846 | 4470 | 6938 | 5204 | | | | | 55 | 4000 V/1000 H | 4000 | 1000 | 6741 | 3587 | 1282 | 4400 | 3710 | 2876 | 5131 | 8412 | 3763 | 5082 | 4417 | | er e#= | | | 5.5 | Press 0 | | | 4997 | 3046 | 785 | 3829 | 3230 | 2387 | 3999 | 7164 | 3089 | 4193 | 3641 | | | | | 68 | PUMP PSI 3/19/90 | Property of the | Breen bel (18 | #169-i coli psi | | | | 1006.1 | 11004 | | | | | | etterteto | diametric Co. | diam'idB: | | 50 | Tellon on colls, Asymmetric Press | Lines her (a) | Cises pai (n) | a tank com bar | . se-i con pi | 10-4 COR PE | total con be | INVEST CON DI | TOWER CON DE | 183-0 00# PE | 144-6 CON DE | 3/19, Tellon | 3/19. Tellon | 3/19 Teller | 3/19. Teston | d(out)/dPv | 3/19 Tellon | | 60 | o v | 0 | . 0 | -158 | -550 | -115 | -212 | -356 | -494 | -118 | -121 | -259 | -273 | -266 | | | | | 61 | Line V | 100 | 0 | 400 | -573 | 137 | 858 | -296 | -344 | 576 | 1309 | 166 | 311 | 233 | 4.14 | 5.84 | 4.99 | | 63 | 1000 V | 1000 | 0 | 686 | -367 | 549 | 1190 | -69 | -261 | | 2249 | 615 | 835 | | | 0,68 | 0.49 | | 63 | 2000 V<br>3000 V | 3000 | 0 | 1182<br>1718 | 30<br>436 | 1565<br>2607 | 2446<br>3585 | 407<br>797 | 359 | 3293<br>4996 | 4338<br>6334 | 1306 | 2026<br>3121 | | 0.79<br>0.7a | 1,19 | 0.99 | | 66 | 4000 V | 4000 | | 2289 | 873 | 3678 | 4658 | 1190 | 660 | 6528 | 7782 | 2875 | 4040 | | | 0,92 | 0,85 | | 8.6 | 5000 V | 5000 | 0 | 2818 | 1288 | 4692 | 6623 | 1611 | 956 | 8127 | 9329 | 3605 | 5004 | 4308 | 0.73 | 0,97 | 0.85 | | 67 | 6000 Y | 6000 | 0 | 3402 | 1786 | 4214 | 6720 | 2007 | 1250 | 9556 | 10833 | 4632 | 5861 | 6198 | 0.93 | 0.88 | 0.69 | | 68 | 7000 V | 7000 | 0 | 3912 | 2216 | 6763 | 7643 | 2475 | 1580 | 11041 | 12111 | 6133 | 6801 | 5987 | 0.60 | 0,94 | 0.77 | | 70 | 8000 V | 9000 | 0 | 4590<br>5175 | 2824<br>3285 | 7936<br>8798 | 9997 | 2892 | 1904 | 12424 | 13461 | 6065<br>6514 | 7868<br>8821 | 6887 | 0.93 | 0.87 | 0.90 | | 71 | 9000 V | 9800 | - 0 | 6519 | 3542 | 9245 | 10840 | 3601 | 2310<br>2514 | | 16019 | 7285 | 9081 | 7717<br>8184 | 0,76 | 0.95 | 0.86 | | 72 | 0 v | 0 | ě | -171 | -628 | -112 | -157 | -405 | -605 | | -42 | -267 | -278 | | | 0.95 | | | _ | | | | | | | 1-11 | | | | | | 7.4 | | | 71771 | 4174 | | | 122112211211 | 11111111111 | | 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PULLIP PSI VIZZAG B JOY AMAK EYIMG<br>Telion en Cols, e mil radial shim,<br>0 V<br>Line V<br>1000 V<br>2000 V<br>2000 V<br>2000 V<br>2000 V<br>4000 V<br>4000 V<br>7000 V 1400 H<br>7000 V 1400 H<br>3000 V 1000 H | Plan P ES 3/21 no P M. Telon on Cells, 3 mit rodul sten 0 V 1000 V 1000 V 2000 V 2000 V 4000 V 6000 V 6000 V 7000 V 7000 V | 3 | P-LALP FS; 3-70*90 PM REPORT OF COME, ALAYM FS; 8 mil rad plan 1000 V 2000 V 2000 V 2000 V 4000 V 4000 V 5000 | APP PLANE PSI 3/2000 AM PSI 4/2000 AM O V 1000 | | Press pel (V) 100 100 2000 3000 4000 5000 7000 7000 7000 3000 | 1000<br>1000<br>2000<br>3000<br>4000<br>6000<br>6000<br>7000 | Press pel (V) 0 100 1000 2000 2000 4000 6000 | 7 Press pti (V) 100 100 2000 3000 4080 6000 6000 6000 6000 6000 | Pass pil (V) 0 1000 2000 3000 4000 6000 6000 6000 9000 | | Press, pd. (H) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Press psi (H) | Press psi [H] | Press pel (V) Press pel (H) 0 0 0 100 0 0 2000 0 0 2000 0 0 4000 0 0 4000 0 0 4000 0 0 4000 0 0 4000 0 0 4000 0 0 | Press psi [H] | | 1147 147 147 147 147 147 147 147 147 147 | #1891 ON Pal Ps | -126<br>-128<br>-502<br>-502<br>-502<br>-729<br>-2729<br>-3592<br>-3697<br>-769 | -137 -137 -137 -137 -137 -137 -122 -716 -1442 -199 -259 -259 -259 -259 -259 -259 -259 -2 | AS<br>#169-1 ONI PAI<br> | | -574<br>-574<br>-236<br>-236<br>-236<br>-226<br>-1202<br>-1202<br>-1202<br>-1202<br>-1203<br>-1203<br>-1204<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206<br>-1206 | -588<br>-321<br>-50<br>-50<br>-50<br>-50<br>-50<br>-50<br>-50<br>-50<br>-50<br>-50 | | 1794-1 COH pp11 -523 -328 -328 -328 -328 -1185 -1185 -1184 -1181 -774_UEI -3281 -3281 -3881 -3881 | AT 198-1 coll ps1563563563563563563563563564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564564 | | 184-0 coll pp11 -80 -78 -78 -1480 -2948 -2948 -653 -653 -652 -922 -922 -922 -922 -922 -922 -922 -9 | - 62<br>- 62<br>- 842<br>- 1580<br>- 3027<br>- 4378<br>- 6714<br>- 7081<br>- 8403<br>- 79 | #184-0 coll ##<br>7-87<br>7-22<br>1546<br>3006<br>4339<br>5-858<br>6967<br>8967 | 44-9 coli pri<br>412<br>412<br>407<br>2030<br>2044<br>4013<br>4082<br>4082<br>4082<br>4082<br>4082<br>4082<br>4082<br>4082 | AU 184-0 coli pei -96 -96 -97 -97 -97 -97 -97 -97 -97 -97 -97 -97 | | 188-8 ody pp 100 -16.7 -18.1 -27.9 -47.02 -9.73 -9.43 -11.09 -12.340 -12.340 -13.12 -10.66 -13.18 | 184-0 coll p#100<br>1482<br>1482<br>1996<br>2970<br>4937<br>4937<br>4937<br>8234<br>8234<br>11392<br>12846<br>12846 | 2184-0 cok [#10<br>-224<br>1723<br>2948<br>4917<br>4917<br>4917<br>4913<br>9813<br>19184 | 784-0 cold pt 184-0 cold pt 1005-1 -76 -1844 -412 1137 -487 1804 -2030 3217 -2030 4316 -4017 4384 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 -4982 4784 - | AV 1884 o ooil price 1997 1018 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 1078 | | 1005-1 coll p#1004-1 -32-6 -51 -427 -108-6 -329-6 -329-6 -329-6 -3423 -4423 -4423 -4578 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350-6 -350- | 19064 cdi p#19044<br>-322<br>35<br>35<br>33<br>33<br>1474<br>1474<br>2197<br>2978<br>3311<br>3331<br>3348 | #1006-1 call p#10<br>-330<br>-76<br>-78<br>-262<br>-861<br>1396<br>1990<br>2518<br>3107<br>-361 | - 286<br>- 90<br>- 133<br>- 1059<br>- 1059 | AW p#10 1005-1 coll p#10 -58.2 -16.7 -6.7 -6.7 -6.7 -6.7 -6.7 -6.7 -6.7 - | | -658<br>-136<br>-136<br>-136<br>-136<br>-136<br>-1282<br>-1282<br>-1282<br>-1282<br>-1282<br>-1365<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350<br>-1350 | -554<br>-189<br>-189<br>-189<br>-197<br>-197<br>-197<br>-197<br>-197<br>-197<br>-197<br>-19 | -545<br>-293<br>-294<br>-544<br>-1028<br>-566<br>-566 | 1004-1 coll pel<br>-1.68<br>-1.15<br>-1.15<br>-1.15<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10<br>-1.10 | AX p#1004-1 cell p#1 77 -284 877 -184 877 -184 878 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 888 -184 8 | | 113-0 0-8 pril 1916 1916 1916 1916 1916 1916 1916 191 | 183-a coli péti<br>1797<br>2996<br>6233<br>7052<br>10664<br>12506<br>13966<br>7 | 100 04 F148<br>100 100<br>100 | 124 00 pt 1<br>26 2128 2122 4037 4037 4037 4037 4037 10786 10786 1078 1078 1078 1078 1078 1078 1078 1078 | AY P1133-0 001 P1133-0 001 P1133-0 001 P1133-0 001 P1133-0 P11 | | 188 - 60H pt.<br>2940<br>2940<br>4495<br>7438<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1888<br>1 | -20<br>3009<br>4890<br>7633<br>12008<br>13866<br>15866<br>17616 | -0 00M 2849 4454 7304 9363 11422 13198 15002 -3 | 188-0 ool p/Ang in -47 1885 2813 5181 6181 1410 1410 1410 12384 8VA 13380 14053 14053 14053 | AZ<br>P161-0 coll p1<br>1712<br>1712<br>2850<br>5038<br>6658<br>6658<br>10977<br>1293<br>13300<br>14888<br>14888 | | Avg in Steas N. 3722, 6 mil rG. 12376 1740 1740 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 17376 | Aig In Stress N<br>3/21, 3 ml r13<br>3/21, 3 ml r13<br>7/41<br>1369<br>2569<br>3599<br>4792<br>6902<br>6902<br>7987<br>-226 | Avg in Stress A<br>3/21, 0 m8 r3<br>-263<br>-263<br>-2691<br>-2691<br>-2691<br>-2691<br>-2691<br>-2691<br>-241 | -225<br>421<br>405<br>1749<br>2278<br>3278<br>4361<br>4361<br>4361<br>4361 | 8A 89 Any In Sees key Out Street | | Ng Ox Stea<br>372 6 mil (4)<br>-227<br>1201<br>1201<br>1201<br>3643<br>622<br>622<br>7524<br>623<br>623<br>623<br>623<br>623<br>623<br>623<br>623 | Ny Od Stest<br>3/21, 3 ml r3<br>1163<br>1199<br>3608<br>4639<br>6183<br>7135<br>8617<br>-215 | I Ayy O.: Seed | Wg Out Street -213 720 1292 2546 4479 6169 6169 6164 6169 6169 6762 | 99 Out Stress<br>-267<br>676<br>1199<br>2408<br>-3452<br>4353<br>6217<br>6048<br>6816<br>6816<br>6816<br>6816<br>6816<br>6816<br>6816 | | U. Sires. Any. Sires. 8 mil 13/22, 6 mil 13/22, 12/21 22/1 970 22/4 970 20/4 10/64 36/21 30/66 6/22 4/327 6/24 4/327 6/24 4/327 6/24 4/327 6/24 4/327 6/24 4/327 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 6/26 6/27 | (4.021, 3 mil 13/2<br>7 .238<br>9.52<br>10 .952<br>10 .952 | Avy Svess<br>(3/21, 0 mll r/3<br>-242<br>1 -242<br>1 -233<br>1 -3023<br>1 -3023<br>1 -315<br>1 -515<br>1 -515<br>1 -525 | Avg Sress -219 -565 -607 -1049 -2167 -3079 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 -4446 | Avg Stress<br>-259<br>446<br>950<br>2011<br>2928<br>3765<br>60500<br>60500<br>7499<br>7499 | | d(in)/dPv<br>722, 6 mil e<br>9.77<br>0.46<br>1.21<br>1.08<br>1.12<br>1.09<br>1.12 | 11.3 mil 1<br>9.90<br>9.90<br>1.22<br>1.11<br>1.09<br>1.01<br>1.01 | 1, 0 mil 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 6.34<br>0.44<br>0.44<br>0.75<br>0.76<br>0.72<br>0.72<br>0.89<br>0.74<br>0.89<br>0.74<br>0.31<br>0.31 | 6.48<br>0.45<br>0.45<br>0.45<br>0.77<br>0.77<br>0.37 | | deutjdePv<br>3222, 6 ml r/3<br>14.27<br>0,94<br>1,90<br>1,20<br>1,21<br>1,21<br>1,21<br>1,21<br>1,21 | deunydPv<br>3/21, 3 ml r(3<br>13.90<br>0.92<br>1.23<br>1.23<br>1.34<br>1.16<br>1.26<br>1.26<br>1.40 | d(out)/dFv<br>(JZ1, 0 mil r3<br>11,74<br>1.06<br>1.58<br>1.22<br>1.22<br>1.12<br>1.12 | 9.32<br>9.32<br>0.84<br>1.25<br>0.86<br>0.81<br>0.83<br>0.83<br>0.83<br>0.83<br>0.83 | 0.43<br>0.43<br>0.43<br>0.44<br>0.44<br>0.44<br>0.45<br>0.44<br>0.45<br>0.44<br>0.47<br>0.48 | | 0(avg)/dPv<br>3z2, 0 mil i<br>12.02<br>0.79<br>1.40<br>1.24<br>1.18<br>1.19<br>1.00 | (4.89)/dPv<br>121, 3 mil r<br>11.90<br>0.81<br>1.42<br>1.17<br>1.22<br>1.17<br>1.22<br>1.10<br>1.10<br>1.20<br>1.20 | d(avg)4Pv<br>3/21, 0 mil r<br>10.37<br>0.92<br>1.40<br>1.16<br>1.16<br>1.16<br>1.16<br>1.08 | 7.94<br>0.54<br>0.154<br>0.154<br>0.170<br>0.77<br>0.77<br>0.78<br>0.30<br>0.30 | 7.05<br>7.05<br>0.57<br>1.05<br>0.92<br>0.92<br>0.92<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93 | · Page 1