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ABSTRACT: The supersymmetric standard model with supergravity-inspired soft 

breaking terms predicts a rich pectrum of sparticles to be discovered at the SSC, 

LHC and NLC. Because there are more supersymmetric particles than unknown 

parameters, one can write down sum rules relating their masses. We discuss the 

pectrum of sparticles from this point of view. Some of the sum rules do not 

depend on the input parameters and can be used to test the consistency of the 

model, while others are useful in determining the input parameters of the theory. 

If supersymmetry is discovered but the sum rules turn out to be violated, it will 

be evidence of new physics beyond the minimal supersymmetric standard model 

with universal soft supersymmetry-breaking terms. 
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1. INTRODUCTION 

The extension of the Standard Model to N = 1 supersymmetry[l) is totally straightfor­

ward outside of the Higgs sector: to every chiral fermion (quark or lepton) one associates 

a complex spinless boson (squark or slepton), and to each gauge field (gluon, W-boson, 

Z-boson, photon), one adds a spin 1/2 Majorana gaugino (gluino, wino, zino, photino). 

The extension of the Higgs sector to supersymmetry is less straightforward, since by ex­

tending the single Higgs doublet of the Standard Model to a chiral Higgsino, one induces 

local (ABJ) and global (Witten) anomalies. This is easily solved by adding its vector-like 

completion; the result is a theory with two Higgs doublets of opposite weak hypercharge. 

This is fortuitous since the nature of supersymmetric couplings itself requires two Higgs 

doublets if both up and down type quarks and leptons are to be massive. However, theories 

with two Higgs doublets show an additional chiral global symmetry, of the type introduced 

by Peccei and Quinn. This symmetry is broken explicitly by QCD instanton effects and 

spontaneously by the electroweak symmetry breaking. This results in a pseudo-Nambu­

Goldstone boson, the axion, of the type ruled out by experiment. 

To be in accord with experiment, the PQ symmetry must be broken. Fortunately, this 

can be done without introducing new fields in the theory by adding a term which preserves 

supersymmetryj it has dimension 3, and is parametrized by a coupling with dimension of 

mass called 1'. Its numerical value is to be considered one of the parameters of the N = 1 

Standard Model. The model also comes with a potential but it is not capable of breaking 

the electroweak symmetry, since the Higgs scalar bosons have the same positive mass 

squared, 1'2. 

In order to bring this model closer to reality, one must break supersymmetry. In the 

absence of any concrete theory of supersymmetry breaking, the effect is mocked up in the 

low energy Lagrangian by including terms which break the supersymmetry softly while 

preserving the gauge symmetries. 

The generalization of the model to include supergravity allows for such a mechanism 

of supersymmetry breaking, with a particular set of soft terms specified at a given input 

scale[2]. They are: 

- masses for the three gauginos [Ml for weak hypercharge, M2 for SU(2h and M3 for 

SU(3)c]j 
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- a common mass mo for all the spinless particles in the theory (squark, slepton, Higgs) j 

- cubic interactions among the squarks, sleptons and Higgs as allowed by R-parity and 

the gauge interactions of the theory, each equal at the input scale to the corresponding 

Yukawa coupling multiplied by a universal parameter Aj and 

- a scalar (mass)2 term in the Higgs sector which breaks both the Peccei-Quinn symmetry 

and supersymmetry. 

In this scheme, the supersymmetry-breaking sector is parametrized by six masseSj three 

gaugino masses Mi, the common scalar mass mo, the trilinear scalar coupling parameter 

A, and the PQ-breaking and supersymmetry-breaking parameter B. Since the gauginos 

have not been observed to date, the masses Mi must certainly be non-zero. In fact, 

since they are strictly multiplicatively renormalized, they must not vanish at any scale for 

which the renormalization group equations are valid. It is possible that each of the other 

supersymmetry-breaking parameters are zero at the input scale, although this will not be 

maintained under renormalization group evolution. The low energy values of all the soft 

breaking parameters are constrained by the fact that no sparticles have been found yet. 

A remarkable feature of the theory is that, with the supersymmetry breaking pa­

rameters specified at some high scale M x, it is possible to trigger electroweak symmetry 

breaking[3]. It is even more amazing that the present bounds on the top-quark mass, 

which is constrained (in the context of the Standard Model) to be between 120 and 200 

GeV by experiment, yields the correct value of M z for values of the supersymmetry break­

ing parameters not far above their experimental lower limits. One of the consequences of 

such a picture is that the superpartners of the elementary particles would have masses in 

the hundreds of GeV, quite accessible to the next generation of colliders: SSC, LHC and 

NLC[4]. Another remarkable consequence of the mechanism is that it suggests that the 

three gauge couplings of the Standard Model have a common origin[5] around 1015 - 1016 

GeV, providing a strong hint in favor of a Grand Unified Theory (GUT)[6]. This in turn 

dovetails nicely with the requirement of R-parity conservation, which is necessary in order 

to avoid superfast proton decay, and which arises most naturally in supersymmetric GUTs 

with gauged B - L[7,8]. 

The scale at which the super symmetry-breaking parameters are specified is in principle 

undetermined as long as it is below the Planck mass. However, if it is too far below, the 
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magnitude of the electroweak breaking comes out too low, given the lower bound on the 

top-quark mass. Thus a remarkably consistent picture emerges with the supersymmetry 

breaking parameters specified at 1015 - 1016 GeV, the scale at which the gauge couplings 

unify. Another coincidence is that around that scale, the relation mb = mr is favored[9] 

by the data. One of the mysteries is that the PQ-breaking parameter JL is constrained to 

be of the same order of magnitude as the supersymmetry-breaking parameters. Since JL 

is logically uncorrelated with supersymmetry-breaking from the low-energy point of view, 

this hints at a deeper mechanism which would link PQ and supersymmetry breakings. 

The masses of the superpartners are determined in terms of the soft breaking param­

eters[10,1l]. Various authors[12,13,14,15,16,17] have presented numerical results based on 

computer analysis for the sparticle masses, using different sets of input parameters. Since 

there are more superpartners than breaking parameters, there are many sum rules among 

superpartner masses. These sum rules will test the validity of this picture, and will be of 

importance for the SSC, LHC, and NLC. It is the purpose of this paper to present these 

sum rules in a simple, unified format, without using computers. Some are new; some have 

already appeared in the literature, but not all in one place. Their study will enable us to 

offer some specific scenarios in conducting-the experimental search for superpartners. 

Since the superpartner masses are in the several hundred Ge V range, we neglect the 

masses and Yukawa couplings of the leptons and quarks of the first two families. It follows 

that we need only consider the Yukawa couplings Yt, Yb and Yr, and the trilinear scalar 

couplings of HuhlR' HiJLbR and HdTLTR, which we denote YtAt, YbAb and YrAr, respec­

tively. At the input scale, At = Ab = A r . We denote the squarks and sleptons of the first 

two families by their first-family names, that is uL, dL, uR, dR, eL, eR, iie • Thus uL can 

be taken to be either the left-handed up or charmed squark. The squarks and sleptons 

associated with the third family will be denoted by (h,R, bL,R, TL,R, vr). 

2. RENORMALIZATION GROUP EQUATIONS 

In this section we remind the reader of the one-loop renormalization group equations 

which are relevant to this work. They are 

2 d 3 161(" -go = -bogo dt ' , , i = 1,2,3; (2.1) 
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2 d 2 1671" -M· = -2b·M·9· 
dt' " , 

i = 1,2,3; (2.2) 

for the three gauge couplings and three gaugino masses, respectively, and above the super­

partner mass thresholds, 

{
-I - 2nf i = 1 

bi = 5 - 2n f i = 2 
9 - 2nf i = 3 

with i = 1 for weak hypercharge in a GUT normalization, i = 2 for SU(2h and i = 3 for 

SU(3)c. Together, (2.1) and (2.2) imply that the three quantities Mi/ai do not run with 

scale: 
Mi(t) _ Mi(tO) 
ai(t) - ai(tO) . 

The light squark and slepton masses obey the RG equations 

2 d 2 2 2 2 2 2 32 2 2 1 2 2 
1671" dtmQL = - 1591M1 - 692 M 2 - 393M3 + S91Tr(Ym ), 

2 d 2 32 2 2 32 2 2 4 2 2 
167r dt mUR = - 1591M1 - 393M3 - S91Tr(Ym ), 

(2.3) 

2 d 2 8 2 2 32 2 2 2 2 2 
1671" dtmdR = - 1591M1 - 393M3 + S91 Tr(Ym ), (2.4) 

2d 2 6 2 2 2 2 3 2 2 
167r dtmLL = - S91 M l - 692 M 2 - S91Tr(Ym ), 

2 d 2 24 2 2 6 2 2 
1671" dt meR = - S-91 M l + S91Tr(Ym ), 

where 

The renormalization group equations for .the sparticles of the third family are different 

because they involve the Yukawa couplings; for the squarks they read 

2 d 2 2 2 2 2 2 2 2 2 2 32 2 2 1 2 2 
1671" -d m t- -b = 2Yt I:t + 2YbI:b - -91 Ml - 692 M 2 - -393M3 + -91 Tr(Ym ) , 

t L, L 15 5 
2 d 2 2 2 32 2 2 32 2 2 4 2 2 

1671" dt mi
R 

= 4Yt I:t - 1591 Ml - 393M3 - '591 Tr(Ym ), (2.5) 

2 d 2 2 2 8 2 2 32 2 2 2 2 2 
1671" dt mbR = 4YbI:b - 1591 Ml - 393M3 + S91 Tr(Ym ), 

and for the sleptons, 

2d 2 22 6 2 2 2 2 3 2 2 
1671" dt mh,;;.,. = 2y.,I:., - 591 M1 - 692 M 2 - '591 Tr(Y m ), 

d 24 6 
1671"2-m~ = 4y2I:2 __ 92 M2 + -92Tr(Ym2) dt"R .,., 5 1 1 5 1 , 

(2.6) 
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where 

El =(m~ + mt~ + mt~ + Al), 
.. L R 

~2 (2 2 2 2) ~b = m Htl + mbL + mbR + Ab , 

E; =(m~tl + m~L + m~R + A;). 

When all of the squark, slept on and Higgs masses are the same at the initial scale, we have 

(2.7) 

as required by the absence of the gravitational mixed anomaly. Furthermore the condition 

(2.7) is maintained by the RG evolution, and so holds at all scales. Hence we neglect it in 

the following, which greatly simplifies these equations. Fortunately, we will not need the 

renormalization group equations for m~ .. , m~tl' At, Ab, AT or JL in this analysis. 

3. FIRST AND SECOND FAMILY SQUARKS AND SLEPTONS 

The sum rules involving'masses ofthe squarks and sleptons associated with the first two 

families are particularly simple .. Besides the universal m~, there are four other contributions 

to the squared masses of the squarks and sieptons, as follows. 

First, there are contributions from the renormalization group running of the scalar 

masses down to experimental scales, as given by (2.4). 

Second, the n2 term in the scalar potential contributes to the scalar masses after the 

Higgs scalar bosons get vacuum expectation values. For each squark or slept on l/J with 

third component of weak isospin If and weak hypercharge Y, this contribution is given by 

(3.1) 

where 

is the ratio between the two expectation values of the Higgs. 

Third, there is a supersymmetric contribution which is just equal to the (mass)2 of the 

corresponding quark or lepton. This contribution is utterly negligible for all but the scalar 

partners of the top quark. 
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Finally, there are contributions to the scalar (mass)2 matrix which mix the scalar part­

ners of the left and right handed squarks and the left and right handed charged sleptons. 

These contributions are again quite negligible for the first two families. 

The physical squared masses are obtained from all of the above contributions. We will 

use Mq, M; to denote the physical masses of squarks and sleptons. Since we can neglect 

Yukawa couplings the spectrum is arranged in seven distinct groups of degenerate scalar 

states (uL,cL); (dL,SL); (uR,cR); (dR,SR); (eL,PL); (eR,PR); (ve,vJ.'). The members of 

each group transform in the same way under SU(3) x SU(2) x U(I). 

Now, experimental constraints on flavor-changing neutral currents are most easily 

evaded if the scalar partners of the down and strange squarks are nearly degenerate, and 

likewise for the up and charm squarks and the selectron and smuon, so there is already 

indirect experimental evidence in favor of the hypothesis of a universal mass mo. 

With the assumption of a common m~, the RG equations for the squarks and sleptons 

can be integrated down to experimental scales to yield 

2 2 1 12.2 2 
MUL = mO + C3 + C2 + 36C1 + ('2 - 3sm 8W)MZcos{2,8) 

2 2 1 11.2 2 
MdL = mO + C3 + C2 + 36C1 + (-2" + 3sm 8W)MZcos(2,8) 

2 2 4 2.2 2 
MUR = mO + C3 + gC1 + 3 sm 8w M z cos(2,8) 

2 2 1 1. 2 2 (3 2) MJR = mo + C3 + gC1 - 3 sm 8wMz cos(2,8) . 

MiL = m~ + C2 + ~C1 + (-~ + sin2 8w)Mj cos(2,8) 

2 2 1 1 2 
Miie = mO + C2 + 4C1 + '2Mz cos(2,8) 

MiR = m~ + C1 - sin2 8w Mj cos{2,8) 

where we have added the contributions of the D2-term (3.1). The Ci factors are given by 

which, after performing the integration can be written as 

Ci(t) = {~~~} 2M;(t) [1 _ o:~(tx )] . 
4/3 hi o:~(t) 

(3.3) 
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In (3.2), the functions Ci(t) should be evaluated at the corresponding squark and sleptons 

mass poles. 

Let us suppose for the moment that (3 is known. Then we have seven physical masses 

MUL , M dL , M UR , M dR , MeL' Mile' MeR which essentially depend on just four unknown 

parameters, namely m~ and C1, C2, and C3. Therefore, there should be three independent 

sum rules which do not contain the unknown input parameters. 

We can immediately use the equations to relate the masses of the squarks and sleptons 

which live in the same SU(2h doublet: 

MiL - M~L = - cos(2(3)Mlv 

MiL - Mle = - cos(2(3)Ma, 

(3.4) 

(3.5) 

For the choice tan(3 > 1, cos(2(3) is negative, so that MdL > MUL and MeL> Mve. Note 

that these two sum rules do not rely on the assumption of universal mO or on the equality 

of the gaugino masses Mi at any initial scale. This is simply because e.g. the left-handed 

squarks live in the same irreducible gauge multiplet before electroweak symmetry breaking. 

Thus they must have the same mo, and must be renormalized in the same way down to 

the electroweak scale. So the only difference in the masses of M dL and MUL comes from 

the electroweak D-term, yielding (3.4). The same argument for the left-handed sleptons 

yields (3.5). 

We also obtain a third sum rule by taking linear combinations of (3.2): 

( 2 2) (2 2 ) 2 2 10. 2 2 2 M- - M- + M- - M- + (M- - M- ) = -sm 8WMzcos2(3. UR dR dR dL eL eR 3 (3.6) 

This relation doe, depend on the assumption of universal mo, but again does not depend 

on any particular assumptions about the gaugino mass parameters. The functions Ci 

cancel out. The sum rule (3.6) is thus a test of the universality of mo, without making 

assumptions about the other input parameters. 

The remaining four independent equations can be inverted to yield expressions for the 

input parameters in terms of the squark and slepton masses: 

m~ = M:R - 3(M~R - Ml
R

) + 4 sin2 8W Mj cos 2{3, 

2 2 8 2 2 10. 2 2 C3=(M- -M- )+-(M- -M- )--sm 8WMzcos2{3 dR eR 3 UR dB 3 
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2 2 9 2 2 (1 17. 2 ) M2 2a C2 = (M- - M- ) + -(M- - M - ) + - - - sm 8W Z cos 1-' 
eL eR 4 UR dR 2 4 

C1 = 3(Ml - Md~ ) - 3sin2 8wM j cos2{3 
R R 

(3.9) 

(3.10) 

The function C3 ( t) varies significantly as a function of scale even over the range from M z 
to a TeVj here it should be evaluated at a typical squark mass. 

In terms of the gluino mass Mg = M3(tg), we have from (3.3) 

(3.11) 

where we have used (2.3). With the assumption of a GUT, one can further require that 

all three gaugino masses be the same at M X . While there are theories, derived from 

superstrings, where the unification of the gauge couplings does not imply the equality of 

the gaugino masses at that scale, in the following we may choose to assume the following 

GUT relation 

It follows from (2.3) that 
M­

Mi(t) = Qi(t) (g). 
Q3 tg 

(3.12) 

Then the seven equations for the squarks and sleptons of a light family are expressed 

in terms of two mass parameters rno and Mg, and the angle (3. We can now test the 

assumption of equal gaugino masses at t x, since it implies that 

(3.13) 

3 M~ [2 2] C2(t) = -2 2( g_) Q2(tX) - Q2(t) . 
Q 3 tg 

(3.14) 

We can estimate the values for C1, C2 and C3 in terms of the gluino mass, by assuming 

that at the unification scale, Q1(tX) = Q2(tX) = Q3(tX) = .04 . These estimates depend 

strongly on the value of the QeD coupling constant at low energies, which we take to 

be .08 < Q3(tg) < .11, with the lower (upper) bound corresponding to a heavy (light) 

gluino. [We take Q3(Mz ) = .115 .J Then for C1 and C2 (in the hundreds of GeV range) 

we estimate 

.020 Mj < C1 < .037 Mj, 
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(3.16) 

The other parameter C3 should be evaluated at a typical squark mass scale tq. If rno is 

small, then tij is slightly less than t g, and we find 

.67 Mi < C3 < .80Mi· (3.17) 

For larger values of rno, the squarks will be heavier than the gluino, so from (3.11) we find 

that the estimate for C3 decreases. However, a reasonable general range is 

.35M] < C3 < .80M]. (3.18) 

More precision in the expected values of the functions Ci must await a better determination 

of the gauge couplings as a function of scale in the sparticle mass range. The discovery 

of the sparticles will then allow the RG thresholds to be implemented, and the idea of 

gaugino mass unification tested. 

From equations (3.8) and (3.9), we obtain 

3 2 2 1 ·2 2 
C2 - 4C1 = MeL - MeR + (2 - 2sm 8W)MZ cos(2,8) 

C3 - ~Cl = M~ - M~ - ~ sin2 8wMj cos(2,8). 
9 dR eR 3 

By taking their ratio we arrive at a sum rule which is independent of the gluino mass, 

namely (in Ge V2) 

G 3C 
M~L - M~R = 2 - ~ 1 [MJ - M~R - (36)2 cos(2,8)] + (20)2 cos(2,8) (3.19) 

C3 - '9'Cl R 

or 

Mg - Mg = [.07 to .31](Md~ - MgR) + [(18)2 to (0)2] cos(2,8) . 
L R R 

(3.20) 

which tests the unification hypothesis for the gauge couplings and gaugino masses at Mx. 

The present large uncertainty in the numerical value of (3.20) is due partly to the uncer­

tainty in Q3(MZ) but more importantly to our lack of knowledge of the sparticle masses, 

which we need to tell us where to evaluate Cl 2 3 and where the thresholds are. At any , , 
rate, this formula shows that M dR > Mh . 

4. THIRD FAMILY SQUARKS AND SLEPTONS 

Sum rules involving the masses of third family squarks and sleptons are more com­

plicated because of the Yukawa couplings. The presence of Y'f'J:.~, y~'J:.~ and y~'J:.~ in the 
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RG equations (2.5) and (2.6), and the complicated RG evolution of the Higgs mass, makes 

these equations hard to integrate in a useful form. In addition, there are mixing terms in 

the mass matrices for the third family squarks and sleptons. 

The mass-squared matrix for the top squarks is given by 

(
miL + m; + ~IL mt(At + P. cot (J)) 
mt{At + IL cot (J) m~ + m 2 + ~* 

r- tR t tR 

and that of the bottom squarks by 

(
m~ +m2 + ~* 

bL b bL 
mb{ Ab + p. tan (J) 

(4.1) 

(4.2) 

Despite these complications, with further assumptions concerning the relative magnitudes 

of the Yukawa couplings of the third family we can deduce some new sum rules for the 

third family squark masses. 

The validity of the radiative electroweak symmetry breaking with a top quark mass 

much larger than the bottom quark mass puts restrictions on the relative magnitudes of 

Yb and Yt· For Yt <: Yb, the radiative breaking scenario implies mb > 1J1.t. For Yt f'V Yb, the 

two Higgs develop similar vacuum expectation values, which in turn implies mb f'V mt in 

the absence of fine-tuning. This leaves us with only one viable possibility, Yt » Yb. In this 

case, the radiative mechanism naturally favors a larger vacuum expectation value for Hu 

which couples to the top, yielding a consistent picture when tanfJ <: mt/mb. It is amusing 

to note that in S0(10), this hierarchy of Yukawa couplings has a natural explanation 

provided that a 126 Higgs couples more strongly than the 10 to the top. 

In the following, we therefore neglect Yb. (Numerical work[17] indicates that this is a 

reasonable approximation in realistic models for tan{J less than about 10.) Then there is 

no mixing in the bottom squark mass matrix, and bL and bR are still the mass eigenstates. 

Thus, bR is degenerate with dR to a good approximation. In addition, from the RG 

equation for the running masses 

(4.3) 

which has a positive RHS, we note the inequality 

( 4.4) 
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for the physical masses. It is also true that J R is lighter than J L, but the relative place­

ment of bLand J R cannot be determined without more detailed knowledge of the input 

parameters. 

In the stop sector, the analysis is different, because m~ and m~ , which are the result 
tL tR 

of running the universal value m~ from A down to the electroweak scale, are not the 

actual mass eigenvalues. The mass eigenstates iI, i2 of the top squark system are found by 

diagonalizing the matrix (4.1), whose eigenvalues are the physical squared masses Mil' Ml. 

The sum of the (mass)2 eigenvalues is just the sum of the diagonal entries in (4.1). So, by 

taking the trace, we find 

M 2 M2 2 2 2 1 2 f.l 
t- + t- = m t- + m t- + 2mt + -Mz cos 2,.., . 

I 2 L R 2 

We observe that there are two linear combinations of m1
L

, m1
R

, and mt for which the 

terms involving YlE~ in the RG equation (2.5) cancel out, and which therefore evolve like 

their counterparts from the first two families. One is the linear combination m1L + m1R -

3m~b which runs exactly as the combination m~ +m~ -3m~ from the first two families. 
L UL UR dL 

The D-term contributions to these two combinations are equal. We therefore obtain the 

interesting new sum rule 

M 2 M2 M2 2 M2 M2 M2 - + - - 3 - - 2mt = - + - - 3 -tl t2 bL UL UR dL 
(4.5) 

which relates masses of the squarks and quarks of the third family with the masses of the 

squarks of the first two families, without involving any input parameters. 

If the top squark matrix is diagonalized by a rotation through an angle cp, we have 

(Mf
l 

- Mf
2
)sin(2cp) = 2mt(At + p.cot(3), 

2 2 2 2 14.2 2 
(Mfl - M f2 ) cos(2cp) = miL - mER + ("2 - a sm 8w )MZ cos 2{3 . 

Eliminating the angle cp, we obtain 

2 2 2 2 2 [2 2 1 4. 2 2 ]2 (Mil -Mi2 ) = 4mt(At+p.cot{3) + miL -miR+("2-a sm 8W)MZcos2(3 

Noting that the combination m~ - m~ runs across the scales exactly like -m~b + m~L + 
tL tR L 

m 2
d
- - m~ ,and taking into account the D-term contribution leads to our second sum rule 
L UR 

for the third-family squarks: 

(M.? - M.?)2 = 4m;(At + p. cot (3)2 + [MJ. - M~ - M~ + M~ ] 2 (4.6) tl t2 bL dL UL UR 
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This equation provides a lower bound on the splitting between the top-squark masses, and 

illustrates how the parameters At and I' contribute to the splitting in the stop sector. We 

can also express the top-squark mixing angle in terms of the physical masses by 

cos 2c,o = (4.7) 

If the stop mixing angle c,o can also be measured by other means, this may provide another 

interesting test. 

From the form of the mixing matrix of the bottom squarks, it may be that neglecting 

Yb is inappropriate if I' and/or tan{3 is very large. In that case, bR and dR are no longer 

degenerate, and our sum rules may have to be modified. 

By the same token, for large tan{3 and 1', one should also take into account the left­

right mixing and the effect of the tau Yukawa coupling in the third family slept on sector. 

The stau (mass)2 matrix is given by 

( 
m~L + m~ + Ah m.,.(A.,. + J1.tan(3)) 

2 2 . 
m.,.(A.,. + J1.tan(3) m TR + m.,. + ArR 

(4.8) 

For very large I' and tan {3, the splitting between TL and TR will be increased somewhat 

by the left-right mixing terms. Since the mixing angle is always small, we use the same 

names TL and TR for the mass eigenstates as for the gauge eigenstates. Also, m~ ... , m~L 

and m~R are pushed lower because of the terms proportional to Y~~~ in (2.6). Since 

we know that 

(4.9) 

By taking the traces of the stau (mass)2 matrix and its selectron counterpart, and noting 

that the renormalization of the combination m 2.,._ + m 2.,._ - 3m~ does not contain the T 
L R v ... 

Yukawa coupling, we derive the sum rule for the physical masses: 

(4.10) 

We see from (4.9) and (4.10) that the center of mass-squared for the staus is less than that 

of the selectrons. Numerical work[17] shows that typically TL is slightly heavier than eL 
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and TR is lighter than e Rand vr is lighter than ve (by at most a few Ge V in each case) 

when both tanfJ and p. are large. 

5. CHARGINOS 

The chargino sector consists of the fermionic partners of the charged electroweak gauge 

bosons and of the charged Higgs scalar bosons. The mass matrix is[18] 

(w+ iI+) ( M2 
v'2Mw sin fJ 

v'2MWCOSfJ) ( ~- ) + 
H - c.c. 

p. -

This mass matrix describes two charged Dirac fermion mass eigenstates 01 and 02 with 

masses 

If the gluino mass is known, then the gaugino mass parameter M2 is a2(Mg/a3), with 

a3 taken at the gluino mass scale and a2 evaluated self-consistently at M2. Thus, mea­

surement of the two chargino masses in principle determines the two unknown parameters 

p. and f3. In fact, the sum of the squares of the charginos depends only on p. and not on f3: 

M 2 M2 - 1II2 2M2 2 0
1 

+ O
2 

- .lV.l2 + W + p. . (5.1) 

Also the product of the chargino eigenstates is given simply by 

(5.2) 

Using these equations, and a measurement of the physical masses of g, 01, 02, and cou­

plings a2, a3, one can solve for p. from (5.1) and then for sin 2,8 from (5.2). In a region 

tanf3 ~ 1, this provides a more sensitive measure of the angle f3 than can be obtained in 

the squark and slept on sector via eqs. (3.4) or (3.5). The value of f3 determined by the 

chargino sector masses from (5.1) and (5.2) should therefore be used as an input for the 

squark and slept on sum rules. 

In realistic models, it often happens that the chargino masses are close to being de­

generate with two of the four neutralino masses. As we will see, this can be explained 

by considering the limit in which MZ is small compared to p. ± M2, so that electroweak 
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symmetry breaking can be treated as a perturbation in the chargino and neutralino mass 

matrices. From this point of view, the masses of the charginos are given to the lowest 

non-trivial order by 
M~(M2 + p. sin 2fJ) 

Me = M2 - 2 2 
1 P. - M2 

M~(p. + M2 sin 2fJ) 
Me = p. + 2 2 

2 P. - M2 

(5.3) 

The eigenstate 61 is mostly wino and the eigenstate 62 is mostly charged Higgsino in this 

limit. 

6. NEUTRALINOS 

The neutralino sector consists of the fermionic partners of the neutral electroweak gauge 

bosons and of the neutral Higgs scalar bosons. Electroweak symmetry breaking introduces 

mixing between these states. The mass spectrum and mixing angles are determined by the 

mass matrix 

( 

M1 

- M z co~ fJ sin 8W 
Mz sinfJ sin 8W 

o 
M2 

M z cosfJcos8w 
-Mz sinfJ cos 8W 

-Mz cosfJ sin 8W 
M z cos fJ cos 8W 

o 
-p. 

M z sinfJsin8w ) 
-Mz~;COS8W (6.1) 

in the basis (iJ, WO , -i.ii~, -i.ii~). The neutralino mass eigenvalues thus satisfy the char­

acteristic equation 

o =~4 - ~3(M1 + M2) + ~2(M1M2 _ p.2 - Mj) 

+ ~(p.2[M1 + M2] + M~[M1 + M2 tan2 8W] - p.Mj sin2fJ) (6.2) 

- p.2 M1M2 + p.M~[M1 + M2 tan2 8W] sin2fJ. 

The exact analytical expressions for the mass eigenvalues are quite complicated and not 

very illuminating. However, we can still make some relatively simple statements about the 

spectrum of neutralinos in the form of sum rules for the physical masses. 

A simple relation governs the product of the neutralino masses, which is equal to the 

determinant of (6.1), and from (6.2) is given by 

M Hl M H2M H3 M H4 = _p.2 M1M2 + p.M~[M1 + M2 tan2 8w] sin2fJ . (6.3) 

This will provide an independent test of the values of p. and fJ obtained from the chargino 

spectrum via (5.1) and (5.2). 

15 



Knowledge of the sign of the determinant of the neutralino mass matrix is important 

in the derivation of neutralino mass sum rules. For p, < 0, the determinant is obviously 

negative, and it is easy to show that one of its eigenvalues is negative and the other three 

positive. If p, > 0, the determinant is still negative as long as P,M2 > 1.6M~ sin 2{3 where 

we have used the fact that M1 is approximately .5M2. However, the present experimen­

tal bounds on the chargino masses (MC
i 
~ M Z /2) and on the gluino mass (Mg > 100 

Ge V) still allow for the existence of a very restricted range of parameters for which the 

determinant is positive, namely 

.45 < tan{3 < 2.2 , 

M~ + p,2 < 1.5M~ , 

P,M2 < .69M~ . 

Note that LEPII can rule out the existence of this very small window by failing to detect 

any chargino lighter than the W. Also, the window shrinks rapidly as the lower limit on 

the gluino mass increases, disappearing entirely for Mg greater than about 300 Ge V. 

The sum of the eigenvalues of the neutralino mass matrix is equal to its trace, which 

is M1 + M2, and thus does not depend on p, or {3. In most of the allowed parameter space, 

where the determinant is negative, exactly one of the eigenvalues is negative. We call the 

neutralino eigenstate of (6.1) which corresponds to the negative eigenvalue the "flipped" 

neutralino. Then by relating M1 and M2 to the gluino mass, we arrive at the simple sum 

rule 
M-

1M - I + 1M - I + 1M - I - 1M - I = (0:1 + 0:2)-g Nl N2 N3 N4 0:3 
(6.4) 

where N4 is the flipped neutralino. In this expression, 0:3 should be evaluated at the gluino 

mass scale, while 0:1 and 0:2 should be evaluated at the neutralino mass scale. Typically, 

one then finds very roughly that (0:1 + 0:2)/0:3 ~ .5 in eq. (6.4). We suggest that in 

future numerical work on the sparticle spectrum, it would be useful to specify not only 

the masses of the four neutralinos, but also which of them is the flipped neutralino in the 

sense discussed here. 

In the very unlikely case discussed above of a positive determinant for (6.1), the term 

proportional to .\2 in the characteristic equation, M1M2 - p,2 - Mj is negative, which 
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implies that two of the eigenvalues are negative and two are positive. Then the trace sum 

rule (6.4) would be replaced by 

M­
IMN 1+ IMN I-IMN I-IMN 1= (al +a2)-g. 

1 :I 3 4 a3 
(6.5) 

The sum of the squares of the neutralino masses is given by the trace of the square of 

(6.1): 

M~l + M~2 + M~3 + M~4 = Ml + Mi + 2p.2 + 2Mj . (6.6) 

Combining this with the chargino (mass)2 relation (5.1), and writing Ml and M2 in terms 

of the gluino mass, we arrive at the sum rule 

2(MC~ + Mc~ ) - (MN~ + MN~ + MN~ + MN~ ) = (a~ - a~) M! + 4Mlv - 2Mj. (6.7) 
1 :I 1 :I 3 4 a3 

In this formula a3 should again be evaluated at the gluino mass scale. A corollary of 

(6.7) is that the average squared mass of the neutralinos is always less than the average 

squared mass of the charginos. The virtue of (6.4) and (6.7) is that all dependence on 

input parameters has been eliminated in favor of physical masses and coupling constants. 

They should hold in general as long as the GUT assumption relating the gaugino mass 

parameters M!, M2 and M3 is true, notwithstanding the complicated dependence of the 

neutralino and chargino mixings on the unknown parameters p. and f3. 

The mass scale of the neutralino sector is set by p., M!, and M2. In fact, with Mz = 0, 

the neutralino mass eigenvalues of (6.1) are M!, M2, P. and -p., and there is no mixing 

between gauginos and Higgsinos. Now suppose that we turn on electroweak symmetry 

breaking. Then, expanding in M z, the neutralino mass eigenvalues are perturbed to 

Mj sin2 8W (Ml + p. sin 2f3) 
MN = Ml- 2 2 

1 P. - Ml 

Mlv( M2 + p. sin 2f3) 
Mif, = M2 - 2 2 

:I P. - M2 

Mj(l + sin 2f3)(p. - Ml cos2 8W - M2 sin2 8W) 

M:&3 = P. + 2(p. - MI)(p. - M2) 

(6.8) 

Mj(1 - sin 2f3)(p. + Ml cos2 8W + M2 sin2 8W ) 

M:&4 = -p. - 2(p. + MI)(p. + M2) 

These expressions generalize the ones given in [14]. They are valid so long as Mz is small 

compared to p. ± Ml,2" (In cases like p. ::::::: ±M2 > Mz the above expressions are not 
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reliable, but one can do almost-degenerate perturbation theory to find the neutralino mass 

eigenvalues.) If we also assume that 11-'1 is larger than MI,2, then the LSP is NI, since MI 

is typically about half of M2. The physical neutralino masses are the absolute values of 

these quantities. In (6.8), the flipped neutralino is N4 if I-' is positive and is N3 if I-' is 

negative. The electroweak interactions split the degeneracy between the neutralinos N3 
and N4. By comparing (6.8) with (5.3), we see that the chargino G'I and the neutralino 

N2 are exactly degenerate to this order in the expansion in Mj.: 

(6.9) 

Also, the neutralino N3 is often quite close in mass to the other chargino 62; they are 

exactly degenerate in the limit of no electroweak breaking and the corrections from this 

limit tum out to be similar. For example, in the large I-' limit, one has 

M~ [2 1 + sin2{3] M- -M- =- cos 8W- . 
C2 N3 I-' 2 

(6.10) 

For tan {3 = a few, this happens to be numerically small. Numerical calculations have 

shown that these coincidences are quite good, even when the expansion in M~ is not so 

reliable. 

7. DISCUSSION 

Supersymmetry predicts[19] the existence of a light Higgs scalar, which should be 

discovered at LEPII if its mass is less than about 90 GeV (perhaps 118 GeV), and at the 

SSC or LHC otherwise. However, discovery of a light Higgs by itself will neither confirm nor 

deny the existence of supersymmetry, since it can also be a feature of non-supersymmetric 

models. The first definitive experimental signal of supersymmetry may very well turn out 

to be the discovery of the gluino at a hadron collider. Because the gluino is a color octet, 

it should be copiously produced at the SSC and LHC, and its mass measured. 

In the following, we adopt the GUT assumption for the gaugino mass parameters. 

With the gluino mass known, this fixes the gaugino mass parameters M2 and MI which 

appear in the chargino and neutralino sector, and the functions Gl, G2, G3 appearing in the 

formulas for the squark and slepton masses. Numerically, one typically has Ml ~ .17Mg, 

M2 ~ .33 M g, and the ranges for Gl, G2, G3 are given by (3.15)-(3.18). 
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Squarks and Sleptons 

Knowledge of the gluino mass determines the splittings in the squark and slept on 

{mass)2 spectrum. The overall scale in this spectrum is set by the universal parameter 

m~, which does not appear in the splittings of the squared masses. The spinless sparticles 

of the first two families generally arrange themselves into three "bands": 

• The lightest of these bands contains the three right-handed sleptons, (eR,ji.R,TR). This 

is a consequence of 01 < 02,03. The mass scale for this band of right-handed sleptons is 

set by mo and 01. For larger values of tan{3, TR is slightly lighter than (eR,ji.R)· 

• The middle band contains the three degenerate left-handed charged sleptons, (eL,ji.L, TL) 

and the three sneutrinos (iie, iiJ.', iiT), with a slightly different mass determined by the sum 

rule (3.5). This splitting within the band is most pronounced if both mo and the gluino 

mass are in the lower part of their allowed ranges, because then the D-term contribution is 

relatively more significant compared to m~ and 02. The splitting between the light band 

of right-handed sleptons and the middle band of left-handed sleptons is governed by the 

value of 02 via (3.9). The splitting between the two lower bands is more significant if the 

gluino mass is relatively large compared to mo, as in "no-scale" models. For large tan{3, 

iiT is lighter than iie and TL is slightly heavier than e L. 

• The heaviest band contains all of the squarks of the first two families (and bR if tan{3 

is not too large). The essential reason they are all heavier than the sleptons, and why 

they congregate in a band, is because they all obtain a large common contribution from 

the RG equation which is 03 ~ Or, 02, Mj. Within this band, there is a small splitting 

between the groups (UL,CL) and (th,iL) as mandated by the sum rule (3.4). The splitting 

(within the band) between (UR,CR) and (dR,iR) is small, giving a measure of the value of 

01 after the D-term contribution in (3.10) is taken into account. This can be interpreted 

in terms of the custodial symmetry of the standard model. For tan{3 > 1, the D-term 

contribution to the splitting between right-handed up and down-type squarks happens to 

have the opposite sign from the RG contribution from 01, increasing their tendency to be 

degenerate in mass. Numerically one has (in GeV2) 

Knowing the value of 03 tells us the approximate splitting of the heaviest band of squarks 

from the lighter bands of left-handed sleptons and of right-handed sleptons through (3.19). 
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These qualitative features of the spectrum of the squarks and sleptons of the first two 

families change drastically depending on the relative values of the gluino mass and the 

input parameter mO. 

In the "no-scale" limit mo ~ M g, the three bands should be well separated in mass, 

with a discernable structure within each band. In this case, the sum rules (3.4), (3.5), 

and (3.6), which do not rely on the input parameters, can be tested. In addition, the 

measurement of the separation between the bands directly tests the hypothesis of equal 

input gaugino masses. 

In the opposite "anti-no-scale" limit, mo > Mg, mo dominates the mass spectrum, all 

the bands are bunched together, and any hint of the structure within the bands disappears. 

The most extreme versions of this limit are already ruled out, because of lower limits on 

the mass of the gluino. 

The squarks of the third family are not degenerate with those of the first two families, 

because the Yukawa couplings are significant. 

The values of the stop masses II and I2 are the result of several competing effects. For 

one, the term proportional to ylEl in the RG equations pushes the masses lower compared 

to their counterparts from the first two families. There is also a positive contribution for 

the top squarks of magnitude mi. Finally, the left-right cross-terms for the top squarks 

introduces a mixing depending on At + p. cot /3, which increases one eigenvalue and lowers 

the other. 

The bottom squark mass eigenstates are also different from their counterparts d Land 

d R because of three effects. First, m~L is smaller than m~L because of the term proportional 

to ylEi in the RG equations. Second, the terms proportional to y~E~ in the RG equations 

push both m~ and m~ lower than m~ and m~. Finally, the left-right cross term 
bL bft _ dL dB 

introduces a mixing of bL and bR depending on mb(Ab + p. tan/3), so that the splitting 

between the true bottom squark mass eigenstates is larger than the splitting between d L 

and dR' The latter two effects are only significant if tan/3 is comparable to mt/mb, which 

we have noted is difficult to reconcile with the radiative electroweak breaking mechanism. 

In the usual case where tan/3 is at most about 10, bR is degenerate with dR, and the 

bottom squark mixing is negligible. 

The two sum rules (4.5) and (4.6) allow us to analyze the qualitative features of the 
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spectrum. When the first two family squarks are clumped together, we can rewrite (4.5) 

in the form 

Ml + Ml = 2MlL + 2ml + (MlL - Ml) 

where ij is a generic squark from the first two families. We see that the location of the 

center of mass squared of Il and I2 is determined by the amount by which bL is lower 

than the main squark band. Similarly, the mass squared difference sum rule (4.5) becomes 

effectively 

indicating a lower bound for the splitting between Il and I2 which is determined by that 

between bLand the main squark band. Thus for a small difference between bLand the main 

squark band, the split between Il and I2 may be small, if A + I' cot /3 is small. However, 

for large values of A or 1', the difference may be substantial. One then expects I2 to be 

above the main squark band, and Il' bL below. In the "anti-no-scale" limit, bL'S mass can 

be much lower than the main squark band. In this case, the center of mass squared of Il 
and I2 is lower than bL which is itself much lower than the rest of the squarks. Also, the 

split between Il and I2 may be very large, depending on the crossing term. If it is large 

enough, I2 will be heavier than b L. 

Charginos and N eutralinos 

The masses of the charginos and neutralinos are highly correlated with each other, and 

are primarily determined by the input parameters I' and sin 2/3, as well as by the gluino 

mass. In the limit when Mfv «: 1'2 - (.1 Mg), one of the charginos is degenerate with 

a neutralino, from eq. (6.9). The other chargino is also usually close in mass to another 

neutralino, especially if tan/3 is in a range near 3 or 4, as we see from eq. (6.10). 

The lightest of the neutralinos (LSP) is absolutely stable. In order to avoid cosmological 

problems, I' and Mg cannot both be arbitrarily large. The center of masses of the neutralino 

is smallest when the flipped neutralino is the LSP, as we see from the trace sum rule (6.4). 

If p. is large compared to M1 ~ .17 Mg and M2 ~ .33 M g, then ill in (6.8) is the LSP, 

and the trace sum rule still tells us about the spread of the neutralino masses, and tests 

the idea of gaugino mass unification. The sum rule (6.7) indicates that the center of mass 

squared of the charginos is higher than that of the neutralinos. 

We have mentioned in Section 4 that p. and sin 2/3 are likely to be measured by the 
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chargino masses [see eqs. (5.1) and (5.2)]. Knowing I-' and sin 2,8 enables us to evaluate the 

product of the neutralino masses through the determinant equation (6.3). Then we can 

further bracket the neutralino masses by invoking the near degeneracies with the chargino 

masses. 

When I-' is comparable to or greater than Mg, then we see from (5.3) that one of the 

charginos is lighter than the gluino, and one is heavier. When I-' is smaller than the gluino 

mass, then applying the present bound on the gluino mass (100 GeV) to eqs. (5.1) and 

(5.2), we see that one of the charginos is still lighter than the gluino. Thus in all cases, at 

least one chargino is lighter than the gluino. 

By using a panoply of sum rules, some of which are new, we have been able to analyze 

the qualitative features of the spectrum of squarks, sleptons, charginos, and neutralinos. 

Mass Orderings 

We repeat the main features of the spectrum: 

• The squark and slept on spectrum is determined by mo, which sets the overall scale, and 

Mg which sets their splitting into bands . 

• The chargino and neutralino masses are determined by I-' and Mg. 

Thus it is fortunate that, because of its strong interactions, it is quite likely that the 

gluino will be the first sparticle to be found. Below we assume knowledge of Mg and 

proceed to discuss several possibilities. 

As we have seen, there is at least one chargino which is lighter than the gluino. However, 

the lightest chargino may not be the lightest charged sparticle. There is a competition 

between the lightest chargino and the right-handed sleptons for the honor of being the 

lightest charged supersymmetric (odd R-parity) particle. When mo is large, the chargino 

certainly wins, but in the "no-scale" -type models, the answer is less clear and depends 

most crucially on the value of the parameter 1-'. 

On the other hand, the relative value of the squark and gluon masses is not determined, 

since it depends directly on the input parameter mOi if mo is greater than Mg, the squarks 

are heavier, and if mo is less than roughly .5 Mg (see eq. (3.18», the squarks are lighter 

than the gluinos. In the strict "no-scale" limit mo = 0, we find from (3.17) that the squark 

band is centered at a mass between .8 Mg and .9 Mg. We see from eq. (3.2) that this is 
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the lightest the squark band can be relative to the gluino. As we have discussed earlier, 

a large mo implies more clumping between sleptons and squarks. The parameter mo is 

determined independently if the right-handed select ron is found at a relatively low mass. 

We can summarize the relative positions of the lightest chargino, the right-handed 

selectron, the main squark band, and the gluino. For small mo, 

MeR,MCl < Mq < Mg. 

For intermediate values of mo, the situations 

MC
I 

< MeR < Mq < Mg 

MC
I 

< MiR < Mg < Mq 

(mo ~ 0) 

(mo < .5Mg) 

(.5Mg < mo < Mg) 

can occur. However, for large enough mo, one chargino and the gluino are lightest: 

(mo > Mg) 

The lightest chargino and the right-handed selectron are both fine candidates to be 

pair-produced and studied at an e+e- collider like the NLC or LEPII if they are light 

enough. The chargino mass spectrum depends on the parameters p. and sin(2,8), as well 

as on the gaugino mass parameter M2. However, in our scenario for which the gluino is 

discovered and well studied at a hadron collider, the value of M2 follows from knowledge 

of the gluino mass and Q3 at that scale. Then, knowledge of the chargino masses allows 

us to determine p. and sin(2,8). From these two parameters one can in principle derive the 

whole neutralino spectrum as well, since Ml is also known once we measure the gluino 

mass. In the end, the consistency of this picture becomes a numerical question of putting 

constraints on the input parameters of the theory through equations (5.1) and (5.2) for 

the charginos and (6.3) and (6.6) for the neutralinos. 
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