$\angle B L-C C-2-1 A$
 sluMg/trile No. CC 2-1A (1)
 W. Kerns; F. Kirsten;
 C. Winningstad
 Rev. February 12, 1964
 F. Kirsten

Lawrence Radiation Laboratory, University of California, Berkeley
COUNTING NOTE

PULSE RESPONSE OF COAXIAL CABLES

I. ABSTRACT

For most cables useful in counting work, attenuation below approximately 1000 mc is due mainly to skin-effect losses and varies as the square root of frequency. For such cables the step-function response has a rise time that varies as the square of the attenuation at a given frequency. Curves are given to aid in the selection of cables for transmitting nanosecond pulses.

II. STEP FUNCTION RESPONSE

Mathematically ideal, lossless coaxial cables can be shown to transmit electrical pulses in the TEM mode without attenuation or distortion. However, all physically realizable cables have losses, the magnitude of which changes with frequency. Pulses transmitted through such cables suffer both attenuation and distortion. By means of the Laplace transform, the nature of the distortion can be calculated if the attenuation and phase-shift are known at all frequencies. In most of the cables presently useful in counting work, skin effect losses in the conductors are the predominate losses below about 1000 mc . Skin-effect losses produce an attenuation whose magnitude in decibels varies as the square-root of frequency. This results in a step function response of:

$$
E_{\text {out }}=E_{\text {in }}\left(1-\operatorname{erf} \frac{b \ell}{\sqrt{2(t-T)}}\right)
$$

where

$$
\begin{aligned}
E_{\text {out }}= & \text { voltage at distance } \ell \text { from input end of semi-infinitely long } \\
& \text { uniform cable, (l) at time } t \text { (seconds). } \\
E_{i n}= & \text { amplitude of step of voltage applied to input of cable at } \\
& \text { time } t=0 . \\
X= & \text { distance from input end in feet. } \\
\mathrm{b}= & \text { constant for the particular cable in question. } \\
= & 1.45 \times 10^{-8} \mathrm{~A}-\mathrm{feet}^{-1} \sec ^{\frac{1}{2}} \\
\mathrm{~A}= & \text { attenuation of cable at } 1000 \mathrm{mc}-\mathrm{db} / 100 \text { feet (attenuation } \\
& \text { figures for coaxial cables are commonly quoted in these units). } \\
\text { emf }= & \text { error function }(2) \\
T= & \text { transit time of cable defined as the value of } t \text { at which the } \\
& \text { voltage at first begins to change (considering only the step } \\
& \text { function occurring at } t=0, \text { of course). }
\end{aligned}
$$

(1) With negligible error in most cases E out can be taken as the response at the receiving end of a cable of length l, outerminated in a resistor equal to its characteristic impedance.
(2)

As defined in Reference 1 , p 256.

Fig. 1 may clarify the nomenclature involved in this relation.

Fig. l - This illustrates the space relation between $\mathrm{E}_{\text {in }}$ and $\mathrm{E}_{\text {out }}$.

A normalized curve of $E_{\text {out }} / E_{\text {in }}$ is shown in Fig. 2. The abscissa is plotted in units of T_{0}, the $0-50 \%$ rise time. In other words, T_{0} is the value of $(t-\sigma)$ at which $E_{o u t} / E_{\text {in }}=1 / 2$. For cables whose attenuation varies as the one-half power of frequency, it is convenient to calculate T_{0} as:

$$
T_{0}=4.56 \times 10^{-16} A^{2} \cdot \dot{X}^{2} \text { seconds }\left(=\left[\frac{b X}{0.6745}\right]^{2}\right) .
$$

It is evident that T_{o} varies directly as the square of the total attenuation of the length of cables. Cables of different sizes or types may therefore be compared for rise time in terms of A, their attenuation at 1000 mc . Figures of A for most commercially available cables are given in CC 2-2.

In cases where: a) the attenuation is known only at a frequency other than 1000 mc ; or b) the frequency dependence of attenuation departs somewhat from the $1 / 2$ power law (say, where $a=$ constant $\cdot f^{n}$, in the region $0.4<n<0.7) \mathrm{T}_{0}$ may be calculated:

$$
T_{0}=\frac{4.56 \times 10^{-7} \mathrm{a}_{\mathrm{f}}^{2} \dot{x}^{2}}{\mathrm{f}}
$$

where

$$
\begin{aligned}
& \alpha_{f}=\text { attenuation of cable at frequency } f-d b / 100 \text { feet. } \\
& f=\text { frequency }- \text { cycles. }
\end{aligned}
$$

In case a) the nomogram of Sec. VII CC $2-2$ may be useful. In case b), it has been empirically determined that reasonably accurate results are obtained where f is the frequency at which the total attenuation (i.e., $a_{f} l / 100$) of the cable is 6 decibels. Substituting $a_{f} . l / 100=6 \mathrm{db}$ into the above gives the useful relation

$$
T_{0} \cong 1 / 6 f_{6}
$$

where
$f_{6}=$ frequency at which the total attenuation of the length of cable in question is 6 db .

The times to reach other precentages of the input step amplitude are given in Table I.

TABLE I
RISE TIME CONVERSION FACTORS

X	$\frac{0 \text { to } \mathrm{X} \% \text { rise time }}{\mathrm{T}_{0}}$
10	
20	0.17
50	0.28
70	1.0
80	3.1
90	7.3
95	29.
110.	
The 10 to 90% rise time is thus $(29-0.17) \mathrm{T}_{0}=28.83 \mathrm{~T} \mathrm{~T}_{0}$	

III. IMPULSE RESPONSE

The response to an impulse (delta function), of a cable having decibel attenuation proportional to the square-root of frequency, may be obtained by differentiating $E_{\text {out }}$ above. As with the step-function response, the impulse response can be represented by a universal curve, that of Fig. 3. The area under this curve (coulombs) is conserved as the pulse travels along the cable. Thus, the peak amplitude of the response varies as

$$
\frac{1}{\mathrm{~b}^{2} x^{2}} a \frac{1}{\mathrm{a}^{2} e^{2}}
$$

and the time between, for example, the half-amplitude points, varies as $b^{2} x^{2}$. The peak amplitude occurs at $0.152 \mathrm{~T}_{0}$.
IV. RESPONSE TO OTHER PULSE SHAPES

It will be noted that, since the rise time T_{0} is proportional to l^{2}, if two equal lengths of a given type of cable are cascaded, the rise time of the combination is four times the rise time of either length alone. This is in contrast to the well-known case of amplifiers of "Gaussian" frequency response, in which the rise time varies as the square root of the number of identical sections. For this reason, and also because the characteristic step-or impulse-function responses of cables and of "Gaussian" amplifiers are so different, the rule-of-thumb that the over-all rise time $=\sqrt{\text { sum of squares of individual rise times is not applicable }}$ either with cables alone, or where cables are combined with Gaussian elements, Instead, the overall response of a system with cables and other elements may be obtained graphically or with the standard convolution integrals (3) using either the step-or impulse-function response of the cables.

V. RECTANGULAR PULSE RESPONSE, CLIPPING LINES

The response of a cable to a rectangular pulse of a duration T can be found by a simple application of superposition. The rectangular pulse is considered to consist of a positive step-function at $t=0$, followed by a negative step-function at $t=T$. The amplitude reduction of such a pulse as a function of the distance it has traveled along the selected coaxial cables is shown in Fig.s 5, 6 and 7. Fig. 5 includes a curve showing the time-stretching of the output pulse with respect to the input pulse. By suitably changing the length scale in the way indicated on the figure, the two curves of Fig. 5 can be applied to any pulse duration and any cable for which attenuation varies as the square root of frequency. The amount of time-stretching of any output pulse can therefore be determined from Fig. 5 by knowing the value $E_{\text {out }} / E_{i n}$ for the pulse, where $E_{\text {out }}$ is the peak amplitude of the output pulse, and $E_{i n}$ is the amplitude of the input pulse.

The relative merits of various coaxial cables as conductors of pulses from multiplier phototubes or other current generators can be estimated from the curves of Fig. 6 which are replotted from Fig. 5. Use Fig. 6a for pulses of $T=10^{-8}$ second; $6 b$ for $T=10^{-9} ; 6 \mathrm{c}$ for $T=10^{-10}$. Note that the input is a rectangular current pulse of 1 ampere amplitude. At the input end of the cable, therefore, the voltage amplitude of the rectangular pulse is Z_{0} volts, where Z_{0} is the characteristic impedance of the line. The curves show, for example, that for an input current pulse of $T=10^{-9}$ second, the peak voltage of the output pulse at the end of a 75 foot run of RG 114 would be the same as that at the output end of a 75 foot run of RG 63, even though the voltage developed at the input end of the RG 114 would be 185/125 times the voltage at the input of the RG63.
(3)

Reference 1, pp 112-120

In Fig. 7 are shown some specific output pulse shapes together with the lengths of commonly used cables that give the corresponding output pulse shape for an input pulse of $T=10-9$ second. These pulse shapes were determined from Fig. 2 in the way mentioned above.

The curves of Fig.s 5, 6 and 7 also apply ${ }^{(4)}$ to clipping lines if the input is a step-function and $T=2$ times the electrical length of the clipping line. This is true whether the clipping line is located at the input or output end of the transmission line. The minimum $0-100 \%$ risetime of a clipped pulse is $0.15 \mathrm{~T}_{0}$. Clipping lines of electrical length less than $0.075 \mathrm{~T}_{0}$ will not decrease the rise-time, but will only decrease the amplitude of the output pulse.

The curves and data are intended to present the properties of the coaxial cables, and therefore do not include the effect of quantities that depend on the way in which the cables are used. Examples of such quantities are the rise-time of multiplier phototube output pulses and imperfect cable terminations. The curves and data also do not take into account the inevitable small variations of characteristic impedance along the line. These impedance variations will generally degrade the risetime of the output pulse by reflecting portions of the faster rising parts of the pulse being transmitted.

VI. EXPERIMENTAL VERIFICATION

Photographs of the responses of several cable types to step-function inputs are shown in Fig. 8. These photographs were all taken from displays on a DuMont Kl056 cathode ray tube connected as shown in the block diagram of Fig. 8. Fig. 8a shows the step from the pulse generator delayed only by 25 nanoseconds of cable inserted at A-A in Fig. 9. The rise time of the pulse generator-oscilloscope combination is about 0.45 nanosecond, and therefore obscures the shape of the leading edge of the waveform of some of the better cables. The typical l-erf shape is plainly seen in Fig. 8f, for RG 63.
(4) Provided the clipping line is short enough that its attenuation may be neglected.

REFERENCES

1. S. Goldman, Transformation Calculus and Electrical Transients, (Prentice-Hall Publishing Co., New York, 1945)
2. P. Behrend, "Theory of Pulse Technique for Coaxial Cables", 2. Angew, physik 5, 61 (Feb. 1953)
3. Wingington and Nahman, "Transient Analysis of Coaxial Cables Considering Skin Effect", Proc. IRE 45, 166-174 (Feb. 1957)
4. Ramo and Whinnery, Fields and Waves in Modern Radio, (John Wiley and Sons, New York, 1953, Second Edition)

FK:mt

Fig. 2
Step-function response of transmission lines for which decibel attenuation varies as the square root of frequency. .The time T_{0} is defined as the interval measured from the start of the output pulse to the point at which $E_{\text {out }}=0.5 \mathrm{E}_{\text {in }}$. T_{0} depends on the transmission line parameters; the relation for coaxial structures with negligible dielectric loss is given in the figure. In Fig. 4, T_{0} is plotted as a function of cable type and length.

Fig. 3
Delta-function response of transmission lines for which attenuation varies as the square-root of frequency. As given in the text, A is the attenuation in $\mathrm{db} / 100$ feet at $1000 \mathrm{mc}, \hat{x}$ is the cable length in feet, and D is the volt-second product of the input delta function. This curve is the time derivative of the curve of Fig. 2.

Fig. 4
Calculated variation of T_{0} with cable length for typical coaxial cables. To obtain the values of T_{o}^{o} for other cable types see CC 2-2B.

Fig. 5
The time-stretching and amplitude-reduction of an originally rectangular pulse plotted as a function of A , the attenuation of the cable at 1000 mc in $\mathrm{db} / 100 \mathrm{ft} . ; \mathrm{l}$, the length in feet; and T , the duration of the input pulse in seconds. Attenuation figures may be obtained from CC 2-2B. As an example, for RG63, A is $7 \mathrm{db} / 100 \mathrm{ft}$. Thus if T were $10^{-9} \mathrm{sec}$, and l were 100 feet, the chart should be entered at an abscissa of 700.

Fig. 6(a)

Fig. 6(b)

Fig. 6(c)
Peak amplitude of the output voltage pulse from some typical coaxial cables as a function of cable length. The assumed inputs are rectangular current pulses of 1 ampere amplitude and durations of 10^{-8}, 10^{-9} and 10^{-10} seconds. These curves are all replotted from Fig. 5 with suitable scale changes.

INPUT PULSE

(a)

(b)

(c)

(d)

(e)

For $T=10^{-9}$ sec., the output pulse will have the shape and amplitude shown for the following cable lengths.

CABLE TYPE	(a)	(b)	(c)	(d)	(e)
RG174	23	41	67	90	110
RG58	30	56	93	136	156
RG8	77	145	240	450	400
RG63	95	180	290	500	
2"Styrofoam	1200	9300	2700	400	6400
C3T	90	70	110	470	470
RG114	37	70		170	200

Fig. 7

The above waveforms show the deterioration of an originally rectangular pulse as it travels along a transmission line for which the decibel attenuation varies as the square root of frequency. For comparison purposes, the input pulse is also show with each output waveform. The figures listed above give the cable lengths that will cause the distortion shown when $T=10^{-9}$ second. To find the cable lengths for which the output pulse will have the same form relative to the input pulse for other input pulse durations, multiply the above lengths by $\sqrt{\mathrm{T}}$, where T is the input pulse duration in millimicroseconds.

a. Input pulse.

b. $109: Z_{0}=51 ; d=300$ mus. (fG 8 gives same response.)

$\therefore 1.19: L_{0}=52 ; d=300$ mus.

i. \quad anc: $z_{0}=52 ; d=326$ mus.

e. Styroflex: $Z_{0}=50 ; d=31 \%$ inus.

f. RG 63: $Z_{0}=125 ; d=300$ mus. (21-34.2 and 21-406 give same response.)

h. C3T: $z_{0}=197 ; d=300$ mus.

F1., 8. photorraphs of the leading parts of pulses berore and after tranomission throuct soo coaxial transmission lines used in counting work. all photographs talal with mont Kl056 cathode-ray tube, a) Pulse applied to input end of transmistan lims. b-h) Pulse aprearing at output end of transmission line; d a electweal kuth in millimicroscconds. Frequency of timing wave is 1000 mc . Trace e) ro, lowe fron Fig, to to about same time scale as other traces of this series. Ma, an uniru tilt is caused by cathoderay tube distortion. An estimate of U: wow of this distortion con be mace by referring to the three traces in a), ande the lower trice is a zero reference.

Fig. 9. Block diagram of equipment used to take the cable response photographs of Figure 8. The cable to be tested is placed between points $A-A$. A time delay of about 25 mus. less than that of $A-A$ is placed between $B-B$.

Fig. 10 Attenuation vs frequency." EOtn RGO anc 19 nave soilia polyethylene dielectrics, and their attenuation cures are asymptotic to cu:ve at higher frequencies. RG63 has a semi-solid pol:etaylene dieleitric, and Styrofoam uses

Lawrence Radiation Laboratory, University of California, Berkeley

 COUNTING NOTE
PHYSICAL CHARACTERISTICS OF COAXIAL CABLES

Listings of some of the physical properties of certain commercially available coaxial cables and delay lines are given. The cables listed are those considered to be most probably applicable to counting work. Most of the numbers are taken from manulacturer's literature.

Following the cable listings is a section in which other properties and characteristics of dielectrics and coaxial transmission lines are given.

TABLE OF CONTENTS

I. Cable types most of ten used for counting purposes.
Brief specifications included 2
II. Cable types of possible use for counting purposes.
A. Listed by KG numbers 7
B. Miniature types, (o.d. less than 0.191 inches) 10
C. Rigid and Semi-Rigid types 11
D. Delay cables 12
III. Properties of dielectrics used in coaxial cables 13
IV. Temperature coefficient of length of certain cables 14
V. Noise characteristics of cables 14
VI. Chart for converting attenuation data to risetime 15
VII. Nomograph for computing coaxial transmission-line impedance 16
VIII. Transmission line formulas 17

I SPECIFICATIONS OF COAXIAL CABLES MOST OFTEN USED FOR COUNTING PURPOSES.

Numerical values are derived from manufacturers literature. In cases where different manufacturers give different numbers either an average value is given or else the range of values is indicated.

RG-8	52	29.5	0.659	0.415	0.285	C	0.085	STR
RG-9	$50-51$	30	0.659	0.430	0.280	SC-C	0.086	STR
RG-19A	52	29.5	0.659	1.135	0.910	C	0.250	SOL

RG-55B	53.5	~ 30	0.659	0.206	0.116	TC-TC	0.032	SOL
RG-58 \& 58 B	53.5	28.5	0.659	0.200	0.116	TC	0.032	SOL
RG-58A\& 58 C	50	~ 29.5	0.659	0.199	0.116	TC	~ 0.036	STR

| RG-62\&62A | 93 | 13.5 | 0.84 | 0.249 | 0.146 | C | ~ 0.030 | CW |
| :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RG-63 \& 63B | 125 | 10 | 0.84 | 0.415 | 0.285 | C | ~ 0.030 | CW |
| RG-114A | 185 | 6.5 | 0.84 | 0.405 | 0.285 | C | 0.007 | SOL |
| | | | | | | | | |
| RG-174 | 50 | ~ 30 | 0.659 | 0.105 | 0.060 | TC | 0.019 | STR |
| RG-188 | 50 | 29.5 | 0.659 | 0.110 | 0.060 | SC | 0.018 | STR |
| RG-196 | 50 | 28.5 | 0.659 | 0.084 | 0.034 | SC | 0.010 | STR |

C3T	197	5.4	0.95	0.64	0.472	C	0.015	STR
$21-406$	125	10	0.84	0.530	0.285	TC-C	0.030	SOL
6244	125	9.3	0.84	0.140		C	0.012	SOL

Foam Heliax

Styrofoam
$11 / 2 " \quad 125$
$2 "$
125
8.2^{e}
$0.99 \sim 1.60$
~ 1.54
Foil
0.188

TUB
8.2^{e}
$0.99 \sim 2.10$
$\sim 2: 05$
Foil
0.250

TUB

I (continued)

Cable type no.	$\begin{aligned} & \text { Diel. } \\ & \text { Mtr } \end{aligned}$	$\begin{gathered} \mathrm{K}_{\mathrm{eff}} \\ \mathrm{f} . \end{gathered}$	Attenua 100 Mc $\mathrm{d} \mathrm{b} / 100$	$\begin{aligned} & \text { ation } \\ & 1000 \mathrm{Mc} \\ & 10 \mathrm{ft} . \end{aligned}$	Rise-time To ns.	Remarks
RG-8	P	$2.3{ }^{\text {e }}$	2.1	8.0-9.0	. $29-.37$	
RC-9	P	$2.3{ }^{\text {e }}$	2.0-2.3	7.3-9.0	. $24-.37$	Double shielded 8/J
RG-19A	P	$2.3{ }^{\text {e }}$	0.69	3.6	. 59	Limited flexibility
RG-55B	P	$2.3{ }^{\text {e }}$	4.8	~ 16.9	$1.27-1.32$	Double Shielded.
RG-58 \& 58B	P	$2.3{ }^{\text {e }}$	4.6-5.4	17.8-20	$1.5-1.8$	
RG-58AH 58C	P	$2.3{ }^{\text {e }}$	5.4-6.2	20-24	$1.8-2.6$	
RG-62 \& 62A	SSP	$1.42{ }^{\text {e }}$	2.7	8.7-9.0	$.35-.37$	
RG-63 \& 63B	SSP	$1.42{ }^{\text {e }}$	2.0	6.5	. 19	
RG-114A	SSP	$1.35{ }^{\text {e }}$	2.9		. 39	Amphenol
RG-174	P	$2.3{ }^{\text {e }}$	9.0	30.0	4.1	
RG-188	T	$2.3{ }^{\text {e }}$	11.4	31.0	4.4	Amphenol
RG-196	T	$2.3{ }^{\text {e }}$	13.8	46.0	9.6	Amphenol \& Microdot
C3T	PSB	$1.1{ }^{\text {e }}$	1.9	7.6^{k}	. 44	Transradio
21-406	SSP	~ 1.5	1.99	6.4		```UCRL Specs (529611) similar to 63/U Triaxial.```
6244	SSP	~ 1.4	$4.7{ }^{\text {e }}$	$15^{\text {e }}$	1.0	ITT Surprenant
Foam Heliax						
1/2"		1.6	0.81	3.33	0.051	Andrews. Min Rad 5"
7/8'		1.6	0.47	2.00	0.018	Andrews. Min Rad $10^{\prime \prime}$
Spir-o-Line	PT	1.25	~ 0.6	$1.4{ }^{\text {e }}$. 0093	Prodelin
Styrofoam						
$11 / 2 "$	STY	. ~ 1.03	0.25	0.8	. 0016	See (UCRL-3579)
$2^{\prime \prime}$	STY	~ 1.03	0.2	0.6	. 0029	See (UCRL-3579)

DIELECTRIC MATERIAL COLING
FP-----Polyethylene foam
P------Polyethylene
PC-----Polyvinyl chloride
PS-----Polystyrene
PSB----Polystyrene beads
PT-----Polyethylene tubes
SP-----Polyethylene spiral
SSP----Semi-solid polyethylene
ST-----Teflon Spiral
STY----Styrofoam
T------Teflon
TPS----Polystyrene tape
TT-----Teflon tape

INNER AND OUTER CONDUCTOR CUDING
Al-----Aluminum
AS-----Solid aluminum
C------Copper
CSC----Corrugated solid copper
Cu-----Copper
CW-----Copper weld
Foil---Thin Cu foil wrapped \& overlapped
SC-----Eilvered copper
SOL----Solid
STR----Stranded
TC-----Tinned copper
TUB----Copper tubing

MANUFACTURERS CODI NG
Amp----Amphenol-Borg Electronics Corp.
An-----Andrew Corp.
C------Chester Cable Corp.
ITTR---Inter.Tele. \& Tele. Royal.
ITTS---Inter.Tele. \& Tele. Surprenant.
M-----Microdot Inc.
Prod---Prodelin
TR-----Transradio Ltd.

NOTE CODING
e-------Calculated.
f------Effective dielectric constant, $1 / \beta^{2}$.
h-------Measured at 400 Mc .
j-------Measured in micromicrofarad per foot. k------Measured at 600 Mc .

Note \#1. Without jacket o.d. $=0.540$
With jacket o.d. $=0.660$
Note \#2. Without jacket o.d. $=0.980$
With jacket o.d. $=1.100$

RG 8
52 OHMS

i.. 1. A photocraph of some flexible coaxial cables commonly used for cousting applications.

STYROFLEX
 50 OHMS

Fig. 2. Photographs showing the construction of some rigid and semirigid coaxial transmission lines.

II-A. Cable types of possible use for counting purposes.
ARRANGED BY RG NUMBERS

Cable Type Number	Zo	Diel. Mtr'l.	O.D. of Outer Jacket	Atten. (1) 1000 Mc $\mathrm{db} / 100^{\prime}$	$\begin{aligned} & \text { Cap. } \\ & \text { per foot } \\ & \text { j. } \end{aligned}$	Remarks
RG-5B/U	50	P	0.328	9.1	29.5	Replaced by $212 / \mathrm{U}$
6A	75	P	0.332	11.3	20	
8	52	P	0.405	8.0	29.5	
8A	52	P	0.405	8.0	30.5	Replaced by $213 / \mathrm{J}$
9	50	P	0.420	7.3	30	
9A	50	P	0.420	9.0	30	
9 B	50	P	0.420	9.0	30.5	Replaced by $214 / \mathrm{U}$
10A	52	P	0.475	8.0	30.5	Replaced by 215/J
11	75	P	0.405	7.8	20.5	
11A	75	P	0.405	7.8	20.5	
12A	75	P	0.475	7.8	20.5	11A/U with armor.
13	74	P	0.425	7.8	20.5	
13A	74	P	0.420	7.8	20.5	Replaced by 216/U
14 A	52	P	0.545	5.5	30.0	Replaced by 217/U
17	52	P	0.870	4.4	29.5	
17A	52	P	0.870	4.4	29.5	Replaced by $218 / \mathrm{U}$
18A	52	P	0.945	4.4	29.5	Replaced by $219 / \mathrm{J}$
19A	52	P	1.120	3.6	29.5	Replaced by 220/U
20A	52	P	1.195	3.6	29.5	Replaced by 221/U
21A	53	P	0.332	43.0	30	
22	95	P	0.405	8.7-h	16	
22 B	95	P	0.420	12.0	16	
348	75	P	0.630	5.85	21.5	
35B	75	P	0.945	3.5	21	Armored.
55B	53.5	P	0.206	16.7	28.5	
57A	95	P	0.625	6.0-h	16	
58	53.5	P	0.195	17.8	28.5	
58A	50	P	0.195	24.0	29.5	
58 C	50	P	0.195	24.0	29.5	
59	73	P	0.242	12.0	21	.

DIELECTRIC MATERIAL CODING

```
FP-----Polyethylene foam.
P-_----Polyethylene
PC-----Polyvinyl Chloride
SSP-_--Semi-solid Polyethylene
SST----Semi-solid teflon
T------Teflon
TT-----Teflon tape
```

II-A. (Continued)

Cable type Number	Zo	Diel. Mtrl.	O.D. of Outer Jacket	Atten. © 1000 Mc $\mathrm{db} / 100^{\prime}$	Cap. per foot j.	Remarks
RG-59B/U.	75	P	0.242	12	20.5	
62	93	SSP	0.242	8.7	13.5	
62A	93	SSP	0.242	8.7	13.5	
62B	93	SSP	0.242	7.3-h	13.5	
63	125	SSP	0.405	6.4	10	
63B	125	SSP	0.405	6.4	10	
71 A	93	SSP	0.245	8.7	13.5	
718	93	SSP	0.245	8.7	13.5	
74 A	52	P	0.615	5.5	29.5	Replaced by $224 / \mathrm{U}$
79 B	125	SSP	0.475	6.4	10	63/U with Armor.
87A	50	T	0.425	7.6	29.5	Replaced by 225/U
108A	78	P	0.235	16.8-h	23.5	
111 A	95	P	0.490	12 *	16	22B/U with Armor.
114	185	SSP	0.405	5.4*	6.5	*at 200 Mc .
114A	185	SSP	0.405	5.4	6.5	*at 200 Mc .
115	50	TT	0.375	7.3	29.5	
115A	50	TT	0.415	7.3	29.5	
116	50	T	0.475	7.6	29.5	Replaced by 227/心
117	50	T	0.730	3.6	29	Replaced by $211 / \mathrm{U}$
119	50	T	0.730	3.6	29	
122	50	P	0.160	29	29.5	
140	75	T	0.233	12.8	21	
141	50	T	0.190	13.8	28.5	
141A	50	T	0.190	13.8	28.5	
142	50	T	0.206	13.8	28.5	
142A	50	T	0.206	13.8	28.5	
143	50	T	0.325	9.6	28.5	
143A	50	T	0.325	9.6	28.5	
144	75	T	0.410	6.9	20.5	
149	75	P	0.405	8.5-h	20.5	Low loss 11/U
164	75	P	0.870	3.5	21.	$35 \mathrm{~B} / \mathrm{U}$ less Armor.
178A	50	T	0.075	46 24	28.5	
149A	75	T	0.105	24	19.5	

DIELECTRIC MATERIAL CODING
FP-----Polyethylene foam
P------Polye thylene
PC-----Polyvinyl Chloride
SSP----Semi-solid Polyethylene
SST----Semi-solid teflon
T------Teflon
TT-----Teflon tape

NOTE CODING

e------Calculated.
 h------Measured at 400 Mc .
 j------Micromicrofarads per foot
 k------Measured at 600 Mc .

II-2. (Continued)

Cable type Number	Zo	Diel. Mtrll.	O.D. of Outer Jacket	$\begin{aligned} & \text { Atten. }{ }^{3} \\ & 1000 \mathrm{Mc} \\ & \mathrm{db} / 100 \mathrm{l} \end{aligned}$	$\begin{gathered} \text { Cap. } \\ \text { per foot } \\ \text { j. } \end{gathered}$	Remarks
RG-180	93	T	0.141	17	15	
180A	95	T	0.145	17	15	
187	75	T	0.110	24	19.5	
188	50	T	0.110	31	29	
195	95	T	0.155	17	15	
196	50	'	0.080	46	28.5	
209	50	SST	0.750	2.5-h	26.5	
210	95	SST	0.242	7.0-h	13.5	Formerly 62C/U
211	50	T	0.730	3.6	29	Formerly ll7/U
212	50	P	0.332	9.1	29.5	Formerly 5B/U
213	50	P	0.405	8.0	29.5	Formerly 8A/U
214	50	P	0.425	9.0	29.5	Formerly 9B/U
215	50	P	0.475	8.0	29.5	Formerly 10A/U
216	75	P	0.425	7.8	20.5	Formerly 13A/U
217	50	P	0.545	5.5	29.5	Formerly 14A/U
218	50	P	0.870	4.4	29.5	Formerly 17A/U
219	50	P	0.945	4.4	29.5	Formerly 18A/U
220	50	P	1.120	3.6	29.5	Formerly 19A/U
221	50	P	1.195	3.6	29.5	Formerly 20A/U
222	50	P	0.332	43.0	29	Formerly $21 \mathrm{~A} / \mathrm{U}$
223	50	P	0.216	16.7	29.5	Formerly 55A/U
225	50	T	0.430	7.6	29.5	Formerly 87A/U
226	50	TT	0.500	3.5-h	29.5	Formerly 94A/
227	50	T	0.490	7.6	29.5	Formerly 116/U
K-113 $60-3905$	35 30	FP	0.195	12-h	$\begin{aligned} & 39 \\ & 65 \end{aligned}$	
60-3905	30	PC	0.045		65	

```
DIALECTRIC MATERIAL CODING
FP-----Polyethylene foam
P------Polye thylene
PC-----Polyvinyl Chloride
SSF----Semi-solid Polyethylene
SST----Semi-solid teflon
T------Teflon
TT-----Teflon tape
```

NOTE CODING
e-----Calculated.
h-----Measured at 400 Mc .
j------Micromicrofarads per foot

File No. CC 2-2B (10)
II-B. Cable types of possible use for counting purposes.
MINIATURE TYPES
(Those with o.d. less than or equal to 0.190 inches.)

CABLE TYPE NUMBER	MFR.	Zo	Diel. Mtrl.	O.D. of Outer Jacket	Atten. is 1000 Mc db/100 '	Cap. per foot j.	REMARKS
RG-122/U		50	P	0.160	29	29.5	
RG-141/U		50	T	0.190	14	28.5	
RG-141A/U		50	T	0.190	14	28.5	
RG-174/U		50	P	0.100	18-h	29.5	
RG-178A/U		50	T	0.075	46	28.5	
RG-179A/U		75	T	0.105	24	19.5	
RG-180/U		93	T	0.141	17	15.5	
RG-180A/U		95	T	0.145	17	15	
RG-187/U		75	T	0.110	24	19.5	
RG-188/U		50	T	0.110	31	29	
RG-195/U		95	T	0.155	17	15	
RG-196/U		50	T	0.080	46	28.5	
$\begin{aligned} & 21-597 \\ & 60-3905 \end{aligned}$	Amp. M.	$\begin{aligned} & 75 \\ & 30 \end{aligned}$	P	$\begin{aligned} & 0.150 \\ & 0.045 \end{aligned}$	12-h	$\begin{aligned} & 20 \\ & 65 \end{aligned}$	

MANUFACTURER CCDING

Amp. ------Amphenol
M. --------Microdot

DIELECTRIC MATERIAL CODING
P----------Polye thylene
T----------Teflon

HOTE CODING

h----------Measured at 400 Mc .
j---------Capacity is in micromicrofarad per foot.

File No. CC 2-2B (11)

II-C. Cables types of possible use for counting purposes.
RIGID AND SEMI-RIGID CABLE TYPES

DIELECTRIC MATERIAL CODING

```
FP-----Polyethylene foam.
P------Polyethylene.
PT------Polye thylene tubes.
SF-----Styrofoam
SP-----Polyethylene spiral.
ST-----Teflon spiral
T------Teflon
TPS-----Polystyrene
```

NOTE CODI NG
e------Calculated
j------Micromicrofarads per foot

MANUFACTURERS CODING

Amp----Amphenol-Borg Electronics Corp.
An-----Andrew Corp.
P-D----Phelps-Dodge Electronics Products Corp. PROD---Prodelin Inc.
UCRL---U.C. Radiation Laboratory Specs.

INNER \& OUTER CONDUCTOR CODING

Al-----Aluminum
Cu-----Copper

File No. CC 2-2 B (12)

II-D. Cable types of possible use for counting purposes.

1. DELAY CABLES

Cable Type	Number	Mfr.	$\begin{gathered} \text { Zo } \\ \pm 10 \% \end{gathered}$	Delay a.	Bandwidth b.	$\begin{gathered} \text { D.C. } \\ \text { ohms } \\ \text { ft. } \end{gathered}$	$\begin{aligned} & \text { O.D. } \\ & \text { inch } \end{aligned}$	Inner Cond. ANG	Loss Insert. c.	Max. volts	Min. Radius inches
RG-266/U	$\begin{aligned} & \text { HH1500A } \\ & \mathrm{HHI} 600 \end{aligned}$	CTC CTC	$\begin{aligned} & 1500 \\ & 1700 \end{aligned}$	$\begin{aligned} & 0.08 \\ & 1.0 \end{aligned}$	$\begin{array}{r} 15 \\ 6 \end{array}$	$\begin{aligned} & 30 \\ & 80 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 29 \\ & 38 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.40 \end{aligned}$	$\begin{array}{r} 5000 \\ 300 \end{array}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
RG-176/U	$\begin{aligned} & \mathrm{HH} 2000 \\ & \mathrm{HH} 2500 \end{aligned}$	CTC CTC	$\begin{aligned} & 2400 \\ & 3000 \end{aligned}$	$\begin{aligned} & 0.11 \\ & 0.60 \end{aligned}$	$\begin{array}{r} 15 \\ 8 \end{array}$	$\begin{array}{r} 70 \\ 125 \end{array}$	$\begin{aligned} & 0.40 \\ & 0.28 \end{aligned}$	$\begin{aligned} & 32 \\ & 38 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.30 \end{aligned}$	$\begin{array}{r} 5000 \\ 500 \end{array}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$
	HH4OOO	CTS	3900	1.0	6	85	0.32	38	0.20	1000	4
	65A	Royal	950	0.043			0.415	32		3000	

NOTES:

a) Microsecond per foot, plus or minus 10%.
b) Band-width at one microsecond delay.
c) db loss per microsecond delay.

MANUFACTURER CODING

CTC) Columbia Technical Corporation.
Royal) Inter. Tele. \& Tele. Royal
III. PROPERTIES OF DIELECTRICS USED IN COAXIAL CABLES

	Polyethylene	```Teflon (polytetra- fluoroethylene)```	Polystyrene	```Styrofoam 22 (foamed poly- styrene)```	Air
Dielectric constant at $10^{8} \mathrm{cps}$	2.25	2.0 b	2.4-2.65a	1.025	1.00059 e
Dissipation factor at $10^{8} \mathrm{cps}$	$\angle 0.0005$	$<0.0003 \mathrm{~b}$	0.0001-0.0004a (@) $10^{6} \mathrm{cps}$		
```Temperature variation of dielectric constant per }\mp@subsup{}{}{\circ}\textrm{C (at constant pressure of l atmos```	$-0.0007 d$   s.)	-0.0003c	-0.0005d		
Dielectric strength, short-time $1 / 8^{\prime \prime}$ thickness, volts/mil	$460 \mathrm{a}$	480a	500-700a		
Volume resistivity, ohm-cm, $50 \%$ humidity, $23^{\circ} \mathrm{C}$	$1-2 \times 10^{13} a$	$\rightarrow 10^{15} a$	$10^{17}-10^{19} \mathrm{a}$		
Refractive index, $\mathrm{n}_{\mathrm{d}}$	1.51a	1.35 a	1.59-1.60a		1.00029 e
Coefficient of linear thermal expansion, parts per $10^{6} /{ }^{\circ} \mathrm{C}$	160-180a	100	60-80a	70 f	
Mechanical distortion temp., ${ }^{\circ} \mathrm{C}$	C 41-50a	$\left\{\begin{array}{l} 135 \mathrm{~g} \\ \text { @ } 66 \mathrm{psi} \end{array}\right.$	70-100a	80f	
Britileness temperature, ${ }^{\circ} \mathrm{C}$	-70	-76			
Effect of sunlight	surface crazing-a	none-a	yellows   slightly-a	yellows-f	
Effect of dielectric on metal inserts	inert	inert			
Specific gravity	0.92 a	2.1-2.3a	1.04-1.065a	0.021-0.027f	
Moisture absorption, 24-hr immersion, $1 / 8^{\prime \prime}$ thick., \%	C0.015a	0.005 a	0.03-0.05a	$\begin{aligned} & 0.20 \mathrm{lb} \mathrm{H}_{2} \mathrm{O} \\ & \text { surface are } \end{aligned}$	a week

References: - a) Modern Plastics Encyclopedia, 1955; b) DuPont specs; c) National Bureau of Standards Journal of Research, vol 51, p. 185; d) Calculated; e) Chem. Rubber Hdbk.; f) Dow Chem. Co. specs.;
g) Ethylene Chem. Corp.
IV. Temperature coefficient of length of certain cables.

RG 8, 63, 87A. The temperature coefficient of electrical length is a function of temperature, but near room temperatures, the coefficient is essentially a constant. Measured values are tabulated below.

Cable type

## RG 8

63
87A

Temp. coeff.
$\sim 2 \times 10^{-4}$
$\sim 1 \times 10^{-4}$
$\sim 1 \times 10^{-4}$

In temp. range

$$
\begin{aligned}
& +20^{\circ} \text { to }+50^{\circ}{ }^{\circ} \mathrm{C} \\
& -20^{\circ} \text { to }+50^{\circ} \mathrm{C} \\
& =-60^{\circ} \text { to }+50^{\circ} \mathrm{C}
\end{aligned}
$$

* Not measured below $+20^{\circ} \mathrm{C}$.

A 100 foot length of RG 63 will therefore change its electrical length about 0.012 millimicroseconds per degree antigrade.

UCRL Styrofoam: Measurements showed the temperature coefficient to be within $\pm 2 \times 10^{-5}$ parts per ${ }^{\circ} \mathrm{C}$. (The linear expansion of the copper conductors is $+2 \times 10^{-5}$ parts per ${ }^{\circ} \mathrm{C}$ ).

## V. Noise

"Internal noise" - Owing to manufacturing tolerances the characteristic impedance of a coaxial cable varies along its length. When a pulse travels along the line, reflections are generated by the changing impedance levels. The signal at the output, then, consists of the original pulse followed by a series of smaller, internally generated pulses, the latter referred to as "internal noise." When a pulse from a mercury pulse of risetime < $5 \times 10^{-10}$ is transmitted along a cable such as RG8 or RG63, the amplitude of the in-ternal-noise pulses observed is of the order of $1 \%$ of the amplitude of the initial pulse, when the observing instrument has a risetime of $\sim 10^{-9}$ seconds (517' scope-direct connections to deflecting plates). Cables having closer mechanical tolerances (e.i. Styroflex) exhibit internal noise of smaller amplitude relative to the signal pulse.
VI.

a - ATTENUATION AT INDICATED FREQUENCIES (db/100 feet)

## RISE TIME CONVERSION FACTORS

For pulses of the shape shown in Fig. 5 of CC2-1; the rise times from 0 to $x \%$ can be expressed as multiples of $\mathrm{T}_{\mathrm{o}}$, where $\mathrm{T}_{\mathrm{O}}$ is the 0 to $50 \%$ rise time. Pulses of this shape are generated when step-function waveforms are applied to the inputs of transmission lines for which attenuation varies as (frequency) ${ }^{1 / 2}$. (See CCz-1)

$\underline{x}$	$\frac{0 \text { to } x \% \text { rise time }}{T_{0}}$
10	0.17
20	0.28
50	1.0
70	3.1
80	7.3
90	29
95	110

The 10 to $90 \%$ rise time is thus (29-0.17) $T_{0}=28.83 T_{0}$.


COAXIAL TRANSMISSION LINES IMPEDANGE NOMOGRAPH
K:-12192

A single straight line intersecting the four vertical scales represents a possible coaxial transmission line. Known points on any two scales may be used to define the location of the line.
VIII. Transmission line formulas

1. $Z_{o}$ - characteristic impedance of coaxial lines with perfectly conducting conductors

$$
Z_{0}=\sqrt{\frac{\mu}{\epsilon}} \frac{l}{2 \pi} \ln _{\epsilon} \frac{D}{d} \text { ohms }
$$

For dielectrics for which $\mu=\mu_{0}$ (this includes the commonly used dielectrics)

$$
\begin{gathered}
Z_{0}=\frac{377}{2 \pi \sqrt{K}} \ln _{\epsilon} \frac{D}{d}=\frac{60}{\sqrt{K}} \ln _{\epsilon} \frac{D}{d} \\
=\frac{138}{\sqrt{K}} \log _{10} \frac{D}{d}
\end{gathered}
$$

where

$$
\begin{aligned}
\mu & =\text { permeability of dielectric - henried/meter } \\
\mu_{0} & =\text { permeability of vacuum } \\
& \cong 4 \pi \times 10^{-7} \text { henry/meter } \\
\epsilon & =\text { permittivity of dielectric - farads/meter } \\
\epsilon_{0} & =\text { permittivity of vacuum } \\
& \cong \frac{1}{36 \pi} \times 10^{-9} \text { farads/meter } \\
K & =\text { dielectric constant } \\
& =\frac{\epsilon}{\epsilon} \\
D & =\text { inside diameter of outer conductor } \\
\mathbf{d} & =\text { outside diameter of inner conductor }
\end{aligned}
$$

The impedance of a transmission line having distributed inductance ( $L$ - henries per unit length) and distributed capacitance (C - farads per unit length) is, neglecting the effects of conductor resistance,

$$
Z_{0}=\sqrt{\frac{L}{C}}
$$

2. $v$ - Velocity of propagation of transmission-line waves (TEM mode)

$$
v=\frac{1}{\sqrt{\mu \epsilon}} \text { meters/second }
$$

where $\mu$, є are respectively the permeability and permittivity of the dielectric.
For dielectrics for which $\mu=\mu_{0}$,

$$
\begin{gathered}
v=\frac{3 \times 10^{8^{* *}}}{\mathrm{~K}} \text { meters/second } \\
\beta=\frac{v}{c}=\frac{1}{\sqrt{K}}
\end{gathered}
$$

$$
c=\text { velocity of propagation in vacuum. }
$$

Along a transmission line having distributed inductance ( $L$ - henries per unit length) and distributed capacitance ( $C$ - farads per unit length) the velocity of propagation is

$$
V=\frac{1}{\sqrt{L C}}
$$

3. L, C - Distributed inductance and capacitance.

$$
\begin{aligned}
L & =\frac{Z_{o}}{v} \text { henries per meter } \\
& =1.01 \frac{Z_{o}}{\beta} \times 10^{-3} \text { microhenries per foot } \\
C & =\frac{1}{Z_{o}^{v}} \text { farads per meter } \\
& =\frac{1.01 \times 10^{3}}{\beta Z_{o}} \text { micro microfarads per foot }
\end{aligned}
$$

For coaxial lines:

$$
\begin{aligned}
& C=\frac{7.354 \mathrm{~K}}{\log _{10} \mathrm{D} / \mathrm{d}} \text { micro microfarads per foot } \\
& L=0.14\left(\frac{\mu}{\mu_{0}}\right) \log _{10} \frac{\mathrm{D}}{\mathrm{~d}} \text { microhenries per foot }
\end{aligned}
$$

4. a - Attenuation. Two important callses of attenuation are losses in the conductors and losses in the dielectrics.
A. $a_{c}$ - Attenuation due to conductor losses
$a_{c}=0.43 \times 10^{-3} \sqrt{\mathrm{f}}\left(\frac{1 / \mathrm{D}+1 / \mathrm{d}}{Z_{\mathrm{o}}}\right) \sqrt{\frac{\sigma_{c}}{\sigma}} \mathrm{db} / 100$ feet
D, $\mathrm{d}=$ outer. inner diameters-inches
$\mathrm{f}=\mathrm{frequency}-\mathrm{cycles}$ per second

* The cffective figure $3 \times 10^{8}$ meters/sec for the velocity of electromagnetic Wues in free space is a commonly ised approximation. A more accurate figure is $2.9977 \times 10^{8}$ meters $/ \mathrm{sec}$.
$\sigma_{c}=$ conductivity of copper
$=1.724 \times 10^{-8}$ ohm meters (annealed copper @ $20^{\circ} \mathrm{C}$ )
$\sigma=$ effective* conductivity of metal used for conductors - ohm meters

For solid metals - Silver Gopper Aluminum Brass Solder

$\sqrt{\sigma_{c} / \sigma}$	0.97	1.00	1.25	1.93	2.86

B. $a_{D}$ Attenuation due to dielectric losses

For cables with solid dielectric,

$$
a_{D}=2.8 \times 10^{-7} \frac{\mathrm{f} \pi}{\sqrt{\mathrm{~K}}} \cdot \mathrm{db} / 100 \text { feet }
$$

(independent of $\mathrm{Z}_{\mathrm{o}}$ )
where

$$
\begin{aligned}
r & =\text { Dissipation factor of dielectric } \\
& =K \times p \text { power factor of dielectric }
\end{aligned}
$$

5. $T_{0}$ - Rise time of cable. $T_{o}$ is the time for the output pulse to rise from 0 to $50 \%$ of the amplitude of step-function applied to input. See the table on p .23 to find values of rise times defined in different ways. The equation given below is valid for output pulses having frefuency components predominately in the frequency range where the attenuation $a$ is due mainly to losses in the conductors (i.e. $a_{c} \gg a_{D}$ ) and therefore varies as (frequency) ${ }^{1 / 2}$ 。

$$
\begin{aligned}
& T_{0}=\left[\frac{b l}{0.6745}\right]^{2} \text { seconds } \\
& \ell=\text { length of cable in feet } \\
& b=\text { cable loss factor } \\
&=1.45 \times 10^{-8} \mathrm{~A}-\text { feet }^{-1} \sec ^{\frac{2}{2}} \\
& a=\text { cable attenuation feet at frequency } \\
& \text { f - db/lco feet } \\
& f=\text { frequency - cycles per second. }
\end{aligned}
$$ cte., and impurities.

