
SSCL-Preprint-25 
CALT-68-1768 
UCSD/PTH 92-05 

Superconducting Super Colli<;ler Laboratory 

Chiral Perturbation Theory for 
In I In and BB IBB 
SiS 

B. Grinstein, E. Jenkins, A. V. Manohar, 
M. J. Savage, and M. B. Wise 

January 1992 





SSCL-Preprint-25 
CALT-68-1768 

UCSD/PTH 92-05 

Chiral Perturbation Theory for IDs/ID and BB.! BB* 

B. Grinstein,l E. Jenkins,2 A. v. Manohar,2 
M. J. Savage,2 and M. B. Wise3 

Superconducting Super Collider Laboratory t 
2550 Beckleymeade A venue 

Dallas, TX 75237 

January 1992 

• Submitted to Nuclear Physics B. 
1 SSC Laboratory, 2550 Beckleymeade Avenue, Dallas, TX 75237-3946. 
2 Department of Physics 0319, University of California-San Diego, La Jolla, CA 92093-0319. 
3 California Institute of Technology, Pasadena, CA 91125. 
t Operated by the Universities Research Association, Inc., for the U.S. Department of Energy under Contract 

No. DE-AC35-89ER40486. 





Chiral Perturbation Theory for 

iDs/ iD and BBs/ BB 

Benjamin Grinstein 

sse Laboratory, 2250 Beckleymeade A venue 

Dallas, TX 75237-3946 

Elizabeth Jenkins, Aneesh V. Manohar, and Martin J. Savage 

Department of Physics 0319, University of California, San Diego 

La Jolla, CA 92093-0319 

Mark B. Wise 

California Institute of Technology, Pasadena, CA 91125 

Abstract 

The decay constants for the D and Ds mesons, denoted ID and IDs respectively, are 

equal in the SU(3)v limit, as are the amplitudes for Bs - B sand BO - BO mixing. The 

leading contribution to (IDs /ID) - 1 and to the ratio of hadronic matrix elements relevant 

for Bs - Bs and BO - BO mixing amplitudes are calculated in chiral perturbation theory. 

We discuss the formalism needed to include both meson and anti-meson fields in the heavy 

quark effective theory. 
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The decay constants for the D and D 5 mesons are defined by 

(1) 

and 

(2) 

These decay constants are likely to be'measured in the future using the leptonic decays 

D+ --+ p.+vlJ. and Ds --+ p.+vw In the chirallimit, where the up, down and strange quark 

masses go to zero, flavor SU(3)v is an exact symmetry and so IDs/ID = 1. However in 

nature, where m. f= 0, this ratio will deviate from unity. Neglecting the up and down 

quark masses, in comparison with the strange quark mass, this deviation has the form 

(3) 

where the ellipsis denote terms with more powers of the strange quark mass (recall M'k '" 
m.). The dependence of ,\ on the subtraction point p. cancels that of the logarithm [1 J. If p. 

is of order the chiral symmetry breaking scale then ,\ has no large logarithms and for very 

small m. the term proportional to K, dominates the deviation of IDs /ID from unity. Here 

we compute this logarithmic co~rection. Of course, in nature, the strange quark mass is not 

small enough to justify the neglect of the term proportional to ,\. However the logarithmic 

correction is interesting for two reasons. Firstly, as we have already mentioned, in chiral 

perturbation theory it is formally the leading contribution to the deviation of IDs / /D from 

unity. Secondly, for the pion and kaon decay constants [2J, the analogous logarithmic term 

gives the correct sign for (fK//7r -1). The magnitude, however, is too small by about a 

factor of two. 
-0 -

B O - B mixing and B 5 - B 5 mixing give valuable information on elements of the 

Cabibo-Kobayashi-Maskawa matrix. One approach is to measure both these mixings, and 

then extract Ivtd/vt.1 2 from their ratio. This method has the advantage that in the SU(3)v 

symmetry limit all dependence on non-perturbative hadronic matrix elements cancels out. 

(However, because Bs - B 5 mass mixing is large, it will be very difficult to measure.) The 

hadronic matrix elements needed for the analysis of B - B mixing are 

~ I1BB = (B( v)1 b,1J.(1 - ,s)d b,1J.(1 - ,s)d IB( v)) , 

~/1sBBs = (Bs(v)Ib,IJ.(l-,s)s 1),IJ.(l-,s)s IBs(v)) , 
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(4) 

(5) 



where the I constants for the B meson system are defined by equations analogous to 

Eqs. (1)(2) for the D meson system. The parameters BBs and BB defined by Eqs. (4)(5) 

are equal in the SU(3)v symmetry limit. For non-zero strange quark mass, the ratio is 

no longer unity, and can be written in the form Eq. (3). The logarithmic term will be 

computed in this paper using chiral perturbation theory. It is convenient to perform the 

computation for the ratio of BB'S, rather than for the combination BBI1 that occurs in 

Eqs. (4)(5). Most of the diagrams that occur for B - B mixing are the same as those 

that occur in the computation of the decay constants IB' and can therefore be dropped in 

computing the renormalization of BB. 

In Ref. [3] the formalism for applying chiral perturbation theory to mesons containing 

a heavy quark was developed. It is important that the effective Lagrangian that describes 

the low momentum interactions of the D and B mesons with the pseudo-Goldstone bosons 

71", K and 7] be invariant not only under chiral SU(3)L x SU(3)R symmetry but also under 

heavy quark spin symmetry. For example, even if one is interested in processes involving 

only a real D meson, the D* meson will occur as a virtual particle in Feynman diagrams. 

The heavy quark symmetry causes the D* to be almost degenerate with the D so its effects 

cannot be neglected. It is also important to write the chiral Lagrangian for matter fields 

such as the D's in terms of velocity dependent fields, to restore the validity of the chira! 

expanSlOn. The situation here is similar to the case of baryon chiral perturbation theory 

[4]. 

The effective Lagrangian that describes the strong interactions of the pseudo­

Goldstone bosons with the ground state mesons containing a heavy quark Q is 

L= ~2 Tr (a~~a~~t) +AoTr [mq~+mq~t] -iTrH(Q)av~a~HiQ) 

+ ~ Tr H(Q)a H~Q)v~ [et a~e + ea~et] b a + i: Tr H(Q)a H~Q) 11115 [et all e - eall et ] b a 

+ Al Tr H(Q)a H~Q) [emqe + etmqet ] b a + A~ Tr H(Q)a HiQ) Tr [mq~ + mq~t] 

+ ~ T H(Q)a ~IIH(Q) + r (T a (T iJ.1I ••• 
mQ 

(6) 

where the ellipsis denote terms with more derivatives, more factors of the light quark mass 

matrix 

( m~u m q = 
o 

(7) 
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or more factors of l/mQ associated with the violation of heavy quark spin symmetry. The 

pseudoscalar and vector meson fields piQ) and p:~Q) form the matrix [5] 

H(Q) = (1 + p) [p*(Q)'Vp. - P(Q)'Vs] a 2 ap. I a I • 

For Q = c, (Pie), pJc) , pJc») = (DO, D+, Dt), and similarly for p:(c). The field HiQ) is a 

doublet under the heavy quark spin symmetry, and a '3 under flavor SU(3)v, 

The field H(c) describes D and D* mesons with definite velocity v. The subscript v on H, 

P and p; has been omitted, to avoid complicating the notation. The hermitian conjugate 

field is defined by 

H a(Q) _ °H(Q)t ° 
-i a i· (8) 

The pseudo-Goldstone hosons appear in the Lagrangian through e = eiM/! (~ = e) where 

( 

1 7r0 + 1 "l 72 7s 
M = 7r-

K-
(9) 

and the pion decay constant I ::::::: 135 MeV. The Lagrangian Eq. (6) is the most general 

Lagrangian invariant under both the heavy quark and crural symmetries to first order in 

mq and l/mQ. 

The left handed current L~ = Qai"(l-is)Q in QeD can be written in the low energy 

crural theory as [3] 

(10) 

where the ellipsis denote higher dimension operators in the chiral and heavy quark expan­

sions. The parameter Ip is obtained by taking the matrix element of the current in the 

pseudoscalar meson state. At lowest order, this fixes a = IDVmD. The graphs which 

contribute at one loop are shown in fig. 1. 

The computation of the one loop graphs is straightforward. Graph (c) vanishes be­

cause of the identity vp. (gp.1I - Vp.v lI ) = o. The renormalization of IDs /ID is independent 

of the overall magnitude a of the current, and is 

I / 5 ( 2) Mk (2 2) 
Ds ID = 1- '6 1 +39 167r2J2ln MK/P. . (11) 
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(The same formula also holds for IBs /IB.) The contribution of pion loops is proportional 

to M; In M;, and has been neglected. The Tf loops have been written in terms of MK using 

the Gell-Mann-Okubo formula M; = 4Mk /3. The one loop graphs with intermediate P* 

states depend on the mass difference A = mp. - mp only at order A2. A has terms of 

order l/mQ as well as terms of order m" and is numerically of order M Tr . The il2 terms 

are comparable to the M; terms, and can be neglected since they are numerically small, 

and formally of higher order. This simplifies the computation somewhat, since il can be 

set equal to zero before evaluating the Feynman diagrams. 

Numerically, the result is that 

IDs /ID = 1 + 0.064 (1 + 3l), (12) 

using J.L = 1 GeV [6]. The experimental limit on r(D* -+ D7r) constrains 92 to be less 

than 3. The quark model estimate [7] for 9 is that 92 
:::::: 0.7 so that we expect IDs /ID :::::: 1.2. 

The formula (11) can be written in terms of either ITr or IK. Formally, this ambiguity is 

of higher order, but it can make a sizeable difference in estimating the correction, since 

IK = 1.25/Tr. The most important terms in Eq. (11) come from virtual K mesons, so we 

have chosen to use I K to estimate the correction. 

The Lagrangian for B mesons is identical in form to Eq. (6), except that the field 

H(Q) now has Q = band p(b) and p;(b) destroy Band B* mesons respectively. In the 

heavy quark effective theory, the field p~Q) destroys a meson of velocity v containing a 

heavy quark Q, but it does not create an anti-meson containing the heavy anti-quark Q. 
To describe mesons containing heavy anti-quarks, we have to introduce two new fields, 

p;(Q) and p(Q) which destroy mesons containing a heavy anti-quark Q. The phases of the 

fields p;(Q) and p(Q) are fixed relative to p;(Q) and p(Q) by charge conjugation. We use 

the usual phase convention 

(13) 

The field H(Q)a is defined by 

(14) 

The matrix c is the charge conjugation matrix for Dirac spinors, c = i--y2,O, and the trans­

pose is on the spinor matrix indices. The transpose and c matrices are necessary to ensure 
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that H(Q) transforms as a bispinor under the Lorentz group in the same respresentation 

as H(Q). H(Q) transforms as a (2",3) under the heavy spin ® SU(3)v flavor symmetry, 

H(Q)o. _ (U H(Q») 0. st. 

The hermitian conjuate field is defined by 

The Lagrangian for B mesons in terms of H(b) fields is obtained from Eq. (6) by setting 

Q = b and applying charge conjugation. 

The 6.b = 2 operator which produces B - B mixing in the standard model is 

where a = 2,3 for BO and B s mixing respectively. (Note that the repeated index a is not 

summed.) The operator oao. transforms as the 22 (or 33) component of the six dimensional 

representation of flavor SU(3)L. In the effective theory, the operator oo.a can be written 

as 

(15) 

Evaluating the traces gives 

(16) 

so that the amplitude for B - B mixing is the negative (since the polarization of a physical 

B* is spacelike) of that for B* - B* mixing. This relation between the two amplitudes 

can be proved directly by an application of the heavy quark spin-symmetry. The operator 

Gao. can potentially match onto many different operators in the effective theory, such as 
~b) -

Tr (eH )o./~(1 - ,s)(eH(b»)a/~(1 - 15)' However, all the operators are proportional to 

Eq. (15), because the spin symmetry requires that the Band B* mixing amplitudes be 

the negative of each other. The SU(3)L ® SU(3)R transformation property of 00.0. then 

uniquely fixes the chiral structure of the operator. The chiral corrections to BB are given 

by the graphs in fig. 2. Only TJ graphs contribute to the correction to BBs / BB' K mesons 

cannot contribute to the graphs in Fig. 2a because of flavor conservation. The BB*7r 

coupling constant is the negative of the B B* 7r coupling constant, because of the phase 

convention for charge conjugation chosen in Eq. (13). The two meson vertex in Fig. 2b 
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is obtained by expanding Eq. (16) to second order in the meson fields. The terms where 

either e is expanded to second order in the meson fields are identical to those that occur 

in the renormalization of IB' and can be omitted. The term where each e is expanded to 

first order in the meson field is new. It has terms of the form e:, and so only 1] mesons 

contribute to Fig. 2b. The chiral correction to BBs / BB is 

(17) 

where we have again used M; = 4Mk/3. Numerically, the correction is BBs/BB ~ 0.9, 

using J.L = 1 GeV, I = IK, and g2 = 0.7 as before. The renormalization of BBs/BB 

is a violation of factorization in the hadronic matrix elements for B - B mixing. (The 

perturbative QCD corrections to B - B mixing that contain large logarithms of mb/ AQCD 

do factorize [8].) The overall ratio of the hadronic matrix elements for B - B mixing is 

obtained by combining Eqs. (11) and (17), 

(18) 

which is numerically about 1.3 for J.L = 1 GeV, 1= IK' and g2 ~ 0.7. 

Our results may be useful in estimating the difference between the values of IDs /ID 
and BBs / BB in the quenched approximation to QCD and their values in nature [9]. The 

logarithmic corrections we have calculated necessarily involve quark loops, and so would 

not be seen by lattice Monte Carlo calculations that use the quenched approximation 

[9][10]. 
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Figure Captions 

Fig. 1. The graphs contributing to the renormalization of Ip. The solid square denotes 

the axial vector current vertex. The pseudoscalar and vector mesons P and P* 
can be either the D and D*, or the Band B*. Graph (a) is the tree level 

contribution. Graph (b) is the wavefunction renormalization correction and is 
proportional to g2. Graph (c) vanishes identically. Graph (d) is independent 

of g. 

Fig. 2. Graphs producing a renormalization of BB. The dot is the ~b - 2 operator. 
Only virtual Tl particles contribute. 
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