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1. Introduction 

The strong CP problem has remained unsolved for over 16 years [1,2]. Several 

possible solutions have been proposed (for example, an axiOll [3-5], a mass­

less quark [6,7), weak CP breaking [8,9], wormholes [10,11], and long-range 

interactions [12,13]) but none appears naturally attractive or phenomenolog­

ically successful in the simplest models for the theory. In fact, it may be 

said that very little real progress has been made except in our realization 

that the strong CP problem is very hard to solve and is not a problem of 

only passing interest; indeed, the strong CP problem is being compared to 

the cosmological constant problem in that the origin of the solution probably 

lies in physics beyond our present knowledge. For this reason, the strong CP 

problem may be viewed as a window through which to look for new physics 

and an opportunity by which to modify and extend our present theory of 

the strong interaction which may appear complete and consistent in all other 

regards (apart from computability 

In this paper, we shall consider the idea that the theory of the strong 

interaction (relevant to the strong CP problem) should not be exactly invari­

ant under large (singular) gauge transformations. There is some justification 

for considering such an idea. In some two-dimensional string theories [14-16] 

(which are claimed to model four-dimensional string theories), a truncated 

theory of only the light states is found to be invariant under small (continu­

ous) gauge transformations but not invariant under large gauge transforma­

tions (briefly, this is because the W-symmetries that mix the finite number 

of light states with the infinity of discrete massive states correspond to sin­

gular gauge transformations). However, the nice properties for an effective 

low-energy theory such as perturbative renomalizability, unitarity and energy 

conservation remain intact, and it may be that the loss of exact invariance 

under large gauge transformations only significantly affects the strong CP 

problem (this will be discllssed further at the end of section 3). 

The results of this paper depend only upon considering a theory of the 

strong interaction which is not exactly invariant uuder large gauge transfor­

mations. None of the results depend upon the strong interaction being a 

low-energy truncated effective field theory derived from string theory. How­

ever field theories, as usually constructed, are fully gauge-invariant with no 

distinction (as regards the form of the terms in the action) being made be­

tween large and small gauge transformations. Some readers may therefore 
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wonder why one should wish to consider a theory invariant under continu­

ous gauge transformations but not under singular ones. The mixing with 

the higher mass string states can provide such a motivation (should such a 

motivation be thought necessary). No definite conclusions can be reached 

from considering string theory (since too much is still not known) but, in 

order to make the· paper slightly more specific, we shall at times refer to the 

string theory result although, with perhaps minor modifications, any other 

physics that led to the low-energy theory not being invariant under large 

gauge transformations would serve equally as well. 

For low-energy phenomena, we expect the mixing between the light and 

massive states to be suppressed by powers of the Planck mass. Hence we ex­

pect the breaking of large gauge invariance in the truncated light state theory 

to be very weak. This mayor may not pose a severe problem for the solution 

to the strong CP problem proposed here. Further work will be necessary to 

answer this. However, it should be mentioned that the identical physics has 

been claimed [14] to lead to a modification of quantum mechanics for light 

particle systems and to the rapid "collapse" of the wave-function for macro­

scopic objects (even although full string theory is fully quantum mechanical). 

Thus, even although effects are suppressed by powers of the Planck mass, it 

need not mean that they are physically unimportant. A modification of the 

rules of quantum mechanics could conceivably have relevance to the strong 

CP problem (perhaps through a modification of the quantization process or 

by permitting pure states to evolve into mixed states) but we shall not pursue 

that idea here. The loss of full invariance under large· gauge transformations 

has rather more definite consequences. 

In section 2, we shall briefly outline the elements in the construction 

of the QCD vacuum that lead to the strong CP problem. The role played 

by invariance under large gauge transformations will be explained, together 

with several other assumptions that underlie this work. In section 3, we 

shall mention the consequences of the requirement of invariance under large 

gauge transformations being relaxed and various ways in which. these could 

potentially lead to solutions of the strong CP problem. Various problems 

associated with these solutions are discussed. Our conclusions are briefly 

mentioned in section 4. 
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2. The standard QeD vacuum state 

Since several good reviews [17,18] of the construction of the standard QCD 

vacuum state are available, we shall merely give a brief outline and emphasize 

the points most relevant to our discussion. Let us work in the temporal gauge 

Ag = 0 and consider states which are the gauge transforms of the classical 

vacuum 
_ a.xa _ i -1 

AI' = AP2 - ghOph , (2.1) 

where 

h(x) = eiwQ(x)'\", ooh 0, (2.2) 

is an element of the gauge group. Such a field defines a mapping from 3­

space (x) into the gauge group, and it is only necessary to consider fields for 

which h(x) becomes constant at infinite distance; that is, points at infinity 

can be identified as far as the mapping from space to the gauge group is 

concerned. But three-space with points at infinity identified is topologically 

equivalent to the three-sphere S3, and so we have a mapping from S3 to the 

gauge group, or rather to an SU(2) subgroup of it. Thus the functions h(x) 

(and so the gauge fields representing the vacuum) fall into classes labelled 

by an integer n, the number of times that one goes through the elements of 

the gauge group in going over three-space. This integer is called the winding 

number and it can be written as 

n ___ 3 ....g39671"2 Jd x EOVAPA~A~A~fabc. (2.3) 

The winding number is invariant under all gauge transformations which can 

be obtained continuously from the identity. Such transformations are called 

'small' gauge transformations. If R3 is imagined to be projected onto S3, 
and the group element h(x) is written as h(x) = eiw" (x),\Q , then the functions 

wa(x) may always be chosen to be continuous and single-valued everywhere 

on S3 if h is a small gauge transformation. Transformations for which the 

wa(x) are unavoidably singular at at least one point on S3 are known as 

'large' gauge transformations. Such transformations can change the winding 

number n. Gauge transformations which can do this are always singular 

somewhere on S3. 

We wish the vacuum states to be invariant under small gauge transfor­

mations. Such states can be formed from members of each homotopy class 

by adding together all the members of a class: 

In) = J'Vwa(x) leiWb(X),\b Ai(n)) , (2.4) 

where IAf(n)) is some field with winding number n and the integral is over 

all wa(x) which are regular on S3. This state is clearly invariant under small 

gauge transformations. The states In) are known as the n-vacua. 

However, the In) are not acceptable as physical vacuum states because, 

since the discovery of fields such as instantons, we know that starting from 

one value of n others can be reached by quantum tunnelling in real time. The 

n-vacua are not eigenstates of the Hamiltonian. However, since the n-vacua 

are all degenerate, the Hamiltonian has the same form as that of a one­

dimensional row of points (atoms) with a particle (an electron, for example) 

hopping backwards and forwards along the line. The eigenstates of such a 

system with a displacement symmetry are 

18) = LeinO (2.5) 
n 

The states 18) are called the 8-vacua. The quantity 8 is allowed to take any 

value because each 18) is an acceptable eigenstate and an acceptable candidate 

for the ground state of the theory. Also since the 18) are eigenstates of the 

Hamiltonian, no transitions between states of different 8 can occur. The 

vacuum does not spontaneously relax to the state of lowest energy (which 

is easily seen, in the instanton dilute-gas approximation, to correspond to 

() =0). 

Let us now introduce the relation between the 8-vacua and CP violation. 

Consider the functional integral over the gauge field, starting and ending in 

a 8-vacuum. This can be written as 

l
n2 

(()I e-HT = L 'VApe-S(A")e-i9(n2-nd, (2.6) 
nl,n2 nl 

where the symbol f~2 'VAl' means a functional integral over all fields whose 

initial winding number is n1 and whose final winding number is n2. The 

phase factor e-iO(n2- n d comes from the vacuum wave-function (2.5). The 
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change in winding number n2 -- nl may be defined in terms of the total 
divergence F F, 

FP.VF~ -- 1 Fp.vF°{3 - 8P.Ka ap.v = i Eo{3p.v a a - p.' (2.7) 

where 

Kp. = Ep.v>..p (A~Ffp -- ~ jabcA~AlA~) . (2.8) 

Consider the following integral 

-- 21-d4-g- x F!:V Fap.vv - 321f2 V 
(2.9) 

-- Ljd3Snp.Kp.l-- 321f2 

where np' is the unit outward normal to the surface S bounding the four­

volume V. Let us choose the surface S to have two fiat pieces at constant 

time, joined by a cylinder in the time direction normal to each surface of 

constant time. On the walls of the cylinder we may impose Fp.v = 0 as 

a boundary condition (all the places where the fields are non-zero are well 

within the cylinder). Also, in the temporal gauge, the second term in the 

surface integral will vanish because np' is normal to the time direction on the 

walls of the cylinder. So the contribution to the surface integral from the 

walls of the cylinder is zero, and, assuming that the initial and final states 

are vacuum states (Fp.v 0), we can write 

3 
v 3f2 ( ( d x Ko -1 d3

x KO)
1f it2 tl (2.10) 

=n2 -n}, 

by the definitions (2.3) and (2.8) 

Thus the functional integral (2.6) may be written as 

l
n2 

(Ole-HTIO) = L VAp.e-S(AjA)-i9(g2/321f2)Ja':r:,FF. (2.11) 
nl.n2 nl 

Therefore, as far as the functional integral is concerned, a phase 0 in the 

vacuum wave-function has exactly the same effect as a term iO(g2/321f2) 

Jd4 x FF in the action. Under the action of parity (P) or time-reversal (T), 

the quantity FF changes sign. So the breaking of the symmetry between 
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fields of opposite topological charge v would imply the breaking of both P 

and T. Since the theory would still be invariant under CPT, the breaking of 

T-invariance implies the presence of CP-violation. Also, under T, 10) ..... 1-0) 

and if 0 is not zero or 1f the vacuum state is not an eigenstate of T. 

So, we have seen that the O-vacuum leads to the introduction of an effec­

tive iOFF term in the Lagrangian and, since fields of non-trivial topological 

charge v such as instantons and allti-instantons do exist, such a term poten­

tially leads to strong CP violation. However, there are other possible sources 

for an F F term. For example, if the quark masses from the electro-weak 

sector are complex, a chiral axial U(l) transformation is required to make 

the mass terms real. Through the chiral anomaly this results in the appear­

ance of a term in the Lagrangian proportional to iArgdetMFF, where M 

is the original quark mass matrix. The effective coefficient of FF therefore 

becomes 

{j == 0 +ArgdetM. (2.12) 

Experimentally B ~ 10-9 • Since both 0 and ArgdetM are arbitrary, and 

most likely of order unity, this experimental absence of observed CP violation 

is termed the strong CP problem. This paper is primarily concerned with 

the O-vacuum structure and, when we wish to refer to other sources of CP 

violation, we shall refer to them as sources of explicit F F terms in the QCD 

Lagrangian. We must consider these other sources at times since the solution 

to the strong CP problem must involve the neutralization of all potential 

sources of CP violation and not just a modification of the consequences of 

the O-vacuum structure. 

At this stage, before proceeding further, it may be useful to mention 

two points which, although not difficult, may not be well-known. Firstly, 

we have grouped states which were gauge transforms of the classical vacuum 

into homotopy classes labelled by the winding number. From these states of 

definite winding number, the O-vacuum were constructed. What about fields 

that are not gauge transforms of the classical vacuum? Can winding number, 

or analogies of the In)- and 10)-states be defined for such fields? The answer is 

yes. The concepts can be extended to a more generalized non-integer winding 

number which is invariant under small gauge transformations and changes by 

an integer under large gauge transformations. Furthermore, the requirement 

that physical states be invariant under small gauge transformations is true 

in general, and not just for pure gauge states. This means that analogues 
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of the B-vacuum can be constructed for non-vacuum fields. However, for the 

sake of simplicity, we shall not go beyond the semiclassical approach to QCD 

which is sufficient for our needs. 

Secondly, the construction of the B-vacua depended on the distinction 

between large and small gauge transformations. This distinction depends 

upon the topology of three-space. For example, if space were discrete, or had 

'holes' in it, the concept of winding number will be meaningless and there will 

be no distinction between large and small gauge transformations. All states 

in this space will be combined with the same phase, and there will be no 

scope for putting an angle B into the vacuum wave-function. The solutions 

to the strong CP problem discussed in this paper require the inclusion of 

the vacuum angle B and hence require space to be continuous and to have 

no boundaries. This assumption may be non-trivial (and, presumably, the 

two-dimensional string theory result also depends crucially on the continuity 

of space). 

Some readers may be slightly surprised that we wish the B-vacuum struc­

ture to exist. It may be thought that removing the B-vacuum structure 

would increase the chances of a solution to the strong CP problem since the 

B-vacuum leads to a source of CP violation. For some proposed solutions 

(such as the soft CP-breaking J;Ilechanism [8,9] which requires B to be effec­

tively zero) this would be true. However, we wish to construct a modified 

B-vacuum which conserves CP, and also cancels off potential CP violation 

from an explicit FF term in the Lagrangian. We wish to use the existence 

of the B parameter to enable a solution to the strong CP problem, and not 

as a contributing factor to the problem. 

3. 	The consequences of non-invariance under large 
gauge transformations 

Let us begin this section with an explanation in clear physical terms of the 

essential role played by invariance under large gauge transformations in the 

physics of the standard QCD vacuum. In Fig.I, we give a schematic repre­

sentation of the standard QCD vacuum state, The winding number n runs 

from -00 to +00. The n-vacua are all degenerate, and under large gauge 

transformations the winding number changes by an integer. A representative 
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of a gauge transformation that shifts the winding number by +1 is given by 

2x p2 2ipu.x 
(3.1)Gdx) = Xl + p2 + Xl + p2 ' 

where p is arbitrary (reflecting the classical scale invariance of QCD). A 

representative of transformations that shift the winding number by m can 

easily be constructed 

Gm (x) (Gdx))m. 	 (3.2) 

One will notice from the figure that the Hamiltonian H is invariant under 

n -+ -n and so H is invariant under P and T. Why then, one may ask, is the 

eigenstate IB) not invariant under P and T. One answer to this question is 

because n runs from -00 to +00. Consider the analogy of a particle moving 

in a one-dimensional array, similar to the n-vacua. The particle can travel 

in one direction forever with fixed momentum because there is nothing to 

reflect it back. It is the same with the B-vacuum. A CP-invariant state 

would equally contain IB) and I-B}. However such a state is not a physically 

acceptable eigenstate of the QCD Hamiitonian. The problem is that because 

of invariance under large gauge transformations no operator has a non-zero 

matrix element between states of different B. Hence, even if the Universe were 

initially in a state IB} + I-B) (with Bnon-zero), after one measurement of for 

example the electric dipole moment of the neutron, the value of B would be 

fixed at either B or -B for all subsequent measurements. So, despite the fact 

that the Hamiltonian is invariant under CP, invariance under large gauge 

transformations forces the physical states to be CP non-invariant because 

transitions between different B-vacua are forbidden. 

Let us now give the simple proof of why invariance under large gauge 

transformations forbids transitions between different B-vacua. Consider a 

large gauge transformation GI that shifts the winding number by +1 i.e. 

GI In} = In + 1). From the definition (2.5), we have 

GliB) e- i8 IB}. 	 (3.3) 

The Hamiltonian being gauge-invariant implies 

GIH = HGll and also Gle-HT = e-HTGI . (3.4) 
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Thus 
HTG1(<1>1 e-HT IB) (<1>1 G11e­

= (<1>1 Gt e-HTGliB) (3.5) 

= e- i (9-q,) (<1>1 e-HT 

and hence the matrix. element will vanish if B is not equal to <1>. 

If we relax the condition of exact invariance under large gauge transfor­

mations, two related consequences are possible. Firstly, transitions between 

different B-vacua may be possible and so a B-vacuum may relax to one of low­

est energy 10 0) which is CP-conserving (or B= 0 if there is an explicit F F 
term in the Lagrangian). Secondly, the eigenstates of the new Hamiltonian 

HI may be eigenstates of CP, and the expectation value of a CP-odd oper­

ator vanishes in an eigenstate of CPo To show this, let 1'lfJ) be an eigenstate 

of CP with eigenvalue 1] = ±1, and let 0 be a CP-odd operator. That is, 

O(CP) = -(CP)O). Then it follows that 

(1JlIO ('lfJIO(CP) 1] 

- (CP)OI'lfJ) 1] (3.6) 

=- OI'lfJ) 1]2 = - OI'lfJ) , 

since 1]2 = 1. So we understand the reason why operators that are CP-odd 

can have non-zero expectation values in the B-vacua is because these states 

are not eigenstates of CP. 

Let us consider first the relaxation mechanism. A possible problem with 

this concerns Lorentz invariance should 0 be allowed to change in time but 

not in space. Also, it will be very difficult to think of how B may relax to 

zero should it have to change everywhere simultaneously. So, the question 

of whether 0 must be constant over space is of crucial importance. In stan­

dard QCD, 0 is constant in space as a result of invariance under small gauge 

transformations and we must re-examine the argument to see whether the 

relaxation of invariance under large gauge transformations permits any loop­

holes. A proof of why 0 must normally be constant in space is as follows 

[19]. 
Imagine a volume 2V of QCD vacuum in the state and consider it 

in two pieces, each of volume V. Now a state can be written as 

In) = Jdm In - m)2' (3.7) 
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where the product of the two kets represents a state where one volume con­

tains winding number m and the other contains n - m. (The winding number 

can be written as the integral of a local density, so this division of the vacuum 

into two pieces with their own winding numbers does make sense. Also, while 

n is an integer, m need not be.) This allows us to write the state IB) as 

in9 
= I: e ln) 

n 

Lein9 Jdm Imh In - mh {3.8} 
n 

im9 i=L Jdm Im)1 e 1n - ml" e (n-m)9. 

n 

Changing the sum over n to an integral (by allowing n to be continuous 

because the volume 2V is itself only part of a bigger volume), we can write 

10) dn ein9 
ln)J 

im9 im l (3.9)
=Jdme Jdm' e '9 (where m = n - m) 

IBh· 
If the volume 2V is in the state 10), then each of the subspaces 1 and 2 is 

also in this state. This explains how a global object like 0 can have a local 

effect; every subspace of the total volume is itself in the state B. 
What prevents different subspaces having different values of O? This, as 

we have mentioned, turns out to be invariance under small gauge transfor­

mations. Let us suppose that one of the angles in one of the subspaces can be 

different from 0, say <1>. Then let us consider a large gauge transformation G~l) 
which takes the state In)} to the state In + 1)1 but leaves the other half of the 

vacuum unaffected. Under GP) the state 10)1 goes to e-i910)1 and 1<1»2 is un­

changed. Similarly, let us define G~i so that G~i In)t Im)2 In)llm 

Then G~i IB)1 1<1»2 is eiq, 10h 1<1»2' Now let us consider the gauge transforma­

tion GP) G~i acting on one of the n-vacua of the total system 

G(1)G(2) In) = G(l)G(2) Jdm In - m)21 -1 1-1 

=Jdm + I}. In - m - 1)2 

Jdm' Im/)lln m/)2 
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Since the state In} is unchanged, GP) G~i is a small gauge transformation 

for the whole system (the transformation has merely shifted winding number 

across the boundary between the two subspaces, without changing the total). 

Now IB} is constructed out of the n-vacua and so the vacuum state of the 

total system must be invariant under all small gauge transformations. Hence 

GP) G~~ IB} == B. But, if IB} == IB)lldJ)". we have 

G(1)G(2) e-i (9-t/J) IBh
1 -1 == GP) G~i IB}l (3.11) 

and so the total vacuum state is invariant only if B ¢. Therefore, the 

requirement of invariance under small gauge transformations demands that 

all subspaces should have the same value of B as each other. The quantity B 
cannot be a function of position. (We note in passing that this does not apply 

to the coefficient of an explicit F F term in the Lagrangian; the coefficient of 

such a term can be position-dependent as happens, for example, in the case 

of an axion field.) 

How is this proof that B must be constant in space affected if we relax 

the condition of invariance under large gauge transformations? We are con­

sidering a truncated theory of only the light states (the QCD fields). This 

truncated theory is not invariant under large gauge transformations because 

large gauge transformations mix. the light and heavy states. If this mixing is 

not included, the equivalent of the n-vacua (described in terms of only the 

light states) will not be degenerate although the energy differences will be 

suppressed by powers of the Planck mass and therefore very small; the trans­

lational symmetry will be lost, and a B-state (if one considers such a state 

despite the fact that B is no longer a good quantum number) will not change 

by only a phase under a large gauge transformation. Without a particular 

detailed physical picture for what is happening during the mixing caused by 

a large gauge transformation, it is perhaps difficult to be more specific; the 

discussion of what happens under a large gauge transformation necessarily 

requires the inclusion of the massive states and this we do not know how to 

do. We shall simply say that the proof is no longer applicable (the step (3.10) 

would appear to be most suspect) and the problems with regard to Lorentz 

invariance may perhaps be circumvented. The vacuum may be able to relax 

to a CP-conserving minimum energy state via bubble formation, the rate of 

relaxation being related to the degree of violation of exact invariance under 

large gauge transformations in the truncated theory. 

12 

Let us now turn to consider what is necessary to ensure that the eigen­

states of the Hamiltonian Hi are eigenstates of CPo This can be done by 

adding a term Ef(n) to the normal QCD Hamiltonian H, where f(n) is an 

even function in n (to make sure that H' commutes with CP) and non­

constant (to make sure that all eigenstates of H' are eigenstates of CP). The 

non-constancy of f(n) implies that large gauge invariance has been broken. 

A simple example is given in Fig~2 where it is clear that the 'particle' will 

be reflected from either end and hence the eigenstates will equally contain 

B and -B. The eigenstates of such an H' will be either even or odd under 

CP (remember that H was CP-invariant but the physically acceptable eigen­

states were not eigenstates of CP only because H was a constant function 

of n). If the Universe is in an eigenstate of H', then CP violation from the 

(truncated theory) vacuum wave-function will not be observed. The vacuum 

wave-function will be of the form [19] 

10) == [:dB g(B) IB) , (3.12) 

where g( -B) == ±g(B). The integral over () is from -71" to 71" because the 

state IB + 271") is the same state as IB). SO the expectation value of a CP-odd 

operator 0 is 
(OJ 010) =JdB'dB g$(B')g(B) (()'IO 

(3.13) 
0, 

since g$(B')g(B) is even when Band B' change sign, while (B'IOIB) is odd. 

Will CP violation still arise if there is an explicit F F term in the La­

grangian? The answer is no. The addition of a term like f(n) to the Hamil­

tonian automatically removes all CP-violation. Suppose that a CP-violating 

angle 0E appears in the action. This has precisely the same effect on the 

physics as a phase BE in the vacuum wave-function. So the matrix element 

of an operator {) between the states IB) and IB'), evaluated with an angle 0E 

in the action, is 

OIB) = 0(0' + BE,B + OE), (3.14) 

where O(B', B) is the matrix element of 0 evaluated when the action is CP­

even (BE 0). In particular, (3.14) will apply to the Hamiltonian. So the 

eigenstates of a Hamiltonian with the 0EFF term in the action will just be 
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those of the old Hamiltonian, with fJ replaced by 0 + fJE: 

10)' I: dfJg(() + fJE) IfJ) (g(fJ + g(fJ)) . (3.15) 

Hence, if 6 is a CP-odd operator, 

o = I:d()'dfJ g* (()' + fJ E)g( fJ + fJE) (fJ'IOlfJ) 

=L:dfJ' dO g*(fJ' + fJE)9(fJ +OE)O(O' + OE,fJ +OE) 

= I: dO'dfJg*(O'}g(fJ)O(fJ',fJ) (as the theory is periodic in 0) 

= 0 from equation (3.13). 
(3.16) 

The vacuum wave-function has changed by precisely the correct amount to 

cancel off the external CP-violation. 

The above result is very encouraging but· is such a function f (n) physi­

cally reasonable? One problem is that terms such as Inl and n2 are non-local. 

(The only function of n that turns out to be local and invariant under small 

gauge transformations is n itself. The inclusion of such a term has been 

shown to lead to CP-conserving physics [19] but we shall not consider that 

solution here.) However, that problem may not really be relevant. The full 

string theory is (most probably) invariant under large gauge transformations 

and the energy of states related by large gauge transformations should be 

equal. The reason our truncated Hamiltonian H' is different is because we 

are describing it only in terms of the light fields and hence some contributions 

are not being included. These terms that are not included are functions of 

the massive string states and we do not know what they are. Hence our phi­

losophy is that H' is not the result of a function f( n) of the QCD fields being 

added but rather the result of some function of the massive string states not 

being included. All that is necessary is that H' not be constant in n and be 

invariant under n --lo -no We consider this not to be physically unlikely: the 

more the winding, the greater is perhaps the mixing between the light and 

massive states and hence the greater the energy contained within the terms 

that are functions of the massive states; also the energy is perhaps likely 

to depend on the magnitude of the winding and not on its sign, and hence 

H' could remain symmetric under n --lo -no Thus we consider it possible 

that the H' resulting from the neglect of some, as yet unknown, functions of 

the massive string states will have the same CP invariance properties as a 

Hamiltonian to which an even fUllction of n has been included. 

To be honest, we must conclude that the results of this section are far 

from satisfactory. That the physics of a truncated theory may be of relevance 

to the strong CP problem appears reasonable. That a truncated theory is not 

invariant under large gauge transformations appears interesting. However, 

showing that the assumption of these facts alone leads to a natural solution 

to the strong CP problem appears to be difficult; there is just too much that 

is unknown. The elements of a solution seem to exist, and it must just be 

hoped that these elements survive a greater understanding of the full physics 

involved. Anyway, let us procede to discuss some other aspects of the solution 

to the strong CP problem proposed here. 

A natural question some may ask is how do these solutions to the strong 

CP problem affect the U(1) problem; for example, does the 1]' remain massive 

and is there any need for a physical light pseudoscalar state to ensure CP 

invariance. The chiral Ward identities of standard QCD [20,21] demand that, 

if the quarks all have non-zero current masses and 8 :/= 0, a light pseudoscalar 

state must couple to F F if the theory is to be CP-conserving (the chiral 

Ward identities were a major problem for the proposed long-range interaction 

mechanism [12,13]; the 1]' would remain massive but the existence of a new 

light pseudoscalar state would be demanded if the mechanism were realized 

physically) . 

Let us first consider the relaxation possibility. In this case the physics 

is clear; the theory is CP-conserving and there is no need for a new light 

state. The phases of the current masses (after appropriate chiral rotations), 

the phases of the quark condensates, and 8 will all be effectively zero, This 

is a CP-conserving theory. The 1]' mass corresponds to the energy associated 

with fluctuations in the phases of the quark condensates with respect to 8 
and the 1]' will remain massive. Briefly, the solution to the problem is 

unaffected, and the chiral Ward identities satisfied, because the ground state 

of the theory is equivalent to standard QCD with 8 0 (fJ = -ArgdetM). 

The case where the vacuum state is an eigenstate of CP, and we average 

over values of fJ with opposite sign, is only slightly more complicated. For 

each fJ-state, the U(1) problem is solved (the 1]' is massive [22,23]) but there 

is CP violation. However, upon averaging over fJ-states, the theory is CP­
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conserving. Hence, briefly, the 1J' is massive because it is massive in each 8­

state before the averaging, and no light pseudoscalar state is required because 

there is no modification of the chiral Ward identities within each 8-state 

before the averaging; the CP.-violating effects cancel due to the averaging of 

contributions with opposite sign and not because of any light state coupling 

toFF. 

Finally, are there any other phenomenological problems related to the 

ideas discussed in this paper? Without a specific detailed model for how 

invariance under large gauge transformations is violated, it is difficult to de­

termine whether transitions between different 8-states would be sufficiently 

rapid for CP-conserving physics to be observed experimentally, and we shall 

leave such matters for future investigation. However, since it is only the 

non-perturbative vacuum structure that is being modified, there may be no 

significant phenomenological consequences other than for the strong CP prob­

lem. The perturbative structure, renormalizability, unitarity and energy con­

servation will not be affected, and chiral symmetry breaking (and possibly 

confinement) may be affected quantitatively but probably not qualitatively. 

The only direct evidence for the role of fields of non-trivial topology involves 

the r/ mass and the U(l) problem, and this has already been discussed; 

the existence of instanton-like solutions is independent of the existence of 

the a-vacuum (for example, on a lattice, instanton solutions exist but the 

a-vacuum does not exist since there is no distinction between large and small 

gauge transformations). Practically speaking (though perhaps not concep­

tually), invariance under large gauge transformations would appear to be 

almost irrelevant to all aspects of QCD other than the strong CP problem. 

There would appear to be no experimental tests of invariance under large 

gauge transformations and this in itself may be sufficient reason for the ideas 

expressed in this paper not to be immediately rejected out of hand without 

good cause. 

4. Conclusions 

Motivated by the two-dimensional string theory result that a truncated the­

ory of only the light states is invariant under small gauge transformations 

but not under large gauge transformations, we have described in two differ­

ent, but related, ways how the relaxation of the condition of exact invariance 
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under large gauge transformations could lead to a solution of the strong CP 

problem. The investigation has assumed throughout that the vacuum struc­

ture of the truncated theory is relevant to the strong CP problem. This 

assumption was made because the results appear somewhat successful, be­

cause the strong CP problem is a problem related to the QCD fields, and 

because the non-perturbative vacuum structure to be derived from full string 

theory is not known. 

This work must be considered as preliminary and incomplete since noth­

ing has been proven nor made quantitative, and indeed the assumptions un­

derlying the paper may themselves be suspect. However, what has been 

demonstrated is that an arbitrarily small relaxation of the condition of in­

variance under large gauge transformations can potentially have a profound 

effect on the vacuum wave-function and lead to CP-invariant physics. If the 

strong CP problem is to be taken as a fundamental problem for the standard 

theory of the strong interaction, then perhaps it is an indication that some 

minor but fundamental change is needed in the construction of the QCD 

vacuum and that at least one of the basic assumptions underlying that con­

struction is flawed; the theory of the strong interaction may yet have some 

surprises in store and the solution to the strong CP problem may be more 

subtle than hitherto imagined. The truncated low-energy theory may also 

have modified quantum mechanics and this may lead to mechanisms beyond 

those discussed for the mixing of 8-states, but the general consequences of the 

relaxation of invariance under large gauge transformations will be the most 

crucial ingredient should the solution to the strong CP problem lie along the 

lines described in this paper. 
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Figure Captions 

Fig.1 A schematic representation of the standard QCD vacuum. E(n) is the 

energy of a state of winding number n. 

Fig.2 A simple example of a modification of the standard QCD vacuum that 

would lead to CP-conserving physics since the eigenstates of the Hamiltonian 

will be eigenstates of CPo 
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