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BEREZOVOJ V.P., PASHNEV A,I, Three-dimensional N =4 extended
supersymmetrical quantum mechanics.- Preprint KFTI 91-2I . ~
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A des¢ription of 3-dimensional N = 4 extended Supersymmetri-
cal Quantum Mechanics is proposed, based on the superfield constru-
ction of the action, The main feature of the approach is the unifi-
cation of 3-dimensiocnal bosonic coordinate vector and fermionic
spinor of 0(3) in one irreducible representation of N =4 super-
symmetry algebra.
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lpeIoXeHo0 OoIMCAHEe TPEXMepHOR N =4 pacuMpeHHOR KBaHTOBOK
MEXaHWKH, OCHOBAHHOE Ha8 CyHepHOOJeBOM HNpelacTaBieHum mellcrBusd. OCHOB-
HOQX OCOCEeHHOCTHD HMOIXONe ARIASTCHA OCHONEHEHH® 3-MOPHOTO GO3OHHOTO
BEKTOPA  KOOpuEEAT B JepMMOHHOTO cmmHOpa 0(3) B OJHOM HEOPHBOIEMOM
mpercraBieHMy N =4  ainreCpH CyNePCEMMETDWH.
Comcor JmuT. - I3 mass.

© HenrpaasHe# HAayIHO~-HCCIOEOBATONBCKRHE RMHCTHUTYT
AHGOPMAIME B TEXHUKO-SKOHOMEYGCKHEX MCCJeINOBAHEH
1o aTomHo# Hayke W Texmure (UHW/atomumdopM), 1991.



1. Historically Supersymmetric Quantum Mechanics (SQM) appeared as
a very simple and simultaneously very efficient laboratory for the investiga-
tion of supersymmetry and its consequences in particle physics[l]. In turn,
the presence of some number of supercharges commuting with the Hamii-
tonian determines the structure of the SQM Hamiltonian in terms of usual
coordinates and momenta and additional anticommuting variables, which can
be represented by matrices, Due to this matrix structure, the diagonalized
Hamiltonian of SQM consists of some number of usual Quantum Mechanics
Hamiltonians related to each other by some relations. In the case of N = 2
SQM these relations represent the well known Darboux transformations[2,3].
If the number of supercharges grows, such extended supersymmetry leads to
additional interesting consequences and in the case of N = 4 (or N = 2 if
we consider complex supercharges) SQM is very closely related to the Inverse
Scattering Problem[4].

There is another rather important reason due to which the N = 4 SQM
is of particular interest in the study of supersymmetry in real world. In
spite of the fact that supersymmetry is very attractive from the point of
view of theoretical investigations in particle physics it is difficult to extract
supersymmetry implications in the frames of field theoretxcal approach. On
the other hand, the supersymmetry algebra

{Qa, @4} = (9u)apP*

in the center of mass system becomes the algebra of N = 4 SQM due to
equality P’ = 0(i = 1,2,3). The time component P° is the Hamiltonian H of
the system and there are 4 real supercharges @Q,,. So, the knowledge of H and
Q@ allows us to investigate the spectrum of the system and at the same time
the questions of supersymmetry breaking by traditional methods of ordinary
Quantum Mechanics.

All dynamical variables in models of SQM, as well as in models of spin-
ning particles, usually are considered as a components of scalar superfields @,
with external vector index p. The zero bosonic component X, of such super-
field plays the role of space (space-time) coordinate. Corresponding fermionic
components ¥5 with additional index a describe the spin degrees of freedom
and there are some difficulties to extend this scheme on higher N. If N in-
creases, the number of ¥ is proportional to N and we must have very high
internal symmetry group under which index a is transformed([5]. Besides, in
this approach spinor is described with the help of vector variables which are
analogs of the Dirac y-matrices.



In this paper we show how one can overcome these difficulties in the
case of N = 4 by the use of nontrivial representation of N = 4 extended
supersymmetry (see also [6] for N = 2 SQM). In the second part of the
paper we describe such representation and construct for it the more general
action. The only dynamical variables in this action are three bosonic and four
fermionic variables transforming as a vector and complex spinor of rotation
group O(3).

The quantization of the model is performed in the third part of the paper
and possible physical applications are discussed in conclusions.

2. The algebra of N-extended SQM has the form

. {QmQﬁ} = bapH,
[H,Q4] =0,(a,=1,2,....N) 1

and its automorphysm group is SO(N). For N = 4 we can introduce complex
supercharges Q, and @ = (Qa)*, (a =1, 2) with the following commutation

relations
—b
{Qa,@ '} =62H,

[H,Qa] = [H,Q"] =0. )

The automorphysm group is now SO(4) = SU(2) x SU(2) and Q, transforms
as a spinor of one of the SU(2) groups.

I the superspace with one bosonic coordinate 7 and two complex fermionic
coordinates §° the supersymmetry transformations have the following form *

61 = %(e“@a +260%),

860° = ¢°, 3)
550 = &,

where € are infinitesimal anticommuting parameters.
The covariant derivatives

9 _ig 0

Do =50 ~ 2% 5r

* Qur convensions for spinors are as follows: 8, = (0")f’,6¢ = 0b¢p,,0°
0,,8° = £9G,,00 = 0 6,8 = —(6a)",(68) = 8°8, = —26'62,(30)

]
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b= a4, 2? ar’ )
always play the important role in superspace constructions. In particular var-
ious irreducible reptresentations can be extracted from the general superfields
with the help of D, and D". The examples are the chiral (ﬁntb = 0) and -
antichiral (D,® = 0) superfields each having two bosonic and four fermionic
dynamical degrees of freedom. In view describing one-dimensional SQM, we
have to reduce bosonic degrees of freedom to one and consider another rep-
resentations. Two types of them are singled-out from real superfields by
constraints [7]

{*D.D’ + €D .D"}® =0, (5)

or(8,9]
D°D,® =D,D°% = [D,,D"]® = 0. (6)

This last superfield has the following form

3 =X+0°T,~0,9°+0°(0:)0,B:+ i—(oo)éﬁ - ;—(M)o"\in. + fg(oe)(éﬁ)fc
™
and can be used to describe one-dimensional N = 4 SQM [7-9] as well as
N = 4 spinning particle if superfield ® has additional vectorlike index u:
® — &, [10]. If, instead, we consider three dimensional vector superfield &;
with external index ¢ we can describe three dimensional N = 4 SQM but
encounter the difficulties enumerated in introduction.
To construct another representation of the algebra (2) let us consider the
transformation laws for components X, ¥¢, B; :

§X = W, — E,0°,
59° = %G"X—{-éb(o‘;)gB;, {8)

1 = % _ T = . _
8B = —5e*(0)oUs + ;¥ (0:);8 = — e ¥ + S Yoie.
In terms of new variables X%, x°, ¥,, F' connected with the old ones by rela-
tions

Xt =-Bb=-Bio)!,F=X,x"=9° ©)
3
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the transformation law (8) has the form :
i, ‘ _
6X|': = _E(Xaeb - Ga? + Xagb - edxb)9

6x° = -2 X2 + %G“F, (10)
§F = €%, — X"

The physical meaning of bosonic variables in (8) and (10) is different. There
is only one dynamical and three auxiliary bosonic variables in the transforma-
tion law (8) and conversely only one auxiliary and three dynamical bosonic
variables in (10). All these variables are components of the superfield

8% = X2+ 20X ~ Xab) + 50X’ — xaB) + %(0,.5" —8.6%)F-
~ S R508.M - B85t +0%0.8%) + %(W)(o.. 2 = %a6%)+
+500)@x" ~ %u0) + 750008K, e
or, equivalently, due to tracelessness of <I>ﬁ,

®;

1]

1 a i, _ ¢t = 1 - 1 . —
'2"1)2(0':')5 =X+ an'iX - EXa'io + Zodi0F+ Ee.-,,,Xk(&nO)

+%(oa)§a.-5’z+ %(0—0)00;)’( + :—Gaowxi. (12)

The superfield & (7) is the prepotential to superfield &% . Indeed, the com-
bination D,,D'b ®+ %63@ has exactly the form of expression (11) (see also
[13] ). Thus, we have the superfield ®; which has the vector index ¢ and
describe only one irredu cible representation of the supersymmetry algebra
(2). It differs from scalar superfield with the external index ®; in the form
(7), which describes d copies of irreducible representations, where d is the
dimension of space (or space-time ). In our case index 7 is not external index
and ®; transforns as a vector of one of SU(2) subgroup of the automorphysms
group SO(4) = SU(2) x SU(2). X; and x* components transform as a vector
and spinor of this SU(2) which is isomorphic to the group SO(3) and can be
considered as a rotation group of three-dimensional Eucleadian space. The

4
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component F of superfield ®; is inert under the rotations, but it changes
the sign under the parity transformation ®; — —&®;. It means that F' is a
pseudoscalar of O(3).

The general action in terms of superfield ®; is a full superspase integral

=z / drd*0V (®;)

to which one can add parity-violating Fayet-Illiopulos term

&=%/wﬂ

After integration over 8 the Lagrangian of the theory is completely determined
by one arbitrary function of coordinates W = 8;8;V(X;) and by one arbitrary
constant o which also characterizes the parity violation :

L=W(X){3 1x2 - —x T+l —x X4 + —F”} - —F(xcr,x)c? W+

1 . 1 ‘
+76mXe(xOTOW = = (0O(XR)GEW + SF. (13)

Evaluating F' due to its equation of motion and taking the redefinition ¥* =
VW (X)x* we obtain the final expression for the classical Lagrangian in
terms of bosonic vector X; and fermionic spinor ¥*

L= %W(X )X? - i¥9T, + i, + e Xi(Tor T)Oy W+

hW o 62 W (aiW)2
+a(¥or V) ——- W " W S W ). (14)
From the physical point of view tlus Lagrangian dwcribes the motion of
the particle in gravitational background with conformally flat metric gix =
6:xW(X). The corresponding classical Hamiltonian has the form

_ 1 oaw o?
- mj — &P (‘I’Uk‘I’) W2 4 — W
2
a2 lena@n X -0 oy



with W
P =W(X)X: + e.-,‘,(woﬁ)‘v. (16)

Applying the Noether procedure to the N = 4 invariant Lagrangian (14) we
find the conserving supercharges @, and Qb:

_ . T i ] ( )a‘W
» Qa = \/LW{(UI)Z‘I’(:R +' ld‘I{a + %(oi)awc ‘I’\I’ W }’
. 3
7= S etA ¥ 4 ST D) an

3. To quantize the model consider momenta conjugated to the X; (16)
and to the ¥° :

= —iwa!

a —

6o
: 5;[’ = —il°, (18)
' P
Due to definitions (18) we have the following second class constraints

T-—ﬁ

An =T+ i.‘i’—m
3= 7 400, (19)
leading to the Dirac brackets for canonical variables
{Xi, P;} = &j,
{0, W} = - 265 (20)
In terms of these Dirac brackets the algebra of conserving charges is
{Qas@b} = 6:H1 ' (21)

b
{H,Q.}={H,Q'} =0.
After quantization Dirac brackets (20) turn into canonical commutation rela-
tions
[X.',Pj] = ib;j,



(9,5} = ;8. (22)

To obtain the quantum expressions for Hamiltonian and supercharges we must
solve the operator ordering ambiguity. Such ambiguities always take place
when the operator expression contains the product of noncommuting oper-
ators (¥° and ¥,,X; and P; in our case). It was shown in [11] that the
requirement of general coordinate invariance leads to solution of this ambi-
guity up to the term proportional to the scalar curvature of the space. The
realization of supersymmetry algebra commutation relations on quantum level
is the additional requirement [6] and, as was shown in [12] it makes it possi-
ble to solve the operator ordering ambiguity. Technically it means that the
expressions for quantum operators Q, and Q" are of the form (17) with ad-
ditional terms, proportional to the difference between operators thh various
ordering of noncommuting operators. These operators Q, and Q" must be
conjugated one to another with respect to the natural scalar product

< bry >= / EX 501" (X)da(X), (23)

where /g = W 3(X). The commutation relations (2) fix then all additional
terms and define the quantum Hamiltonian simultaneously.

Such procedure leads in our case to the following expressions for Q,, Qﬂ
and H :

o iab®
= ((0:)aDi + i 6)\/—

Q= \,—=((a,-):D*,- ~ i), (24)
Hoo L g OWX), 1 &  30WX) 15@WX)
=Taw T X T awx) T ewEx) |32 Wa(X)
‘ 0, W (X . 30iW (X
Hewbo Tl (e - 3 (“—‘Llwrgf) Lo )
=0;W(X)
—a\Ilar; Wz(.X) N
where
Di = Pi - i(T,0° - %)O{ln W(X), (25)



and .
. 3
; = —i0; — -‘-{a.' an(X)

is the hermitian momenta.

As a concequence of commutation relations (22) the operators ¥* and
T, have realization in terms of 4 X 4 matrices. However, more convenient
from the physical point of view is the Fock space representation with ¥, as
a creation and ¥*® as annihilation operators. If | 0 > is a vacuum of the Fock
space such that ¥® | 0 >= 0, then the whole space contains four independent
vectors -

[0>,T, 0> TT |0>. (26)

The structure of the Hamiltonian (24) is such that it does not commute
with the angular momentum operator M; = £ X P;. Instead, the conserving
quantity is

o= M 9T = 4 en)

with additional term S; describing spin % It means that two of physical states

(26) | 0 > and T,T° | 0 > have integer spin and another two states Ty | 0 >
have half integer spin. The Hamiltonian is diagonal on the states with integer
spin and has 2 X 2 matrix structure on the half integer spin states. The

operators Q, and Gb , when applied to the state with definite spin, change
the value of spin by half, and connect, thus, the solutions of Schrédinger
equation H¢ = E¢ with integer and half integer spin. More detailed analisis
of such connection will be given elsewhere.

4. In general the equations (24) describé the model in curved space
with conformally-flat metric, depending on the function W (X). In particular,
the metric can be flat, leading in some coordinate system to the standard
kinetic term in the Hamiltonian. On the other hand we can consider this
model as a description of two-particle gravitating system with X; as relative
coordinate. The gravitation interaction must then fix the function W(X)
leaving undetermined only the parameter . Apparently the nonzero « leads
to the parity breaking and to the spontaneous breaking of supersymmetry.

After the completion of this investigation we get the paper [13] in which
the N = 4 superfield approach to the classical Lagrangian (14) with « = 0
was constructed.
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