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Abstract 

The separation of image content into semantic parts plays a vital role in applications such as com

pression, enhancement, restoration, and more. In recent years several pioneering works suggested such 

separation based on a variational formulation, and others using independent component analysis and 

sparsity. This paper presents a novel method for separating images into texture and piecewise smooth 

(also referred to as "cartoon") parts, exploiting both the variational and the sparsity mechanisms, by 

combining the Basis Pursuit Denoising (BPDN) algorithm and the Total-Variation (TV) regularization 

scheme. The basic idea presented in this paper is the use of two appropriate dictionaries, one for the 

representation of textures, and the other for the cartoon parts, assumed to be piece-wise-smooth. Both 

dictionaries are chosen such that they lead to sparse representations over one type of image-content (either 

texture or cartoon). The use of the BPDN with the two augmented dictionaries leads to the desired sep

aration, along with noise removal as a by-product. As the need to choose a proper dictionary for natural 

scene is very hard, a TV regularization is employed to better direct the separation process. We present 

several experimental results that validate the algorithm's performance. We also present a highly efficient 

numerical scheme to solve the combined optimization problem posed in our model. 

Keywords 

Basis Pursuit Denoising, Total Variation, Sparse Representations, Piecewise Smooth, Texture, Wavelet, 

Local DCT, Ridgelet, Curvelet. 

I. INTRODUCTION 

The task of decomposing signals into their building atoms is of great interest for many appli

cations. In such problems a typical assumption is made that the given signal is a linear mixture 

of several source signals of more coherent origin. These kind of problems have drawn a lot of 

research attention in last years. Independent Component Analysis (ICA) and sparsity methods ~ 

are typically used for the separation of signal mixtures with varying degrees of success. A classic 

example is the cocktail party problem where a sound signal containing several concurrent speak

ers is to be decomposed into the separate speakers. In image processing, a parallel situation is 

encountered for example in cases of photographs containing transparent layers. 

An alternative approach towards the separation of image content , tailored to the problem of 

separating texture from non-texture parts in images, was proposed recently by Meyer [1], and 

followed by a practical numerical scheme devised by Vese, Osher, and others [2], [3]. This method 

is built on variational grounds, extending the notion of Total-Variation [4]. 
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In this paper we follow the application posed by Meyer, Vese, Osher, and others, and focus 

on the decomposition of a given image into a texture and natural (piecewise smooth - cartoon) 

additive ingredients. The importance of such separation is for applications in image coding, and 

in image analysis and synthesis (see for example [5]). Figure 1 presents the desired behavior of 

the separation task at hand for a typical example. Note that we aim at separating these two 

parts on a pixel-by-pixel basis, such that if the texture appears on parts of the spatial support 

of the image, the separation should succeed in finding a masking map as a by-product of the 

separation. 

Fig. 1. Example of a separation of the form Image = texture + piecewise smooth content. 

The approach we take for the separation starts with the Basis-Pursuit denoising (BPDN) algo

rithm, extending results from previous work [6], [7]. The basic idea behind this new algorithm is 

to choose two appropriate dictionaries, one for the representation of textures, and the other for 

the cartoon parts. Both dictionaries are to be chosen such that each leads to sparse representa

tions over the images it is serving, while yielding non-sparse representations on the other content. 

type. Thus, when combined to an overall dictionary, the BPDN is expected to lead to the proper 

separation, as it seeks for the overall sparsest solution, and this should align with the sparse rep

resentation for each part separately. We show experimentally how indeed the BPDN framework 

leads to a successful separation. Further more, we show how to strengthen the BPDN paradigm, 

overcoming inappropriate dictionary choices, leaning on the Total-Variation (TV) regularization 

scheme. 

The rest of the paper is organized as follows: Section 2 presents the separation method via the 

BPDN and the way to combine the TV for its improvement. Section 3 is devoted to a theoretic 

analysis of the proposed separation. In Section 4 we return to the practical side of this work and 
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discuss the choice of dictionaries for the texture and the cartoon parts. Section 5 addressed the 

numerical scheme for solving the separation problem efficiently. We present several experimental 

results in Section 6 and conclude in Section 7. 

II. SEPARATION OF IMAGES - BASICS 

A. Model Assumption 

Assume that the input image to be processed is of size N x N. We represent this image as a 

1D vector of length N2 by simple reordering. For such images X t that contain only pure textures 

we propose an over-complete representation matrix T t E MN2XL (where typically L » N2) such 

that solving 

(1) 


for any texture image X t leads to a very sparse solution (i.e. IIQ{'tllo« N2). We further 

assume that T t is such that if the texture appears in parts of the image and otherwise zero, 

the representation is still sparse, implying that the dictionary employs a multi-scale and local 

analysis of the image content. The definition in (1) is essentially an overcomplete transform of 

2ft, yielding a representation Qt, such that sparsity is maximized over the dictionary T t. 

We further require that when this forward transform with T t is applied to images containing 

no texture and pure piece-wise-smooth (cartoon) content, the resulting representations are non

sparse. Thus, the dictionary T t plays a role of a discriminant between content types, preferring 

the texture over the cartoon part. A possible measure of fidelity of the chosen dictionary is the 

functional 

Arg min Lk IIQ{'t (k) ,,~ (2) ~ 
Tt Lj IIQ~Pt (j) 110 

Q{'t(k) = Argmingt IIQtllo subject to: Xt(k) = TtQt
Subject to: 

Qc:rt(j) = Argmingn IIQnllO subject to: Xn(j) = TtQn· 

This functional of the dictionary is measuring the relative sparsity between a family of textured 

images {Kt(k)}k and a family of cartoon content images {Xn(j)}j. This, or a similar measure, 

could be used for the design of the proper choice of T t, but in this paper we assume that this 

task is already done for us. Specifically, rather than training the dictionary based on examples, 

we exploit several decades of gathered experience in the field of image processing, and rely on 

effective representation methods found for texture images. 
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Similar to the above, assume that for images containing cartoon content, X n' we have a 

different dictionary Tn, such that their content is sparsely represented by the above definition. 

Again, we assume that beyond the sparsity obtained by Tn for cartoon images, we can further 

assume that texture images are represented very inefficiently (i.e. non-sparsely), and also assume 

that the analysis applied by this dictionary is of multi-scale and local nature enabling it to detect 

pieces of the desired content. 

For an arbitrary image X containing both texture and piecewise smooth content (overlayed, 

side-by-side, or both), we propose to seek the sparsest of all representations over the augmented 

dictionary containing both T t and Tn. Thus we need to solve 

(3) 

This optimization task is likely to lead to a successful separation of the image content, such that 

T tf¥.t is mostly texture and T nQn is mostly piecewise smooth. The reason for this expectation 

relies on the assumptions made earlier about T t and Tn being very efficient in representing one 

image type and being highly non-effective in representing the other. 

While sensible from the point of view of the desired solution, the problem formulated in 

Equation (3) is non-convex and hard to solve. Its complexity grows exponentially with the 

number of columns in the overall dictionary. The Basis Pursuit (BP) method [6] suggests the 

replacement of the fl-norm with an iI-norm, thus leading to a solvable optimization problem 

(Linear Programming) of the form 

(4) 

Interestingly, recent work have shown that for sparse enough solutions, the BP simpler form is ' 

accurate, also leading to the sparsest of all representations (8], (9], [10]' [11]. More about this 

relationship is given in Section 3, where we analyze theoretically bounds on the success of such 

separation. 

B. Complicating Factors 

The above description is sensitive, and this sensitivity may hinders the success of the overall 

separation process. There are two complicating factors, both has to do with the assumptions 

made above: 
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• Assumption: The image is decomposed cleanly into texture and cartoon parts. For an arbitrary 

image this assumption is not true as it may also contain additive noise that is not represented 

well both by T t and Tn. Generally speaking, any deviation from this assumption may lead to 

a non-sparse pair of vectors fQ:(t, Qri,Pt} , and with that, due to the change from tJ to pI, to a 

complete failure of the separation process . 

• Assumption: The chosen dictionaries are appropriate. It is very hard to propose a dictionary 

that leads to sparse representations for a wide family of signals. Such is the case for textures 

which may come in many forms, and such is definitely the case for representing cartoon images. A 

chosen dictionary may be inappropriate either because it does not lead to a sparse representations 

for the proper signals, and if this is the case, then for such images the separation will fail. More 

complicating scenario is obtained for dictionaries that does not discriminate well between the two 

contents we desire to separate. Thus, if for example, we have a dictionary Tn that indeed leads 

to sparse representations for cartoon images, but also known to lead to sparse representations 

for some textures, clearly, such a dictionary could not be used for a successful separation, and 

the result will be that part of the texture remains with the cartoon image. 

A solution for the first problem could be obtained by relaxing the constraint in Equation (4) 

to become an approximate one. Thus, in the new form we propose solution of 

(5) 

This way, if an additional content exists in the image so that it is not represented sparsely by 

both dictionaries, the above formulation will tend to allocate this content to be the residual 

X - TtQt - TnQn' This way, not only we manage to separate texture from cartoon image parts, 

but also succeed in removing an additive noise as a by-product. This new formulation is familiar 

by the name Basis Pursuit Denoising, shown in [6] to perform well for denoising tasks. 

As for the second problem, we assume that this problem is more acute for the choice of Tn. 

While we will choose a specific matrix Tn that is generally well suited for separating piecewise 

smooth images from textures, we should require that the image TnQn is indeed only piecewise 

smooth, throwing away any other content. This is achieved by adding a TV penalty [4] to 

Equation (5), leading to 

Arg min IIQt 111 + IIQn III (6) 
h!t, i!n} 

+..\ IlX - TtQt - TnQnll~ + "'(TV {TnQn}· 
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The expression TV{TnQ,n} is essentially the computation of the image X n = T nQ,n (supposed to 

be piecewise smooth), computing its absolute gradient field and summing it (iI-norm). Penalizing 

with TV, we force the image T n.Q.n to be closer to a piecewise smooth image, and thus support 

the separation process. 

C. Different Problem Formulation 

Assume that each of the chosen dictionaries can be composed into a set of unitary matrices 

such that 

and 

T(l)[iT(l)t T(2){iT(2h = ... = T(Lt)[iT(Lt)t 

= T(l);;T(l)n = T(2);;T(2)n = ... = T(Ln);;T(Ln)n = I. 

In such case we could slice Q,t and Q,n into Lt and Ln parts correspondingly, and obtain a new 

formulation of the problem 

L Ln 
min I:

t 

1I.Q.(k)tlll + I: 11Q,(j)nlh (7) 
{Q(kh}~!:l' {QU)n}J:l k=1 j=1 

2 
Lt Ln 

+..\ X - I: T(k)tQ,(kh - I: T(j)nQ,(j)n 
k=1 j=l 2 

+'YTV {~T(j)nQ(j)n}. 

Defining X(k)t = T(k)tQ,(k)t and similarly X(j)n = T(j)nQ,(j)n, we can reformulate the problem . 

as 

Lt Ln 

min I: IIT(k)[iX(k)tI1 + I: IIT(j);;X(j)nlI 1 
(8) 

{K(k)t}~!:l' {KU)n}f:l k=l 
1 

j=1 

Lt Ln 

+..\ X - I: X(k)t - I: X(j)n 
k=1 j=1 

2 {Ln }
+,TV ~X(j)n 

2 )=1 

and the unknowns become images, rather then representation coefficients. For this problem 

structure there exist a fast numerical solver called Block-Coordinate Relaxation Method, based 

on the shrinkage method [12]. This solver (see Appendix I for details) requires only the use of 
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matrix-vector multiplications with the unitary transforms and their inverses. See [13] for more 

details. We will return to this form of solution when we discuss numerical algorithms., and show 

a sub-optimal, yet very simple, algorithm for the separation task. 

D. Summary of Method 

In order to translate the above idea into a practical algorithm we should answer three major 

questions: (i) Is there a theoretical backup to the heuristic claims made here? (ii) How should 

we choose the dictionaries T t and Tn? and (iii) How should we numerically solve the obtained 

optimization problem in a traceable way? These three questions are addressed in the coming 

sections. 

III. THEORETIC ANALYSIS OF THE SEPARATION TASK 

Our theoretical analysis embarks from Equation (3), which stands as the basis for the separa

tion process. This equation could also be written differently as 

opt aopt ] 

f!all Arg min 
 [ Qt ] (9)

[ ~t {~t' Q.n} Qn 0 

subject to: X = ..... [ 
Tt Tn 1 [_:nt] = T allh!all' 

From [9] we recall the definition of the Spark: 


Definition 1: Given a matrix A} its Spark (0-A = Spark{A}) is defined as the minimal number 


of columns from the matrix that form a linearly dependent set. 


Based on this we have the following result in [9] that gives a guarantee for global optimum of 

(9) based on a sparsity condition: 

Theorem 1: If a candidate representation Qall satisfies lIh!allllo < Spark{Tall}/2} then this 

solution is necessarily the global minimum of (9). 

Based on this result it is clear that the higher the value of the Spark, the stronger this result 

is. Immediate implication from the above is the following observation, referring to the success of 

the separation process: 

Corollary 1: If the image X = X t + Xn is built such that X t TtQt and Xn = TnQ , and n

IIQtllo + IIQnllo < Spark{Tald /2 is true, then the global minimum of (9) is necessarily the desired 

separation. 
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Proof: The proof is simple deduction from Theorem 1. o 
Actually, a stronger claim could be given if we assume a successful choice of dictionaries T 

t 

and Tn. Let us define a variation of the Spark that refers to the interface between atoms from 

two dictionaries: 

Definition 2: Given two matrices A and B, their Inter-Spark (aA-B = Spark{A, B}) is 

defined as the minimal number of columns from the concatenated matrix [A, BJ that form a 

linearly dependent set, and such that columns from both matrices participate in this combination. 

Suppose that for a pair of matrices A and B, we have aA, aB, and aA_B. Given a vector 

with a representation with respect to the columns A with less than aA/2 elements, it is 

the sparsest possible. Similar claim could be given with respect to B. If the representation is 

computed with respect to the concatenated matrix [A, B], the overall Spark is necessarily smaller, 

as the following Lemma suggests: 

Lemma 1: For a pair of matrices A and B we have that a[A,B] = min(aA,aB,aA_B). 


Proof: Whatever set of columns is taken from the concatenated matrix [A, B], it could be 


coming purely from A, B, or as a mixture of both. For each of these three options there is a 


separate bound (the three Spark values given). Thus, the overall bound is the weakest of them, 


as claimed, and this bound is essentially tight by definition. 0 

The minimal Spark for [A, B] is obtaine~ if there is one column in A that appears in B (up 

to a multiplication by a constant), and this corresponds to a A-B = 2. The best scenario is 

obtained if aA-B ~ min(a A, a B), then the spark is maximal, being a[A,B] = min(a A, a B)' 

An important feature of our problem is that the goal is the successful separation of content of 

an incoming image and not finding the true sparse representation per each part. Thus, a stronger 

claim can be made: 

Corollary 2: Suppose the image X = X t + Xn is built such that X t TtQt and = TnQn' 

If IIQtlio + IIQnllo < aT t -Tn /2 and IIQtllo, IIQnllo > 0 (i.e., there is an active mixture of the two), 

then if the global minimum of (9) satisfies IIQfPtllo, IIQ;{tllo > 0, it is necessarily the successful 

separation. 

Proof: Given a mixture of columns from the two dictionaries, by the definition of the Inter

Spark it is clear that if there are fewer than aTt-Tn /2 non-zeros in such combination, it must 

be the unique sparsest solution. 0 

The new bound is higher than Spark{Tall} /2 and therefore this result is indeed stronger. A 
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design goal for the choice of the two dictionaries is to get a high value of O"Tt+-+Tn in order to 

make the best out of the above property. 

Alternative approach, simpler but also weaker, towards the same analysis, could be proposed 

based on the notion of mutual incoherence [9], defined as 

Definition 3: Given a matrix A, its Mutual-Incoherence{ A} = MA is defined as the maximal 

off-diagonal entry in the absolute Gram matrix IAHAI· 
The Mutual-Incoherence is closely related to the Spark, and thus one can similarly define a 

similar notion of Inter-MA. However, we leave this for future research. 

So far we concentrated on Equation (3) which stands as the ideal (but impossible) tool for the 

separation. An interesting question is why should the £1 replacement succeed in the separation 

as well. We have the following result in [9]: 

Theorem 2: If the solution Q~ft of (9) satisfies IifKa1lt lio < (1/MTa ll + 1)/2, then the £1 mini

mization alternative is guaranteed to find it. 

For the separation task, this Theorem implies that the separation via (4) is successful if it is 

based on sparse enough ingredients: 

Corollary 3: If the image X = X t + Xn is built such that X t = TtQt and Xn = TnQn, and 

lIf¥.tllo + IIQnllO < (l/MTall + 1)/2 is true, then the solution of (4) leads to the global minimum of 

(9) and this is necessarily the desired separation. 

Proof: The proof is simple deduction from Theorem 2. o 

vVe choose to stop this analysis here, as we concentrate in this paper on the applicative part. We 

should note that the bounds given here are quite restrictive and does not reflect truly the much 

better empirical results. We regard this analysis as merely supplying a theoretical motivation, 

rather than complete justification for the later results. We ~hould also note that the above ~ 

analysis is coming form a worst-case point of view (e.g., see the definition of the Spark), as 

opposed to the average case we expect to encounter empirically. Nevertheless, the ability to 

prove perfect separation in a stylized application without noise and with restricted success is of 

great benefit as a proof of concept. Further work is required to extend the theory developed here 

to the average case. 

In order to demonstrate the gap between theoretical results and empirical evidence in Basis 

Pursuit separation performance, figure 2 presents a simulation of the separation task for the case 

of signal X of length 64, a dictionary built as the combination of the Hadamard unitary matrix 
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(assumed to be T t ) and the identity matrix (assumed to be Tn). We randomly generate sparse 

representations with varying number of non-zeros in the two parts of the representation vector 

(of length 128), and present the empirical probability (based on averaging 100 experiments) to 

recover correctly the separation. 

For this case, Corollary 3 suggests that the number of non-zeros in the two parts should be 

smaller than 0.5 . (1 + 1/NI) = (1 + ..)64) /2 = 4.5. Actually a better result exists for this 

case in [9] due to the construction of the overall dictionary as a combination of two unitary 

matrices. Thus, the better bound is (vi2 - 0.5))/M = 7.3. Both these bounds are overlayed on 

the empirical results in the figure, and as can be seen, Basis Pursuit succeeds well beyond these 

bounds. Moreover, this trend is expected to strengthen as the signal size grows, since than the 

worst-ease-scenarios (for which the bounds refer to) become of smaller probability and of less 

affect on the average result. 

10 15 
Number of elements in the H part 

Fig. 2. The empirical probability of a success of the Basis Pursuit algorithm for separation of sources. 

Per every sparsity combination, 100 experiments are performed and the success rate is computed. 

Theoretical bounds are also drawn for comparison. 

IV. CANDIDATE DICTIONARIES 

We are returning to the practice of separating the texture from the cartoon part, and in this 

section we discuss the choice of proper dictionaries. 

DRAFT 
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Our approach towards the choice of T t and Tn is to pick known transforms, and not design 

those optimally as we hinted earlier as a possible method. We choose transforms known for rep

resenting well either texture or piecewise smooth behaviors. For numerical reasons, we restrict 

our choices to the dictionaries T t and Tn which have a fast forward and inverse implementation. 

In making a choice for 'a transform, we use experience of the user applying the separation algo

rithm, and the choices made may vary from one image to another. We shall start with a brief 

description of our candidate dictionaries. 

A. Bi-Orthogonal Wavelet Transforms (OWT) 

Previous work has shown that the wavelet transform is well suited for the effective (sparse) 

representation of piece-wise smooth images l [12]. The application of the OWT to image com

pression using the 7-9 filters [14] and the zero-tree coding [15], [16] has lead to impressive results 

compared to previous methods like JPEG. 

The OWT implementation requires O(N2) operations for an image with N x N pixels, both 

for the forward and the inverse transforms. Represented as a matrix-vector multiplication, this 

transform is a square matrix, either unitary, or non-unitary with accompanying inverse matrix 

of a similar simple form. 

The OWT presents only a fixed number of directional elements independent of scales, and 

there is no highly anisotropic elements [17] . For instance, the Haar 2D wavelet transform is 

optimal to find features with a ratio length/width = 2, in a horizontal, vertical, or diagonal 

orientation. Therefore, we naively expect the OWT to be non-optimal for detection of highly 

anisotropic features. Moreover, the OWT is non-shift invariance - a property that may cause 

problems in signal analysis. 

The undecimated version (UWT) of the OWT is certainly the most popular transform for data 

filtering. It is obtained by skipping the decimation. This in turn implies that this transform is 

an overcomplete one, represented as a matrix with more rows that columns when multiplying a 

signal to be transformed. The redundancy factor (ratio between number of columns to number 

of rows) is 3J + 1, J being the number of resolution layers. With the over-completeness comes 

the desirable shift invariance property. 

IThis is especially true if the singularities in the image are point-like, rather than organized as smooth curves. 
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B. The isotropic a trous algorithm 

This transfrom decomposes a N x N image I as a superposition of the form I (x, y) = CJ (x, y) + 
~f=l Wj (x, y), where CJ is a coarse or smooth version of the original image I and Wj represents 

'the details of l' at scale 2- j
, see [18] for more information. Thus, the algorithm outputs J + 1 

sub-band arrays of size N x N (The present indexing is such that j = 1 corresponds to the 

finest scale high frequencies). This wavelet transform is very well adapted to the detection of 

isotropic features, and this explains the reason of its success for astronomical image processing, 

where the data contains mostly (quasi-) isotropic objects, such stars or galaxies [19]. 

C. The Local Ridgelet Tmnsform 

The two-dimensional continuous ridgelet transform of a function is defined by: 

where the ridgelet function 1/)a,b,(} (Xl, X2) is given by 

(10) 

with J1jJ(t)dt = 0, a> 0, bE R, a mother-wavelet function 1jJ(t), and () E [0, 27r). 

It has been shown [17] that the ridgelet transform is precisely the application of a I-dimensional 

wavelet transform to the slices of the Radon transform where the angular variable () is constant 

and t is varying. 

The ridgelet transform is optimal in finding global lines (starting and ending on the image 

boundaries). To detect line segments, a partitioning must be introduced [22]. The image is 

decomposed into smoothly overlapping blocks of side-length b x b pixels in such a way that the , 

overlap between two vertically adjacent blocks is a rectangular array of size b x b/2; we use 

overlap to avoid blocking artifacts. For a N x N image, we count 2N/b such blocks in each 

direction. The partitioning introduces redundancy (over-completeness), as each pixel belongs to 

4 neighboring blocks. 

The ridgelet transform requires O(N2 log2 N) operations. More details on the implementation 

of the digital ridgelet transform can be found in [21]. The ridge let transform is optimal to detect 

line or edge segment of length equal to the block size used. 
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D. The Curvelet Transform 

The curvelet transform, proposed in [22], [23], 'enables the directional analysis of the image 

with different scales, in a single and effective transform. The idea is to first decompose the image 

into a set of wavelet bands, and to analyze each band with a local ridge let transform. The block 

size is changed at each scale level, such that different levels of the multi-scale ridgelet pyramid 

are used to represent different sub-bands of a filter bank output. 

The side-length of the localizing windows is doubled at every other dyadic sub-band, hence 

maintaining the fundamental property of the curvelet transform, which says that elements of 

length about 2- j / 2 serve for the analysis and synthesis of the j-th sub-band [2 j 
, 2j+1]. The 

curvelet transform is also redundant, with a redundancy factor of 16J + 1 whenever J scales are 

employed. Its complexity is of the O(N2 1og2 N), as with ridgelet. This method is best for the 

detection of anisotropic structures of different lengths. 

E. The (Local) Discrete Cosine Transform (DCT) 

The DCT is a variant of the Discrete Fourier Transform, replacing the complex analysis with 

real numbers by a symmetric signal extension. The DCT is an orthonormal transform, known 

to be well suited for stationary signals. Its coefficients essentially represents frequency content, 

similar to the one obtained by Fourier analysis. When dealing with non-stationary sources, nCT 

is typically applied in blocks. Such is indeed the case in the JPEG image compression algorithm. 

Choice of overlapping blocks is preferred for analyzing signals while preventing blotckiness effects. 

In such a case we get again an overcomplete transform with redundancy factor of 4 for an overlap 

of 0.5. A fast algorithm with complexity of N 2 log2 N exists for its computation. The DCT is 

appropriate for a sparse representation of smooth or periodic behaviors. 

F. Dictionaries Choice - Summary 

For the texture description (Le. T t dictionary), the DCT seems to have good properties. If 

the texture is not homogeneous, a local DCT should be preferred. The second dictionary Tn 

should be chosen depending of the content of the image. If it contains lines of a fixed size, 

the local ridge let transform will be good. More generally the curvelet transform represents well 

edges in an images, and should be a good candidate in many cases. The un-decimated wavelet 

transform could be used as well, although we expect its performance to be weaker compared to 

curvelets. Finally, for images containing isotropic features, the isotropic atrous wavelet transform 
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is the best. In our experiments, we have chosen images with edges, and decided to apply the 

texture/signal separation using the DCT and the curvelet transform. 

Note that when choosing a transform, we may want to prune some of the representation 

coefficients for better selectivity. For example, using the DCT (for the texture part) along with 

the wavelet transform (for the piecewise smooth part) implies some overlap between the two, 

when smooth content exists in the image. Thus, the low-resolution coefficients of the DCT 

could be simply discarded for a better definition of the separation process. Alternatively, we can 

discard of the low-frequencies of the image, prior to the separation, and allocate this content to 

the cartoon part afterwards. 

V. NUMERICAL CONSIDERATIONS 

A. Numerical Scheme 

Returning to the separation process as posed in Equation (6), we need to solve an optimization 

problem of the form 

Arg min IIQtl1t + IIQnl1t (11)
h!t, Qn} 

+A IIX - TtQt - TnQnll~ + ,TV{TnQn}. 

Instead of solving this optimization problem, of finding two representation vectors Q~Pt and Q;:rt, 

let us reformulate the problem so as to get the texture and the cartoon images, X t and X , as our n 

unknowns. The reason behind this change is the obvious simplicity caused by searching shorter 

vectors - representation vectors are far longer than the images they represent for overcomplete 

dictionaries as the ones we use here. 

Define X t = T tQt and similarly X n T nQn' Given X t, we-can reCover Qt as Qt = TtX t + rt 
where rt is an arbitrary vector in the null-space of T t . Put these back into (6) we obtain 

{X~t, x~t} = Arg {K L~~t, [n} IITtX t + rtllt + IIT~Xn +rnllt (12)> 

t 

+AIIX X t Xnll~+,TV{Xn} 

Subject to: T trt = 0 , T nrn = O. 

The term TtX t is an overcomplete linear transform of the image X t. Assume hereafter that we 

use the DCT (actually several local versions of it, with varying block sizes) for this texture part. 

Similarly T+ X is an overcomplete linear transform of the cartoon part - in our experiments it, n-n 

is chosen as the curvelet transform. 
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In our attempts to replace the representation vectors as unknowns, we see that we have a pair 

of residual vectors to be found as well. If we choose (rather arbitrarily at this stage) to assign 

those vectors to be zeros we obtain 

(13)Arg min IITtXtlh + IlT;txnlh 
{Kt , Kn} 

+ AIIX - Xt - Xnll~ + ,TV{Xn }· 

We can justify the choice rt = Q, Ln Q in several ways: 

Bounding function: Consider the function posed on (12) as a function of X t , X n , where per 

every possible values of those two images we optimize with respect to I.t, [n' Comparing this 

function to the one we have suggested in (13), the new function could be referred to as an upper 

bounding surface to the true function. Thus, in minimizing it instead, we can guarantee that 

the true function to be minimized is of even lower value. 

Relation to the Block-Coordinate-Relaxation algorithm: Comparing (13) to the case 

discussed in Equation (8), we see close resemblance, if we assume that the dictionaries involved 

contain just one unitary part. In this case we get a complete equivalence between solving (12) 

and (13). In a way we may refer to the approximation we have made here as a method to 

generalize the block-coordinate-relaxation method for the non-unitary case. 

Relation to MAP: The expression written as penalty function in (13) has a Maximal-A

Posteriori estimation flavor to it. It suggests that the given image X is known to originate from 

a linear combination of the form Kt +X n' contaminated by Gaussian noise - this part comes from 

the likelihood term IIX Xt - Xnll~. For the texture image part there is the assumption that it 

comes from a Gibbs distribution of the form Const· exp (-tJtIlTtXtlh). Similarly, the cartoon 

part is assumed to originate from a prior of the form Const . exp ( - tJn I i T~X nIII - ,nTV {X n} ). 

While different from our original point of view, these assumptions are reasonable and not far 

from the Basis Pursuit approach. 

The bottom line to all this discussion is that we have chosen an approximation to our true 

minimization task, and with it managed to get a simplified optimization problem, for which an 

effective algorithm can be proposed. Our minimization task is thus given by 

(14) 

The algorithm we use is based on the Block-Coordinate-Relaxation method [13] (see Appendix 
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I), with some required changes due to the non-unitary transforms involved, and the additional 

TV term. The algorithm is given below: 

1. Initialize Lmax , number of iterations per layer N, and threshold () = A . Lmax. 

2. Perform N times: 

Part A - Update of Xn assuming Kt is fixed: 


- Calculate the residual E = X - X - X .
t n 

- Calculate the curvelet transform of Xn +E and obtain Q = T;t(Xn + E).n 

- Soft threshold the coefficient Q n with the () threshold and obtain Q.n' 

- Reconstruct X n by X n = T nQ.n' 

Part B - Update of X t assuming Xn is fixed: 

- Calculate the residual E X - X - X .t n 

- Calculate the local OCT transform of X t + E and obtain Qt = Tt (X t + 
- Soft threshold the coefficient Qt with the () threshold and obtain Qt. 

- Reconstruct X t by X t Ttg t . 

Part C - TV Consideration: 


A I h TV' 8TV { X }
- pp Y t e correction by Xn = Xn - JJ.' 8i...-;:n. 

- The parameter JJ. is chosen either by a line-search minimizing the overall 

penalty function, or as a fixed step-size of moderate value that 

guarantees convergence. 

3. Update the threshold by () () - A. 

4. If () > A, return to Step 2. Else, finish. 

Algorithm 1 - The numerical algorithm for minimizing (14). 

In the above algorithm, soft threshold is used due to our formulation of the £1 sparsity penalty 

term. However, as we have explained earlier, the £1 expression is merely a good approximation 

for the desired £0 one, and thus, replacing the soft by a hard threshold towards the end of the 

iterative process may lead to better results. 

We chose this numerical scheme over the Basis Pursuit interior-point approach in [6], because 

it presents two major advantages: (i) We do not need to keep all the transformations in memory. 

This is particularly important when we use redundant transformations such the un-decimated 

wavelet transform or the curvelet transform. Also, (ii) We can add different constraints on the 

components. Here we applied only the TV constraint on one of the components, but other 

constraints, such as positivity, can easily be added as well. 

If the texture is the same on the whole image, then a global DCT should be preferred to a 
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local DCT. Our method allows us to build easily a dedicated algorithm which takes into account 

the a priori knowledge we have on the solution for a specific problem. 

B. TV and Undecimated Haar Transform 

The link between the TV constraint and the undecimated Haar wavelet soft thresholding has 

been studied in [6J and later in [24J. It has been shown that iterating using the undecimated Haar 

wavelet soft thresholding with just one resolution leads to the same results as the TV constraint. 

In light of this interpretation, we can change part C in the above algorithm this way: 

Part C - TV Consideration: Apply the TV correction by using the undecimated Haar wavelet 

transform H and a soft thresholding: 

• Calculate the undecimated Haar wavelet transform of Xn and obtain gh HXno 

• Soft threshold the coefficient gh with the I threshold and obtain gh' 

• Reconstruct Xn by Xn = H-1gh · 

Algorithm 2 - The alternative to TV based on Haar wavelet. 

This method is expected to lead to better results compared to the regular TV one as it intro

duces multi-resolution TV due to the several layers in the undecimated Haar wavelet transform 

employed. 

C. Noise Consideration 

The case of noisy data - additive noise, white, and independent of the texture and the cartoon 

parts can be easily considered in our framework, and merged into the algorithm such that we 

get a three-way separation to texture, cartoon, and additive noise. 

For simplicity, we assume that the two transforms Tt and T;t are normalized, so that for a 

given noise realization V with zero mean and a standard deviation equals to 1, Q n = T;tV and ~ 

Qt = TtV have also a standard deviation equals to l. 

Then, only the last step of the algorithm need to to changed. Indeed, by just replacing the 

stopping criterion 5 > A by 5 > ka, where a is the noise standard deviation and k a value in 

the interval [3, 4J. This ensures that non-significant coefficients (i.e. coefficients with an absolute 

value lower than ka) are never taken into account. The final image is therefore be decomposed 

in three images, 

where V is the residual, considered as our noise estimation. 
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VI. EXPERIMENTAL RESULTS 

A. Image Decomposition 

We start the description of our experiments with a synthetically generated image composed of 

a cartoon and a texture, where we have the ground truth parts to compare with. We implemented 

the proposed algorithm with the curvelet transform (five resolution levels) for the cartoon part, 

and a global DCT transform for the texture. We have used the soft thresholding version of the 

TV, as described in previous section. The TV parameter I has been fixed to 2. In this example, 

we got better results if the very low frequency components of the image is first subtracted from 

it, and then added to Xn after the separation. The results are shown in Figure 3. 

Fig. 3. Top left - the original combination image, Top right - the low frequency part taken out. Bottom 

left separated texture part, Bottom right - separated cartoon part. 

Figure 3 shows the original combined image at the top left part. The low-frequency content 

removed prior to the separation is shown in the top right part of the figure. The separated 

texture component X t and the cartoon part X n are shown at the bottom. As we can see, the 

separation is reproduced rather well. 
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Figure 4 shows the results on the same image as in Figure 3. In this experiment a Gaussian 

noise (0- = 10) was added to the original image. As we can, even in the presence of noise, the 

method is able to perform a separation between the texture and cartoon very well. Moreover, 

the additive noise is separated successfully. 

Fig. 4. Top left - original image containing a texture part, cartoon, and a Gaussian noise (sigma=10). Top 

right - separated texture part. Bottom right - separated cartoon part, Bottom left - noise component 

estimation. 

We have also applied our method to the Barbara (512x512) image. We have used the curvelet 

transform algorithm described in [21} with the five resolution levels, and overlapping neT trans

form with a block size equals to 32. The TV parameter r has been fixed to 0.5. 

Figure 5 shows respectively the original Barbara image, the reconstructed cosine component 

X t and the reconstructed curvelet component X no Figure 6 top left and right shows a magnified 

part of these two components. For comparison, the bottom part shows the separated components 

reconstructed by Vese-Osher approach [2J. As can e seen, the results are comparable, with some 

differences we attribute mostly to parameter setup. As discussed in Appendix II, these two 
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alternative methods are very much alike, although developed from different origins. 

Fig. S. Top - original Barbara image (S12xS12), Bottom left - reconstructed DCT (texture) component, 

Bottom right - reconstructed curvelet (cartoon) component. 

B. Non Linear Approximation 

The efficiency of a given decomposition can be estimated by the non-linear approximation 

(NLA) scheme, where one represents the signal based on the leading coefficients (in size and not 

location!) and see how the representation error behaves. Indeed, a sparse representation implies 

a good approximation of the image with only few coefficients. An NLA-curve is obtained by 

reconstructing the image from the m-best coefficients of the decomposition. 

For example, using the wavelet expansion of a function f (smooth away from a discontinuity 

1across a C 2 curve), the best m-terms approximation j! obeys [25]' [26] II f - j! II~:::::: m- , m-7 

00, while for a Fourier expansion, we have II f - j! II~:::::: m-~, m -7 00. Using the algorithm 

described in the previous section, we decompose the image X into two components X t and X n 
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Fig. 6. Top - reconstructed DCT and curvelet components by our method, Bottom, texture and cartoon 

components using Vese and Osher's algorithm. 

using the overcomplete transforms T t and Tn. While the decomposition is (very) redundant, 

the exact overall representation X may require a relatively small number of coefficients due to 

the promoted sparsity, and essentially yield a better NLA-curve. 

Figure 7 presents the NLA-curves for the image Barbara using (i) the wavelet transform 

(OWT) on the original image, (ii) the DCT on the original image, and (iii) the results of the 

algorithm discussed here, based on the OWT-DCT combination. Denoting the wavelet transform 

as T;t and the DCT one as Tt, the representation we use includes the m largest coefficients 

from {qt) Qn} = {Tt Xt, T;t"Xn }· Using these m values we reconstruct the image by 

The curves in Figure 7 show the representation error standard deviation as a function of m (i.e. 

£(m) = a(X - Xm)). We see that for m < 15 %, our representation lead to a better non linear 
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Fig. 7. Standard deviation of the error of reconstructed Barbara image versus the m largest coefficients 

used in the reconstruction. Full line, DCT transform, dotted line orthogonal wavelet transform, and 

dashed line our signal/texture decomposition. 

approximation than both the nCT and the OWT separately. 

C. Basic Applications 

The ability to separate the image as we show has many applications. We sketch here two such 

simple experiments to illustrate the importance of a successful separation. 

Edge detection is a crucial processing step in many vision applications. When the texture is 

highly contrasted, most of the detected edges are due the texture rather than to the cartoon 

part. By separating first the two components, texture and cartoon part, we can detect the edges 

on the cartoon component. Figure 8 shows the edges detected by the Canny algorithm on both 

the original image (see Figure 1) and the curvelet reconstructed component (see figure 3 bottorri 

right). 

Fig. 9 upper left shows a galaxy, imaged with the GEMINI-OSCIR instrument at 10 {tm. 

The data is contaminated by a noise and a stripping artifact (assumed to be the texture in the 

image) due to the instrument electronics. As the galaxy is isotropic, we have preferred to use 

the isotropic wavelet transform instead of the curvelet transform. Fig. 9 summarizes the results 

of the separation where we see a successful isolation of the galaxy, the textured disturbance, and 

the additive noise. We can refer to the entire separation process as a noise removal algorithm, 
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Fig. 8. Left detected edges on the original image (see Fig 1), Right - detected edges on the curvelet 

reconstruct component. 

where we remove both purely random noise, and some structural noise caused by the instruments 

used. 

VII. DISCUSSION 

In this paper we have presented a novel method for separating an image into its texture and 

piece-wise smooth ingredients. Our method is based on the ability to represent these content 

types as sparse combinations of atoms of predetermined dictionaries. The proposed approach 

is a fusion of the Basis Pursuit algorithm and the Total-Variation regularization scheme, both 

merged in order to direct the solution towards a successful separation. 

This paper offers a theoretical analysis of the separation idea with the Basis Pursuit algorithm, 

and shows that a perfect decomposition of image content could be found in principle. While the 

theoretical bounds obtained for a perfect decomposition are rather weak, they serve both as a · 

starting point for future research, and as a motivating results for the practical sides of the work. 

In going from the pure theoretic view to the implementation, we managed to extend the model 

to treat additive noise essentially any content in the image that does not fit well with either tex

ture or piece-wise-smooth contents. We also made a change in the problem formulation, departing 

from the Basis Pursuit, and getting closer to a Maximum A-Posterioi estimation method. The 

new formulation leads to smaller memory requirements, and more constraints can easily added 

on each of the components. This gives more flexibility for a given application. Simulation results 

show consistently promising results. 
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Fig. 9. Upper left: the original image, Upper left: the reconstructed wavelet component. Bottom left 

the DCT reconstructed component, Bottom right - the residual, being the noise. 

A natural comparison should be made between this work and the pioneering work recently 

published by Vese and Osher, on the same separation task. Appendix II attempts to present 

such a discussion. We feel that further work is required to fully understand the bridge between 

these two methodologies. 
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ApPENDIX I - THE BLOCK-COORDINATE-RELAXATION METHOD 

In Section II-C we have seen an alternative formulation to the separation task, built on the 

assumption that the involved dictionaries are concatenations of unitary matrices. Thus, we need 

to minimize (7), given (after a simplification) as 

min 
t!!(knt;:l 

(I-I) 

Note that we have discarded the TV part for the discussion given here. We also simply assume 

that the unknowns g(k) contain both the texture and the piece-wise-smooth parts. 

Minimizing such a penalty function was shown by Bruce, Sardy and Tseng [13] to be quite 

simple, as it is based on the shrinkage algorithm due to Donoho and Johnston [12]. In what 

follows we briefly describe this algorithm and its properties. 

Property 1: Referring to (1-1) as a function of {g(k)}ko' assuming all other unknowns as 

known, there is a closed-Jorm solution Jor the optimal {g(k)}kol given by 

{!li(k)}~ = sign(Z) . (IZI- 2\)+ (1-2) 

for Z = T(ko)H [X 'f:J=l, k",Ko T(k)g(k)]. 


Proof: Rewriting (I-I) assuming that {g(k)}ko are known, we have 


min Ilg(ko)111 + A liZ - T(ko)g(ko)II~· (1-3)
g(ko) 

Due to the fact that T(ko) is unitary and the fact that the £2 norm is unitary invariant we can 

rewrite this penalty term as 

0:(1) ,0:(2), .. . ,00(N) 

min 
g(ko) 

Ilg(ko) III + A IIT(ko)H Z - g(ko) II~, (1-4) 

which in turn, can be written as 

min L
N 

(la(n)1 + .\[a(n)  Zt(n)f) . (1-5) 
n=l 

This function is a sum of N (the dimension of g(ko)) scalar and independent convex optimization 

problems. The term Zt(n) represents the nth entry of the inverse transform (T(ko)) of the vector 

Z. The solution for this problem is given by the shrinkage operator mentioned above [12]. 
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This property is the source of the simple numerical scheme of the Block-Coordinate-Relaxation 

lv'Iethod. The idea is to sweep through the vectors Q(k) one at a time repeatedly, fixing all others, 

and solving for each. 


Property 2: Sweeping sequentially through k and updating Q(k) as in Property 1, the Block


Coordinate-Relaxation Method is guaranteed to converge to the optimal solution of (1-1). 


Proof: The proof is given in (13], along with practical implementation ideas. o 

ApPENDIX II - RELATION TO THE VARIATIONAL METHOD OF VESE-OSHER 

Whereas piece-wise smooth images u are assumed to belong to the Bounded-Variation (BV) 

family of functions u E BV(R2), texture is known to behave differently. A different approach 

has recently been proposed for separating the texture v from the signal f (= u + v) (2], based 

on a model proposed by Meyer [1]. This model suggests that a texture image v is to belong to a 

different family of functions denoted as v E BV* (R2). This notation implies the existence of two 

functions g1,g2 E LOO(R2) such that v(x,y) = oxgl(X,y) + Oy92(X,y). The BV* norm is defined 

using the two functions 91, 92 as IlvIIBV" = II(191(X)12+ 192(X)12)~lIoo. 
Based on this model, a variational minimization problem was set by Vese and Osher to recover 

u, gl, g2 from a given mixture f. This approach essentially searches for the solution of 

inf [liulIBV + AllvllBv" + Allf u+ vll~] (II-I)
(u, gl, 92) 

A numerical algorithm to solve this problem is described in [2], with encouraging simulation 

results. 

Let us return to our method and draw attention to several similar features between the two 

proposed approaches for separation of texture from a piece-wise smooth content. We refer to our 

formulation in (14) with the choice, = 0, 

(II-2) 

We have mentioned earlier that there is an equivalence between TV regularization and the soft 

thresholding using the undecimated Haar transform with a single scale [24]. It is also well known 

that the image obtained by soft thresholding is the solution of the minimization of the £1 norm. 

Therefore, we can write that IlullBV lI'Hull! where 'H is the undecimated Haar transform (i.e. 

'H = T: in our original notations). Thus there is a similarity between the effects of the first 

terms in both (II-I) and (II-2). 
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Furthermore, we may argue that images with sparse representations in the DCT domain (local 

with varying block sizes and block overlap) present strong oscillations and therefore could be 

considered as textures, belonging to the Banach space BV*(R2). This suggests that Ilv!lBV* 
could also be written using a £1 norm as IIVvlh where V is the DCT transform (i.e. V = Tt+ 

in our notations). Now we get a similarity between the second terms on the two optimization 

problems posed in (II-I) and (II-2). 

Since the third expression is exactly the same in (II-I) and (II-2) , we see a close relation 

between our model and the one proposed by lVleyer as adopted and used by Vese and Osher. 

However, there are also differences that should be mentioned. 

In our implementation we do not use the undecimated Haar with just one resolution, but 

rather use the complete pyramid. This implies that a multi-scale TV is actually employed. We 

have also seen that in some cases, we replace the Haar with a more effective transform such as 

the the curvelet. Several reasons justify such a change. Among them is the fact that curvelet 

succeeds in distinguishing edges in noise much better than Haar wavelets. lVloreover, Haar does 

not represent well edges, leading to a transfer of faint edges to the texture component, which 

may explain the results in Figure 6. Another important difference is the way the texture is 

modelled. Our method does not search for the implicit gl, g2 supposed to be the origin of the 

texture, but rather searches directly the texture part by an alternative and simpler model based 

on the local DCT. 

Finally, we should note that the methodology presented in the paper is not limited to the 

separation of texture and cartoon in an image. Here we concentrated on the basic idea of sepa

ration of signals to different content types, leaning on the idea that each of the ingredients have 

a sparse representation with a proper choice of dictionaries. This may lead to other applications, ~ 

and different implementations. We leave this for future research. 
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