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An unfinished work of art is eternally provocative. Unfinished musical 
works, particularly those by important composers, are rarely left incom­
plete: midwife musicians learn to recreate the style of a composer in order 
to finish them. The recent availability of musical texts in machine-readable 
form allows us to apply methods of statistics, machine learning, and arti­
ficial intelligence to the formerly exclusive domain of historically minded 
compa;ers and musicologists. The scientific approach, while it may be­
gin with the same goal as traditional inquiry-i.e., How do we finish the 
piece?-leads to new questions and points in new directions. 

To provide a testing ground for these new questions and methods, the 
organizers of the Santa Fe Time Series Analysis and Prediction Competi­
tion selected one of the most enigmatic unfinished works in music history: 
J. S. Bach's last fugue, Contrapunctus XIV from Die Kunst der Fuge. 

We address three different tasks: analysis, continuation, and completion. 
While we make no attempt to actually complete the fugue, we apply sta­
tistical methods in order to characterize the data set, and we relate the 
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musical text to perception and cognition. We emphasize the importance of 
hierarchical structure and discuss the effects of different representations. 

We contrast this "data-driven" approach (in which features are learned 
from the data) to rule-based expert systems, and to various completions by 
composers and musicologists. Finally, by reexamining Bach's manuscript, 
we add a new twist to the detective story of Contrapunctus XIV. 

1. INTRODUCTION 
In modern time series analysis and prediction, one of the recurring themes is 
the tension between randomness and order, between stochastic and deterministic 
models. The realization that simple functions can produce sequences that look com­
plex and even pass standard tests for randomness has had an impact on time series 
prediction. Unfortunately, it is sometimes difficult to separate the hope from the 
hype. Our hope in this paper is to see whether this fact-that simple nonlinear 
models can generate apparently complex behavior-has any relevance for music. 
To clarify our scope, we are not addressing issues of sound (such as timbre), per­
formance (such as articulation), or instrumentation: we focus on the notes. 

Musical examples of this tension between randomness and order range from 
stochastic instruments-e.g., wind-driven chimes and Aeolian harps (the use of 
which nearly cost Saint Dunstan (d. 988) his life for suspected sorcery)-to deter­
ministic compositional techniques. Some examples of the latter include: Johannes 
Kepler's (1619) calculation of melodies based on the orbits of the planets, the use 
of Bach's name as a melodic figure (the notes B.A.C.H. in German notation corre­
spond to Bb.A.C.B~. in English notation), or the composition of a melody inspired 
by images, such as the skyline of San Francisco or Hong Kong, or a bunch of bent 
nails strewn on the ground,ll] Mixing randomness and order, Samuel Pepys (1639­
1703) used decks of cards to "draw" melodic tunes, and W. A. Mozart (1787) con­
structed algorithms for the random combination of subsequences and called them 
Musikalisches Wiirfelspiel, a musical game of dice.l2) 

The tension between randomness and order is also important in music per­
ception. Our perception of music is controlled by expectations, which are gener­
ated by ~usic 's deterministic structure. In principle, detenninistic structure-the 

[llLoy (1991) mentions that this technique of generating melodies by casting bent nails on the 
ground (suggested by Vogt in Prague around 1719) served mainly "to prime the pump. so to 
speak, of a composer's imagination," and was not intended to be completely det«ministic. 

(2]Two examples are KV Anh. 294d and KV 516f, reprinted in Cope (1991) and in Schwanauer 
and Levitt (1993), respectively. 
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TABLE 1 Transformations of the fugue subject. 

musical term operation 

transposi tion 1 x +- x + c (translation) move to a different pitch level 
retrograde t +- -t (time reversal) play backward 
inversion d +- -d (pitch reflection) play mirror image 
diminution t +- 2t play twice as fast 
augmentation t +- 0.5t play twice as slow 

1 The operation of transposition sometimes requires slight changes in the 
intervallic structure of the theme. For example, in the opening measures 
of a fugue, where each voice enters in turn, the theme is sometimes 
adjusted in order to remain within the key (the tonality) of the fugue. 
This type of alteration produces a tonal answer; a real answer replicates 
exactly the intervallic structure of the subject. 

regularities-can be extracted by using artificial intelligence. techniques. The more 
structure iIi a piece of music, the higher the chance that a machine learning approach 
will succeed. The organizers of the Santa Fe Time Series Analysis and Prediction 
Competition selected a fugue, because it has a high amount of structure, certainly 
more than the foreign exchange rate data set of the Competition. 

A fugue typically has one primary theme (a fugue subject) and mayor may 
not have secondary themes (counter subjects). These themes can be processed by a 
number of symmetry transformations, shown in Table 1. 

A good fugue uses the theme(s) in all the voices, combining the theme(s) with 
transformations as often, and in as many artful ways, as possible. But a random 
combination of the theme and its modified versions in different keys is hardly the 
essence of a fugue. There are many constraints: thematic and nonthematic mate­
rial must fit together for a musical work to make harmonic and rhythmic sense. 
Composing a fugue can be viewed as an optimization problem. 

The music of Johann Sebastian Bach (1685-1750) contains .an embarrassment 
of riches. His Kunst der Fuge, BWV 1080 (hereafter KdF), a multimovement sum­
mation of the fugal art, includes 14 Contrapuncti (fugues), 2 inversions of these 
fugues, and 4 canons-all of which are related by the use of a single theme, the 
KdF theme, which during the course of the work undergoes subtle variations in 
rhythm and melody that serve to distinguish the individual pieces. 
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Contrapunctus XIV from Bach's Art of Fugue (hereafter abbreviated Cpo XIV) [3] 

is incomplete, making it a prime candidate for analysis and attempted continuation 
and compietionJ4j Although Cpo XIV, as it stands in Bach's manuscript, does not 
contain the KdF theme, it has long been acknowledged as part of KdF.!5j The issue 
of why Cpo XIV is incomplete will be addressed from a musicological perspective in 
Section 4. (The first and last pages of Bach's manuscript of Cpo XIV are reproduced 
in Figure 1.) 

Before turning to technical issues, we offer a historical perspective. In 1961 
John Pierce commented on the Illiac Suite for String Quartet, composed by Lejaren 
Hiller, Leonard Isaacson, and their computer (1957): 

The work of Hiller and Isaacson does demonstrate conclusively that a com­
puter can take over many musical chores which only human beings had 
been able to do before. A composer ...might very well rely on a computer 
for much routine musical drudgery .... [T]he computer could be used to try 
out proposed new rules of composition .... 

In these days we hear that cybernetics will soon give us machines which 
learn.... Why couldn't they learn what we like, even when we don't know 
ourselves? Thus, by rewarding or punishing a computer for the success or 
failure of its efforts, we might so condition the computer that when we 
pressed a button marked Spanish, classical, rock-and-roll, sweet, etc., it 
would produce just what we wanted in connection with the terms. (Pierce, 
1961 [2nd ed., 1980, p. 260]). 

Have the last thirty years brought us closer to this vision? The impressive 
collection on music and connectionism edited by Todd and Loy (1991) and the recent 
volume by Schwanauer and Levitt (1993) contain ambitious ideas for automatic 
composition and computer music. The purpose of the present article is more modest: 
to show how both standard and modem time series techniques can be applied to 
music. Our focus is more on ideas and methodology than on specific results. 

[3]There is some confusion in the literature (and in the editions) about Bach's intended order for 
the individual pieces of Die KUMt der Fuge. We will follow Butler's (1983) numbering scheme, in 

which the unfinished fugue is Cpo XIV. 

[4] The organizers of the Competition selected Cpo XIV as Data Set F and posted it after the official 
close of the competition in January 1992 because of requests for more data. Since the hope was to 
inspire creative responses, no specific goal was set for this time series. Although the origin of the 
"mystery data set" was not revealed until the NATO workshop in May 1992, several participants 
discovered its source in their explorations. Terry Sanger's prediction went far into the future: he 
replaced Bach's theme with the theme song from Gilligan.'s Islan.d. 

[5]In the late nineteenth century, three separate (and nearly Simultaneous) claims were made for 
the discovery that all three themes of Cpo XIV can be combined with the KdF theme: Higgs (1817), 
Nottebohm (1881), and Ziehn (1894). See Kolneder (1911). pp. 280ft'. 
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FIGURE, First and last page of Bach's manuscript of Cp. XIV. Reprinted with 
permission. 

2. A PHYSICIST'S PERSPECTIVE 
What can musicians expect from physicists, data anal)"Sts, statisticians, computer 
scientists, or artificial intelligence workers? 

• 	 Computer-assisted analysis, ranging from the extraction of the main theme(s) 
or the structure (e.g., the locations and types of thematic transformations), to 
the discovery of rules used in composing. 
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the case of Cpo XIV, we distinguish between two different goals: mere contin­
uation and full-scale completion. 

For any of these enterprises, the first step is to choose a representation for the data. 

2.1 REPRESENTATION 

Musical characteristics vary over seven orders of magnitude in time, extending from 
10-4 to 103 seconds, as shown in Table 2.16) 

TABLE 2 Music spans seven orders of magnitude in time. 

characterization time scales from ... ...to 

timbre 

pitch 

(3 orders of magnitude) 


rhythm 

(1 order of magnitude) 


melody 

(1 order of magnitude) 


large-scale form 

(2 orders of magnitude) 


0.0001 sec ("" lO~z) 

0.1 sec 
(""Sixteenth note in Cpo XIV) 

1 sec 

10 sec 

0.1 sec ("" lokz) 


1 sec 


10 sec 


1,000 sec (~15 min) 


Because of this remarkably large range of time scales, the choice of represen­
tation is important. If, for example, we were to choose a representation based on 
the waveform of a recording, the natural focus of analysis would be on rhythmic or 
timbral aspects. Since our focus is on the notes themselves, we use three (related) 
representations that cla;ely resemble the musical text: 

[6JSeven orders of magnitude in music ace large compaced to less than half an order of magnitude 
(one octave) in color perception. However, compaced to eleven orders of magnitude present in a 
river baaia with drainage area (Montgomery & Dietrich, 1992), they seem modest. 
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TABLE 3 The last two measures of F. dat in the x-representation. The four voices are 
indicated by S (Soprano). A (Atto). T (Tenor) and B (Bass). The numbers indicate pitch: 
a value of 60 corresponds to "middle C." NA denotes a rest. Time t is given in units of 
sixteenth notes from the beginning of Cpo XIV. The vertical lines (I) indicate bar lines. 

S 168 68 68 68 NA NA NA NA NA NA NA NA NA NA NA NAI 
A 162626161595957575656545456565959157575757 

T 15464 64 54 64 54 63 6163 63 63 53 63 53536315464 66 56 64 64 5262516149 49 615154541 
B 14949494949 49 49 49 49 49 49 4949494949142424242 1 

T T T T 
t 3793 3801 3809 3817 

• 	 The x-representation gives the pitch values for the four voices (i = 1", ·,4) as 
a function of time. Xt is the four-dimensional vector at time t, and x: denotes 
its components. t indicates the time and is given in units of sixteenth notes 
(semiquavers)J7J Table 3 shows the last two measures of Cpo XIV as it stands 
in Bach's manuscript. 

• 	 For certain tasks, alternative representations can be more appropriate. The 
difference representation is given by d t := Xt - Xt-l. The d-series gives the 
number of semi tones of each interval between successive notes. The major ad­
vantage of the d-representation over the x-representation is that (exact) trans­
positions of the theme are identical. The disadvantage of the d-representation 
is that it ignores absolute pitch-the control that keeps continuations from 
walking off randomly in hannonic space. 

• 	 Alternatively, the run length representation gives each note as a pair (p, 1)­
its pitch number and length. This representation is convenient if rhythm and 
pitch (or intervals, when the d-series is run length encoded) are to be studied, 
but it is less suited for analyzing polyphony, since vertical alignment is la;t. 

All these representations can be augmented with additional explicit information 
about the placement of each note within the measure. In a connectionist implemen­
tation, a sensible metric of similarity is induced if this "phase" is represented by 
four binary units (the unit corresponding to the most significant bit encodes the 
location of the note within the first or second half of the measure, etc.). 

We first analyze horizontal structure, ignoring the relation of each voice to the 
others. We then analyze vertical structure, i.e., the interaction of different voices 

[7JThe fact that this representation does not distinguish between tied and repeated notes is not a 

serious shortcoming, since the Cpo XIV themes do not contain repeated notes. 
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at each time step. We then consider polyphonic structure (the unfolding of ver­
tical structure in time) and suggest an automated way of extracting higher level 
structure. In Section 3, we turn to the more difficult task of continuation. 

2.2 HORIZONTAL ANALYSIS (MELODy) 

A first step in exploratory data analysis (Thkey, 1977) is to histogram the data. A 
histogram counts the number of occurrences of a specific eventJ8] For example, 
the number of occurrences of each interval in one voice throughout the entire piece 
can be plotted against interval size (in semitones). Most of the statistics presented 
in this section can be applied to all three representations given above. However, 
different representations emphasize different properties, as illustrated by this list of 
histograms : 

1. 	Distribution of pitch, allowing for note length: histogram the x values. This 
statistic takes the length of each note into account, e.g., the pitch level of a 
quarter note is counted four times. 

2. 	 Distribution of intervals between consecutive notes: histogram d, the number 
of semitones, from the difference representation. This histogram contains infor­
mation about relative pitch onlyJ9] 

3. 	 Distribution of pitch, irrespective of length: histogram p from the run length 
encoding. Unlike the first histogram, this method counts the number of occur­
rences of each pitch, without taking note length into account. 

4. 	 Distribution of note lengths: histogram 1 from the run length encoding. 

Histograms 1 and 3 can be collapsed over octaves, focusing on pitch class. 

In the description of dynamical systems, one-dimensional histograms are used 
when only minimal information about the system is available. They approximate 
the probability of states without taking into account any knowledge of the previous 
state of the system. In literature, histograms have been used in authorship disputes: 
Thisted and Efron (1987) attribute a poem (discovered in 1985) to Shakespeare by 
comparing the words in the poem with the entire Shakespeare corpus. 

From a horizontal analysis of music, we want more than static statistics. In 
particular, we want information about temporal progression. The simplest way to 
collect this information is with a first-order Markov model. 

(8) For a dl8crete alphabet, the cells of the histogram simply correspond to the characters of the 
alphabet. Note that th«e is no "natural" metric between tbe cbaracters. This is different from 
bistograms of continuous-valued data that are quantized (or binned into the histograms cells). 

191 Fuclcs (1962) gives the histograms for the x- and the d-representations, 88 well 88 the autocor­

relation functions. HsU and HsU (1990) find that the Fouri« transform of the d-histogram obeys 

a power law (i.e., the log-log plot of tbe Fourier transform of the intel'vals resembles a straight 
line). 
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Markov (1913) studied the patterns of individual letters in written Russian. 
He used Alexander Pushkin's Eugene Onegin to fill a two-dimensional histogram, 
along whose sides were the letters of the Cyrillic alphabet. Each time letter i is 
followed by letter j, the counter in the corresponding (i,j)-cell is incremented. This 
allowed Markov to extract fuzzy rules for the spelling of Russian. 

First-order Markov models, described by two-dimensional histograms or tables, 
are similar to phase portraits used in the study of dynamical systems. A phase 
portrait is a plot of Xt against Xt-l. 

Brown et a1. (1992) use 583 million words of written English to build a second­
order Markov model, which predicts an ASCII character as a function of the two 
preceding characters. By computing the cross-entropy between their model and a 
balanced sample of English, they obtain an upper bound for the average amount of 
information in a printed English character: 1.75 bits. In comparison, the standard 
Lempel-Ziv algorithm (see Cover and Thomas, 1991) reduces the amount of infor­
mation from 8 bits per ASCII character to 4.43 bits. The additional compression 
ratio obtained by Brown et. a1. shows that a second-order Markov model, despite 
its simplicity, captures a significant amount of information about the sequence of 
letters. 

One way to characterize a simple deterministic time series is by the order m 
of the Markov model, where the next value becomes a single-valued function of the 
previous m values (Le., each column in the table of transition probabilities has only 
one nonzero cell). 

Although music is certainly not an entirely deterministic process, histograms 
can quantify the similarity between pie<?es, composers, and styles. Suitable his­
tograms can be constructed for pitch (x or p), intervals (d), or length (I). The 
histograms can be compared in raw form or through summary measures, such as 
moments, or entropy (for one-dimensional histograms)! mutual information (for 
two-dimensional histograms), or redundancy (for higher orders) JIOJ 

So far, we have dealt with structure that is local in time. A complementary ap­
proach is to find structure that is global in time, such as a description obtained by 
a Fourier transform, which yields the spectral coefficients corresponding to the 
average amount of energy for each segment of the spectrum. Voss and Clarke (1978) 
take the waveform of a recording (the amplitude as a function of time) and study 
both its audio power and the rate of zero-crossings ("instantaneous frequency'~). 
They find that the Fourier transforms of both time series are inversely proportional 

[lOIThe redundancy meaaure describes the information gained by increasing the order of the 
Markov model. It is based on incremental mutual information as a function of the order of the 
model (the number of past time steps that are taken into account). Redundancy is a nonlinear gen­
eralization of partial autocorrelation, just as mutual information is a generalization of (ordinary 
auto-) correlation. See Gershenfeld and Weigend (1993). 
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to the frequency f over several orders of magnitudeJ11] An important feature of 1/f 
spectra is that correlations in time are important for the entire range of the spec­
trum. The Fourier spectra obtained from the audio representation can be compared 
and contrasted to the spectra obtained from pitch-based representations. 

2.3 VERTICAL ANALYSIS (HARMONy) 

The previous subsection on horizontal analysis focused on the progression of each 
individual voice. (The individual voices of a fugue have similar statistics.) We now 
look at the vertical dimension, ignoring the progression in time. In this section, 
we use only the x-representation. The term chord denotes simultaneously sounding 
pitches, i.e., the (up to four) pitch numbers in a vertical slice. 

The "weakest" model for vertical analysis (the model with the fewest assump­
tions) simply counts the number of occurrences of each chord. The most simplistic 
approach is to provide a large array and to increment for each time step the con­
tents of the corresponding cell. The resulting numbers in the array characterize the 
piece as a whole. They can also be used to assign a "surprise" value to each chord, 
defined by the negative logarithm of its probability. The number of different chords 
(Le., cells that have one or more entries) can be plotted against the total number 
of chords (Le., the total number of entries in the array). Gabura (1970) analyzed 
this average occupation number of the nonempty cells and found the differences 
between composers to be significant. 

Gabura also tried to classify different composers on the basis of pitch structure 
in their music by using a neural network with a binary output unit. His network 
had no hidden units: error bachpropagation had not yet been invented. We now 
show how hidden units allow the extraction of structure from music, and we relate 
this structure to a number of fields, including cognitive psychology. 

An auto-associator neural network is a simple connectionist architecture with 
hidden units. As a method of encoding the chords, the network is trained to repro­
duce the input pattern at the output, after piping it through a bottleneck of hidden 

[11] Voss and Clarke (1918) analyze the low frequency variations of the audio power by taking the 
Fourier transform (below 20 Hz) of the squared waveform, after the waveform was bandpassed 
(100 Hz to 10 kHz). The Fourier coefficient at I (say, 0.1 Hz, to fix an idea) measures the degree 
of loudness variation at that time scale. The variable in Fourier space, I, is usually called fre­
quency. We have to be careful not to confuse / with pitch: in this context, the Fourier spectrum 
char80CteriZEB temporal periodicities of variations in both loudness and "instantaneous frequency." 
The spectral information can be presented "back" in the time domain as the autocorrelation 
function (the inverse Fourier transform of the power spectrum). 
A more general, yet still linear technique is quefrency alanysis (Bogert, Healy, and Tukey, 
1963). It can be applied to each voice in order to extract information such as echo-like repetitions 
of the themes. It is also interesting to analyze the cross-spectra between voices, i.e., the (complex) 
covariance of the complex Fourier coefficients between two voices as a function of the relative time 
delay. 
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unitsJ121 Once the network has learned to encode the patterns (Le., to reproduce 
them as faithfully as possible, given the limiting number of hidden units), we can 
try to learn what it has learned. We consider two network responses to a chord at 
the input: the reconstruction error of the output and the activation values of the 
hidden units. Standard connectionist analyses of these responses include: 

• 	 A scatter plot of error vs. surprise value (as defined above). This plot relates 
the features extracted by the network to the number of occurrences of each 
chord. 

• 	 A plot of the principal components 0/ the hidden unit activations (the eigen­
values of the covariance matrix). This plot estimates the effective dimension of 
pitch space (see Weigend and Rumelhart, 1991). 

Since we are dealing with music, we can relate network features-reflecting only 
the statistics of the musical text-to theories from other fields, including physics, 
composition theory, and cognitive psychology. 

PHYSICS/ACOUSTICS. We live in a world in which most sound generators (vocal 
chords, string instruments, wind instruments, etc.) are one-dimensional objects, 
which implies that their spectra contain only integer multiples of the fundamental 
frequency.l13] To what degree are such physical contingencies reflected in music? 
Is there structure in a scatter plot of the network error vs. the spectral overlap 
(Kameoka & K uriyagawa, 1969)? 

COMPOSITION THEORY. Eighteenth-century composers followed a general set of 
rules governing the use of consonances and dissonances (e.g., Fux, 1725). Such 
"common-practice" rules are implemented in an expert system by Maxwell (1992). 
He assigns a "dissonance level" to chords (e.g., consonant intervals are assigned 
dissonance level 1, augmented fifth dissonance level 3, etc.). Is there structure in 
a scatter plot of the network error vs. the level 0/ dissonance? To what degree 
does the network error "explain" the concept of dissonance, and where are the 
discrepancies? 

[121There is one input unit for each pitch value in the piece. Each input pattern corresponds to one 
vertical slice in the z-representation. For each note in the chord, the corresponding input is set 
to 1; all the other inputs are set to O. (An alternative representation is suggested by Forte, 1964.) 
For each chord, the reconstruction error is given by the distance between the target (the given 
chord) and the prediction (the network output). A general discussion of auto-associator networks 
can be lOUDd in Weigend (1993). 
[131Thls is different for higher dimensional objects. A circular drum, for example, has noninteger 
harmonics and subharmonics, located at the zeros of the Bessel functions. 
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COGNITIVE PSYCHOLOGY. Although pitch numbers are indeed numbers, the prox­
imity of those numbers does not imply perceptual similarity. For example, substi­
tuting a C~ for a C in a C major chord is usually less acceptable than replacing 
the C with a G, or with a C from another octave. If we want to compute distances 
between notes with the simple Euclidean metric, the notes must be embedded in a 
higher dimensional space. 

Shepard (1982a,b) constructs a geometrical model that reflects perceived simi­
larity between musical tones. The pitch number x is enhanced by the location on 
two circles: the circle of chroma describing the sequence C, CU, D, ... , B, C, and 
the circle of fifths C, G, D, ... , F, C. Pitch and one of these two "wrap-around" 
variables can be visualized as a helix in three-dimensional space. By adding the other 
cyclical variable, we can construct a helix of a helix in five-dimensional Euclidean 
space. Although all five coordinate values are functions of only one pitch number, 
this embedding allows the Euclidean norm to do justice to cognitive-structural 
constraints. 

Shepard shows that listeners' judgments induce a metric in pitch space. The 
activation values of the auto-associator's hidden units also induce a metric. Are the 
similarities in network response related to Shepard's?[l4.] 

The network encoding/decoding error can also be used to characterize the tem­
poral evolution of the fugue. We plot a smoothed version of the error vs. time. 
(Short-term fluctuations are removed by averaging over a bar of music or byap­
plying a standard smoothing convolution filter or some denoising by wavelets.) 
Furthermore, we plot the volatility of the error as a function of time. (The volatil­
ity is the running standard deviation of the errors computed in a sliding window in 
time; see Weigend et al., 1992, p. 419.) These ideas can be traced back to Jackson 
(1970), who plots a ''rate of dissonance" against the measure number. 

2.4 POLYPHONIC ANALYSIS 

We Tl~)W come to the most important part of fugue analysis: polyphonic structure­
the unfolding in time of vertical elements (Le., how the individual voices fit together 
and relate to one another). Music theorists of the Renaissance and Baroque wrote 
innumerable treatises on counterpoint, each elaborating the various techniques and 
rules that govern the combination of two or more melodic lines (the e~ence ofcoun­
terpoint). Many of these rules are formulated as prohibitions: "Do not use parallel 
fifths or octaves." This approach can be contrasted to a data-driven analysis, which 
finds (often implicit) generative rather than restrictive rulesJ16) 

[l4.!U.ful methods that can be used to relate these two representations include clustering and 
muttkUmensional scaling, as well as visualization with the help of self-organizing feature maps 
(Kobonen, 1990). 

(15) We are aware of only one computer program for automatic counterpoint (Schottstaedt, 1989). 
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The following three examples of four-part chorale harmonization in the style of 
J. S. Bach illustrate the transition from artificial intelligence (AI) without learn­
ing, through traditional AI with learning, to connectionism. Ebcioglu (1988) uses 
an expert system with some 350 rules for a "generate-and-test method." These 
rules were hand-coded in a form of first-order predicate calculus-not learned. 
Schwanauer (1993) describes a rule-based system with a chunker that combines 
successful sequences of rules to new rules. Hild et aI. (1992) take a connectionist 
approach. Their neural network has 70 hidden units. By learning to extract regu­
larities from the training examples, it produces convincing harmonizations for new 
melodies. 

The task of chorale harmonization differs from the goal of automatic contin­
uation in one important respect: in chorale harmonization the melody is always 
given, whereas in automatic continuation there are no pre-existent parts. The key 
to automatic analysis and continuation is the recognition of not only small-scale 
patterns, but also higher order structure. In the next section, we suggest a method 
of extracting higher order structure. 

2.5 HIGHER ORDER STRUCTURE 

In a traditional fugue analysis, one of the first steps is to look at thematic structure­
that is, to ideptify the themes, their recurrences, and transformations. Let us pre­
tend we do not know the themes: can we extract them from the data alone? We 
suggest an automated analysis based on clustering: 

1. 	 Use the difference representation. Define a window of length w. (For example, 
in the Cpo XIV data set, setting w to 32 or 48 corresponds to two or three 
measures, respectively.) Start from the first note of the first voice. Each time 
the window is "sat down" on the data, it produces a point in w-dimensional 
space. Record the first point. Advance the window by half a bar or a full 
bar (8 or 16 time steps), generating the next point in w-dimensional space, 
and continue through the entire piece with one voice after another. This will 
produce several hundred points in the w-dimensional space. 

2. 	 Cluster these points. The clusters with low variance and a relatively large num­
ber of points correspond to parts of the fugue themes. (There is some variation 
within these clusters because tonal answers require slight modifications.) 

3. 	 Treat each cluster center as a symbol. Since each point in the w-dimensional 
space is assigned to one of the clusters, the original series is now transformed 
into a sequence of symbols. Although the number of significant clusters is com­
parable to the number of pitch values, this procedure captures structure at 
a time scale an order of magnitude slower than the original representation, 
because the window is moved by 8 or 16 steps every time. 

4. 	 Analyze the transitions between these symbols. Some of the symbols are fol­
lowed consistently by a single symbol. These pairs correspond to adjacent parts 
of one of the themes. They can be combined into compound symbols (Simon & 
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Sumner, 1968; Redlich, 1993). Symbols which have a large number of successors 
(stochastic transitions) signal the end or the absence of a theme. 

In order to visualize the results of this automatic analysis, we can construct 
matched filters (corresponding to the cluster centers), convolve them with the data, 
and plot the results. If we are lucky, the thematic structure of the fugue will appear. 

3. CONTINUATION AND EXPECTATIONS 
Problems in scientific analysis and inference have two dimensions: theory and data. 
Traditionally, music analysis has been theory-rich and data-poor; music theorists 
seldom construct their theories from the data ("bottom up"). Because of the widen­
ing availability of musical texts in computer readable form,[16) musical analysis can 
now incorporate data-rich modeling. Data-rich/theory-poor modeling starts from 
the data, not from first principles or theories. We use the data to construct a model 
that makes predictions. We then analyze where the predictions went wrong, modify 
the model, predict, analyze, modify, etc. This method is sometimes called analysis 
by synthesis. 

In the case of Cpo XIV, the idea is to build a model from Bach's fragment, 
generate continuations, and analyze the shortcomings. This' approach will suggest 
improvements for the model. It may also broaden our understanding of human 
cognition and musical creativity. In Section 3.1 we list some approaches to continu­
ation; in Section 3.2 we address the question of how expectations, central in music 
cognition, might be modeled from the data. In Section 4 we contrast this inductive 
approach to the deductive approach of traditional musicology. 

3.1 CONTINUATION 

A straightforward implementation of an inductive approach is to find a part of 
the past that resembles the present, and to predict the same continuation. This 
nearest-neighbor approach taken by Zhang and Hutchinson (1993).I17J 

[161 The complete works of J. S. Bach (and works by other composers) will soon be available from 
the Center for Computer-Aaisted Research in the Humanities (Hewlett and Selfridge-Field, 1989; 
Hewlett. in preparation). 
(17)ZbaDg and Hutchinson (1993) use run length encoding. They consider the last two notes in 
aU four voices (pitch values and length x 2 previous values x " voices = 16 numbers). In this 
16-dimenalonal space they find the 10 nearest neighbors in the training set to the present point. 
For a continuation (of " + " dimensions, i.e., the next values for pitch and length for the four 
voices), there .... e two possibilities: (1) to stochastically pick one of the past continuations (with 
equal probability or with a probability that reflects the distance), or (2) to use an average of the 
ten neighbors, rounded to integers. One problem is the choice of metric in this space of pitch 
x length. Zhang and Hutchinson use the sum of the component-wise differences. Unfortunately, 
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Another approach is to express the next value in the series as a function of 
previous values. This is called an autoregressive model (AR model). Assump­
tions have to be made about the interpolating function: in the simplest case, it is 
linear. [IS) 

Feedforward neural networks with sigmoid hidden units are a nonlinear gen­
eralization of linear AR models. The input into each hidden unit can be viewed as a 
linear filter, the activation of the hidden unit as a squashed version of the filter, and 
the output of the entire network (its prediction) as a weighted superposition of the 
squashed filters. The filter coefficients and the weights to the output are adjusted 
to fit the training data. 

In the last four years, connectionist networks have successfully emulated dy­
namical systems and predicted their time series. The application of connectionist 
networks to music, however, differs in two important respects: 

1. 	 In dynamical systems, the squared difference between the predicted and the 
target value is a reasonable error measure. Music is different: a semi tone error 
is usually worse than an octave error. 

2. 	 For systems governed by differential equations, a sufficiently large number of 
past values provides all information necessary for prediction. Music is different: 
it has structure on a hierarchy of time scales. 

The first point can be addressed in two ways: by using an appropriate metric 
that reflects cognitive-structural constraints, or by avoiding a metric altogether. 
Shepard's representation (see Section 2.3) can serve as a "good" metric; it has been 
used by Mozer (1991) in a network to generate Bach-like tunes. There are two ways 
of avoiding a metric: Markov models and a local representation. 

Markov models need not assume any metric or distance function between the 
symbols.!19) Having weak assumptions requires large amounts of training data: the 
training set size increases exponentially with the order of the model ("curse of 
dimensionality"). In order to learn from data without having an intractable number 
of cells to fill, Kohonen et al. (1991) use a dynamically expanding context. The size 
of the context starts at zero and is expanded until either all ambiguity has been 

this mixes pitch with duration. Even in pitch space by itself, this metric is inappropriate. Better 
representations are discussed in the main text. Furthermore, run length encoding destroys apy 
vertical structure. 

[18] Musha and Goto (1989) use a linear autoregressive model for Schubert's Gute Nach.t. Their 
filter ta.Ic:eB the past 64 pitch values in an x-representation into account; each time step corresponds 
to aD eighth note. Creating different pieces with the same filter is equivalent to using surrogate data 
with a spectrum smoothed by a fit with 64 parameters. In surrogate data, the idea is to Fourier 
transtbrm a time series into frequency space, to randomize the phases (keeping the amplitudes), 
and to inverse Fourier transform back to the time domain. The power spectrum (the squares of 
the amplitudes) of the surrogate series is, by definition, identical to that of the original series. See 
Theiler et al. (1993) and Kaplan (1993). 

[lOlA review of Markov models for composition (from a non learning perspective) is given by 
Ames (1989). 
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resolved (deterministic continuation) or until a maximal context length (8 in their 
run length encoding) is reached-whichever comes first. Todd (1988, 1989), who 
also tries to avoid an inappropriate metric, uses a local representation: each unit 
corresponds to a single pitch value, similar to the representation discussed above.!201 

We turn to the second point-the hierarchy of time scales. If we want to use 
an ordinary Markov model or a feedforward network, we can explicitly incorpo­
rate knowledge about the hierarchical structure (obtained, for example, from the 
clustering method discussed in Section 2.4).1211 Hidden Markov models and re­
current networks have more computational power than ordinary Markov models 
and feedforward networks because the former can learn to represent the past inter­
nally. Mozer (1993) gives an overview of different recurrent network architectures 
and discusses their advantages and disadvantages. 

3.2 EXPECTATIONS 

In the Introduction we mentioned the importance of the tension between random­
ness and order. For music to "work," some balance has to be struck between the 
realization and the violation of deterministic predictions (expectations). 

Meyer (1956) is the foremost exponent of the metaphor of expectations (or 
expectancies) in music criticism. His method of musical analysis is based on music's 
tendency to arouse expectations on both large and small time. scales. Unfortunately, 
his ideas remain peripheral to most music theorists and critics: it may be that 
expectations are too subjective or too imprecise for traditional music analysis. 

Nevertheless, the fact is that musical expectations do exist. However, the ques­
tion of how they arise-as a fimction of both past musical experience and present 
input-is not easily answered. Expectations generated by a musical phrase may be 
due to a number of historical factors, ranging from common musical practices to pe­
culiarities of specific traditions, schools, or composers. Other influences on musical 
expectations include the myriad musics (and musaks) of modernity. 

Leonard Bernstein, in a discussion of Beethoven's Sixth Symphony, articulates 
the "formalist" method of looking at musical expectations: 

We are concerned not with the birds and bees, but with the F's and G's, the 
notes themselves which form the intrinsic metaphors of music, metaphors 
that evolve out of syntactic and phonological transformations. (Bernstein, 
1976, p. 154) 

[20ITodd's goal is to generate tunes. His network differs from the chord encod« discussed in 
Section 2.3. in three ways: his network predicts the next note (rather than the same chord), it 
learns to represent the past internally through recurrent (feed-bach) connections, and it has some 
extra inputs that represent musical style. 

[211Cope (1991) approaches this problem with a hybrid system that does not fit our classification. 

His system compoees "recombinant music" by chopping up a piece of music and recombining the 

parts in new ways. 
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By relating music to Chomsky's ideas on linguistics, Bernstein suggests that mu­
sic ("the F's and G's") is more crucial than an extraneous program ("the birds 
and bees"-the representational reading of Beethoven's Pastoral Symphony). Like 
Bernstein, we are more interested in the notes and their resulting structures than in 
extra-musical information. But unlike Bernstein, our interest in the notes is purely 
statistical. We want to see whether musical expectations can be derived solely from 
the musical text. 

There have been some recent experiments that model the formation of ex­
pectations by using synthetic (computer-generated) data. In music, Bharucha and 
Todd (1989) model tonal expectancy with connectionist techniques. They use series 
of isolated chords in succession, and sequences of seven successive chords each. 

In linguistics, Elman (1990) generates sentences with a simple grammar, using 
a set of one thousand words. His network predicts the next letter, differing from the 
auto-associator presented above in Section 2.3 in two respects: Elman's network is 
trained to predict the next step ("hetero-associator"), and it contains recurrent 
connections that encode relevant features of the past. The network generates an 
expectation that reflects the probability of the next letter. An error is obtained by 
comparing the prediction with the actual letter. A large error indicates a violation 
of the expectation and often signals a boundary between words. 

With a large amount of music available in computer-readable fonn, real data 
(rather than computt'r-generated data) can be used to build models for expecta­
tions in music. A data-driven approach may help separate the truly creative from 
the merely mechanical, and thus distinguish "Bachian Creativity" from "Bachian 
Noise." 

We have not yet addressed the issue of how to complete Bach's unfinished fugue. 
But a fugue has a beginning and an end-unlike dynamical systems theory, where 
initial transients are usually considered to have decayed and the system is assumed 
to be in a stationary state. If the computer is to complete Bach's last fugue, it needs 
to know how Bach completed other fugues. With all of Bach's fugues (and more) 
in the computer, will modern learning algorithms on powerful machines be able to 
generate satisfactory completions for Cpo XIV? 

The challenge posed by this question is hardly new; many musicians have strug­
gled with Bach's most ambitious fugue and admitted defeat. Others have chosen to 
play the Baroque forecasting game, and have left their mark upon Cpo XlV with 
published completions and elaborate detective stories. 
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4. A MUSICOLOGIST'S PERSPECTIVE 
4.1 PUBLISHED COMPLETIONS TO CPo XIV 

Composers, musicologists, and musicians of all stripes have taken turns completing 
Cpo XIV: there are numerous published endings by an array of Bach "wannabes." 
Most of the completions share a common thematic content-the three fugue themes 
from Cpo XIV plus the KdF theme. There is no such agreement on the scope of 
the missing portion, although Butler (1983) has determined how many pages were 
allotted for Cpo XIV in the plan for the original edition.[22] 

The issue of overall length must be decided before completion can be attempted. 
Cpo XIV, as it stands in Bach's manuscript, is a fugue in three large sections, each 
of which has a different theme. The manuscript breaks off in measure 239, on the 
heels of the first combination of all three themes, a maneuver which may be the 
second part of section three (the B.A.C.H. section)-or, the beginning of an entirely 
new closing section. 

Some latter-day Bachs bring in the KdF theme right away, making the third 
section the final section. Others extend the third section beyond measure 239 (where 
Bach stopped) and include an entirely new closing section in which all four themes 
are combined. The partisans of the three-section approach include a number of 
first-rate scholars and musicians: Tovey (1931), Walcha (1967), Wolff (1975), But­
ler (1983), Moroney (1989), and Schulenberg (1992). Wolff and Butler present solid 
arguments for a fairly brief concluding section, while Tovey, Walcha, Moroney, and 
Schulenberg each try their hand at comp.osition. The four-section sympathizers­
Busoni (1912), Husmann (1938), and Bergel (1985)-are less numerous, but con­
siderably more adventurous. Using Bach's other multi section fugues as models,[23] 
they prefer to bring the third section to a close with a full cadence before bringing 
in the KdF theme in a new fourth section. 

The various completions range from the perfunctory to the outrageous: Schu­
lenberg provides a four-bar solution (for the faint of heart), while Bergel proposes 
a monumental four-section fugue of some 381 measures. There are, predictably, a 
few iconoclasts in the crowd: Busoni embeds Bach's fugue within a gigantic impro­
visatory fantasy for piano (44 pages worth!), while Martin (1948) offers two different 
completions, each of which merely completes section three without introducing the 
KdF theme. 

[22]This is not to say that Cpo XIV was conceived to fit into the allotted space (six pages by 
Butler's calculation) but rather, that six pages were allotted for it. This fugue was probably not 
complete at the time of the original pagination scheme, and the six-page requirement may have 
been one of the reasons why Bach never finished (or gave up copying) the piece. (This issue is 
discussed later in the main text.) 

[23]Among others, Cpo VIII and XI from the KdF and the Ell organ fugue, BWV 552b. 



169 Baroque-Forecasting 

4.2 THE MUSICOLOGICAL "DETECTIVE STORY" OF CPo XIV 

Most of the published completions to Cpo XIV follow traditional methods of com­
positionJ24! But musicologists are seldom composers; they tend toward primary 
source study. This type of inquiry has created a never-ending, ever-changing de­
tective story that seeks to "explain" Bach's unfinished fugue. In keeping with this 
tradition, we suggest yet another answer to the question, "Why did Bach stop?" We 
return to Bach's manuscript of the unfinished fugue with the following questions in 
mind: 

1. 	What kind of a score is Bach's manuscript of Cpo XIV? (Is it a composing score, 
a printer's final copy, or something in between?) 

2. 	 Why is Cpo XIV in two-stave format? (All the other contrapuncti are in four­
stave format.) 

3. How can we explain the infamous final bar? (Why did Bach stop writing in the 
middle of the fifth page without any remark?) 

The first question invites a comparison with another movement from KdF. 
The final version of the Canone per augmentationem in motu contrnrio is the only 
other piece in Bach's personal copy of KdF written on the same type of paper as 
Cpo XIV. Both pieces are on loose sheets; they were either revisions or additions to 
the collection of stitched folios known as the P200 manuscript. The two separate 
movements are on oblong paper with five systems of two staves each. Bach had 
a good reason for making a second version of the canon: the final version is a 
rearrangement (in larger note values and in ¢ time) of the earlier Canone per 
augment. in motu contr. in P200 (which was in C time). 

Bach's ¢ time version of the canon is clearly the final version: the cleanness of 
the copy and its layout-a page tum falls conveniently when one hand is resting­
are proof that this was the version Bach wished to print. Since this loose-leaf copy 
of the canon is a revision, we might assume that the existing fragment of Cpo XIV 
is also a revision-they are both laid out in the same two-stave format on the same 
type of paper, after all. But if the Cpo XIV manuscript is a revision copy, what did 
Bach revise? 

A change in meter (the reason for the revision of the canon) does not seem to 
be the right answer. A reduction of note values in the first section of Cpo XIV woqld 
put the fugue subject and the answer into different metric positions-not a likely 
possibility. Nor will the first exposition of Cpo XIV work in ¢ time with two whole 
notes per measure (as in Cpo I, II, and III); there is the same problem of shifting 
metric position for each entry of the theme. 

There is, however, one clue in the manuscript of Cpo XIV that supports the 
hypothesis that there was some sort of metric change between versions. On the 
last two systems of the fourth page (in the B.A.C.H. section), Bach writes partial 

[~41 Weigend and Dirst (in preparation) address the question to what degree machine learning 
techniques can be used to statistically "authenticate" the completions listed in the Appendix. 



• f 

'" 

170 Matthew Dirst and Andreas S. Weigend 

bar lines every two bars: precisely the sort of error one would expect if Bach was 
copying from an earlier version in a different meter-particularly if that meter was 
¢ time with two whole notes per measure. In the midst of copying the B.A.C.H. 
portion into his manuscript, Bach must have momentarily forgotten that he was 
(now) in ¢ time with one whole note per measure; he inadvertently reproduced the 
barring from the previous version of the (lost?) B.A.C.H. fugueJ26J 

How can we explain Bach's mistake? Perhaps the B.A.C.H. section was written 
first. This would fit in nicely with Wolff's idea concerning "Fragment X" (the lost 
completion), which Wolff suppa;es Bach must have written (or at least sketched out) 
first, before composing sections one through three. Perhaps Bach's procedure for 
this fugue was totally backwards: he may have worked out the concluding section 
first (as Wolff suggests), and only then figured out how he was going to get there. 
If B.A.C.H. had to appear in third place, why not use an already existing fugue on 
this theme? 

Our answer to the first question-What kind of score is this?-thus posits the 
following scenario: Bach began work on Cpo XIV by inventing three new themes 
that could be combined with the KdF theme. He then resurrected an earlier fugue 
expa;ition on B.A.C.HJ26] Finally, after planning the general shape of the entire 
fugue, he composed the rest. Bach's manuscript of Cpo XIV is, then, a combination 
of revision and compa;ing score. 

Our answer to the second question-Why the two-stave format?-begins with 
Butler's conclusion that Cpo XIV was supposed to fill six pages in the original 
publication. Butler's reconstruction of the (lost) original pagination scheme is quite 
clever; it neatly solves some lingering problems associated with the whole workJ27J 
But Butler does not answer all the questions. If Cpo XIV was supposed to serve as 
the final contrapunctus (Butler's idea, after all), then why is it not in four-stave 
format like all the other contrapuncti? Even if Bach was revising, why would he 
have condensed the score at the same time? 

[251There are no other fully authenticated examples of B.A.C.H. fugues by J. S. Bach: BWV 898 
is spurious; BWV Anh. 45 has been ascribed to both Justin Heinrich Knecht (Schmieder, 1990, 
p. 899) and Johann Christian Bach (Kobayashi, 1973, p. 391); BWV Anh. 107, lOS, and 110 are 

probably the work of Georg Andreas Sorge (Schmieder, 1990, p. 920); BWV Anh. 109. the only 

other B.A.C.H. fugue in Schmieder. is stylistically so anomalous as to be irrelevant for serious 

comparison with the B.A.C.H. portion of Cpo XIV. Although Bach may have never written a 

complete fugue on B.A.C.H., he used this chromatic motive occasionally in larger works. For a 

listing of B.A.C.H. motives in works of J. S. Bach. see the preface to B.A.C.H. .Pugen. der Familie 

Bach., edited by Fedtke (1984). 


[261Scbulenberg (1992. p. 368) also wonders whether the various sections of this fugue were com­

pOlled separately. He ventures that "Bach composed [Cpo XIV] in sections. linking them by bridges 

that perhaps were worked out only during the writing of the surviving autograph." 


[271Bach died before the first printed edition of the work was finished. and the executors of his estate 

(C. P. E. Bach and Agricola) misunderstood his intentions for the projected KdF publication. The 

confused state of the original (1751-2) publication explains the radical differences between (even 

recent) editions of KdF. 
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The most likely reason is that Bach was behind schedule and needed to save 
some space. We have no way of knowing whether Bach finished Cpo XIV before the 
pagination scheme was drawn up. But if we suppose that he had not, the two-stave 
format can be easily explained. Bach's printer, having already engraved Cpo I-X, 
needed to know the order of the remaining pieces in the volume. Cpo XIV, for which 
Bach or his printer (or both) allotted six pages, was to appear after Cpo XIII. When 
Bach finally began composing (or perhaps just revising and copying) Cpo XIV, he 
knew he had only six pages for the job. This may have been why he changed the 
format: in two staves, the work occupies less space. 

The two-stave arrangement evidently worked fine until page 5, where Bach ran 
out of properly ruled two-stave paper (in the middle of the B.A.C.H. section) and 
was forced to continue on a badly ruled, smaller piece of paper. (Page 5 of the 
manuscript, reprinted in Figure 1, is about 1 centimeter less in width and length 
than the previous four pages.) Midway through the second system on this page, 
after the (first and only) combination of all three themes, the music stops. The 
appearance of the final measure is puzzling: Bach wrote the tenor part through to 
the next bar line, while the other voices simply stop on the downbeat of measure 239. 

Without a nota bene indication or Wolff's "Fragment X" (which would have to 
begin with the missing voices in measure 239), we may never be sure what Bach's 
intentions were. But we can make an educated guess: Bach was copying from an 
earlier version of this fugue (or at least a sketch of the fugue's completion), and he 
probably did his copying much like we do-one voice at a time, bar by bar. The 
last measure (the subject of our final question) thus can be understood if we realize 
that Bach was copying, not composing. In measure 239 Bach copied only one voice 
and stopped (for whatever reason) without copying the other parts through to the 
end of the measure. 

Now for the big one: Why did he stop? Perhaps he was unhappy with the 
lousy paper (Bergel). Perhaps he did not need to recopy a completion that already 
existed (Wolff). Or perhaps Bach realized that to continue would be foolhardy, 
because the fugue was already too long and would never fit within the allocated 
number of pages. He copied as far as his previous copy went and was unable (or 
unwilling) to complete this tour-de-force fugue, choosing instead to exclude the five 
separate sheets of Cpo XIV from the P200 manuscript. Who knows: he may have 
deliberately destroyed Wolff's "Fragment X" in order to keep anyone from trying 
to publish the unfinished final contrapunctus of his Kunst der Fuge. 

Bach's failure to complete Cpo XIV need not doom our efforts; it may, in fact, 
be an instructive lesson in humility. Although we have no solution yet, the desire 
to complete this (in)famous work remains strong, particularly since its completion 
can now be considered from more than just a purely musical perspective. 
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APPENDIX 
Contrapunctus XIV and some completions are available at ftp. santue . edu in the 
directory pub/Time-Series/Bach. Table 4 lists the file names, composers, year, and 
number of measures for each completion. Bach's unfinished measure 239 is counted 
as measure 1 of each completion. We invite further "predictions." Please contact 
one of the authors with your continuations, suggestions, questions, or comments. 
General directions for accessing the data of the Competition are given in the 
Appendix of Weigend and Gershenfeld (1993). 

TABLE 4 Cpo XIV in different representations and some completions. 

file name composer year length comments 
(in measures) 

README description of files 

F.dat J. S. Bach c. 1750 239 x-representation 
F.dif difference series 
F.rli run length (soprano) 
F.r12 run length (alto) 
F.r13 run length (tenor) 
F.r14 run length (bass) 

Tovey D. F. Tovey 1931 79 
Martini B. Martin 1948 52 
Martin2 B. Martin 1948 41 
Walcha H. Walcha 1967 72 
Bergel E. Bergel 1985 143 
Moroney D. Moroney 1989 31 
Schul.nbg D. Schulenberg 1992 42 
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