
IFUP-TH 52/92� 

NEW INTEGRAL EQUATIONS FOR� 
VACUUM CORRELATORS IN FIELD� 

THEORY� 

YU.A. SIMONOV� 

Dipartimento di Fisica, Universita' di Pisa, Italy� 
and INFN Sezione di Pisa, Italy� 

and� 
Institut of Theoretical and Experimental Physics*� 

Moscow, 11725Sl,-"''''- ~ , 

.' .... - ....:. :.. ; \. 

. c 



IFUP-TH 52/92� 

NEW INTEGRAL EQUATIONS FOR� 
VACUUM CORRELATORS IN FIELD� 

THEORY� 

YU.A. SIMONOV� 

Dipartimento di Fisica, Universita' di Pisa, Italy� 
and INFN Sezione di Pisa, Italy� 

and� 
Institut of Theoretical and Experimental Physics*� 

Moscow, 117259� 

Abstract� 

Stochastic quantization is used to derive exact equantions 
connecting multilocal field correlators. An explicit example for 
cp3 theory is presented and equations for gluodynamics are 
discussed. 

*Permanent address 



NEW INTEGRAL EQUATIONS FOR� 
VACUUM CORRELATORS IN FIELD� 

THEORY� 

Yu.A.Simonov� 
Institute of Theoretical and Experimental Physics� 

Moscow, 117259� 

Abstract 

Stochastic quatization is used to derive exact equations connect­
ing multilocal field correlators. An explicit example of ep3 theory is 
presented and equations for gluodynamics are discussed. 

1. One of the main problems in field theory is to define and calculate 
the nonperturbative contents of the theory, e.g. nonperturbative contribu­
tions to vacuum field correIators. To this end one needs exact equations for 
vacuum correlators containing both perturbative (P) and nonperturbative 
(NP) contributions, and some principle of separation. The general path in­
tegral for the Green's function (vacuum correlator) of course contains both 
contributions, but the functional integral over field variables calls for com­
puter simulations. The latter have provided a lot of numerical information 
on NP effects but the analytic structure of field theory like QeD and its NP 
contents is still unclear. 

One can try to exploit the Dyson-Schwinger equations (DSE) [1], which 
formally sunl up all Feynnlan amplitudes and presurnably also contain N P 
contributions. However for gauge theory with confinement (like gluodynam­
ics or QeD) DSE are not applicable because they are not gauge-invariant ­
or in physical terms - because a propagator for a single quark or gluon has 
no sense without a string connecting it to another color object. There are 
equations for gauge invariant objects - Wilson loops - the Makeenko-Migdal 
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loop equations [2]. Some progress is being done recently in this direction [3], 
but the immediate use of them is difficult and therefore one feels justified in 
looking for alternatives. 

Instead of DSE and Bethe-Salpeter equations (BSE) [4] one can exploit 
for QeD the Feynman-Schwinger representation (FSR) [5] which was applied 
to quark and gluon systems [6]. All dynamics in FSR is expressed in terms of 
vacuum field correlators and the latter should be found independently from 
some fundamental equations. Therefore the main problem is to find these 
equations from the first principles, i.e. starting from the Lagrangian. 

In this let tel' we approach the problem from another side and use the 
stochastic quantization method [7] plus cluster (cumulant) expansion [8] to 
derive exact equations for vacuum correlators, containing both P and N P 
contributions. The equations obtained are path integrals, but only in quan­
tum mechanical sense (over trajectories of field quanta) and several ways of 
treating those integrals can be used [9]. 

The plan of the letter is as follows. In section 2 we formally derive the 
equations for the ep3 theory. In section 3 we discuss the P expansion and 
graphical representation of the equations. In section 4 we consider the case 
of gluodynamics and propose a method to find explicit set of equations for 
vacuum correlators. A short conclusion follows in section 5. 

2. We use the Euclidean space-time and consider for simplicity the ep3 
Lagrangian 

m 2 ep2 1 9 
L = -2- + 2(8~ep)2 - 3"ep3 (1) 

The Langevin equation of the stochastic quantization method [7] is 

a 65 
8r ep(x,r) = - 6<p + 1](x,r) ::::u-(m2 

- 82)<p + gep2 +1](x,r) (2) 

where r is the Langevin tilYle, -00 < r < 00, and the stochastic source 
1]( x, T) satisfies 

< 1](x, r )1]( x', T') >= 26(x - x')6(r - r') (3) 

while all nonzero ll1ultiple averages reduce to quadratic ones (the Gaussian 
ensemble) 

Solution of (2) can be expressed in terms of the retarted Green's function 
G(x, y, T) 

ep(x,r) = I: G(x,yjr - r')1](y,r')dr'dy (4) 
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where G satisfies: 

oG- + (m2 
- 82

- gep(x))G(x, y, r) = t5(x "7 y)t5(r) (5)
OT 

In absence of constant classical solutions we can choose a retarded solution 
for G: 

2 2G(x, y, r) =0(r) < x I e(m -8 +glp)-r Iy >= 

= 0(T) !(Dz)"l/exp[-m2T - f ~ d>' +9 f cp(z(>.), >.)d>.] (6) 

where the path integral over trajectories z( A) is denoted by 

• N d4z(n)� 
(Dz)a:y = hm II (2 )2' N£ = T;� 

N-+oo n=l 1T'£ 

and boundary conditions Z(A = 0) = Yi Z(A = r) = x are implied. 
One can check straightforwardly that G written in the form (6) satisfies (5). 
Substituting (6) into (4) we obtain a nonlinear equation for ep(x, r): 

ep(x, T) = 

r-r dr'dy(Dz)a:yexp[-m2(r _ r') -iT Z2(A) d)" + 9 r'" ep(Z(A), A)dA]1](y, r') (7)
10 T' 4 j.,., 

Eq.(7) detlnes a stochastic process ep( x, r) through the Gaussian stochas­
tic source 7]. The physical quantities are obtained from ep(x, r) by averaging 
over TJ and taking the lilni t r -+ 00 [7]. E.g. the quadratic field correlator 
(Schwinger function) is 

< ep( x )ep( x') >vac== liln < ep( X, r )ep( x', f) > (8).,.-.,.-+00 

where angular brackets on the 1.h.8 ilnply vaCUUln expectation value in 
the usual sense of field theory (e.g. for Heisenberg operators or in the path 
integral forrnalism) while tlle same brackets on the r.h.s. luean stochastic 
average over a Gaussian eselnble of TJ(x, r). 

Now using eq.(7) for cp( x, r) and nlultiplying by ep(y, f) etc. we can obtain 
a set of equations for correlators. The first one results from averaging both 
sides of (7) 

< <p(x,r) >== iT dr'dy(Dz)a:yK(r,r' ) < 7](y,7·.I)F(r,r' ) > (9) 
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where 

Z2(,\)
K(r, r') == 8(r - r')e:vp[-m2(r - r') - iT 

--d'\]
4 

, (10) 

F(r, r') == ezp(+9 f ",(
T'

z(A), A)dA) 

On the r.h.s. of (9) there enters a new quantity < 77CP(Zl) ...CP(Zk) >, which 
can be also deduced fronl (7), e.g. 

< cp(x,r)7](u,t) >= loT dr'dy(Dz)zyK(r,r') < 7](y,r')7](u,t)F(r,r') > 
(11) 

In a similar way we obtain a correlator 

. < ",(z, r )",(z', f) >= f dr' [ df'dydy'(Dz )z.(Dz')z,.,K(r, r')K(f, T') x 

x < "l(y,r')"l(y',r')F(T,T')F(r,r') >(12) 

The generalization to higher-order correlators is straightforward. 
To obtain a system of equations for < cP >, < CP"l >, < CPcP >, ... we have 

to express the averages on the r.h.s. of (9,11,12). This can be done using the 
generating functional 

<1>( J) =< F( r, r')F(T, r')e:vp I d4udtJ(u, t)"l(Y, t) > (13) 

Applying to it the cluster expansion (8] we have 

<P(J) = ezp ~ ~! «: (9 I ",(A)dA + 9 I ",(.~)dX + I JTJdudt)n » (14) 

The double brackets denote as usual the cun1ulants, defined in the standard 
way [8,10] 

« 1:2 »=< 12 > - < 1 >< 2 > 

~ 123 >=< 1:2:3 > - < 12 >< 3 > - < 13 >< 2 > - (15) 

< 1 > < 23 > +2 < 1 > < :2 >< 3 >� 

Differentiating (14) in J(u, t) we express a generic avera.ge of the fOrIn� 
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in terms of "elementary" averages < <p >, < <P1] >, < <pep > etc. We list 
necessary fonnulas in the Appendix for the convenience of the reader. 

Using these formulas we obtain equations for the lowest correlators 
< <p >, < <P1] >, < <pep > Eqs.(9),(11),(12) where on the r.h.s. one makes use 
of expansions (A12) of Appendix for the quantities < TJF >, < 1]1]F > and 
< 1]TJFF >. In principle one obtains an (infinite) exact system of coupled 
equations for all correlators, containing both perturbative and nonpertur­
bative effects. To solve the system the simplest approximation is to ne­
glect all higher order correlators. We postpone discussion of this approx­
imation till the last section, and now present the resulting equations for 
< <P >, < <P1] >, < <pep > which we call a "Gaussian approximation" for 
obvious reasons. 

< <p(x, r) >= 

.,. dr'dy(Dz)zJlK(r,r') rT 

dAg < 1](y,r')<p(z(A), A) >< F(r,r') > (16)
/.o }T' 

< <p(x,r)1](u,t) >= 2!(Dz);xuK(r,t) < F(r,t) > + /.'" dr'dy(Dz);xyK(T,T') x 

! dAg < 1](u,t)<p(z(--\),'\) > L~ dA'g < 1](y,r')<p(Z(A'), A') >< F(T,T') >(17) 

< <p(x, T)<p(x, f) >= 

f dr' [ df'dydjj(Dz )z.(Di)~iiK(r, r')K(f, r') X 

l[< 'I/(y, r')([ <p(z('x), 'x)d'x + [ <p(i('x'), N)dN) > +(18) 

< 1](y,i')( rT 

<p(z('\),A)dA + J.'f <p(z('\'),'\')d/\') >] < F(T,T')F(r,i') > +
}T' 1f'

21 dT'K(T,r')K(r,T')dy(Dz)zy(Dz)~y < F(T,T')F(r,T') > 

where K, F are defined in (10) and we have for < F >, < F F > in the 
Gaussian approximation (i.e. olnitting all higher order correlators) 

< F(T,T') >= eXP[91~ < <p(Z(A), A) > dA + 

~ [ d,X [ d>.' ~ <p(z('x), 'x)<p(z(N), N) ~] (19) 
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and 

< F(r, r')F(r, r') >=< F(r,r') >< F(f,r') > 

ea:p{g2 { d>' { d>'" <t:: cp(Z(>'), >.) > cp(Z(>"), >./) >} (20) 

where for < F(r,r') > one should replace in (19) z('\) ~ z('\). 
Equations (16-18) with definitions (19-20) are a minimal closed set of 

equations for correlators < <P >, < ep11 >, < epep >. 
To conclude this section we simplify the last term on the r.h.s. of (18), 

using the fact that it can be written as 

/ dy < x IKF I y >< y IKF Ix >=< x IKFKF I x > 

For r = T one obtains for this term 

(21) 

where we have defined 

Note that in the aSy111ptoticai regime, when one drops dependence on ,\ 
in ep(z, ,\), we have P ~ F, 

3. Perturbative expansion of Equations (16-18) 

We expand systelnaticcilly in powers of 9 the r.h.s. of eqs. (16-18). To 
the lowest order we get 

< <P >0= 0;< <PTJ >0= /(Dz);r:uK(r,t), (23) 

and using (22), 

(24)� 
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A simple calculation yields: 

4 
= (Dz) I((r t) = f d p eip(:I:-u)-(p2+m~)(T-t) (25)G0- ~u, (211")4 

and hence 

(26) 

The last expression tends to the free Green's function in the limit T -+ 00 

as usual in the stochastic quantization Inethod [7]. 
In the next order we have 

(27) 

where we have used a siInple decomposition 

(28) 

Thus the limit of T -+ 00 of (27) corresponds to the lowest order tadpole 
diagram. 

Keeping only < 'P >1 in the last term on the r.h.s. of (18) we obtain 

Expanding last equation in powers of 9 we obtain ()11 infinite set of dia­
grams. 

Note that the instabili ty of the vaCUUIll ill our l1lodel leads to the diver­
gence of < 'P >, 9 < 'P > > m 2 , which in turn leads to the divergence of the 
limit 'T -+ 00 for the conelator (29), so that the stochastic process has no 
limiting equilibrium. 
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4.The case of gluodynarnics 

The Langevin equation in this case is 

A~( x, r) = D>.F>.~(x, r) + 17~(X, r) = 

= (Di6~v - DvDIJo)Av + 171Jo(X, r) == KlJovAv + 171Jo (30) 

(31) 

one can define the "Green's function" G~~, satisfying an equation 

[; 5eA 5"", - K;~,(x, T)]G:Ux, y, T) = 5,,~5(T )5(x - y)5bc (32) 

A formal solution of (31) looks like 

(33) 

and the solution of (3D) satisfying a boundary condition AIJo(x, r < 0) = 0 tS 

one can represent KlJov as 

(35) 

It is convenient to transfonn the kernel (35) using a r-dependent gauge 
transformation [11, 7] 

(36) 

Using (30) and choosing 
A = -igDvBv (37) 

we arrive at the equation, containing only field BIJo 

(38) 
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with 1)J.' again satisfying (:31). One can generalize the Feynnlan-Schwinger 
representation (6) to the Llollabelian case [12] 

< x I exp f dA(D 25JJV - igFJ.'v) I y >= (Dz)zyPAPF x 

xexp( -~ f z2 dA . b"v + ig [ A",dz",b"v - ig f F"v dA ) (39) 

Here PA is the ordering operator for the vector potential Aa in the adjoint 
representation, while PF keeps ordering of the adjoint operator FJ.'v, The 
meaning of this ordering was discussed elsewhere [12,13]. 

Insertion of Eq. (3g) into (34) (with all AJJ replaced by BJ.') yields 

B:(X,T) = 10'" dTI(Dz)zydyKo(T,T/)tI!~:(X,Y;T,T')1):(Y) (40) 

where .Ko is obtained frorn !( in eq. (10) putting m = 0, 

z 
WJ.'v(X,y,T,T') == PAPFexp(ig r B"dz". 5JJv )exp(-ig/'''' FJ.'VdA ), (41)Jy .,.' 

The advantage of (40) as compared to (35) is that it contains in the 
kernel only fields AJ." FJ.'v and not differential operators Dw Moreover, all 
components of BJ." in contrast to AJ." tend to stochastic equilibriuln at T ~ 00 

and do not explode in this lilnit [11,7]. 
One can check, at least for infinitesimal r-independent transformations 

that BJ.'is invariant in the lilJut T --t 00 [7].-J . 
The stochastic gauge cOllstraint, associated with (3~), corresponds to the 

covariant gauge in the perturbation expansion of (44). One can expand 
(40) in powers of 9 for B == 0 and obtains automatically a series in powers 
of 1). Using (32) one recovers the usual perturbation theory for the gluon 
propagator. This is similar to a direct perturbative solution of (3a) or (31)) , 
as was done e.g. in [7]. \iVe shall present this analysis elsewhere. 

Now we turn to the derivation of equations for vaCUtllll correlators, as we 
have done it in the previoLls section for the 'P 3 theory. In what follows we 
only sketch the derivatiou, leaving final equations for the next publication. 
The main idea is to fonn on the l.h.s. gauge-invariant combinations like 
(FJ.'v(Xl)<t>(XlX2)Fpc7(x2)q>(X2' xd) where 4> is a parallel transporter 

<!>(xy) = Pexpig fv~ B"dz" (42) 
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As a result on the r.h.s. there appears a closed contour of <.I>~illi with 
insertions of 17(Yi, r). As in the previous case of the '1'3 theory one defines 
a generating functional, which obtains when one replaces in the mentioned 
above closed contour 1J(Y, r) -+ ezp J J(y, r)17(y, r )dydr. Next one has to 
calculate an average of the exponential operator 

expig J(B~dz~ - igFdr + J17dydr) (43) 

This is clone using the cluster expansion theorelll [8] now for the non­
abelian matrix-valued opera.tors [lO,14} which results in the exponential of 
the cumulants of the generic structure 

(44) 

Thus one again obtains an infinite systerl1 of integral equations for the 
cumulants (4~). In the Gaussian approximation, i.e. neglecting all triple 
and higher-order correlators of < F(l) ...F(n)17 >, one has coupled equations 
for < F(1)17(2) >, < F(1)F(2) >. We shall present an explicit derivation of 
these equations elsewhere. 

5.ConcIusions 

Combining the stochastic quantization method Parisi and Wu [7} with 
the cluster expansion a.,nd the Feynman-Schwinger representation [8] we were 
able to derive a full set of coupled integral equations for vacuunl correlators. 
It is expected that by constrLlction these equations contain both P and N P 
contributions. A perturbative expansion of these equations yields few first 
sta~dard Feynman ampli tudes, the full ana.lysis is however nlissing. The 
short-range divergencies can be regulated rrlOdifying nOIse correlators (3), 
(3f), e.g. by smearing the stochastic time 6-ful1ction [7,15], and since the P 
contents seenlS to be standard, one expects the usual renornlalization scheme 
to be valid. 

A crucial problem for the usefulness of the obtained integral equations is 
the convergcuce of the cluster expansion f01' quantities like F(r, r') in (16-18) 
or products of W~II' Eq. (~li). For QeD the Gaussian approximation is com­
patible with Monte-Carlo calculations for quarks in higher representations 
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(see [16] for a discussion), and one may hope that for the quark interac­
tions the lowest cumulant yields the dominant contribution. At the same 
time topological objects are known to destroy the convergence of cluster ex­
pansion [17] and the latter cannot be used e.g. to study chiral syrnmetry 
breaking and spin interactions in the pseudoscalar channel [18J . Happily 
enough, topological objects like instantons and magnetic lllonopoies are usu­
ally mostly classical solutious and these can be separated out in the stochastic 
quantization Inethod and in the resulting integral equations. The detailed 
derivation and discussion of those will be given elsewhere. 

The main hope of our approach is the possibility of extracting N P con­
tents of vacuum correlators. As explained in Introduction, we have few tools 
in field theory to study N P effects. Besides l\1onte-Carlo sin1ulations, one 
has Dyson-Schwinger equations which however are inapplicable to QeD in 
the confining regime, and ~digdal-r-.1akeenkoloop equations for large Nc [2]. 

The new integral equa.tions suggest a new possibility to study N P con­
tents of physical gauge-invariant correlators. 

The author is grateful to Yu.M.Makeenko for useful discussion. A large 
part of this work has been done while the author was a guest of the Max­
Planck Institut fur Kernphysik in Heidelberg. It is a pleasure for him to 
thank Prof. H.A.Weidennllleller and all the staff' of the Institute for kind 
hospitali ty. 

The author is also grateful for a cordial hospitality to prof. A.Di Giacomo 
and all the staff of the Physics Department of Pisa University, where the final 
version of the paper has been prepared. 
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APPENDIX 
The .generating functional for vacuunl averages. 

<P(J) is defined as in (Ln and (14). We start from the simplest average, 
entering the r.h.s. of (9) 

IF I) 6<P( J) I( (Al.l)< 1] y, r) (r, r >= 8J(y,7') J=O,F(T,T')=l 

From (14) one readily obtains 

00 1 8 
(ALl) = ~ n! 5J ~ (g f <pd>' + f J"1t ~. < F(r,r' ) >= 

2 

= {< 9 ! <pd>' o1](y,rl) > +~ <! cpd>' ! cpd)..'TJ(Y, r') > ­

3 

_g2 < f epd)..TJ(y,T1
) >< Jcpd)" > +~ < (/ 'Pd)..)3 TJ(y,r') > - ...} < F(r,r') >€=A1.2) 

(A1.3) 

l = {2: ( ~ ),« (g !<pd)..)n-l1](Y, 1") ~}O < F(T, r ) > 
n=l n 1. 

In analologous way we get 

, ') 66<P(J) I 
< ",(y, T )1](u, t)F( r, r >= 6J(y, r')8J(u, t) J=O,F(T,';'=l = 

= d= ~ ),« (gjrpd)..)n-2TJ(y,r')TJ(u,t)~}< F(r,r') > + (AlA)
n=2 n 2. 

00 1 / 00 1 J /
+(~ n _ 1)! « (g / <pd)' In-'''1(Y, r ) ~ (~ k _ 1)I ~ (g <pd)' )k-'''1('U, t) ~} < F(r, r ) 

Finally, the average in Eq.(12) is readily obtained from (A 1.3) by sub­
stitution F(r, 1") ~ F(T, r' )F(f, f'), 9 Jcpd)" --; 9 J 'Pd)" + 9 Jepd5... 
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