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WZNW models covariantly coupled to Toda theories are constructed using the method 
of conformal Hamiltonian reduction. These models have both Kac-Moody and WN 
symmetry. The associated hierarchies of integrable nonlinear evolution equations are 
found and turn out to be covariant generalized KdV hierarchies. 
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Introduction 

. In [1] Drinfeldand 5;okolov (DS) described the Hamiltonian reduction of integrable 
systems of Lie algebra valued functions to integrable systems with scalar fields. This 
is done by constraining the fields corresponding to simple roots· in the negative Borel 
subalgebra to non-zero constants, and the fields corresponding to negative non-simple 
roots, to zero. The reduced phase space is constructed from this first class constrained 
manifold by dividing out the local gauge invariance. The Hamiltonian structures of the 
original system reduce to the so called Gelfand-Dickii (GD) brackets on the reduced 
phase space. 
If the above procedure is applied to the Lie algebra sI2 then the resulting (scalar) inte­
grable system is the well known Korteweg de Vries (KdV) hierarchy the second (GD) 
Hamiltonian structure of which is the Virasoro algebra. More generally, it has been 
shown [2,3,4] that the second GD bracket for SIN is the WN algebra, which has also 
been studied in the context of conformal field theory [5,6]. On the level of physical 
models, the above procedure can be seen as a reduction of the WZNW model to Toda 
theory, which indeed has WN symmetry [4,7,8]. 
Recently it was realized that the DS reductions are not the only reductions leading to 
conformal algebras. In [9] Polyakov considered a reduction of sI3 where in contrast to 
[1] he constrained the field corresponding to the non-simple root at + a2 to unity, and 
the fields corresponding to the simple roots to zero. He showed that this leads to a 
bosonic counterpart of the N==2 algebra. In [10] Bershadsky studied this algebra and its 
quantization in detail, and found that it was not likely to have unitary representations. 
More recently, Bakas and Depireux, using the self-dual Yang-Mills eqs., found the hier­
archy of evolution equations associated to this specific constrained system [11]. 
In [12] it was shown that in fact there is a conformal reduction associated to every sI2 

embedding into 9 (the DS and Polyakov-Bershadsky reductions are special examples of 
this). Furthermore the structure of the reduced algebras is determined in quite some 
detail by the branching rules of the s12 embedding. For some representative examples 
the algebras were constructed explicitly. 
In this paper the reductions associated to the so called 'product'-embeddings N M -4 

N M are discussed in rnore detail. In section 1 we briefly review the results of [12] rele­
vant to the present paper. In section 2 the physical models which underly the reduced 
conformal algebras associated with the aforementioned embeddings are described. In 
section 3 we switch our point of view and derive the hierarchies of non-linear evolution 
equations in Lax form of which the reduced conformal algebras are the second (GD 
like) Hamiltonian structure. These hierachies turn out to be covariant versions of the 
generalized KdV hierarchies constructed by DS [1]. 

Reduction 

In this section we briefly review some results of [12]. Consider the KM current algebra 

(1) 

for currents .:J == Ja(x )10,' where 10, are the generators of some simple Lie algebra 
9 (which we take to be SIN for convenience), ftc are the structure constants and 
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gab Tr(Ialb). It was shown that to every embedding of Sl2 into 9 there is associ­
ated a reduction of this algebra leading to a conformal algebra. 
If T == {T3, T+, T_} is an Sl2 subalgebra of 9 then the adjoint representation of 9 decom­
poses under T into Sl2 multiplets ofspinjk k == 1,2, .. ,p. This means that the current 
J can be written as 

:lex) == L
P 

L
Jk 

Uk.m(x)Tk.m 
k=l m=-Jk 

where Tk,m Egis the element of the Sl2 irrep. with spin jk and grade m (take TI,I 
T+; T1,o == T3; T1,-1 == T_). 

We now constrain the algebra by putting UI,-I(X) to 1 and all uk,m for m < 0 to O. 

This set of constraints always generates enough gauge invariance to bring the constrained 

currents into the form 


:lfi~(x) == T_ + L
P 

Uk,k( X)Tk,k (2) 
k=l 

This gauge is called the highest weight gauge (HWG) since the Tk,k are the highest 
weight vectors of their multiplets. 
On the set of currents of the form (2) there exists a Poisson bracket which is induced by 
(1), the so called Dirac bracket. The reduced algebra is defined to be the Dirac bracket 
algebra of the fields U k 

•
k 

( x). In [12] the following facts were established. 

• 	T == ~Tr( JJi~) is a Virasoro algebra w.r.t. the Dirac bracket. 

• 	 The fields Uk,k(x) are primary w.r.t. T and have conformal weights jk + l. 

Let N N denote the fundamental representation of SIN and 2j +1 the 2j +1 dimensional 
rep. of sh. The branching rule of the fundamental rep. of SIN can then be written as 

N N -t E9 N j 2j + 1 
{j} 

where the N j denote the degeneracy of the s12 rep. with spin j. 

• 	 The reduced algebra contains an Eaj SiN, KM current subalgebra. 

• 	 For every spin j occurring in the branching of the fundamental rep. the reduced 
algebra contains a W2j+1 subalgebra commuting with the KM current subalgebra. 

Note that the reduced algebra will contain as many fields as there are s12 multiplets in 
the braching of the adjoint rep. 
The DS type reductions leading to Wn algebras correspond to the so called principal 
embeddings N N -t N. The Polyakov- Bershadsky reduction of sl3 corresponds to the 
embedding 3s -t 2 + 1. The algebras considered in [13] by Romans correspond to the 
embeddings N +2 -t 2+ Nl. All these cases were considered in detail in [12]. 
In the present paper we will be concerned with reductions associated with the s12 em­
beddings under which the fundamental representation of SINM branches as 

3 




2 

i.e. the fundamental representation of SlNM branches into direct sum of N, M dimen­

sional, representations of T. The reduced algebra will have M N 2 

- 1 generators and 

contains two commuting subalgebras, being an SlN KM current algebra and a WM sub­

algebra. We will refer to this algebra as CWz.. 

In [12] the algebras C)!Vf were exlicitly constructed. The gauge fixed currents in highest 

weight gauge have the form 


(3) 

where J and Tare SlN and glN matrices of currents respectively, i.e. 

J(x) Ja(x )Ia 

ii 
T(x) Ta(x )Ia + TO(x) 

and runs from 1 to N. 
The Dirac bracket algebras cWf were found to be most efficiently summarized in terms 
of covariant variations. Namely, let h = hac x )Ia, t = to +taIa and consider the quantities 

Jgadhd(y){Ja(x), Jb(y)}Tbdy - bhJ 

Jgadhd(y){Ja(x), Tb(y)}Tbdy bhT 

Upon defining the covariant derivative D = a+ adJ , the algebras cWf can elegantly 
be summarized as 

DJ (4) 

[h, T] (5) 

-D3t + 2{T, Dt} + {DT, t} (6) 

where {.,.} here denotes the ordinary matrix anticommutator. Writing out these rela­
tions in full detail can be extremely cumbersome (see [12]) and is not very illuminating. 
In appendix A the algebra CW~ is given as well. 

Covariant Toda theories 

In this section we describe the physical theories that underly the symmetry algebras 
CW~ described in the previous section. Motivated by the case where the symmetry 
algebra is a pure WM symmetry we pick a convenient parametrization of SlNM 

where 

1 0 0 

0 1 

1 g12 glM 

g21 1
N_ =N+ = 

0 
0 0 1 gMl ... gMM-l 1 
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gl 0 0 

o g2 
(7)No= 

o 
o 0 gM 

The matrix elements of the N± and No are N x N matrices. The decomposition (7) is 
a valid local decomposition that can be extended globally throughout sINM. 

The WZNW action for 9 can be decomposed using the Polyakov-Wiegmann identity 

2 
SWZNW [glg2] = SWZNW [gl] SWZNW [g2] + Jd x J 1 J2 (8) 

where we have defined the currents 

and", = -k/41r. Clearly the WZNW actions of N± vanish, such that the total slNM 


action decomposes into a WZNW action for the diagonal blocks gi that are coupled to 

the N± by the last term in eq.(8). 

The constraints (2) are now easily implemented on both the left and right chiral algebra, 

resulting in an action that depends on No only [14] 


(9) 

Note that the number of currents on which the action explicitly depends is 2NM2 - 1, 
whereas we started with 2N2M2 1 currents and we have constrained only N(N -1)M2 

of them. Therefore there are N (N - 1)M2 currents on which the action does not 
explicitly depend, i.e. the constraints have introduced a local gauge freedom. This local 
gauge freedom can be fixed, but it will not alter the action. 
For N = 1, parametrization of gi by exp( -<Pi + <Pi-I) (<Po = <PM = 0) reduces the action 
(14) to the well known AM - 1 Toda model, which has a WM symmetry. As we will 
show, for arbitrary N, an siN symmetry will couple to this WM symmetry, giving rise 
to a covariant version of the WM symmetry, which we refered to as CW~. The field 
equations 

8_ (8+ NoNo 1 
) = [T_, NoT+ N 01

] (10) 

can be written in Lax form [8+ + A+, 8_ + A-J = 0, where 

-(8+No)No 
1 

- T_ (11) 

NoT+Nol (12) 

These equations have already been solved in [15], be it in a different context (see also 
[14]). The variation of the total Lagrangian in (9) can be written as 

(13) 

For a variation to be a symmetry (13) has to vanish. To see how this works in the 
simplest case, we again consider the case M 2, N arbitary. For this case the action 
reads 

(14) 
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where g1 and g2 are in principle glN valued lnatrices. However, due to (7) the overall 
determinant det(g1g2) 1. Nevertheless, since this corresponds only to an overall U(l) 
mode that is easily seen to decouple completely, we leave it in to avoid messy notations. 
Variation w.r.t. g1 and g2 gives the field equations 

8_ (8+g1g:;1) (15) 

8_ (8+g2g:;1) (16) 

Therefore, the original K M currents J1 and J2 are no longer chiral. On the other hand, 

the current 


is still chiral, and is also easily checked to be a symmetry of the action (14). A similar 

expression exists for J (x - ) 

The action possesses however a larger symme~ry. Differentiating (15) and (16) w.r.t. 

x+ we find 


8_ (8!g1g:;1 - 8+919:;1 J) - 0 

8_ (8!929;1 J8+929;1) 0 

From this we can construct another chiral operator independent of J. With considerable 
hindsight we take the combination 

T(x+) (J_)2 + DJ_ 

where J_ (J1 - J2 )/2, D == 8 + J, and J is in the adjoint representation. Using 

{Ja(x), Tr(929:;1)(y)} = Tr(fa929:;1)(y)8(x - y) 

it is easily checked explicitly that the Ta == Tr( faT) indeed generate a symmetry of (14). 
Crucial ingredient in the proof is the fact that the symmetry operators J and Tare 
chiral, since that automatically assures the invariance of the kinetic term SW(91]+Sw(92]' 
In appendix B the proof for arbitrary Nand M is given. 
The relation between the chiral operators J and T on the one hand, and the current 
algebras J1 and J2 on the other hand suggest that the Fateev-Lukyanov quantization 
of the WM algebras (6] can be generalized directly. In particular this would mean that 
we should postulate Kac-Moody algebra for the currents J1 and J2 and calculate from 
these the algebra of J and T. This is an interesting question which certainly deserves 
further study. 
However, for the complete quantum theory of the covariant Toda model we would be 
more satisfied if we knew the partition function. The recently discovered intriguing 
relation between the partition function of the Liouville model and the KdV hierarchy 
[16] makes room for the conjecture that a similar (covariant) hierarchy might exist 
for the partition function of the generalized Toda models. For the matrixmodels, it 
clearly requires an adaption of the usual way of dealing with the integration over the 
infinite matrices, i.e. instead of summing over the eigenvalues, some block structure 
is to be maintained. A direct construction of the associated hierarchy is still under 
investigation, it may however be interesting to note that it is possible to construct the 
covariant version of the KdV hierarchy for the product embedding along the lines of 
Drinfeld and Sokolov. 
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3 Covariant KdV hierarchies 

A crucial ingredient in the construction of integrable hierarchies is the so called Lax 
formulation 

dL
dt = [M,L]. 

where Land M are differential operators with space and time dependent coefficients. 
The reason is that it signals the existence of infinitely many conserved quantities in 
involution. In [1] it was shown that it is possible to lnap the constrained KM system to 
such a Lax system by associating to each gauge equivalence class of constrained currents 
a (scalar) Lax operator of a certain form. This map is called the 'Miura map'. 
The Miura map in the present case can be calculated as follows. Consider the differential 
eqn. 

([} Jjix}lb = 0 (17) 

where'lfJ is a 2-vector whose entries are N x N matrices and Jjix is given by (3). Since 
the KM subalgebra J acts in these reductions in the adjoint representation we nlust let 
J act on 'lfJi, also in the adjoint rep. (see eq.(5) and [12]), i.e. J.'lfJi, = [J, 'lfJi,] = -adJ'lfJi. 
Eliminating the component 'lfJl, eq.( 17) reduces to 

The Lax operator is then L = D2 - T which is a covariant version of the KdV Lax 

operator. L is invariant under gauge transformations. 

The covariant derivative D is a derivation, i.e. 


D(AB) = (DA)B + A(DB) (18) 

The operator D has a formal inverse D-1 within the algebra of pseudo-differential 
operators with matrix coefficients. The first few terms of D-l are 

(19) 

It is easily checked that DD-1 D-1 D = 1. This means that D-l D(AB) = AB. Using 
the derivation property of D and on defining C (DB) we find 

D- 1(AC) = AD-tC - D-1((DA)D- t C) (20) 

Iterating this equation we find the following permutation rule 

00 

1D-1 A I) _1)i(DiA)D-i - (21) 
i=O 

which is identical to the one for a-I. 
From these considerations we find that we might as well work with the algebra of 
covariant pseudo-differential operators. This will simplify calculations drastically and 
also reveals more structure. 
We found above that the Lax operator associated to the 2N ~ N2. reduction is L 
D2 - T. Using (21) we can determine the formal root of this operator. It reads 

2 1 1 
L1

/ = D - 2,TD-1 + 4(DT)D-2 + .... 
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Using (19) one can easily check that L 1
/ 

2 in terms of ordinary differential operators is 

L 1/ 2 1 1 = 8 +ad} - 2T8-1 + 4(T' + {ad}, T} )8-2 + ... 

which indeed squares to L = 82 + 2ad}8 + (ad~ +adJ' - T) D2 T. 
The hierarchy of evolution equations is given by 

(22) 

where the + means that we are to consider only the positive power part of L 2k+1/ 2 (w.r.t. 
the covariant derivative). Ofcourse, for this hierarchy to be anywhere near completely 
integrable, the different flows must commute, i.e. 

d2 d2 

--L=--L (23)
dtidtj dtjdti 

We will now check if this is the case. 

It is not difficult to show [lJ that if eq.(22) holds then also 


(24) 

U sing this equation we find 

(25) 

Therefore 

where we used the Jacobi identity. Using 

it follows that 
[( Li/k)+, Lj/k]+ = [( Lj/k)+, (Li/k)_]+ 

Inserting this into eq.(26) we indeed find eq.(23). 
The first two equations of the hierarchy are 

- DT (27) 

~(D3T) - ~{DT, T} (28) 

while the connection components J do not evolve w.r.t. any time, i.e. 

dJ 
-=0 
dtk 
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This can be seen as follows. The Lax eqn. (24) was so constructed ([1]) that its right 
hand side is a differential operator of order O. However, the left hand side has in the 
covariant case order 1 which means that the coefficient of the order 1 term must be 
zero. This coefficient is exactly 2d( adJ ) / dt2k+I. 
Obviously the hierarchy constructed above is a covariant generalization of the KdV 
hierarchy. If again we write T = TO + Ta Ia then eq.(27) becomes 

dTo 
(29) 

(30) 

The eqs. (28) are far more involved and we will not display them in full detail. The 
trace part however reads 

(31) 


which is the KdV equation modified by an extra term arizing from the covariant struc­
ture. Note that this equation remains different from the KdV even for J O. 
The quantities 

Hk = JTrRes(Lk/2)dx (32) 

where Res(Li AiDi) A-I are conserved quantities of the hierarchy, i.e. 

dHk == 0 (33)
dti 

In order to see this consider 
Res[ADk, BDl] (34) 

This quantity is 0 if I, k > 0 or I, k < O. The only interesting case is k > 0, I < O. Take 
1= -p where p > 0 then Res[ADk, BD-P] 0 if p > k + 1 and 

(~)(A(Dk-P+lB) + (_l)k-p(Dk-p+I A)B) (35) 
p+1 

Also note that if 

(36) 


then 

(37) 

which means that 
Tr(Dg) = TrRes[ADk,BD-P] (38) 

However Tr(Dg) = 8Tr(g) from which it follows that TrRes[AD\ BD-P] is a total 
derivative. Using this and eq.(24), eq.(33) follows. 
The first few Hamiltonians are 

~ JTO(x)dx (39) 

~ J((TO)2 + ~9abT·Tb)dX (40) 
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This program can be extended to the general case N M --;. N M without difficulty 
whatsoever. The hierarchy for N == 3 is a covariant version of the Boussinesq hierarchy. 
The reduced algebra obtained by Hamiltonian reduction of the KM current algebra has 
in this case 3N2 -1 generators. It is given in the appendix A together with the covariant 
Boussinesq hierarchy. 

Discussion and Outlook 

In this work we have studied a certain class of physical theories that are conformal reduc­

tions of WZNW models. These models turned out to be coupled WZNW-Toda models. 

The associated Hamiltonian reduction of the multicomponent (Sacharov-Shabat) inte­

grable system was shown to yield a covariant version of the so called Gelfand-Dickii 

hierarchy of which the KdV and Boussinesq hierarchies are the lowest order ones. 

The reductions studied in this paper are associated to the so called 'product embed­

dings'. Reductions associated to different embeddings (see [12]) are now under investi­

gation. In particular the so called 'sum embeddings' N + M --;. N + M.l generalizing 

the Polyakov-Bershadsky reduction, seem to exhibit some new features in terms of the 

Lax formulation of the associated hierarchies. We will come back to this in a future 

publication. 

One of the open problems is to give a classification of all reductions of WZNW models. 

There are some indications that the reductions related to Sl2 embeddings constitute all 

inequivalent conformal reductions. A proof of this statement is however lacking at the 

moment. 

Another point of interest is the Hirota bilinear formulation of the covariant KdV hi­

erarchies. The latter method seems to be relevant to the formulation of 2D quantum 

gravity in terms of matrix models. 


Appendix A 

We will give some more details on the 3N --;. N'J. reduction of Sl3N leading to the cWf" 

algebras. 

The gauge fixed currents in the highest weight gauge have the form 


J T W)

Jjix = 1 J T (41)

( o 1 J 

The Dirac bracket algebra can be calculated by the algorithm explained in [12]. Using 
the notation introduced in section 1 it reads 

2"[D2T,w] + 4[DT,Dw] + 6[T,D2w] + g[W,T2] + 2"{DW,w} + 4{W,Dw} 

3bh J Dh ( 42) 

3bt J - [t, T] (43) 

3bw J [w, W] (44) 

2btT 
1 1 

- -D3t + 2"{t, DT} + {Dt, T} + 2"[t, W] (45) 

1 5 5 1 1 3 
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1 5 5{ 3 } 5{ 2 } 3{ 2 1 3Dw W fiDw-fiDw,T -4 Dw,DT 4 Dw ,DT}-fi{DT,w}+ 

7 7 1 10 52 2
12[D w, W] + 12[Dw, DWJ + fi[w, D W] + gT(Dw)T + a(DT)wT + 

~Tw(DT) - ~{Dw T2} - ~t(DT)T ~T(DT)w - ~TwW - ~TWw + 
3 3' 3 3 3 3 

4 1 1 1 
WwT + a wWT + awTW WTw a a


where h ha, la" t = to + ta, la, and w = wO + wa, la, are associated to J, T and W 

respectively. 

Clearly, J is again a KM current algebra while TO, WO form a W3 subalgebra. From 

eqs.(43,44) it follows that Ta, and Wa, transform in the adjoint representation under J. 

This structure can be found in all algebras cwZ-. 

The Miura map for the gauge fixed currents (41) yields in this case 


L == D3 - 2TD - (DT) - W (46) 

as can easily be checked. The formal kube root of this operator is 

L 1/3 2 1 
= D - aTD-1 + a(T' - W)D- 2 + ... ( 47) 

The covariant Boussinesq hierarchy is then 

(48) 

Again one can prove that all these flows commute. The first few equations are 

dT 
DT (49)

dt1 
dW 

DW (50)
dt1 

(51) 

and 

dT 
DW (52)

dt2 
dW 1 3 4 4[--D T + {T DT} - - T W] (53)
dtz 3 3' 3' 

which is a covariant version of the Boussinesq equation. As in the case of the covariant 
KdV hierarchy the connection components J do not evolve w.r.t. any time. Note that 
the last term in equation (53) is not present in the ordinary Boussinesq eqn. since 
in that case T and Ware commutative variables. The Hamiltonians of the covariant 

3Boussinesq are again the quantities Hk JTrRes(Lk 
/ ). 
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Appendix B 

In this appendix it is proven that the generalized Toda model (9) is invariant under a 
CYV~ symmetry transformation. In fact, it will be shown that the two seperate terms 
of the Lagrangian will vary by a total derivative when acted upon by CVV~. The action 
of an infinitesimal chiral variation Rcw(x+) on No is given by 

(54) 

In particular it means that the action of CW on the current Jji:r: = T_ + 8+NoNo-l is 

given by 


This current is locally gauge equivalent to the current (2) in the highest weight gauge. 

Therefore, with equation (55) we have in a sense linearized the CW symmetry, and we 

are in a position to calculate the variation of the action. 

Using (54) in (13) we find 


bLew - Tr (Rcw(x+)(8_(8+NoNo 
1 

- [T_,NoT+No-
1
])) 

tot. der. - Tr (([Rcw, T_JNoT+Nol)) 

tot. der. + Tr (([Rcw,8+NoNo-l]NoT+Nol - 8+RcwNoT+N)-1)) 

where we have used (55). The last term is easily seen to be a total derivative as well. 
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