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Abstract 

In a preceding paper. the author predicted that light experiences a redshift when propagating 
within inhomogeneous and anisotropic atmospheres as a manifestation of the deformation of the 
original geometry in vacuum caused by the physical medium. By using recent numerical data reached 
via quasars's redshifts. this note provides a first numerical estimate of the expected redshitt for our 
atmosphere which results to be fully within the current experimental capabilities. We therefore 
propose the comparative measures ot the sun light frequencies-wavelengths at the zenit and at the 
horizon to verify whether or not a redshift exists. Other experiments are indicated too. 

The homogenuity and isotropy of empty space are fundamental geometric conditions of 
Einstein's special and general relativities. In fact, they are embodied in the structure of the 
underlying carrier spaces, the Minkowski space [1,3] and the Riemannian space [2,3], 
respectively, and they manifest themselves in relativistic laws, such as the Einsteinian redshift 
law [3), whose validity for light propagating in vacuum is now established by vast esperimental 
evidence. . 

In papers [4,5,6] we studied the possibility that the propagation of light within 
inhomogeneous and anisotropic (transparent) media implies deviations from the Einsteinian 
redshift laws caused precisely by the deviations from the homogenuity and isotropy of empty 
space. In particular, we identified [6] a generalized redshift law for the broader conditions 
considered, called isodoppJers law, and proposed the measure of the possible redshift of 
light in our atmosphere in the transition from the zenit to the horizon, although without any 
numerical prediction. Additional experimental proposals consisted in the measure of light from 
a distant star before and after passing through other sufficiently dense atmospheres of our 
Solar system, such as Jupiter or the Sun. 

Mignani [7] applied these techniques to the problem of quasars' redsl1ift by identifying 
for the first time upper numerical values for the possible deviations from the Einsteinian 
redshift expected from the quasars'hyperdense, inhomogeneous and anisotropic atmospheres. 

In this paper we shall use the techniques of ref.s [4,5,6] and the numerical values of ref. 
[7] to identity a first order of magnitude or the possible redshitt of the sun light when 
propagati~ within Earth's atmosphere, which is indeed manifestly inhomogeneous (because ot 
the variation of the density with the distance) and anisotropic (because of the Earth's rotation 
which creates a preferred direction in our atmosphere). 

The problem of the physical laws applicable within inhomogeneous ':Ind anisotropic 
media has been lingering for considerable time, but became quantitatively treatable only 
recently thanks to the appearance of the so-called isotopies of contemporary Ill.ce/Jras, 
geometries lind mechanics [4~5,6]. In partiCUlar, these studies have identified new geometries, 
known under the name of iso$'.;vmpJectic; isoll/fine IlJJd isoriemllnnilln geometries, which 
provide a direct characterization of inhomogeneous and anisotropic media. The main idea is 



the generalization of the trivial unit I = diag. (1~ 1~ ...~I) of contemporary algebras~ geometries 
and mechanics into the most general conceivable nonlinear and nonlocal (integral) units l~ 
called isounilS, which represent precisely the impact of the physical media in the motion of 
(extended) particles and waves [for recent detailed stUdies see the mathematical memoirs [8~9]~ 
and the review monographs [10~11]). In this letter we can evidently review only the most 
rudimentary elements~ and refer the interested reader to the quoted literature for details. 

Let M(x~l),gO be the conventional Minkowski space in (3+1) space-time dimension over 

the reals fi~ with local coordinates x = (x11) = (xk~ x4), 11 = I~ 2~ 3, 4~ x4= cot~ where Co denotes 

hereon the speed of light in vacuum~ metric l) =diag. (I, I, 1, -1) and familiar separation on fi 

(1) 

The isoJlJinkowski spaces, first introduced in ref. [5], are given by the infinitely possible 
isotopes M(x,~,It) of M(x,l)..9\) characterized by the same local coordinates x of M(x,l)..9\), by a 
new metrics ~ called isoJlJetrics and new fields It called isofields, with the follwing 
structures and inter-relations. 

The isometrics can always be written in the form ~ = TT), where T, called isotopic 
element, represents nowhere degenerate 4x4 matrices of generally nonlinear and nonlocal­
integral elements on all possibler local variables and quantities, including coordinates x, their 
derivatives of arbitrary order, the local density 11 of the media, their local temperature T, 

their index of refraction n, etc., and it is assumed for all physical applications to be positive 
definite, T =T(x, i~ :i, l), T, n~ .....) > O. 

The isofields possess the structure It = 9l 1 where 1 is the isounit of the theory; its 
elements are the isonuJlJbers ~ = N 1, and the trivial product of numbers N I N2 is now lifted 

into the isoproduct~I*N2 = ~1 T ~2 = (N1N2) 1 (as a result the "numbers" of the isotopic 

theories remain the conventional ones~ because their sum is conventional and their isoproduct 
with any quantity Q coincides with the conventional product, N*Q := NQ). 

The spaces M:(x~~~9\) become mathematically consistent when 1 = T-I , in which case, all 
deviations T from the original metric 11~ called JlJutations, are embedded in the isounit of the 
theory [5]. This novel geometric structure has a number of intriguing mathematical and 
physical implications. I 

I 

On mathematical grounds~ the spaces M(x,~,9\) and M(x,l1..9\) coincide" by construction, at 
the' abstract; realizlltion-free'ievel because, under 'the condition T > 0; ". is'. field, and the 
signature of 11 is preserved for~. Also, by recalling that all geometries are insensitive to the 
topology of their unit, the isotopies M(x~l1..9\) ~ M(x~~~9\) permit the preservation of the original 
local-differential topology of the Minkowski space (e.g., the Zeeman topology) essentially 
unchanged because all nonlinear and nonlocal terms are embedded in the isounit of the 
theory. 

On physical gounds, the primary function of the isotopies M(x,l),3\) => J\.l(x,~,al) is to 
represent the transition from the homogeneous and isotropic vacuum~ represented by l), to 
generally inhomogeneous and anisotropic physical media~ represented by ~ = Tl). In fact, the 
inhomogenuity can be directly represented~ e.g., by the explicit dependence ot' the isometric ~ 
on the local density; the anisotropy can be represented, e.g., via a Finslerian factorization of a 
preferred direction in space; and finally, the combination of such inhomogenuity and 
anisotropy generally result in a space-time anisotropy (see below) 

Note that the isotopies M(X~l1,B\) ~ M(x,~,9l) constitute the most general possible 
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nonlinear and nonlocal, axioms preserving generalizations of the original Minkowski space. 
Note also that, while the Minkowski space is unique, there exist an infinite variety of 
mathematically equivalent, but physically different isominkowski spaces represented by the 
corresponding variety of isotopic elements T, evidently because there exist an infinite. variety 
of physical media in the universe. 

Since the isotopiC elements T are assumed to be positive definite, they can be 
diagonalized. Without any loss of generality, we can therefore assume hereon the following 
particular isominkowski spaces [5] 

3 63
2 3At(x,~$t): x~ = xJi ~v xV = x1612x1 + x2 622x2 + x x - x4 642x2, (2a) 

~ ~ TTl, T ~ diag. (b1
2, bl, &a2, bi) > 0, bl1 ~ bl1(x. i, it,ll, T, n, ...) > O. ~b) 

where the 6's are called the characteristic limctions of the medium considered.Their explicit 
nonlinear and integral dependence is needed for the local behaviour, e.g., for the 
representation of relativistic drag effects experienced by a (classical, extended) particle in 
the neighborood of a given point x of the medium considered [6]. 

In this paper we study instead a global behaviour , that is, the possible refdshift of 
light when passing through our entire atmosphere. Under these conditions the characteristic 
I)-functions can be effectively averaged into the so-called characteritic b-constants, via 
any suitable averaging procedure 

< I6Ji(X, i, i, Ji, T: ...)I> = bJi =constants> 0, Ji = 1, 2, 3, 4. (3) 

A first illustration of the representational capabilities of isominkowski spaces (2) can be 
done via their use to treat the isorelativistic latneD/aties [6] in water. This is the simplest 
conceivable case represented via the isotopy of the conventional invariant 

Ji = 1, 2, 3, 4.. (4) 

which illustrates the reason for the assumptions bJi > 0 in Eq.s (2b). 
In this case the isominkowski space can properly represent: 1) the familiar speed of 

light c = cob4 = Co I n < co; 2) the maximal causal speed of massive particles (e:g.electrons) 

I dr / dt I max = Co which is bigger than the local speed of light, as established by the 

Cherekov light; and 3) the homogenuity and isotropy of the medium considered, as manifest in 
the factorization (4) (see ref.s [6,11,12] for details). This case will soon be useful to clarify that 
light experiences a decrease of its speed but no redshift in all homogeneous and isotropic 
media. . 

Our fundamental assumption is therefore that a Splice-time representlltion of the 
inhomogenuity and anisotropy of our atmosphere is provided by the isominkowski space 
AI{J.~Jj,.") where the isometric Jj = TJ} has the structure 12b) with constllJJts vlJlues (3), which 
are not fac/orizable into forms of ope f# (i.e., bk;c b", k = J.,2,3) All subsequent steps can be 
proved to be uniquely derivable from the above assumption. 

To begin, it has been proved that the isotopies M(x,l},fi) => l\l:(x,~,It) imply the necessary 
abandonment of the conventional Lorentz symme~y 0(3.1) in favor of the covering isolorentz 
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symmelrJes6(S.1) [5,6]. The isotopies 0(S.1) => 6(S.1) are necessary on a number of counts, e.g., 
the fact that the conventional Lorentz transformations J(' = Ax no longer leave invariant 
isoseparations (2a) and, It applied to M(x,~,9\), would Imply the violation ot the conditions ot 
isolinearity, isotransitivity, etc. As a result, they must be generalized into the so-called 
isotransformati~ns )( = A*x = ATx, T fixed, resulting in nontrivial generalizations of Lorentz's 
transformitions of the type 

J('1 = xl, J('2 = x2, J('S = Y(xS - ~x4), xA y (x4 - ~xS), .(5) 

holding under the expressions 

(6) 

which are valid also for nonlinear and nonlocal realizations of the o-quantities [6,8,9]. 
In particular, for T > 0, O(S.l) results to be locally isomorphic to O(S.l) [5]. Thus, our 

model of isoredshift of light within our atmosphere implies the necessaJ;I-' loss of the 
conventionlll Lorentz transformlltions. evidently because of their direct incompatibility with 
the inhomogenuity and anisotropy of the medium considered, and their replacement with the 
covering isolorentz transformations (the proof that isotransformations (5) do leave invariant 
isoseparation (2a) is instructive). However, the fundamentlll Lorentz S)-'DJmetry is not lost, but 
remains exact lit the abstract level. 

Next, it is possible to show that the isotopies M(x,ll,9\) => l\.l(x,~,9\) imply the necessary 
generalization of the conventional planewaves representation of light into the covering notion 
of isoplanewaJl'es [6] 

(7) 

where the isoexponent is evidently invariant under 6(S.1). 
It has been finally proved that the repetition of the familiar derivation ot the relativistic 

Doppler's law [S] uniquely leads to the isodoppler"s law [6] 

li" = wy(1 - ~ cosa), (8) 

with isotopic, aberration 

cos a - ~ 
cos a' = ----- (9) 

1 - ~ cos a 

where one can assume values (6) for motion along the third axis. 
We can now illustrate the statement made earlier to the effect that there is no 

isoredshlt tor homogeneous and isotropic media. In tact, tor tactorizable isoseparations (4), ~ 
= ~,y = y and the isodoppler's law coincides with the conventional laws even tor 
propagation ot light within physical media. Also, one can see trom law (8) and values (6) that 
the isodoppler's redshitt is not due to the inhomogenuity and anisotropy of the physical media 
per se, but more precisely to the space-time anisotropy bS jiI!' b4 that they generally imply (see 
ref.s [6,11,12] for details). 
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The reader should be aware that the isominkowski spaces M(x,ij,&1) are -directly 
univerSll/', that is, capable ot representing all possible signature preserving mutations ot the 
MinkowsJd space (universality), directly in the frame of the experimenter (direct universality). 
The same property is then shared by all derived quantities. In tact, the isolorentz symmetries 
6(3.1) have been proved to admit as particular case all possible generalizations ot the Lorentz 
symmetry preserving the values sign. 11 = (+1, +1, +1, -1), such as those of ref.s [12,13] (if such 
signature is not preserved, the existing generalizations of the Lorentz symmetry are still 
particular cases of the isolorentz symmetry by relaxing the condition T > 0). 

In particular, Aringazin (14) proved that isodoppler's law (8) admits as particular cases 
all existing generalizations of the Doppler's law via one of several, pOSSible, different power 
series expansions and truncations. The reader not familiar with the unifying power of the 
isogeometries [8,9] should therefore be aware that there is no need to consider simpler, 
approximate laws by risking incomplete results, but one can consider instead isolaw (8) 
because of its uniqueness, direct universality, and covering nature over all possible particular 
cases, evidently including the Einsteinian case. 

It is intriguing to note that the isodoppler's law coincides with the conventional 
Einsteinian law at the abstract, realization-free level. This mathematical property has 
nontrivial physical impUcatio,ns inasmuch as it establishes that the prediction of redshift 
caused by the inhomogenuity and anisotropy of the medium ultimately originates from the 
very axiomatic structure of the Einstein's Doppler's law, only realized in its most general 
possible way. 

We pointed out in ref. [6] that isodoppler's law (8) offers genuine possibili~ies of 
resolving a vexing problem of contemporary phYSics, the speed of quasars which, as currently 
deduced from measured redshifts, has reached such high value to admit (portions of) quasars 
traveling at speeds higher than co' up to speeds of the order of lOCo or more. But the quasars 
travel in empty space. Thus, their center-ot-mass trajectories must be strictly Einsteinian in 
our views. The IfISsUDJption that their speeds is bIller than c; there.t'ore consotutes a 
violation Of Einstenian laws under £ii/steinian conditions, which is' strictly prohibited for 
isotopiC theories. 

We therefore suggested [6) that the quasars redshift could be due in part to the 
propagation of light within their hypersense, inhomogeneous and anisotropic atmosphes. This 
could reduce the relative speed between the quasars and the associated galaxy down to such 
values to avoid speeds higher than co' without affecting the current views on the expansions 
ot the universe, whose primary contribution remains that of the galaxies. 

More explicitly, we submitted the hypothesis that the currently measured quasars' 
redshift may be due to the following three contributions: 

1) a primary contribution due to the expansion of the universe according to the 
Einsteinian Doppler's law; 

2) a first quantitatively smaller correction caused by propagation of light within the 
quasars' hyperdense, inhomogeneous and anisotropic atmospheres as per the isotopic law 
which decreases the speed of the quasars as measured in 1); and 

3) a second, very small correction expected from the fact that space is perfectly 
homogeneous and isotropic at distances, say, of the order of our Solar system, but at large 
intergalactic distances it may well result to be a physical medium being. fillid up with 
radiations, particles, dust, etc., thus potentially activating the isodoppler's law. j 

This study was explicitly conducted by Mignani [7), who assumed, fopr simplixcity, that 
b1 = b2 = = b and that, as a first upper approximation, quasars are at rest with respect to ba 
the associated galaxy. Mignani then identified the following expression for the ratio b/b4 
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b (00'1 + 1~ - 1 (W'2 + 1)2 - 1 
B=- = x (10) 

(00'1 + 1)2 + 1 (W'2 + 1)2 + 1b4 

where w'l represents the measured Einstenian redshift for galaxies and W'2 represents the 
isoredshift for quasars. From known astrophysical data, Mignani [lac. cit] then reached the 
following first numerical values of the characteristic constants of inhomogeneous and 
anisotropic media [7] 

GAL. w'1 QUASAR B w'2 

NGC 

NGC 470 

NGC 1073 

NGC 3842 

NGC 4319 
NGC 3067 

0.018 

.0.009 

0.004 

0.020 

0.0056 
0.0049 

UBl 
BSOI 
68 
680 
BSOl 
BS02 
RSO 
QS01 
QS02 
QS03 
MARK205 
3C232 

31.91 
20.25 
87.98 
67.21 
198.94 
109.98 
176.73 
14.51 
29.75 
41.85 
12.14 
82.17 

0.91 
1.46 
.. 1.88 
1.53 
1.94 
0.60 
1.40 
0.34 
0.95 
2.20 
0.07 
0.53 

(11) 


Intriguingly~ all Mignani's values of the characteristic B-quantity are positive~ they are 
all bigger than one, and all cases imply a shift toward the red. These results are nontrivial 
inasmuch as the underlying geometries are so broad that, in principle, there is no general way 
to predict whether light is red- or blue-shifted in an arbitrary medium (see the geometrization 
of physical media in ref. [6D. 

Needless to say, the above numbers are upper values under the indicated assumption 
that the quasars are at rest with respect to the associated galaxies. However, the main idea 
of the isodoppler's redshift is that of avoiding the violation of Einstein's relativities under 
Einsteinian conditions [6]. Thus~ smaller values of the Characteristic B-quantities still 
permitting an expulsion of the quasars from the as~ociated galaxies remain possible [7]. 

Despite these unsettled aspects, Mignani's results (11) provide the first numerical 
values for the characteristic B-quantity of interior physical media. As such, they have 
particular comparative value for other atmospheres. 

By keeping in mind that possible corrections to Mignanius values can at best be of 
decimal character, in this paper we assume numerical values (11) as characterizing the 
inhomogeneous and anisotropic atmospheres of the quasars. Their average value is 

/ 
r < IB I> 72.78 (12)$IS 

with corresponding average isoredshift of the quasars 

(13) 

while the average redshift of the associated galaxies is 
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,
, 


(14) 

The isodoppler"s redshift law, under the indicated limit assumption, therefore implies the 
following average value of the redshift due to the inhomOgenuity and anisotropy of the 
quasars' atmospheres 

(15) 

We now use the above numerical values to obtain a first order of magnit.ude of the 
possible redshift of light due to our atmosphere, for the primary purpose of seeing whether it 
is within current experimental capabilities. 

From astrophysical information on quasars' masses as compared to the mass of our' 
Earth, we can assume that the quasars' atmospheres are of the order of 104 densier than our 
atmosphere. If, in first.approximation, the isotopic deviation from the conventional redshift is 
assumed to be proportional to the density of the atmosphere (and in fact it is null for null 
densities), we reach the following isotopic redshitt expectedly due to the inhomogenuity and 
anisotropy of our atmosphere 

< 100' I> z 1.14 x 10-4, 	 (16)IEarth 

which is fully within current experimental capabilities. 
The above values confirm the validity of the proposal of ref. [6t that is, measure the 

possible isoredshift of the sun light in the transition from the zenitto the horizon. 
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