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The path-integral method due to Feynman is an alternative approach to a
quantum theory. For the sake of simplicity we first illustrate it in the case
“of nonrelativistic quantum mechanics and then gradua,te to quantum field
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Abstract

Feynman’s path-integral formulation of a quantum theory is con-
sidered. We start with the case of nonrelativistic quantum mechanics
in one space dimension, generalize to more dimensions, and by analogy
we formulate the path integral quantization of scalar field theory. A
short account on analytical computation of Gaussian path integrals is
also included. The quantum theory of Bose fields is presented in both
the Euclidean- and Minkowski-space formulation, and it is pointed
out, that the well-definiteness of the underlying path integral dictates
Feynman’s ie prescription for the field propagator. Finally, the general
procedure to derive Feynman rules in the theory of a self-interacting
scalar field is discussed in detail, and the rules for the case of the ¢*
mtera,ctxon are given.

Path integrals in quantum mechanics

theory.

According to the generahzed Huygens principle, the wavefunction ¥{g",
which describes the state-of a particle at the moment ¢” stems from a super-

pos1t10u of earlier wavefunctions:

W) = [dlK( 0¥ >0



- are diagonal: -
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" The Feynman kernel K(¢",#"¢',#') is the‘probability amplitude for a

- particle that was observed in the location ¢’ at the moment ¢’ to be found in
- ’qll at t”

In the framework of canomcal quantization the states are represented by ‘

| (generalized) Hilbert-space vectors and the observables are operators: p,§ .

(From now on a hat crowns operators.) They satisfy: ,

S CBd=-k @
and we have thg coordinate and momentum representations in which they
S dlg>=qle> S 3)
R  Ble>=plp> B O]
The normalization and eompleteness relations read :

R - <L >=8d"-4) . (5)
PR 1-—/dqlq><ql, | - (6)
and,' " ' )
‘ <p'|p>=60"-p) | (M
N 1“/dplp><pl | (®
‘Wea.l‘sohave '
' <p1'q S= ....}.._....e'i'kﬂl’b ' (9)

V2rh S

~ In this (Schrodmger) picture the state.vector l ¥, > is tlme—dependent‘
and the wavefunctmn is

‘Vl"(q;t)k'—?< gl ¥e> (10)

The Heisenberg pleture is obtained via a time-dependent unitary trans-
formation, and is'such that the state vector is time-independent, ] ®>. We
have: :
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where | gt > are eigenstates of the Heisenberg coordinate operator

i=ebigett gy

with the exgenvalue g. In the above equa.txon H is the t:me—mdependcnf A_

‘ Hamiltonian.
The constant state vector is

| | |@>—'e*‘7‘l‘l'> Wy
a.nd a companson of Eqs (10) and (11) yxelds the time evolutmn of the | qt >
states : , ,
Iqt >=etft|g> R . (14)- o
WemayrcwnteEq(l) L e -
‘ <q"t"|(>>-/dq <q"t"|q't’><q”|@> - (18) -
; because of the completmess property of the {| gt >} basm for any given tune, :

t. -
Our aim is to express the tranmtlon a.mphtude in terms of the classma.l ‘

Hamﬂtoma.n, H (q, p) thhout reference to operators and states ina Hxlbert W

space.
To procwd we dnnde the tlme mterval [t’ t"] mto N equal pxeoes

- denote: -t e =
: and vwrite the Feynman"kemel as ' . '
, K(qn t", ql tl) .,( q"t” l qltl - /dq qu“ < q”i" 'Z?N-—kltN-l- > s

< qztz | ata >< mtx | q't' (18)
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A typical factor in the integrand is

< (intn i Qn—ltn-l > = < dn ] e—;-iH(tn”““—l) ’ Qn—l >
<gn|(1—ieH) | g1 >

- /dpn < dn | pn >< pn | (1= ieH) | gy > (19)

i

If H contains no cross products of § and 3 , i. e. H is a sum of g-dependent
and p-dependent terms, then

< o | H | goor >=< pa | Gncs > H(Pay tnor) (20)

and in the coordinate-dependent part of the classical Hamiltonian, H, we may
replace ¢,—; by the midpoint value:

da = @i?qﬂ | 21)
because of a Dirac §-function stemming from the momentum integration in
Eq.(19) :

Hence,

; ,
< Gutn | gnortnot >= 7{%65’"(“““9“"‘)(1—zeH(pn,qn)) (22)

This relation holds also for H containig Weyl-ordered cross products of mo-

mentum and coordinate operators®.
We next substitute (22) into (18):

d
< q"t"| q't' > /dql ~dgn 4 P;L e 25_:

H eh?n(qﬂ"q""l)(]_ — lCH(pn) qﬂ)) (23)

n=1

where ¢y = ¢' and qn = ¢".
inn the product from the integrand we encounter factors which, to first
order 1o the infinitesimal parameter €, coincide with an exponential. However,

iSee 73], p.61
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in the limit of N —. oo the product consists of an‘inﬁnity of such factors, so
this coincidence to first order doesn’t justify the substitution (1 — ieH) —
exp(—ieH). For instance, another replacement, namely (1 — ieH) — (1 +
teH)™?, would give iacorrect result.

There is a theorem which allows us to do the first substitution?.

Theorem 1 Given N numbers z,,...,zy such that limy_ e 7{,— ) ,anl Zp =
X < oo, we have: ‘ ' : .

: N
YT L Py e
&T&WJL+N)”§LW

(24)

J=F
¢ )
=

It can be proven by power series expansion in z,;. Using this theorem we
rewrite Eq.(23)as

| dpr PN
,’ " l I — .. —————" @ N —
; < "¢t > = /dql d(IN_lz 5 onh

] N - y =
eﬁzru:l [p”‘—%“i"H(pnﬂn)} Ot (25)

We adopt the view that the set of values {ql, .;gnN-1} and {p1,...,pN}
are successive values of certam continuous functlons of tlme, q(t) and p(t),
and denote: -

t' + nAt; n:O,l,k...,N : (26)

t, =
g = q(ta) (27)
Pn = P(tn) ’ ‘ (28)

while taklng the limit N — oo (i. e. At — 0) we have

Gn — 4n-1 At-—»() ) '
T q(tn) (29)
& o am [U |
2 d 30
3 st [ aro. (30)

2See [4], p.124
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and for the integra.tion measure we introduce the notations

dgi---dgn_y = H dg(ta) = Hq(t) =(Dg) (31)
and v N _ '
dpr  dpy _ prdp(ts) _yrde) _ o (32)

2nh © 27h —n_l 27h

2rh
In this way we obtained the phase-space path integral formula for the
transition amplitude:

e q(tl’)=q .. n .
< q”t” I q’t' S = / (Dp)(Dq)e" f:, dt[pg—H({a,p)]

g(t')=q’

Jr)Da)etse (33)

1l

The integrations are performed over “paths”,i. e. over the continuous set
of variables ¢(t) and p(t) with t € [t,t”]. The gaussian integrals of this kind
can be performed analytically in a similar fashion as the usual ones.

In the case of classical Hamiltonians of the form

H(p,q) = 2 + V(q) (34)

the momentum integrations in (25) can be performed (formally), yielding
Feynman’s famous configuration-space path-integral formula. To this end,
let us take the integral

dpn _jat[m sl v ()]
/ o ‘ (35)
We complete the square by making the change of variables
' n — qn-
Pp = Pn m—m—l, , (36)

and obtain for the integral (35)

1 ‘At[?(ﬂ%"i =V(dn)
5 /dp ~3mr?'n (37)



.1 PATH INTEGRALS IN QUANTUM MECHANICS 7

We now intend to integrate over p,, but the integrand is purely oscillatory.
We have two choices: either we perform the Gaussian integral by taking
formally i{At to be real (continuation to imaginary time), or we introduce by
hand a convergence factor®, e~'s,

Treating :At as a real consta.nt we obtain for the pn-mtegral the expres-

sion:-

2mnh
At

Hence (25) becomes -

”t” ftl S= d . d _
<gq lq (2 hiAt g’ q1 gN-1€
(39)
and in the limit N — oo, accordmg to Egs.(29) and ( 30), this gives the

desired result

q(t” )-q

<g"t"| gt >=N (Dq)exfz' WPV = N/ Dq)exSts] (40)

a(t)=q

which is Feynma.n’s formula. The quantity S[q] is the action, a functional of
the particuar path, ¢(t).

The normalization constant, A, is infinite but it doesn’t appear in expres-
sions with physical meaning, because these have the form of a matrix element
<q"t"| O | gt >/ < ¢"t"| ¢t >, with O some operator. It follows that it
is enough to define the integration measure up to a multiplicative constant.
From now on, we shall include any constant in the measure.

In words, the above formula means that the probability amplitude for the
particle to be in ¢” at time ", given that it was in ¢’ at time #/, is a sum over
all possible paths that start from ¢’ at ¢’ and end in ¢” at t”, weighted by the
exponential of ,'; times the action evaluated for the particular path.

3See [5] p.7, [6] p.77

(38) -

)_1! /?N=9" i 2:;1 ["22 (qn'“g‘_‘?'l )Q—V(in)] At

N wE
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2 Quantum Field Theory: Bose Fields

Fields are nothing but nondenumerably infinite variable systems. The first
step in generalizing the path-integral formula (33) is to consider the D-
dimensional case with coordinates {ga}a=1,..p. The integration measure
(Dg)(Dgq) contains an extra product over the index a. It is:

Hd a(t)dpa(t) | N ‘ (41)

Next we replace the discrete index « by a continuous one: Z, and denote
the value of the “coordinate” by ¢. Thus a classical Bose field ¢(Z) can
be viewed as the Z-component of a continuously infinite dimensional vector.
The cooresponding path-integral measure becomes: ‘

dII(z t)

(DI)(D¢) = Hd¢( )=, (42)
with ’ |
ms,n:a% (43)

the conjugate momontum
_ In canonical quantization the coordinates are Schrodmger field operators,-
#(Z) with eigenstates | ¢ >. In the Heisenberg picture the field operator

(3, t) = eF M §(z)e 1t (44)
which involves the (time independent) Hamiltonian of the system If H were
time dependent, exp( i Ht) would be replaced by T exp(,L _[;) drH (7)) with T-
the time ordering operator We consider the time-independent case.

The Heisenberg field operator has eigenstates | ¢,¢ > :
$(&,t) | 6, >=$(3,1) | $,t > (45)

and the transition amplitude is defined by

< ¢"t" | 't >=< é" | e-f;(z”-—t')ff 4 > (46)
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By analogy, its path-integral expression reads:

(f)" t"
< @ |t >= [ (Dg)(DIN)eh Jo 4 f &=lmizos)-rq (47)
In what follows we shall restrict ourselves to the case when the Hamﬂto-
nian density has the particular form:

H= —Hz( ¢(z), Vé(z)) - (48).

where z denotes the space-time point z* = (t,Z). We use units in which
¢ = h = 1, but we keep h in the exponent displayed because it will serve
later as a parameter in the loop expansion.

In the case under consideration one integrates formally over the IIs and
obtains the Feynman formula

£

< ¢”t” ' ¢itl Ss=N (D¢)e% f:,” dtfda:rﬁ(.r) (49)
él

The integration limits in (47) and (49) denote the endpoint constraints
#(Z,t') = ¢'(Z) and #(F,t") = ¢"(F).

The functional integration may be defined by first considering z to be a
discrete variable, performing the multiple integration and then approaching
the continuum limit* Alternatively, we may enclose the system in a large,
but finite space-time volume, integrate over the discrete Fourier components
of ¢, and then approach the limit of infinite volume.

The transition amplitude can be continued analytically to complex times.
To see this, consider the eigenstates | n > of H and assume that there is a
unique vacuum state with zero energy:

1 50,
Alo> = 0 <0]0>=1 (50)

Eq. (46) gives
<" >=) < ¢ |n><n|d > e R "=t En (51)

n=0

4See [7],p.218 and [10],p.72.
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It can be continued for (t” —1') a complex parameter with negative imaginary
part. This amounts to rotating clockwise the time axis by an angle Z. We
shall return to this point later. Setting ¢” = —i7 and ¢ = i7 and taking the
limit 7 — oo we have:

o0
lim < ¢"t" | $'t' >= lim Z <¢"|n><n|¢ >ekE (52
t” — _im T = X =0
t' — 100

This is a useful property.

A very fruitful idea due to Schwmger is to minimally couple the system
to an external source J(z), and study the response of the vacuum state to
this (arbitrary) driving force. The whole dynamics of the system can be

extracted from that.
To show this, let us consider the transition amplitude in the presence of

& source:
¢ll b
<#t 9= N | (D¢k*f ST (53)

We denote the coupling term by

Lt dt/d:’xJ(:c)d)(:c) = (J,9). (54)

It is a functional of both the field and the source.
The differential calculus can be extended to the case of functionals. We
call functional a real-valued function,

F:C® - R; F[f] € R,

defined on the space, C™, of indefinitely differentiable functions with contin-
uous derivatives. One defines the functional (or variational) differentiation

by®:

SFI) _ . FLAD) + eb(t ~ to)] = FIF(1)
§f(to) LO € (59

). Schwinger Proc. Nat. Acad. Sci. 37, 452 (1951)
“See [7]. p.208
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For example, this definition gives

8(J,¢)

Ty = ), (56)

and if we functionally differentiate the transition amphtude (53), we obtain
the expression

67!- < ¢”t” l ¢’tl >J
6J(y1) -+ 6J(yn)

which resembles the matrix elements of time-ordered products of Heisenberg
field operators

“N / (D) ¢(y1 By )e;‘:[S+(J,¢»)]. (57)

<¢'t'| T($(31)- - (yn)) | $¢ >= N / (D§)p(y1)- - dlyn)e™  (58)

A comparison of the right hand sides of Eqs.(57) and (58) suggests that
the transition amplitude in the presence of external sources is related to the
Green’s functions of the system. But who are the physical states of the
system? The answer depends on the success of a perturbative approach, but
nevertheless the state of least energy, called the vacuum, is thought to exist.

We intend to relate the vacuum-vacuum amplitude to the Green’s func-
tions, and to find a path-integral representatlon of it. Let us first define this
amplitude.

In the presence of an external source the Hamiltonian of the system be-
comes time dependent: :

() = f - / #2J(2)d(x) = H + By(1) (59)

where ¢(z) = §(Z t) is a Heisenberg field operator and J(z) is a c-number
function. It is supposed to vanish in the infinite past and infinite future:

J(z) 2 g, | (60)

A

a necessary condition for the system to be in the vacuum state, | 0 >, of H
(sic) at these times.

PR e i t ‘“:-n,\ e '.‘{‘_ -

f-g.
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We call vacuum-vacuum amplitude and denote by < 0% | 0~ >, the
probability amplitude for the system to be in the state | 0 > at time z° = o0,
given that it was in the state | 0 >-at 7% = —o0, in spite of the presence of
the source J. ;

By unitarity, this amplitude can only be a phase factor. It is also denoted
by

< 0% |07 >y= Z[J) = W (61)
_ Using the evolution operator in the interaction picture with respect to
H,, the state of the system at z¥ = 0 is

v o (7
107 >y= Te™# - @ | g 5, (62)

and the state at z° = 0 which will evolve into | 0 > at z° = oo is given by
[0F > = Te# Jadthi® | g 5 (63)
Thus

ZlJ] = <0|Te ®J®#m® g5
= <] Ter S ?=I@é=) | g > (64)

which is Dyson’s definition for the generating functional of the Green’s func-
tions. Indeed, expanding the right hand side of (64) we obtain

ZU) =143 (—5) / d'r - d*ead (@) I (en) < 0| T( $(21) - (aa) |

(65)
where we identify‘the Green’s functions which can be “extracted” from Z[J]
by functional differentiation:
" Z[J]
§J(x1) - 6J(zn) |,
{66)

In this sense is the vacuum-vacuum amplitude the generating functional

- \ . . SENT
Glay, 2y ey xy) =< 01T ofzy) - @lzn) |0 >= K;)

for the Green’s functions.
[t can be shown® that the phase lunctional WiJ1in turn is the generating

& . 1 4 . B N . N 1., ey . ey .
fanctional (ot the conuected Green's fancrions

0

=0
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R\ 5"W[Jj
Gc(zl,...,mn) = (;) 5J($1)'-'5J(2n) o (67)

These are the sum of all connected Feynman graphs with n external legs .

terminating at z,,...,z,. -

We next seek for a path-integral expression of the generating functional.
To satisfy (60) we consider a source which is turned on during a large, finite
time interval [—7, 7]

J(z)=0 for | Zo |> 7, ’ (68)

and take the limit 7 — oo later. ,
The transition amplitude between the moments ¢’ < —7 and ¢ > 7 is

< ¢"t" | ¢t >;= f(D¢1 (Dé2) < ¢"t" | ¢or >< o7 | 61,7 >u< ¢y, —7 | $'t' >

. - - (69)
Here we used the completeness of the | ¢t > states.

By continuation to imaginary times®, the source-free amplitudes can be
computed as follows: . :

< ¢"t" | gy > — <¢"| A=A | ¢ >=
Z <#'In><nld>e SHE-NE TR 1050 gy > (70)
n=0

and : ; . 2
<y =T [ SN [0><0] ¢ > (71)

We substitute them in (69) and express the source~dependent amplitude
in terms of the time-dependent Hamiltonian.

hm o< ¢Iltll ] ¢Itl >J
t" — —ioo
t' — 100

/(D¢1)(D¢'2) <¢"|0><0] ¢ >

8See Eq.(52)

(72)

= < ¢ Te*J2 480 |1 >< 1 |0><0] 0 >
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Using the completeness of the | ¢ > states we obtain

m <@t | ¢t >i=<¢"|0><0|Te * - #0 1 g5 g ¢ >
t" — —io0
' — 100
(73)
where we have also used the fact that exp(—-—?rH ) | 0 >= 1. Taking the limit
T — 0o we recognize the expression (64) of the vacuum-vacuum amplitude.
Using also Eq.(52) we conclude that

. < ’Iltﬂ !t! >
2= tm SOOI
t”“""‘im <¢t'|¢'t>
¥ — 100

(74)

This expression can be written as a path integral over fields defined in
Euclidean 4-space, a space obtained from the Minkowski space by the Wick
rotation: a clockwise rotation of the real axis of the complex z°- plane into
the negative imaginary axis. This procedure is needed to make the oscillating
path integrals from Eqs.(53) and (49) well defined.

We denote a point in the Euclidean 4-space by zg. It is related to the
point z = (2%, Z) of the Minkowski space by:

zg = (%,z4) with z4 =12° real
diz = —idizg (75)
:c%; = xf-&-x%—}-x%-}-xi:-——xz

The corresponding Euclidian momentum space is defined so that kyz4 =
kox®. This convention assures that the propagation of a plane wave in the
positive sense of z, corresponds to the positive sense of z°. This convention
implies that we have to rotate the kg axis counter-clockwise into the positive
imaginary axis, as indicated in Fig.1.

We have
kg (k. ky) with ky = —ikg real _
dik idikg (76)
ki = ki+ ki +k]+ k)= -k

i

i
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Note that k -z = k2% — k% goes into ky4T4 — k:v but in taking the Founer
transform of a function of k2 we may replace k- z by kg - tg = kx4 + EZ.

- Continuation to Euclidean space means that we consider the dynamical
evolution of the system in imaginary time, i. e. we must solve the equation of
motion in which the time, z°, is replaced by —iz4 with z4 a real parameter.

A Lorentz-invariant real scalar field, ¢(z), turns into-a real scalar field,
. ¢(zg), invariant under the rotation group in four dimensions, O(4).

A massive vector field, A#(z), with real components is replaced by a
Euclidean vector field, A#(zg), with real components according to the rule:

Al(z) — Al(zp) j=1;2,3
Az) — 1A(zE)

Note that A® continues to A4 with sign opposite to that of z° because it
should transform like 5%5. The Lorentz condition 3,A* = 0 is replaced by

9As
VA — =0 77
For Euclidean vectors there is no distinction between upper an lower indices.
Rewriting Eqs.(49) and (53) in Euclidean space and introducing the re-
sults in (74) yields the functlonal»mtegral expression for the vacuum-vacuum

amplitude N
AW _ [(Dg)e -kl s¢]+( )]

f(D¢)e $5cl4)

where the denominator is a constant which eventually can be absorbed in
the integration measure from the numerator. Equation (78) involves the
Euclidean action functional

.- (78)

Seld] = /d‘xgﬁ(xg) = —15[¢] - (79)
and the coupling - |

Uols= [desir)blee) = =00 (50)
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In the Feynman-graph expansion of. the vacuum-vacuum amplitude the
Euclidean prescription merely supplies the correct ie in the propagator. This
point will be dealt with later in the case of the real scalar field.

An equivalent Minkowski-space path integral expression of the generating
functional is®:

D)kt I+
AW f(f?1;¢)ex5‘ 81

where }
Sl = [ delow, 09+ 5] (2)

is the action supplemented with an extra convergence factor which renders
the oscillating path integral and also provides the correct z¢ in the Feynman
propagator.

3 Functional Integration
The functional- (or path-) integral'® representation for the generating func-
tional of a quantum field theory has many virtues. First of all, it makes
especially easy to see how the theory changes if we make non-linear trans-
formations on its dynamical variables. It also permits to easily introduce
auxiliary fields, passing in this way to a new theory with the same dynamical
properties.

The first part of this section will be devoted to caiculating Gaussian path
integrals'’. They can be performed exactly and are important because they
can be used also in approximation schemes when the exact path integral isin-
tractable. In our approach we shall use the analogy with ordinary integration
without any attempt at mathematical rigour.

Let us start with the ordinary Gaussian integral

o ‘om\?
j dre™ 7% = (—1{) (83)
a
“See [7],p.210

“For the definition of path integrals and their use in quantum mechanics see the classical
book of Feynman and Hibbs [1]
“'We clnsely follow S.Coleman’s lectures as represented in [2], cap.5
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where a is a positive real number. By analytic continuation the formula is
also true for complex a, provided it has a positive real part. The above equa-
tion can readily be generalized to n-dimensional space. The inner product of
two vectors x and y of this space will be denoted by (z,y).

For a real symmetric positive-definite (and thus nonsingular) matrix,A,
there holds:

/ d*ze~14%) = (21)% (detA)~2 (84)

as can be seen by diagonalizing A. As before, Eq. (84) holds also for
a complex symmetric matrix with positive-definite real part, by analytic
continuation. Denoting

(27)":d"z = (dz) (85)
we have
/ (dz)e~7(54%) = (detA)™% (86)
We can also integrate exponentials of general quadratic forms

Q(z) = %(x,Ax) +(b,2) +c (87)

where b is some vector and ¢ is a number. Let I be the location of its
minimum

#=—AT' : (88)
Then Q(z) can be written in canonical form
. 1 L . N
Q(z)=Q(z) + z(z —z,A(z — 7)) (89}
with
Q(3) = b A7) + ¢ (90)
Whence,



3 FUNCTIONAL INTEGRATION 18

/ (dz)e™9®) = ¢~ (det A)"2 (91)

Using Eq. (91) we can do the integral of any analytic function, f, of the
" n coordinates z; times the exponential of a quadratic form, just by differen-
tiating with respect to b;

@@ = j(- ) [(derema (92

We will need later also formulae for integrating over an n-dimensional
complex space, not in any contour-integral sense, but merely in the sense of
integrating separately over imaginary and real parts. A vector of this space
is written as z = (zy + iy1,...,%n + 1¥n), and the usual Hermitian inner
product of two such complex vectors, z and w, is denoted by (z*,w). If A is
a positive-definite Hermitian matrix

/(dz‘)(dz) e~ (242 = (detA)™?, (93)

as can easily be seen by diagonalizing A. The integration measure is a
symbol for the 2n-dimensional real integration with respect to the measure

(dz")(dz) = n "d"zdy zi,y; real (94)

The change in the power of the determinant stems from the fact, that
each eigenvalue contributes twice to the integral, once from the integration
over the real part, and once from the integration over the imaginary part.
The missing factors of 2 in Eq. (94) are related to the missing 1/2 in the
exponent. : ‘

A general quadratic form may be written as

Q(z, 2") = (2" Az)+ (b, 2) + (2", b) + ¢ (93) .
~ with b -some complex vector and ¢ -a number. It is minimal for
F=—-A"1 | (96)

with the value

Q(2,7) = ~(b", A7) + ¢ 1)
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Thus ) .
Q(z,2") = Q(%,7) + ((z — 2", A(z - 7)) (98)
which yields the complex analogue of Eq. (91)

- / (d2*)(dz)e™ @) = ¢~QEF) (det 4) ! O (99).

We remark that the above integration formulae hold for any (finite) di-.
mension of the vector space, therefore we extend them to infinite-dimensional
vector spaces. To point out the mathematical linchpin of this step we de-
scribe it using Eq. (86) as an example. Given a quadratic form (z, Az),
defined by a linear operator, A, on a real Hilbert space, we first restrict the
form to some finite-dimensional subspace. On this subspace both the inte-
gral and the determinant are well-defined. Then we consider an increasing
sequence of such finite-dimensional subspaces such that their union is dense
in the Hilbert space. The limit of this sequence will be the whole space.

This limit defines both the functional determinant and the functional
integral. From the mathematical point of view the key problem is to find out
if, for a given operator A, the limit exists and is independent of the chosen
sequence of subspaces. :

We will simply generalize our finite dimensional formulae assuming that
the involved expressions are well defined!?. The infinite-dimensional spaces
we will be most concerned with will be spaces of functions, for example, the
space of functions,¢(z), of space-time points.

The inner product is defined by

(6,9) = /d“xgﬁ(x)c;&’(w) | (100)
and the analogue of Eq. (86) is:
f (D¢)é‘%(“”4¢)~ = (DetA)"%. (101)

The measure in the above formula is that of a path-integral, and DetA
denotes the functional determinant of the linear operator A. The evaluatior.
of such determinants is a problem we will refer to later.

12For a good mathematical reference see [3]
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For complex fields e have

/ (D¢")(Dg)e™¢"49) = (DetA)™ (102)

From these formulae equations analogous to those derived before follow
directly. We write out explicitely just one of them

/ (Dg)f((2))e™ M = f( e )) [ (Dg)e™3H (103)

which tells us how to obtain the others. Note that ordinary derivatives
are also replaced by functional ones, because the quadratic form itself is a

functional of ¢ and b.
The operators we will be mostly interested in are differential operators,

some polynomials,P(3,), in space-time derivatives. The continuous matrices
associated to them are diagonal [5].

| Aey)= P -DPGS) (104
Their action is deﬁnea by
(49)) = [ d‘*yA(z DI =PG)8E)  (109)

We assume that they are mvertlble, i.e. that there exists A™}(z,y) so
that : )

/d“zA(:):, 2)A™ Y (z,y) = 8z —y) (106)

For the speciai case of operators like (104) the inverse is a function satis-
fying the equation

2 VA ) = 84z ~ ) (107)

A momentum-space representation of the operator can be obtained by
Fourier- transferming (twice) the function, ¢(y), it acts on. This gives:

P(

Afz,y) = f é%;P(~iku)e"’“(”‘y’ (108)
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and
- ' Bk e—ikz-v)
A™? Y= |
9= | Gy Py |
The functional determinant is defined by the product of the eigenval-

ues. We remind that A is already diagonal with elements given by Eq.(108).
Hence, '

(109)

DetAEI;_[A(:v,x)r—-];I / (;")’f(-—iku) ENGUN

It seems to be a divergent quantity because A(z, z) are strictly positive num-
bers for the operators we are interested in. (From the positive-definiteness.
follows, that all the principal minors are strictly positive). Actually, we don’t
know how to compute the product with respect o continuous index like z. -
This is the reason of the ambiguous formulation:“it seems to be”.

A more practical formula for a functional determinant arises from the
generalization of the identity

IndetA=trinA (111)

valid for real, symmetric, positive-definite, finite-dimensional matrices.
This can easily be verified by dla,gonahzmg A.
Whence,

DetA = Trin4 | (112)

where Tr stands for a functional trace defined by

: 4
Trln A = /_d;r:(lnA)(m,:c) = /d? In(A /dT ln/ (d k s P(—tk,)

(113)

This last form is a manifestly divergent quantity. In usual field-theoretical

applications the determinant may be included in the overall normalization
factor which drops out from expressions of physical interest.

However, functional determinants are not entirely useless. When we .-

wegrate over sorne fields which appear quadratically in the Lagrangian of a

svsteni. we are left with an effective action. [See e. g. {2, ?]] To one loop order,
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it is the logarithm of a functional determinant. One tries to find the effective
lagrangian by bringing the effective action to the form of an integral over
the space-time variables. (In our case this would amount in an evaluation of
the momentum-space integral.) The problem in those computations is that
P is not just a polynomial in derivatives, but it contains also z-dependent
fields which does not commute with the derivatives. How to disentangle such
functional traces is a relative recently solved problem [11].

4 The Feynman Propagator

We shall use the techniques discussed in the last section to evaluate the
- generating functional for a real scalar field whose dynamics is governed by
the action

Stél = [ &'z ol,8.8) + L) (114)
Here Lo is the Lagrangian density of ‘the free field,
. 2
Lo=5(0,8)0*9) - 28" (115)

and the interaction Lagrangian, £;, is some polynomial of the c-number field
¢, but independent of its derivatives. '
- The generating functional has a path-integral expression

WU _ N j (D@)er S+ | (116)

in which the normalization constant, N, is chosen sc that W[J] vanishes
when the external source J(x) vanishes. ‘

In this form the integrand in Eq.(116) is oscillating, nothing like the nicely
damped gaussians of the previous section. There are two ways out. :
~ First, in the Minkowski-space formulation, we may introduce by hand a
convergence factor:

Lo — Lo+ %z’e& (117)
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which creates the positive-definite real part of the “matrix” that appears
in the quadratic form from the exponent 2. [See the comment after Eq.(84)].

The second approach to make the integral in Eq. (116) well-defined is to
rotate the time axis with 8, = —% and the energy-variable axis witk 6, = Z,
obtaining thus the Euclidean-space formulation of the theory . Then, we
perform the (Gaussian) integral and rotate back to Minkowski space.

Remarkably enough, both of the above approaches specify the correct pre-
scription for the Minkowski-space Feynman propagator. The well- deﬁmteness
of the path-integral dictates the correct Green’s functions! ‘

To see this, let us evaluate the generating functional for the noninteracting
field. In the Minkowski-space formulation we have

eAWl] — 5 f (Dg)ek (S H+IN) (118)

where S((,‘) is the free action supplemented with the convefgence factor

58 = / d%c [1:0 + —ze¢2] = / d*zé(0 + m? — ie)d. 1175
The last expression arises because

(0u0)(0"9) = 0.(80"6) — $(D¢), (120)

and the total-derivative term doesn’t contribute to the action.
The integral obtained is just like Eq. (91):

iWold] — pr / (D$)e=W = N'(DetA) 390, (121)
where the quadratic form is

Q)= 3. A8)+ (,8)  ba)=-pJ@. (2

and ¢ denotes the location of its minimum, i. e. that particular field for
which the functional Q[¢] is minimal.

13Gee e. g. [6], p.74, and [7], p.218
41t is nicely described in [4],p.133 and [6], p.91
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The involved operator

Awy)=Se-y)iO+mi—ig (129

hasa positivé~deﬁnite real part, e§*(z—y)/k, and its inverse is the solution
of the equation

i

ﬁ(Cl +m? —ie)A Nz, y) =8 (z —y). (124)

We denote

ANz, y) = ihAF(z - y), (125)

where Ag is the Feynman propagator. From the momentum space rep-
resentation of A™! [ Eq. (109)]

dik e-—ik(x-—y)

Ap(z — y) =‘ Gr)i B —mitic (126)
We have also
| - 1 - 1 | ) -
Qlél = -5, A7) = 53 [ dadyI @A @I, (20)
which gives the generating functional
exWoldl _ =35 [ ded*yJ(2)Ap(z-9)J(y) (128)

This is the standard expression involving the correct propagator. The
normalization constant is just (DetA)~z. [See the comment after Eq. (116)]

In what follows we carry out the Wick rotation of'the time axis, and
perform the path integral over the Euclidian fields, after which we rotate
back to Minkowski space.

Suld] = = [ d'eo(a)@+m?)(o) = 5 [ diopilas)(-Op + m*)o(ee)

V (129)
where Og = 82 + V? is the Euclidian-space d’Alembert operator. The inner
product in terms of an Euclidean-space integral is written as
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" Whence,‘ v
; eAWold] .-_-)\f/(DqS)ﬁ%’Qw
where -
QeI = 36 A58) + (bs,8)
with |
be(z) = ~3J(ex)
and

Ag(zE,y5) = 6*(vp — yE);;("DE +m?).

Its inverse is

d4rkE e*“s(rs~vs)
-1 _
Ap (z5,y5) = h/ (2r)* kL +m?*

and, if we introduce the Euclidian propagator by

Agp(zp,yg) = thAs(zE — yE),

we obtain

A ) dikg e—tke(zE~yE)
E(xE ~yp) = i 2r)t k% +m?
E

The generating functional is found to be:

Wbl - N(DetA)_%e%(bE'AEIbE)

0= [Pt =i [ Pasites)ies).

- &

— e J d*zpd*yeJ(sp)0p(z5-vEN (VE)

2

(130)

‘ *(13i)

(132)

(133)

- (134)

- (135)

(136)

(137)

(138
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We now explain the way in which the Euclidian propagator (137) trans-
forms into the Feynman propagator (126) while we perform the rotation back
to the Minkowski space.

The direct rotation amounts to replacing the (initially rea.l) energy vari-
able by complex numbers like a real number times ¢ with 8 € [0,7/2],
and at the end of the rotation, 8y = /2, the energy variable is pure
imaginary:tky. The time variable suffers also a similar rotation, but of oppo-
site sign: o — —iz4. The variables k; and z4 are real numbers. ,

At the beginning of the direct rotation (and at the end of the inverse one)
the energy variable is koe®® a ko(1 + ¢6) with #-a small positive angle. This
means that we find the propagator by the end of the rotation backwards to
the Minkowski space if we replace in Ag the Euclidean energy variable ik,
by ko(1 +10) i. e. :

. ky —> —iko + ko, 0=0,. ; - (139)
This amounts to | '
kE+m ——»-kz—}-kz«}-m — 26 '(140)‘

~ with € = 2k20 a small positive number. This implies that

Ap(zg — yg) — Ar(z - y). (14D

 We conclude that the Euclidean-space formulation yields the contour of

the ko-integration in the usual manner. Feynman’s ie-prescription arises

when we rotate back to Minkowski space. (But without completing the
rotation fpcr = - 5%5) :

Under the inverse rotation the right hand side of Eq.(138) takes the usual
form, and we find again the expression (128) for the generating functional of
the free field Green’s functions.

Thus, we have pointed out a beautiful feature of the path integral formal-
ism of a ‘quantum field theory: once we have made the path-integral formula
of the generating functional well-defined, we obtain the correct causal Green’s
functions from it. ’

LT
A2 e
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5 Feynman rules

The generating functlonal (116) for a real scalar field in the presence of
interaction

AWl _ A / ( D¢)é’ﬂ f c.~(¢(z))d‘w+so[&]+(l,¢)], : (14"2)
ma,y be rewritten using the property |
| B N R - » ‘
1 £(39) £(29) -
| > 6J(x1)e é(z1)e R (143)‘
which tells us that , N ,
o [atsLide) k() = eh J 4 oLiBaity) 4 (09) (144)

The first factor on the right hand side is mdependent of the field, whence we
pull it out from the path integral. This gives '

AW = peh [&=LilafleaWell (145)

with the free-field generating functional, exp(W;[J]), given by Eq.(128).

Nevertheless, it is impossible to obtain an explicit closed formula from
the above expression. It remains to look for a perturbative expansion in
powers of the coupling constant involved by the interaction term, £;. Such
an evaluation gives the ordinary Feynman rules. To see this we first "prove”
a functional identity by verifying it in the finite-dimensional case. Let F(%)
and G(#) be any two c-number functions on a vector space; then

10 10 .
R 7)) = J—— a(d,7)
Fl=52)G(@) = G(5 =) F(d) ¢ _, (146)

with @, 7 some vectors and « an arbitrary complex number. This is most
easily proved by Fourier analysis, that is to say, by taking

F(@)=e@D  and  G(i) = 69

with @ and b fixed vectors. Then the left hand side of Eq.(146) becomes
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while on the :right hand side we have

3

G, w)ea(aﬂ)ea(um! = o(B+a,a+d)
=0

which is the same. :
We conclude, that in a function space holds the identity -

167, 16 |
ro a(Jd) ,
F [a 6.]] GlJ] = G[ 5¢] Flg)e - | =0 "(147)
for any two functionals F' and G.

Let us apply this to our case: [see Eqs (145) and (128), and put a= ﬁ]

Z [J] =il = N exp [ / d‘:z[: e ))} i3S d‘zd‘z'J(z)AF(;—z')J(z') -

$=0
(148)

This equa.tmn ynelds the Feynma.n rules for the vacuum-to-vacuum matrix
element, < 0% | 0~ >,;= Z[J]. To show this we expand the last exponential
as .

o 1 Lo ‘ §- & g , '
= N exp [§ / d‘zfzfiﬁép(z - z’)wm] ek [ slLi( @)+ (=)é(=)]

fd4x[c.(¢<s))+J(s)¢(s)l._ = [ / d'*yz: (qS(y)] > [ / d‘xJ(:v)qS(x)]

- (149) -
and insert this into (148). We are left with the expanslon of the generating
functional in powers of the interaction

ZU T‘“’ N i ;gl';g(%)nfpexé E / dzde'[iRAR(z — z')}%#ﬁ] |

n,p=0

[ o e i (60 - £:(0La)

‘¢($1)7"'ﬂzn)J(Il)";J(xn)lé\?oE Z Z,(n'p)[']] ' (150)



5 FEYNMAN RULES 29

where we have introduced a notation for the various terms a,ppearmg in the
power series.

Let us recall that a,ccordmg to Eq. (66) the n-point Green’s function is
obtained from Z[J] by n times differentiating with respect to the source,J, '
after which J is set to zero. Only terms which contain n J’s survive both Hle
operations. Hence, the n-point Green’s function is generated by the terms
Z"#) p=1,2,.... Aterm with a given p yields the p-th order contributions
in powers of the coupling constant which enters £;. While evaluating Z™?)
one has to keep in mind the fact, that , in the expansion of the exponential in
Eq.(150), only terms which contain an equal number of ¢’s and 564,’3 survive.

Let us next analyze a few simple examples in the case of the ¢* xnteractlon
whith coupling constant g :

z:=y..._¢4 S (151)

The connrlbutwn to the two—pomt Green s functlon, to zeroth order in
the coupling constant stems from :

z9 = %{(%) [% / dzdz’[ihAp(z~z’)]%§(-;—)-s—q—5€-z7)-]
/dx;dx2¢(z1)¢(zz)J(x1)J(:cz)

= '%f (%)2/dz1dsz(x1)[ihAp(xl ““.’Ezv)].](vil’g) (152)

For the sake of bookkeeping we may associate to this term the diagram:

L 4 ®

which consists of:

o external points

~— (1)
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"o a line connecting them

ihAp(21 — 72)

‘The two-point Green’s function to this order (p = 0) is:

2 (2,0) o ' o
G(xl,a:z)—(f-,-) %WL({:]}‘)' ihAF(zl—-z) - (153) |

, We next discuss the casen=0,p=1,ie, ‘the number of ¢’s in Eq (150)
is four Thus

;,Z(o,l)[J] .N'-—~ ( Z-‘- 5 [ /dzdz zhAp(z ’]&; )ﬁg—z—;)»r/dyiqi“(m) =
. Y "*y 1 |

P 4' j dzldzldzzdzzzhAF(zl - zl)zﬁAF(zg ~-z)

/ dy14'5(21 y1)5(21 y1)5(22 y,)é‘(z, 111)"‘

Yo’ ] nlibAr(n ~ )l = M} (—--,;g) [antnaror sy
‘The ;:Or:apondlng diagram is - \

- i

~ which si;ggests that a vertex, (a‘n'intj.'ex"action point), is wsoﬁated to
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The number 1 from Eq ( 154) is called the symmetry fa.ctor of the a)rrespond-
ing graph.

Now we have a.ll the mgredxents of Feynman gra.phs of the theory we are
dealing with: external points, vertex points with four lines coming out of
each (in the case of ¢* interaction), and lines connecting them associated to
th times the Feynman propagator. A line which ends in at least one external -
point is called an external line, whxle a line endmg in vertex pomts only, is
- referred to as an internal line. - ’

Explicit calculations may be synthesxzed in the followmg Feynman rules
for the vacuum-to-vacuum amplitude: :
~ In order to ob’ta.m Z (np) ('n-even)15 '

1. Dra.w all the topologxcally dlstmct dxagrams w1th n externa.l lines (end-
ing in z-points) and p vertices (y-pomts), and sum all the contnbutlons
accordmg to the followmg ' :

2. To each y—vertex atta.ch a factor -—g
3. »'To each external pomt a:, assign hJ(:r:)

4. To each line between two pomts (extemal or vertex), sa.y zl and 2,
' attach ihAp(z1 — 23) . .

5. Multiply the contribution by the symmetry factor, 5 of the gra,ph Its
mverse, S is obta.med by multxplymg the factors below

a) m!if the gra.ph is symmetric with respect to the mtercha.nge of m
-vertices or m external points :

b) m! for m eqmvalent internal lines

<) 2 for ea,ch closed line '

d) m! if the (dxsconnected) dlagram conta.ms m identical connected

dla.gra.ms

6 Integrate over z’s and | y s

15Indeed, the terms with n-odd vanish because the number of £ 748 is always even, and
the number of qS s xs 4p + n~odd ifnis odd
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The Feynman rules for the n-point Green’s functions can be obtained by
comparing the result of the above rules with the functional expansion of the

generating functional, Eq.(65):

00 N B .
1/ S
VARJES ; ~ ('ﬁ) /d:cl cedrgJ(z1) - J(20)G(Z1,.. ., 20)  (155)

In the remainder of this section we present the Feynma.n‘ rules in the
momentum space. To this end we start with the definition of the Fourier

transform of a Green’s function:

Glkry.. o kn) = /d‘xl Y i1 Ak"'”"G(zl, ceiy Tn) (156)

The Feynman rules for G(k,...,k,) are obtained by using the integral
representation (126) of the Feynman propagators involved in G(zy,...,z.).
We denote by p the external momenta, and by k the internal ones.

Let us study a simple example. Take the graph:

20 z4

g » I3 ‘

Its contribution to the four point Green’s function, G(z1, =2, z3, z4), reads

3

-9 / dy(ik)*Ap(z1 — ) Ar(zs — 1) Ar(zs — v)Ap(ze—y)  (157)

Using the momentnm-space integral representation of A, the y-integration
yields a §-function which enforces momentum conservation. The Fourier
transform of expression (157) is given by ‘

. o 4 b :
RN ' th .
= I l e 1
; ( ﬁg)é (Px +p? *Ps +f?“»)\j=1p§ —m? 44 ( ;58)
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The above calculatlon illustrates the way one derives the momentum-space

Feynman rules from the coordinate-space rules. As a result of such com-.

putatios we find, that in order to obtam G(pl, v pn), (n-even), one has

to:

1. Draw all the topologically distinct‘diagra,ms with n external lin.esb :‘Ea,ch*

‘ - line carries a momentum. Denote them by p s for external and by k’s
- for internal lmes : :

2Assxgn the factor R
- pPP-m?tie
. _‘f‘or an external line. SR
| 3. Aséign the factdr S e
(2«)4 k“-—mz-i-ze

‘ for an mtema.l line,

4. For each vertex assign (-*)(21:')454(4) Where q “denokes the sum of the
- incoming momenta. :

5. Multiply the contribution by the symmetry factor of thé diagram. It is
~obtained as described above in the coordinate-space rules.

- 6. Integrate over the internal rnomenta (K’s).

7. Sum the contributions of a,ll the topologlca,lly dxstmct Feynman dia-
' grams. :

Adopting the point of view that a field theory is defined by its Feynman
rules, we conclude, that the path integral method is an elegant way to define
the quantum theory of a self-interacting scalar field.

Scalar electrodynamics requires the quantization of gauge fields, in par-
ticular the electromagnetic field, by similar methods.  While it is just 2.
alternative way to quantize electromagnetism, in the case of non-abelian
gauge fields, the only generally accepted quantization procedure is the path
integral method due to Fadeev and Popov.
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In order to treat quantum electrodynamics, one must include Fermi fields.
This is done by the use of anticommuting (Grassmann) variables. The com-
ponents of the Dirac field will be Grassmann-valued space-time dependent
functions, and the generating functional, a path integral over such variables.
These topics will constltute the subject of a forthcoming volume on path’
integrals. : ,
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