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RF Noise Tolerances at the sse 

H.-J. Shih, J.A. Ellison, B.S. Newberger, D. Coleman, and J. Ferrell 

Abstract 

We apply the diffusion in action theory developed by Dome, Krinsky, and Wang to the 

determination of SSC rf noise tolerances using the emittance-doubling time as a criterion. 

We present results for white amplitude and white phase noise, noise measured from a 

HP synthesizer and from a SLAC PEP klystron. We also derive a scaling law for white 

amplitude and phase noise that allows one to understand the dependence of the diffusion 

process on the rf frequency. Lastly we qualitatively discuss the implementation of feedback 

loops to reduce rf noise. 
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1.0 INTRODUCTION 
In this report we use the Dome, Krinsky, Wang (DKW) diffusion in action theoryl-3 to 

discuss acceptable noise levels in the Superconducting Super Collider (SSC) rf cavity. Our 

criteria will be stated in terms of longitudinal emittance-doubling times. 

The longitudinal equations of motion with amplitude and phase noise are obtained from 

the Hamiltonian: 

H = ~p2 + n2(1 + a(t))U(4» + P<j;(t), 
2 

(1.1) 

where aCt) and <pet) are amplitude and phase noise, respectively, U( 4» = 1 - cos 4>, 

P = (27rhrJlTo) (6.p/Ps) = Wrf'fJ (6.p/Ps), 4> is the rf phase, and n2 = wrf'fJ(eV/psvs)/To 

is the square of the small amplitude synchrotron frequency. At the SSC, frf = Wrf/27r = 

360 MHz, eV = 20MeV, Ps = 20 TeV/c, and Vs ~ c; thus, n = 26.6radsec-1, corre­

sponding to 4.23 Hz, which is small compared with the beam frequency l/To = 3.44 kHz. 

Because of this and because of the "mixing" due to the nonlinearity of the potential, the 

DKW theory predicts that the action J = l7r § Pd4> evolves approximately according to 

ap a ap 
at = aJ D(J) aJ' 

p( J, 0) = poe J), p(Js, t) = 0, (1.2) 

where p(J, t) is the action density related in the obvious way to the phase space density in 

(4), P), poe J) can be computed from the initial (4), P) density, and we take an absorbing 

boundary condition at the separatrix J = Js . This assumes that once a particle crosses the 

separatrix, it is forever lost from the bunch. A code has been developed to solve Eq. (1.2) 

numerically, using the method of lines; results have been compared with simulation results 

for Eq. (1.1). This is discussed in detail in Reference 3. There is good agreement, and this 

gives us confidence in using Eq. (1.2) rather than Eq. (1.1) for SSC design criteria. 

The diffusion coefficient is given by 

(1.3) 

where Da and Dcp are the amplitude and phase noise diffusion coefficients, respectively, 

and are given by 

Da(J) = 4 (1.4a) 



(mwS(J))4 
Dcp(J) = 4 L 2 Scp(mws(J)), 

m=1,3, ... cosh mv( J) 

where Sa(w) and Scp(w) are the amplitude and phase noise spectral densities, 

J = 2 n k2 4 B( k), 
7r 

7r 
ws(J) = n 2K(k)' 

7r K'(k) 
v(J) = "2 K(k)· 

(lAb) 

(1.5a) 

(1.5b) 

(1.5c) 

Here 0 ::; k ::; 1, k = 1 corresponds to the separatrix Js = 8n/7r, Ws is the action-dependent 

synchrotron frequency, and B(k) and K(k) are elliptic integrals defined in Jahnke and 

Emde (see Reference 1, pp. 382-383). 

2.0 EMITTANCE-DOUBLING TIME AND A SIMPLE 
APPROXIMATION 

If we let I denote the fraction of particles under consideration, then we define the 

I-emittance, J,(i), by 

J/(t) 

J p(J, t)dJ = I, (2.1) 

o 

and the emittance-doubling time, ta, by 

(2.2) 

Here we assume that J,(t) is monotonically increasing with t. The emittance-doubling 

time can be found directly from Eqs. (2.1) and (2.2); however, an alternative, which is 

easily integrated into the method of lines code, is to solve the differential equation for 

J,(t): 

dJ, a 
dt = -D(J,) aJ, Inp(J" t), (2.3a) 

J,(o) = Jo. (2.3b) 

Eq. (2.3a) is obtained by differentiating Eq. (2.1), and Jo is determined from the initial 

density via Eq. (2.1). Eqs. (2.3) will not be considered further in this report. 
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In the next two sections we will discuss our calculations of Jf(t) and td. Here we discuss 

a simple approximation to Jf(t) that was used in the 1986 Conceptual Design Report 

(Reference 4, p. 162) to determine noise levels corresponding to a 50-h emittance-doubling 

time. 

It is perhaps not unreasonable to presume that Jf(t) evolves roughly like the mean of 

J(t) conditioned on J(t) < Js; that is, 

J. 

J(t) := E[J(t)IJ(t) < Js ] = J J Pe(J, t)dJ, (2.4) 

o 

where Pe(J, t) = p(J, t)j I/' p(J, t)dJ. Differentiating Eq. (2.4) and using Eq. (1.2) yields 

_ J. 

dJ(t) J I - OPe ---at = D (J)Pe(J, t)dJ + (Js - J(t)) D(Js ) oj (Js , t). (2.5) 

o 

In the white noise, small oscillation case (U( </J) = !</J2), 

(2.6) 

which gives 

(2.7) 

where H(t, Js ) is the second term on the right hand side of Eq. (2.5). Equation (2.6) can 

be derived in the small k asymptotics for Eqs. (1.4) and (1.5), or directly from Eq. (3.1), 

to be discussed shortly. In the small oscillation approximation, the action density, for a 

Gaussian beam in P and </J with the rms longitudinal bunch spread <11, is p(J) = le-JfJ.L 
J.L 

and J.L = ] = n(27r<1t!)..rf? If we ignore H and define X = ]10" then Eq. (2.7) is exactly 

Eq. (4.4-21) of Reference 4: 

(2.8) 

The doubling time of the mean is now easily calculated. For amplitude noise, 

(2.9) 

3 



and for phase noise, 

(2.10) 

Using the values in Reference 4, p. 163 p.rf = 0.8m, 0'1 = 0.07m and n = 43.98radsec-I ), 

Xo = 0.3023 and Jo = 13.30 rad sec-I, and we find, for a 50-h doubling time, Scp = 
1.74 X 10-9 rad2Hz-I and Sa = 3.98 X 10-9 Hz-I. Note that the quoted CDR value of 

Sa = 6 X 10-9 is an error. For the present sse parameters (.Arf = 0.83m, 0'1 = 0.051 m 

and n = 26.6 rad sec-I), Xo = 0.1479 and Jo = 3.937radsec-I, and we obtain Scp = 

2.32 X 10-9 rad2Hz-I and Sa = 10.9 X 10-9 Hz-I, which are larger (and therefore better) 

than the previous values. Solving Eq. (2.7) with H = 0 and using the new values of Scp 

and Sa, we obtain 

2 (nscp + 2JoSa) 
td = n2Sa In nscp + JoS

a 
~ 24.76 h. (2.11) 

This is less than 50 h, as it should be; however, because phase and amplitude noise enter 

Eq. (2.7) differently, it is surprising and probably coincidental that td ~ 50/2 h. 

3.0 WHITE AMPLITUDE AND WHITE PHASE NOISE CASES 

In the case of white amplitude and white phase noise the diffusion coefficients can be 

written: 

a(J) J U'(¢»2JU(a(J)) - U(¢» d¢>, 

o 
a(J) J (U"(¢»)2JU(a(J)) - U(¢»d¢>, 
o 

(3.1a) 

(3.1b) 

where a( J) is the amplitude of the synchrotron oscillation. Actually, these are valid as long 

as the correlation time is short relative to the synchrotron period.5 In the small oscillation 

approximation, (U(¢» = t4>2), Eq. (3.1) reduces to 

Da(J) = .!.San2 J2 (3.2a) 
4 

Dcp( J) = ~Scpn3 J, (3.2b) 

which is consistent with Eq. (2.6). The diffusion coefficients of Eqs. (3.1) and (3.2) are 

shown in Figures 1 and 2 for the values of Sa and Scp of Section 2.0. Notice that the small 

oscillation approximation gives good agreement out to J ~ 0.3J8 • 

The amplitude noise calculations for the evolution of p and emittance growth are shown 

in Figures 3 and 4. In Figure 3 notice that p(O, t) is fixed, which causes the narrowing of 
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Figure 1. Diffusion Coefficient for White Amplitude Noise with Sa 
diffusion theory; dashed: small oscillation approximation. 
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diffusion theory; dashed: small oscillation approximation. 
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Figure 3. Evolution of Action Density for Case of Figure 1 in Increments of 161/5 h. Initial density is given 
by circles; final density is at 161 h. 
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the density near J = O. That this must be so follows from the PDE (1.2) and the fact 

that D ex: J2 for small J. Figure 4 gives a doubling time of 80 h for the mean emittance J, 
compared to the 50 h given by the approximate model of Section 2.0. The fact that J(t), 

defined by Eq. (2.7) with Se; = 0, is not growing exponentially is due to the fact that H 

cannot be ignored in Eq. (2.7) because M (Js , t) is becoming significant. Notice also that 

Jf(t) for f = 0.39 is growing linearly, contrary to the exponential behavior predicted by 

Eq. (2.8) with Sip = O. The blow-up for f = 0.95 at rv 95 h is due to the loss of 5% of the 

particles. 

The phase noise calculations for the evolution of p and emittance growth are shown in 

Figures 5 and 6. In Figure 6 we see that J f and J are roughly linear and are in reason­

able agreement with the approximate model of Section 2.0, although the mean emittanc€­

doubling time of 59 h is somewhat larger. 

Figures 3-6 are universal in that the times scale directly with the corresponding spectral 

densities. 

4.0 EMITTANCE-DOUBLING TIME FOR CURRENT SSC DESIGN 

4.1 Synthesizer Noise 
The phase noise for a synthesizer of a type being considered for use in the sse rf 

system is shown in Figure 7. Notice that the carrier frequency in Figure 7 is 420 MHz; 

however, we expect the spectrum to remain essentially the same at 360 MHz. Nevertheless, 

a measurement at the operating frequency is desirable. A reasonable fit to the spectrum 

is given by 

{ 
1.3 X 10-5 / w 2.65 

SIp(W) = 
0.5 X 10-12 

w < 628.3 

w ~ 628.3. 
( 4.1) 

The diffusion coefficient is shown in Figure 8; surprisingly, it is nearly linear, as the 

straight dashed line indicates. Figure 9 shows p(J, t) vs. J for various t, and Figure 10 

shows J(t) and Jf(t) for two values of f. The doubling times of the mean, 39% and 95% 

emittances, are f"V 55 h, which is on the order of the CDR design criterion. This may 

be satisfactory; however, depending on the level of design conservatism, a feedback loop 

might be desirable. In Section 6.0, feedback is considered. 

The amplitude spectral density has a shape similar to Eq. (4.1) but is of lower magnitude. 

For a worst-case estimate we take Sa = Sip. Figure 11 shows the diffusion coefficient, 

Figure 12 the evolution of p, and Figure 13 the emittance growth curves. The mean 

emittance-doubling time is greater than 3230 h, so amplitude noise should be negligible. 

The effect of using a superconducting rf cavity is under consideration. 
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Figure 5. Evolution of Action Density for Case of Figure 2 in Increments of 81/5 h. Initial density is given 
by circles; final density is at 81 h. 
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Figure 7. Noise Spectral Density Measured on HP8662 Synthesizer. The straight line is the fit (Eq. (4.1)). 
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Figure 8. Diffusion Coefficient for Synthesizer Phase Noise with the Spectrum (Eq. (4.1)). Solid: DKW 
diffusion theory; dashed: linear approximation. 
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Figure 9. Evolution of Action Density for Case of Figure 8 in Increments of 81/5 h. Initial density is given 
by circles; final density is at 81 h. 
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Figure 11. Diffusion Coefficient for Synthesizer Amplitude Noise with the Spectrum (Eq. (4.1)). 
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4.2 Klystron Noise 
The klystron amplifiers can be another source of noise in the collider rf system. We can 

use the results of recent measurements made on the PEP klystrons at SLAC and the model 

described earlier to estimate the emittance growth due to both phase and amplitude noise 

from those klystrons in that system as applied to the SSC. A typical spectrum is shown 

in Figure 14. Because the critical components of the noise spectral density are those that 

occur at the first few harmonics of the synchrotron frequency (odd for phase noise, even for 

amplitude noise), a reasonable approximation is to take a flat spectrum for 0 < f < 25 Hz. 

In this region, we use a value of -75 dBc for phase noise and -85 dBc for amplitude noise 

in amplifiers operating unsaturated. These correspond to spectral densities of 

Scp = 3.2 X 10-8 rad2Hz- I , 

Sa = 3.2 x 10-9 HZ-I. 

The emittance-doubling times can be estimated by using the scaling arguments 

established earlier. From these, td = 4 h for phase noise and td = 272 h for amplitude 

noi. would be inferred. The first is quite severe. However, some care must be exercised 

in interpreting these estimates. The most important point to recognize is that the mea­

surements also ide!: -ified the source of the klystron noise as fluctuations in the cathode 

supply voltage. Several strong lines appear in the spectrum of the cathode voltage in the 

critical frequency band. These lines must be dependent on the operating environment, 
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so a too-literal reading of the emittance-doubling times is not justified. A feedback loop 

around the amplifier should suffice to reduce the klystron noise to acceptable levels. It is 

prudent to contemplate such a loop in the design until actual measurements on an sse 
prototype system are available. 

Range: -41 dBV Status: Paused 
-25dBc ~A~:M~A~G~ ___________________________ R_M_S_:_10 ________ -, 

-40 dBV 

10 
dB/DIV 

-120 
START: 0 Hz BW: 954.85 mHz STOP: 100 Hz 

Figure 14. Typical Noise Spectrum Measured on a SLAC PEP Klystron. 

5.0 A SCALING LAW FOR WHITE AMPLITUDE AND PHASE NOISE 

In this section we discuss a scaling law that will allow us to qualitatively understand the 

dependence on Wrf. At the time of this report the sse rf frequency is not fixed. If we let 

P = n?, then the (?, </J) phase space is independent of n (and Wrf), and 271" J = ,Pd</J = n, ?d</J =: n271"J, where the last equality defines J. The J density p(J,t) = np(J,t), 

and Eq. (1.2) becomes 

op 0 D(nJ,n) op 
ot = oj n2 oJ' 

(5.1) 

where D(J) = D(J, n). From Eq. (1.5a), the relation between J and k is independent of 

n, so v depends only on J, and for white amplitude and phase noise, 

where V(J) is independent of n. Letting T = n2t, we obtain the initial-boundary value 

problem for p(J, t) as 

op = ~V(J) oF.. 
OT oj oJ' 

13 



p( J, 0) = npo(nJ). (5.2) 

The n dependence now enters only in two ways: (1) through the initial density and 

(2) through the time scaling. For a Gaussian beam in P and </>, poe J) = Illo) e- J/ Il (O) 

at small J, where J..L(n) = Jo(n) = n 4 v, and v is an n-independent constant if longitudi­

nal emittance €L = UEUt is fixed. Thus, recalling that n 2 ex: Wrf, we see that increasing 

Wrf broadens the initial distribution. If we assume that a broader beam leads to a faster 

deterioration of the beam, ther.. 

Te2 < Tel, (5.3) 

where Te is a critical time for loss of beam quality. Therefore, n~te2 < nitel and 

Wrfl 
te2 < --tel. (5.4) 

Wrf2 

If frfl = 360 MHz and frf2 = 480 MHz, then we expect te2 < ~tel because we have a broader 

initial beam in case 2. However, for phase noise of S", = 2.32 X 10-9 rad2Hz-I and an initial 

emittance of €L = 0.233eV-sec, our calculations show that the mean emittance-doubling 

time in case 1 is 86 h and that it increases to 142 h in case 2, in contrast to the expectation 

in Eq. (5.4). To understand this we note that the narrower beam has steeper grlldientsj 

thus the diffusion process works faster, giving a shorter doubling time even though the 

resulting beam is still relatively narrow and could be narrower than the initial beam for 

the larger Wrf. This points out that emittance-doubling times may not be an appropriate 

design criterion. A more appropriate criterion may be the time it takes for the beam to 

reach a certain critical size relative to the bucket area. We are presently studying this. 

6.0 FEEDBACK LOOPS 
Single-bunch phase feedback loops (sometimes called longitudinal dampers) have been 

employed at the Tevatron and at SpS for the control of coherent oscillation of the bunch 

centroid (dipole oscillation), of incoherent emittance blow-up, or of both. A similar scheme 

was anticipated for the sse collider rings, and an estimate of its effect on the emittance 

increase due to noise in the rf system was made.4 At the sse, the loop cannot act bunch-by­

bunch. It seems feasible6 to update the phase correction approximately every 100 bunches. 

But since it is noise at the synchrotron frequency that is important, the noise is not 

changing on this scale, and the loop operation should be like a single bunch system insofar 

as its effect on emittance is concerned. This begs the question of high-frequency noise 

at harmonics of the revolution frequency. (These do not seem to be significant for the 

synthesizer noise, but there will undoubtedly be other sources of noise as yet unconsidered, 

including those in the loop components themselves.) Only those harmonics that lie inside 
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the cavity bandwidth are important. For a superconducting cavity, there are probably 

none. A normal cavity may have up to 14 harmonics inside its bandwidth. If the phase 

correction can indeed be updated as expected, then the loop should behave as in the single 

bunch case for these as well. 

It is easy to write down a steady-state description of a generic loop and show that its 

effect in terms of the theory of the diffusion due to noise is to modify the spectral density 

of the noise in the cavity relative to the source. In particular, the spectral density in the 

neighborhood of the synchrotron frequency can easily be seen to be reduced significantly 

because of the peak in the bunched beam dispersion function. Modifying the numerical dif­

fusion calculations to include the effect of a single-bunch phase feedback is straightforward, 

although some prescription for computing the beam dispersion function must be imple­

mented. Once this is done, we will attempt to benchmark the computations against the 

old ISR data,7 which seems to be one of the more complete sets of data available. As other 

sources of noise beyond the synthesizer-e.g., magnet supply noise and loop noise-are 

defined, their inclusion in the theory should also be straightforward. 

7.0 SUMMARY AND DISCUSSION 

In this report, we have examined the effect of phase and amplitude noise in the rf system 

on the growth of longitudinal emittance in the collider ring. The description we have 

adopted-due to Dome and, independently, Krinsky and Wang-has become conventional. 

Noise in the rf system was identified as a concern in the SSC Conceptual Design Report,4 

particularly because of the low synchrotron frequency at the SSC. A simple ad hoc model 

equation, which we discussed in Section 2.0, was used there to obtain an estimate of noise 

spectral density level that would be required to attain a 50-h doubling time of the phase 

area occupied by a "typical" bounding trajectory. 

The results reported here are aimed at going beyond these estimates using numerical 

solutions of the DKW diffusion equation. However, we have shown how an equation of 

the form of the CDR model can be obtained. While we believe the numerical results are 

trustworthy, it is prudent to observe several caveats. Not the least is to note that the 

derivation of the equations involves one or more heuristic arguments that relate to the 

noise correlation time and the action dependent synchrotron period. (Some of our work 

in progress seeks to systematize these by applying the asymptotic theory of stochastic 

differential equations.S) While the qualitative features of the model have been found to 

agree with the observed behavior on several accelerators, there appears to be a paucity of 

quantitative data with which to make a comparison. One attempt was made using very 

old Bevatron data,S but we were not particularly successful; the span of time makes it 
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unlikely that the reason for the discrepancy can be determined. It may be possible to 

obtain the data necessary to benchmark the theory in the context of a proposed test at the 

Tevatron (P-853) of the concept of beam halo extraction using a bent crystal. In this test, 

rf noise will be used to control the beam halo formation rate, and the crystal essentially 

serves as an instrumented collimator. 

Because the low-level signal generators inevitably have a band of noise about the carrier, 

attention has focused on them. Although the noise spectrum diminishes rapidly away from 

the carrier, the low synchrotron frequency at the sse has made it a source of concern. 

We have computed emittance-doubling times for synthesizer noise using a fit to the noise 

spectrum of an HP8662 synthesizer that is being considered for the sse rf system. For 

the phase noise, these times are on the order of 50 h (the CDR design criterion), and a 

feedback loop might be desirable. Based on a plausible estimate of the spectral density, our 

results indicate that synthesizer amplitude noise is negligible. We have also discussed the 

implications for noise in the klystrons, taking the SLAe PEP testbed as typical. The phase 

noise seems quite large, but it appears to result less from processes intrinsic to the device 

than from the power supplies driving it. However, the noise can be controlled by a feedback 

loop around the klystron. Other "environmental" sources of noise may also cause concern, 

again largely due to the low synchrotron frequency in the collider rings. The issue of ground 

motion and other mechanical vibrations coupling into the rf system due to microphonics 

in the cavity, klystrons, or other mechanical components in the rf system has not been 

addressed here. Furthermore, anything that might introduce noise in a neighborhood of a 

harmonic of the revolution frequency would be as detrimental as introducing noise at n. 
Electronic circuits that might interact with the beam should be quiet at these frequencies. 

The totality of noise arising from each of the different physical sources is an incoherent 

superposition, and the net diffusion coefficient is the sum of the diffusion coefficient for 

each of the processes. 

We have also considered the effect of boosting the collider rf frequency to 480 MHz. 

There are two effects worth noting. For a fixed injection emittance, a bunch fills a larger 

fraction of the bucket at the higher frequency; this might be expected to increase the 

rate of beam deterioration, although it is probably a weak effect. More important, it 

is a straightforward consequence of the DKW model that in the case of white noise the 

diffusion coefficient scales linearly with the rf frequency, again giving an increased rate of 

beam deterioration. (For more complicated spectral shapes, no rigorous scaling like this 

obtains. For the synthesizer we have been considering, the rapid decrease of the noise 

spectral density dominates and the rate of beam deterioration diminishes slightly at the 

higher rffrequency.) However, contrary to the above, we find that for the white noise case, 
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the emittance-doubling time increases. This raises the question of whether the doubling 

time is really the appropriate figure of merit, as discussed at the end of Section 5.0. Further 

study of this is needed. 
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