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Abstract 
Analysis of results from REP experiments often involves estimation of the composition 

of a sample of data, based on Monte Carlo sim\llations of the various sources. Data values 
(generally of more than one dimension) are binned, and because the numbers of data 
points in many bins are small, a X2 minimisation is inappropriate, so a maximum likelihood 
technique using Poisson statistics is often used. This note shows how to incorporate the fact 
that the Monte Carlo statistics used are finite and thus subject to statistical fluctuations. 



1. The problem. 
A common problem arises in the analysis of experimental data. There is a sample of 

real data, each member of which consists of a set of values {Zr} - for example, a set of Z 
decay events with inclusive leptons, for each of which there is a value of {pl,p~,T,EviB}' 
or a set of measured particle tracks, each with {p, ~~, CosS}. You know that these arise 
from a number of sources: the lepton events from direct b decays, cascade b decays, c 
decays, and background, the tracks from ?T', K, and p hadrons. You wish to determine the 
proportions Pj of the different sources in the data. 

There is no analytic form available for the distributions of these sources as functions 
of the {Zr}, only samples of data generated by Monte Carlo simulation. You therefore 
have to bin the data, dividing the multidimensional space spanned by the {zr} values into 
n bins. This gives a set of numbers {dh d2 •••dn }, where di is the number of events in the 
real data that fall into bin i. Let li(Ph P2 •••Pm) be the predicted number of events in the 
bin, given by the strengths Pj and the numbers of Monte Carlo events aji from source j 
in bin i. 

m 

Ii = ND LPjaji/Nj (1) 
j=1 

where N D is the total number in the data sample,and Nj the total number in the MC 
sample for source j. 

n n 

N j = Laji (2) 
i=l 

The Pj are then the actual proportions and should sum to unity. It is convenient to 
incorporate these normalisation factors into the strength factors, writing pj N DPj / Nj, 
giving the equivalent form 

m 

Ii = LPjaji (3) 
j=l 

One approach is then to estimate the pj by adjusting them to minimise 

(4) 


This X2 assumes that the distribution for di is Gaussian; it is of course Poisson, but the 
Gaussian is a good approximation to the Poisson at large numbers. 

Unfortunately it often happens that many of the di are small. This is basically a 
consequence of the multidimensionality of the data. If each data point has (say) 4 elements, 
and each axis is split into a fairly modest 10 divisions, that gives 104 bins, and even for 
an apparently large sample of (say) 50,000 events there will be many bins for which di is 
so small that the X2 value as given in Equation 4 is inappropriate. Instead one can go 
back to the original Poisson distribution, and write down the probability for observing a 
particular di as 

f eli 
e-h _i_ (5)

d,.·I 
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and the estimates of the proportions Pj are found by maximising the total likelihood or, for 
convenience, its logarithm (remembering ab = eb In (J, and omitting the constant factorials) 

n 

InC = Ldiln/i - Ii 	 (6) 
i=1 

This accounts correctly for the small numbers of data events in the bins, and is a 
technique in general use. It is often referred to as a "binned maximum likelihood" fit. 

But this does not account for the fact that the Monte Carlo samples used may also 
be of finite size, leading to statistical fluctuations in the aj;. In Equation 1 it can be seen 
that these are damped by a factor ND/Nj, but we cannot hope that this is small. There 
is a general rule of thumb that the MC samples should be ten times larger than the data 
sample, so any effects of finite MC data size are relatively small. Unfortunately many 
MC programs are slow, and the production of enormous samples (and their storage and 
treatment) presents severe practical problems so that this rule cannot be followed. 

So: disagreements between a particular di and Ii arise from incorrect Pj, from fluctu­
ations in di, and from fluctations in the aji. Binned maximum likelihood reckons with the 
first two sources, but not the third. In the :~? formalism of Equation 4 this can be dealt 
with by adjusting the error used in the denominator 

X2 	 - " (di - Ii? (7) 
- L.-, d· + N2 ". a"/N~

i ' D L..,., J J' J 

but this still suffers from the incorrect Gaussian approximation. The problem is to find 
the equivalent treatment for the binned maximum likelihood method. 

2. 	Methodology _ 
The correct way to view the problem is as follows. For each source, in each bin, there 

is some (unknown) expected number of events Aji. The prediction for the number of data 
events in a bin is not Equation 3 but 

m 

Ii = LPjAji 	 (8) 
j=1 

From each Aji the corresponding aji is generated by a distribution which is in fact binomial, 
but can be taken as Poisson if Aji < < Nj (which is indeed the case, as our problem is just 
that a large number of total events gives a small number in each bin.) 

The total likelihood which is to be maximised is now the combined probability of the 
observed {di} and the observed {a;i} and we want to maximise 

n 	 n m 

InC = Ldiln/i - Ii + LLajilnAji - Aji 	 (9) 
i=1 	 ;=1 j=1 

The estimates for the Pj (which we want to know) and the Aji (in which we're not really 
interested) are found by maximising this likelihood. This is the correct methodology to 
incorporate the MC statistics: unfortunately it consists of a maximisation problem in 
m x (n + 1) unknowns. However, the problem can be made much more amenable. 
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3. The Solution 
To find the maximum we differentiate Equation 9 (including Equation 8 for Ii) and 

set the derivatives to zero. This gives two sets of equations, those for the differentials with 
respect to Pj 

t diAji - Aji = 0 Vj (10) 
i=1 Ii 

and those for the differentials with respect to Aji 

1=0 Vi,j (11) 

These m X (n + 1) simultaneous equations are nonlinear and coupled (remembering that 
the Ii that appear in them are functions of the pj and the Aji). However they can be 
remarkably simplified. Equations 11 can be rewritten 

1 Vi,j (12) 

The left hand side depends on i only, so write it as ti. 

(13) 


The right hand side then becomes 

A .. _ aji 
l' - (14)

1 +Pjti 

which is a great simplification: for a given set of Pj, the n x m unknown quantities Aji are 
given by the n unknown quantities ti. 

The ti are given by Equation 13. If di is zero then ti is 1: if not then 

d·-'- -f· (15)1 - ti - , 

If these n equations are satisfied, with Equation 14 used to define the Aji, then all 
the m x n Equations 11 are satisfied. 

Thus the solution to a binned maximum likelihood fit with finite Monte Carlo statistics 
is to find the m variables pj by solving the m Equations 10 iteratively (or, equivalently, 
finding the maxim.um of the likelihood as given by Equation 9 by numerical. means). These 
are the same equations that would be solved in the naive approach, (Equation 6) except 
that the Aji occur in place of the aji. At every stage in this solution procedure, the 
appropriate Aji are found by solving the n Equations 15. 

Although there are n of these equations, to be solved numerically, this does not present 
a problem. They are not coupled: each is separate, i.e., the solution required for each bin 
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depends only on the event numbers in that bin. (This suggests that the problem could 
usefully be vectorised). Each equation clearly has one and only one solution in the 'allowed' 
region for ti, i.e. the region where the Aji are all positive, which lies between t = -l/Pmaz 
and t = 1 (Pmaz being the largest of the pj). t = 0 is a suitable place to start, and 
Newton's method readily gives a solution. Although this has to be done at every step of 
solving Equations 10, such steps usually consist of a set of small changes in the Pj, so only 
one step of Newton's method is generally sufficient for finding the new correct solution of 
Equations 15. 

4. Other points concerning the solution 
Some nice points emerge from the algebra. The Equations 10 can be written more 

simply as 
n

:E tiAji = 0 Vi (16) 
i=1 

Also one can replace';;' by 1 + (Aji - 4ji)/pjAji, from Equation 12, and the equations 
then reduce to 

:E Aji = :E aji Vi (17) 

These are telling us that the estimates of the Aji for some source will change the shape 
of the distribution from that of the Me data aji, but will not change the overall total 
number. 

Equation 11 can be multiplied by Aj; and summed over i to give 

:E di - pjAji + aji - Aj; = 0 
j 

summing over i, and using Equation 17, gives 

:E d i = :E:Epjaj; 
; ; j 

ND = LP;N; (18) 
; 

which nicely returns the normalisation, and makes clear the significance of the Pj. It is 
interesting that such an automatic normalisation does not occur in the X2 minimisation 
technique of Equation 4. If the different pj are allowed to float independently they return 
a set of values for which the fitted number of events is generally less than the actual 
total number, as downward fluctuations have a smaller assigned error and are given higher 
weight. 
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6. Bins with no events from an Me source 

"Nothing will come of nothing. Speak again." 
William Shakespeare: King Lear 

Special considerations apply in a bin if the numbers of events aki generated by one or 
more of the source Monte Carlos are zero. (Note: for clarity, the index k will be used for 
sources for which this is the case. j is used for general sources, and i refers to bins.) For 
any such bin i and source k, Equation 11 gives 

di 1 
1 (19)

Ii Pk 

As this may have to be true for several diHerent Pk, this obviously leads to inconsistency. 
What has happened is seen from the likelihood function of Equation 9, considering 

the contribution from a particular bin as a function of one of the A ji , over its allowed 
range from 0 to 00. For large values, In.c tends to -00 thanks to the -Aji term. If aji is 
non-zero then In.c also tends to -00 as Aji ~ 0, thanks to the aji In Aji term. Given such 
behaviour at the two extremes, there must be a maximum in between, which is a turning 
point. 

But if the aki factor is zero, then .c is finite at Aki = O. The slope may be positive or 
negative: the function may rise to a maximum before falling, or it may be monotonically 
decreasing. In this latter case the maximum.c occurs at Aki = O. This is not a turning 
point, and the Equations 19 do not apply. 

Notice that if Aki is zero in such a case, it is still given by Equation 14. This has no 
significance, but does make the programming simpler as this does not have to be considered 
as a special case. 

If the Monte Carlo numbers in a bin are zero for several k, then (assuming the strengths 
Pk are all diHerent) * Equation 19 can be true for at most one of the k. This shows tha.t 
FOR ANY i AT MOST ONE OF THE Aki CORRESPONDING TO ZERO aki CAN BE NON-ZERO. 

Such a non-zero Aki will be required when di is larger than can be easily accomodated 
by the sources for which the MC numbers are non-zero - this qualitative statement will 
be quantified shortly. Making one Aki non-zero eases the diHerence between di and fi and 
increases the overall likelihood, despite incurring a penalty exp ( - Aki) from the 'result' 
that this expected number in fact gave zero observed MC events in the bin. It is clear that 
if several Aki are available, the most eHective one will be that for which Pk is greatest, as 
that provides the greatest easing of any d i Ji deficit for the smallest exp ( - Aki) Thus the 
previous result becomes more specific: FOR ANY i, IF ANY OF THE Aki CORRESPONDING 

TO ZERO aki ARE NON-ZERO, IT WILL BE THE ONE FOR WHICH Pk IS LARGEST. All others 
must be zero. 

If such a non-zero Aki does exist, then Equations 19 and 13 give 

(20) 

* If two or more Pk are exactly equal then there is an ambiguity as the likelihood depends 
only on the sum A k1i + Ak2 i. In the program we arbitrarily resolve this by making the two 
contributions equal. 
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For the other Aii to be physically sensible (i.e. non-negative) requires, from Equation 14 
Pie > Pi for all i with non-zero aii. The previous condition thus extends: IF alei IS ZERO, 

Alei IS NON ZERO ONLY IF Pie IS THE LARGEST OF ALL THE Pi' 
If this is the case, then Equation 15 becomes 

(21) 


This gives the expression for the value of Alei at which the likelihood is a maximum 

(22) 

This expression may turn out to be negative - in which case it is meaningless, and the 
maximum is again given by Alei = O. (This is always the case if di = 0). 

In summary, special action is needed only if there is a zero in the number of entries 
for the MC source with the largest strength, and then only if Equation 22 is positive. In 
such a case, ti is given by Equation 20 instead of 15. Equation 22 gives Alei, and the other 
Aii are given by Equation 14 as usual. 

o 

Figure 1: Likelihood as a function of Al and A2 for a bin 
with 5 data events and 5 from each Me source 

This is illustrated in Figures 1-3. Figure 1 shows the likelihood contours for a 'typical' 
bin, drawn using Mathematica [1]. There were 5 data events and 5 events from each of 
the 2 Monte Carlo sources, for which source 1, the major source, has strength PI = 0.8 
and source 2, the minor source, has strength P2 = 0.2. Likelihood contours are shown as 
a function of the ideal MC numbers Ali and A2i. The most likely values are, of course, 5 
events each, and the major source is more tightly constrained as it feels the eHect of the 
data measurement more strongly. 
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Figure 2: Likelihood as a function of Al and A2 for a bin with 5 data events, 
5 from Source 1 (which has p=O.8) and 0 from Source 2 (p=O.2) 

In Figure 2 we suppose that the minor source has zero Me events in the bin, the major 
source still has 5, and so has the data. Then the value of A2i for which the likelihood is 
maximum is also zero; the deficit in the prediction is taken up easily by an upward increase 
in the number Ali from the major source. 

L 

Figure 3 shows what happens if the major source has no Me events, whereas the 
data and the minor source have 5. Now the strain on the minor source is too great, and 
the highest likelihood occurs with a non-zero expected value for the major source: Ali is 
non-zero even though ali is zero. This corresponds to Equation 22 being positive. 
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Figure 3: Likelihood as a function of Al and A2 for a bin with 
5 data events, 0 from Source 1 and 5 from Source 2 



6. Weighted Events 
In some problems it is necessary to apply weights to the Monte Carlo data before 

comparing it with the real data. 
An example occurs when events are detected with some efficiency, which differs from 

bin to bin, and the form of which is known exactly. Rather than reject MC events on a 
random basis, it is more effective to include them all, weighted by the appropriate efficiency. 

Another such instance arises if MC data has been generated according to one function, 
but another one is desired. For example, data on {p, ~~ ,0os8} may have been generated 
using some form of the Bethe-Bloch Equation 

dE 
dz = Fo(p,8,mj) 

and with hindsight it is realised that some other form Fl (p, 8, mj) is more correct. This 
can be accomodated by weighting each bin by 

Wji = Fl/Fo 

In such a case the predicted number of events in each bin is modified and Equation 8 
becomes 

m 

Ii = LPjWjiAji (23) 
j=l 

The likelihood function of Equation 9 is unchanged. The differentials of Equation 10 
become 

Vi (24) 


and the differentials with respect to the Aji give the equivalents of Equations 14 and 15. 

.. - ajiA JI - (25)
1 + PjWjiti 

~ - f. - '" PjWjiaji (26)
1 - ti - 1 - ~ 1 +PjWjiti 

J 

The solution of these 4 sets of equations proceeds as before. Notice that, as one would 
expect, if Wji is the same for all i, then this merely amounts to a scaling of the Monte 
Carlo strength Pj. 

An interesting application of this occurs if it is desired to combine two Monte Carlo 
sources in a known ratio: for example, Monte Carlo sources 1 and 2 could represent two 
different decay channels of a particular heavy particle: the ratio of the two decay modes 
is known but the overall number of such decays is not. This can be treated by solving the 
equations 10 subject to the constraint 
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using the method of Lagrangian multipliers, or equivalently by replacing PI and P2 by the 
combined strength PI+2 in the equations, applying a constant weight Ie to events from 
source 1 and (1 - Ie) to those from source 2. 

So far this assumes that the weight is the same for all events from a given source 
in a given bin: the quantity Wji- This may not be the case if either (a) the bin size is 
so large that the weight factor varies significantly within the bin or (b) the weight factor 
depends not only on the variable(s) z used in making the comparison but also on some 
other variable(s) - call it z - which is not binned and used in the comparison; perhaps it 
does not exist in the real data. In either case the weights of different events from the same 
source in the same bin can be different. 

In such a case the Equations 23 - 26 still apply, with W ji equal to the ideal average 
weight for source j in bin i. This may be a known quantity: more likely it has to be 
estimated using the actual weights attached to the Me data values themselves. 

At this point one has to worry whether the discrepancy between the average actual 
weight and the true average weight should be included in the fitting procedure, estimation 
and errors. Now in practice this method of weighting only works satisfactorily if the weights 
do not differ very much. The variance of a sum of weights from Poisson sources is Li w~ 
[2] and thus the proportional error on the bin contents v'Li w~ / Li Wi is greater than 
the 1/Vii obtained from unweighted Poisson statistics, and this effect get worse as the 

2spread of weights, w 2 - w , gets larger. Fluctuations in a small number of events with 
large weights will swamp the information obtained from low weight events. Thus in any 
application the spread in weights for a source in a bin should be small, and this means 
that the resulting uncertainty in its value will also be small. 

Some insight can be gained by noting that in the set of Equations 23- 26 the weights 
Wji always appear together with the Pj_ (Equation 24 can be multiplied by Pj to make 
this explicit). Thus if the weights are all too high by some factor the strengths will be low 
by exactly the same factor. So the error in the Pj estimates resulting from uncertainties 
in the weights is of the same order as that uncertainty, and in any application this should 
be small. 

-9­



7. Implementation details for the new style fit 

7.1 Possible Approaches 

There are two possible methods of finding the desired values of Pj for which In C, is a 
maximum: 

1: Find the point at which the differentials vanish, by solving equations 16. This can 
be done iteratively, using an equation-solving routine such as the NAGLIB routine C05PCF 
[3]. Given a set of starting values for the Pj, the user routine called by C05PCF solves 
Equations 15 for the ti by using Newton's method, as outlined above. It then calculates 
the values of the quantities in equations 16, and the derivatives, including the effects of 
changes in the Pj that arise directly and those that arise through the solutions of Equations 
15. These are then used to find an improved set of Pj, and the procedure iterates until a 
suitable solution is found. 

2: Maximise In C, itself with respect to the Pj, using a package such as MINUIT [4]. 
For each set of values for Pj, equations 15 may be solved for the ti as before; these give the 
Aji and thus In C, may be calculated for this set of Pj, and a maximum found by standard 
techniques. 

Both these approaches have been used successfully by the authors on test problems. 
The second is easier to apply, and is thus the one we provide for gen~ral use, in the belief 
it will be more convenient for potential users who have such an application (and also for 
the reasons given in the next two sections). 

7.2 Fixing the pj 

In many cases one or more of the Pj are known a priori, and they must be assigned 
fixed values. If the solution is found by maximisation this is straightforward. If it is sought 
by solving the Equations 16 it is more complicated, as the user function called by C05PCF 
must be able to take this into account in the calculation of the differentials. 

7.3 Error estimates 

For every fit, an error estimate is almost certain to be required. One possible way 
would be to invert the second derivative matrix of In l, to give the error matrix. U nfortu­
nately this can be very complex and time consuming as In.c is a function of m x (n + 1) 
variables - that is, the Pj and all the A ji • A simpler method is to vary the Pj around the 
region of the solution and map out the variation of Inc', the errors being given by the 
variation in the Pj needed to decrease In C, by an amount depending on the number of free 
Pj and the required confidence level. 

Such an error analysis combines naturally with a solution found by maximising the 
likelihood (type 2 above). 
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8. 	An Example 

The following example illustrates the differences between results obtained using the 4 
different methods: 

1) Simple X2 minimisation (Equation 4). 

2) X2 minimisation adjusted to include the effects of finite MC statistics (Equation 
7). 

3) The simple binned likelihood fit (Equation 6). 

4) The new binned likelihood fit adjusted to include the effects of finite MC statiustics 
(Equation 9). 

The set of values considered was two dimensional, thus each measurement gave two 
values, Zl and Z2' The space considered was defined by the square 0 ~ Zl ~ 1; 0 ~ Z2 ~ 1. 

Two Monte Carlo sources were considered. Events from the first source were produced 
with a distribution given by rising with Zl and Z2' 

The distribution of the second source was one rising with Zl and falling with Z2. 

For each fit, 1000 'data' events were generated in the ratio 1:2, i.e. PI = 0.3333,P2 = 
0.6667. The data were binned in the 2 dimensions. The results of the 4 different fitting 
procedures for varying numbers of MC events per source, and varying numbers of bins per 
dimension were found. 500 attempts (using 500 sets of data and Monte Carlo data) were 
made for each of the cases summarised in the table. 

For the X2 fits, the sum of the fractions was constrained to be 1. (If the two fractions 
are both free the results sum to less than 1, as discussed earlier). For the maximum 
likelihood fits this constraint was not applied, but it emerges automatically in the results. 

Number of Me Number of bins Total number Average entries 
events per per dimension of bins per MC source 

source per bin 

A 10000 5 25 400 
B 1000 5 25 40 
C 1000 10 100 10 
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Simple X2 

Mean .3321 
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Mean .3313 

RMS .5328E-01 


Adjusted likelihood 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Result for P, (example A) 

Figure 4: Results for example A: 1000 data events 

and 10000 events for each type of Monte Carlo 


in 25 bins 


Figure 4 shows the PI results for example A. All four methods give much the same 
performance, as would be expected since the number of MC events in each bin is satisfac­
torily large, as is the number of data events. No method shows a bias: the error on the 
mean for each of the 4 distributions is given by the RMS deviation divided by v'500, and 
is thus of order 0.002 - 0.003. The mean results agree with the ideal 0.333 within such an 
error in all 4 cases. . 

The effect of the Monte Carlo statistics on the (RMS) width of the distribution can 
be seen to be negligible. 
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Mean .3296 
RMS .6784E-01 

Adjusted likelihood 
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Result for Pl (example 8) 

Figure 5: Results for example B: 1000 data events 
and 1000 events for each type of Monte Carlo in 25 bins 

Figure 5 shows the results from example B, where the Monte Carlo statistics are 
reduced to the level of the data statistics. 

The expected error on the position of the mean is of order 0.06/v'500 ~ 0.003. It can 
be seen that the 4 mean values (from 0.329 to 0.350) are thus significantly different, and 
that the simple X2 and simple likelihood are meaningfully different from the ideal value of 
0.3333, and are thus biassed. 

The width of the result distributions is larger for the adjusted X2 and In £ methods 
than for the simple methods. This is faithfully represented by the error estimates given by 
the fits. So it is important to include the effect of MC statistics in such cases in order to 
get a valid error estimate. (This will be discussed further in the next example when the 
trend is clearer). 
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Result for Pl (example C) 


Figure 6: Results for example C: 1000 data events 

and 1000 events for each type of Monte Carlo 


in 100 bins 


Finally Figure 6 shows the results of each method when the number of MC and data 
events per bin is reduced to 10 (on average). The difference in the results is now plain: all 
methods show a bias in the result except for the new In £, method. 

The widths of the distributions (and hence the errors on the results) are also different. 
Although the results of the simple likelihood fit have a narrower distribution than the new 
adjusted likelihood, as is evidenced by the smaller rms deviation, this does not mean the· 
method has a smaller error! The deviation about the observed mean 0.39 is smaller, but 
the deviation about the true mean of 0.33 is not! It might be thought that one could 
overcome this by using the results of the simple likelihood and then compensating for the 
bias of +0.06 by subtracting it. Unfortunately this bias figure can only be found by Monte 
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