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A description of 3-dimensional N =4 extended Supersymmetri­
cal Quantumllechanics is proposed, based on the. superfield constru­
ction of the action. The main feature ot the approach is the unifi­
cation of 3-dimensional bosonic coordinate vector and fermionic 
spinor of 0(3) in one irreducible representation of N .4 super­
symmetry algebra. 
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npe~OJl9RO omrCaHHe 'l'p9XMepBoA N.4 pacmHpeHBol KBaH'l'OBO:it 

MBXa:HJmB, OCROB8HBOe Ha CYIIepnOJleBOM IIpe,Itc'l'8BJIeHln'! ,Ite!C'l'Bmr. OCROB­
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1. Historically Supersymmetric Quantum Mechanics (SQM) appeared as 
a very simple and s~ultaneously very efficient laboratory for the investiga­
tion of supersymmetry and its consequences in particle physics [1]. In turn, 
the presence of some number of supercharge~ commuting with the Hamil­
tonian determines the structure of the SQM ~Hamiltonian in terms of usual 
coordinates and momenta and additional anticommuting variables, wwch can 
be represented by matrices. Due to this matrix structure, the diagonalized 
Hamiltonian of SQM consists of some number of usual Quantum Mechanics 
Hamiltonians related to each other by some relations. In the case of N = 2 
SQM these relations represent the well known Darboux transformations[2,3]. 
If the number of supercharges grows, such extended supersymmetry leads to 
additional interesting consequences and in the case of N = 4 (or N = 2 if 
we consider complex supercharges) SQM is very closely related to the Inverse 
Scattering Problem[4]. 

There is another rather important reason due to which the N = 4 SQM 
is of particular interest in the study of supersymmetry in real world. In 
spite of the fact that supersymmetry is very attractive from the point of 
view of theoretical investigationS in particle physics it is difficult to extract 
supersymmetry implications in the frames of field theoretical approach. On 
the other hand, the supersymmetry algebra 

in the center of mass system becomes the algebra of N = 4 SQM due to 
equality pi = O(i = 1,2,3). The time component pO is the Hamiltonian H of 
the system and there are 4 real supercharges Qm- So, the knowledge of Hand 
Qm allows us to investigate the spectrum of the system and at the same time 
the questions of supersymmetry breaking by t.raditional methods of ordinary 
Quantum Mechanics. 

All dynamical variables in models of SQM, as well as in models of spin­
ning particles, usually are considered as a components of scalar superfields () It 
with external vector index Jl. The zero bosonic component Xlt0f such super­
field plays the role of space (space-time) coordinate. Corresponding fermionic 
components w: with additional index a describe the spin degrees of freedom 
and there are some difficulties to extend this scheme on higher N. If N in­
creases, the number of w: is proportional to N and we must have very high 
internal symmetry group under which index a is transformed[5]. Besides, in 
this approach spinor is described with the help of vector variables which are 
analogs of the Dirac "Y-matrices. 
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In this paper we show how one can overcome these difficulties in the 
case of N = 4 by the use of nontrivial representation of N = 4 extended 
supersymmetry (see also [6] for N = 2 SQM). In the second part of the 
paper we describe such representation and construct for it the more general 
action. The only dynamica.l variables in this action are three bosonic and four 
fermionic variables transforming as a vector and complex spinor of rotation 
group 0(3). 

The quantization of the model is performed in the third part of the paper 
and possible physical applications are discussed in conclusions. 

2. The algebra of N-extended SQM has the form 

{Qa,Q,B} =6a,BH, 

[H,Qa] =0, (a,,8 =1,2, ...,N) (1) 

and its automorphysm group is SO(N). For N = 4 we can introduce complex 
supercharges Q 0 and (J == (Q0)*, (a = 1, 2) with the following commutation 
relations 

{Qo,Q"} = 6!H, 
[H, Qa] = [H, (J] =O. (2) 

The automorphysm group is now SO(4) =SU(2) x SU(2) and Qa transforms 
as a spinor of one of the SU(2) groups. 

In the superspace with one bosonic coordinate r and two complex fermionic 
coordinates (Ja the supersymmetry transformations have the following form * 

6r = ~(fa8a + £a(Ja), 

6(Ja = fa, (3) 

680 = £0, 

where fa are infinitesimal anticommuting parameters. 
The covariant derivatives 



IJ = .~ - ~8a~ (4)aOa 2 aT' 
always play the important role in superspa.ce constructions. In particular var­
ious irreducible representations can be extracted from the general superfields 
with the help of D a and IJ. The examples are the chiral (IJ cp = 0) and 
antichiral (Dacp = 0) superfields each having two bosonic and four fermionic 
dynamical degrees of freedom. In view describing one-dimensional SQM, we 
have to reduce bosonic degrees of freedom to one and consider another rep­
resentations. Two types of them are singled-out from real superfields by 
constraints [7] 

(5) 

or[S,9] 
DO Docp = DoIJcp = [Do, IJ]cp = O. (6) 

This last superfield has the following form 

cp = X +8°Wo-(fo WO +8°(Ui)~(fbBi+ ~(88)fio~o - ~(88)8°q,0 + 116 (88)(88)X 
(7) 

and can be used to describe one-dimensional N = 4 SQM [7-9] as well as 
N = 4 spinning particle if superfield cp has additional vectorlike index p,: 
cp -+ CPI-I [10]. If, instead, we consider three dimensional vector superfield CPj 
with external index i we can describe three dimensional N = 4 SQM but 
encounter the difficulties enumerated in introduction. 

To construct another representation of the algebra (2) let us consider the 
transformation laws for components X, wa,Bi : 

i b-=- i· b i...!.... i·
-EO(U) Wb + _\lIa(u·) €b = - -EU'W + -Wu'€2 a 2 '0 - 2 I 2 ,. 

oIn terms of new variables X!, X , Xa, F connected with the old ones by rela­
tions 

(9) 
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the. transformation law (8) has the form: 

b i (- b -=-:b ~ - b)6Xa = - 2" Xa€ - faX + Xa€ - faX , 

• i 
6Xa = -€

b X: + _€aF, (to)
2 

6F = €ax-a - €aXa. 

The physical meaning of bosonic variables in (8) and (10) is different. There 
is only one dynamical and three auxilia.ry bosonic variables in the transforma­
tion law (8) and conversely only one auxiliary and three dynamical bosonic 
variables in (10). All these variables are components of the superfield 

- ~Xd(8aOccbd - O1J8d6~ +8dOc6!) + ~(88)(8aXb - Xa8b)+ 

1 -.:-b.:- b 1 -··b 
-r:S(88)(8aX - Xa 8 ) + 168888Xa, (11) 

or, equivalently, due to tracelessness of ~~, 

1b i i -1 - 1· ­
~i == 2"~a(O"i)b = Xi + 2"80"iX - 2"XO"i8 + 480"i8F + 2"cilclXIc(80"18) 

1 -. 1 - 1 _ .. 
+S(88)80"iX + S(88)80"iX + 168888Xi. (12) 

The superfield ~ (7) is the prepotential to superfield ~~ . Indeed, the com­

bination DaJj~ + ~6!~ has exactly the form of expression (11) (see also 
[13]). Thus, we have the superfield ~i which has the vector index i and 
describe only one irredu cible representation of the supersymmetry algebra 
(2). It differs from scalar superfield with the external index ~i in the form 
(7), which describes d copies of irreducible representations, where d is the 
dimension of space (or space-time ). In our case index i is not external index 
and ~i transforns as a vector of one of SU(2) subgroup of the automorphysms 
group SOC4) =SU(2) x SU(2). Xi and Xa components transform as a vector 
and spinor of this SU(2) which is isomorphic to the group SO(3) and can be 
considered as a rotation group of three-dimensional Eucleadian space. The 
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component F of superfield ~i is inert under the rotations, but it changes 
the sign under the parity transformation ~i -+ -~i. It means that F is a 
pseudoscalar of 0(3). 

The general action in terms of superfield ~ i is a full superspase integral 

to which one can add parity-violating Fayet-Illiopulos term 

SI = ~ JdTF. 

After integration over (J the Lagrangian of the theory is completely determined 
by one arbitrary function of coordinates W == OiOiV(Xj) and by one arbitrary 
constant a which also characterizes the parity violation : 

(13) 

Evaluating F due to its equation of motion and taking the redefinition 'I1G = 
! y'W(X)XG we obtain the final expression for the classical Lagrangian in 
terms of bosonic vector Xi and fermionic spinor 'I1G 

1 '2' d- d~ • ­
• L = '2W(X)Xj - i'l1 'I1d + iv 'I1d + EilclXi('I1UIc '(1)o,In W+ 

- OkW 0'2 1 - Oiw· (OiW)2
+O'('I1ulc '(1) l-lT2 - 2W - 2('11'11)('11'11)( W2 - 2W3)' (14) 

From the physical point of view this Lagrangian describes the motion of 
the particle in gravitational background with conformally flat metric gilc = 
aile W(X). The corresponding classical Hamiltonian has the form 

H = 
1 2 -OIW a2 

2lV(X)Pi - EiIcI Pi('I1U/c'l1) W2 + 2W­

OIcW 1 iPw 30iW2 
-O'('I1ulcW) W2 + 2('I1'11)('fiI)( W2 - '2 W3 ) (15) 
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with 

(16) 

Applying the Noether procedure to the N = 4 invariant Lagrangian (14) we 

find the conserving supercharges Q4 and'lt: 

(17) 

3. To quantize the model consider momenta. conjugated to the Xi (16) 
and to the ti4 : 

;ra == o~ = _iti4. (18) 
oW4 / 

Due to definitions (18) we have the following second class constraints 

r = ;ra + iti4, 

leading to the Dirac brackets for canonic8J. variables 

(19) 

{Xi,Pj} Oij, 

(20) 

In terms of these Dirac brackets the algebra of conserving charges is 

(21) 

After quantization Dirac brackets (20) tum into canonical commutation rela­
tions 



(22) 

To obtain the quantum expressions for Hamiltonian and supercharges we must 
solve the operator ordering ambiguity. Such ambiguities always take place 
when the operator expression contains the product of noncommuting oper­
ators (q,o and Wb,Xi and Pj in our case). It was shown in [11] that the 
requirement of general coordinate invariance leads to solution of this ambi­
guity up to the term proportional to the scalar curvature of the space. The 
realization of supersymmetry algebra commutation relations on quantum level 
is the additional requirement [6] and, as was shown in [1~] it makes it possi­
ble to solve the operator ordering ambiguity. Technically it means that the 
expressions for quantum operators Qo and cr are of the form (17) with ad­
ditional terms, proportional to the difference between operators with various 
ordering of noncommuting operators. These operators Qo and ct must be 
conjugated one to another with respect to the natural scalar product 

(23) 

where V9 = Wi(X). The commutation relations (2) fix then all additional 
terms and define the quantum Hamiltonian simultaneously. 

Such procedure leads in our case to the following expressions for Q0, cr 
andH: 

where 
(25) 
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and 

is the hermitian momenta. 
As a concequence of commutation relations (22) the operators 'li4 and 

Wo have realization in terms of 4 x 4 matrices. However, more convenient 
from the physical point of view is the Fock space representation with W° as 
a creation and 'li0 as annihilation operators. If I0 > is a vacuum of the Fock 
space such that 'li0 I0 >= 0, then the whole space contains four independent 
vectors 

(26) 

The structure of the Hamiltonian (24) is such that it does not commute 
with the angular momentum operator 14. = S.Ic,XIcP,. Instead, the conserving 
quantity is 

(27) 

with additional term Si describing spin!. It means that two of physical states 
- -:-b ­

(26) 10> and 'lib'li 10> have integer spin and another two states 'lio 10> 
have half integer spin. The Hamiltonian is diagonal on the states with integer 
spin and has 2 x 2 matrix structure on the half integer spin states. The 

Ab • 
operators Q and Q ,when applied to the state with definite spin, change 4 

the value of spin by half, and connect, thus, the solutions of Schrodinger 
equation fIq, Eq, with integer and half integer spin. More detailed analisis 
of such connection will be given elsewhere. 

4. In general the equations (24) describe the model in curved space 
with conformally-flat metric, depending on the function W(X). In particular, 
the metric can be fiat, leading in some coordinate system to the standard 
kinetic term in the Hamiltonian. On the other hand we can consider this 
model as a description of two-particle gravitating system with Xi as relative 
coordinate. The gravitation interaction must then fix the function W (X) 
leaving undetermined only the parameter Q. Apparently the nonzero Q leads 
to the parity breaking and to the spontaneous breaking of supersymmetry. 

After the completion of this investigation we get the paper [13] in which 
the N = 4 superfield approach to the classical Lagrangian (14) with Q = 0 
was constructed. 
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