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(Abstract)

* The finite temperature behaviour of a
relativistic field with a renormalisable ¢ self 1nteract—
ion exhibiting spontaneous symmetry breaking is studied in
one space-one time dimension. Uslng functional diagrammatic
methods the temperature-dependent effective potentlal and.
the critical. temperature upto two loops are calculated. The
nature of phase tran31tlon is also investigated and is
clarified to be a flrst ordqr ong.
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1. Introduction
; o

Recently considerable intereét has been shown oﬁ
the effect of finite temperature on relativistic field theories
that exhibif spontaneous symmetry breaking. This is due to the
growing conviction among physicists that weak, electromagnetic
and strong interactions may owe. thelr orlgln to spontaneously
broken gauge symmetrles of a basaq lagnanglan. The correspond-
ing hamiltonian system is in many ways similar to a super-
conductor. So, arguing in analogy with superconductivity,
Kirzhnits and Linde (1972) suggested thét a spontaneously
broken symmetry in a relafiﬁisticwfield theory coupled to a
finite temperature heat bath wouldﬂbe restored above some
critical temperature. Later studles (Dolan and .Jackiw 1974,
Weinberg 1974) ‘have establlshed thls fact on a quantltatlve'
ba81s.. Functlonal diagrammatic méthods for evaluatlng |
effective potentials- (Coleman and Weinberg 1973, Illiopoulos
et al 1975 Jackiw 1974) can be used to study the effect of
temperature on a.relativistic: field system. Dolan and Jacklw
(1974) employed this method to evaluate the temperature~
dependent effective potential and demonstrated that the
symmetry behaviour in ¢4 theory could be restored above a

certain temperatﬁre.

In this paper we present our calculations on the
effect of finite temperature on a model field system exhibiting

spontaneous symmetry breaking. We have chosen a general @6

“w



field model iﬁ 1l + 1 dimensions such that the classical
potential possesses three absolute minima. The 1agrangian
enjoys‘¢é~% ~¢ internal symmetry, so that the vacuum around
any one absolute minimum would correspond to spontaneous
symmetry breaking. The model chosen by us has positive mass
squéie and exhibits kink and antikink solutions (Lohe 1979).
Using lattice approximation and block-srin renormalisation
group methbd Boyanovsky and Masperi (1980) have shown that the
nature of phase transition associated with such a field system
may be second order or first order depending on the relative
depthsrof the wells and the intersite coupling. Besides its
impoitance in particle physics as a model scalar field theory
the ¢6 sélf interacting model with a“specific form' of the
potential finds applications in solid state physics also,
where it has been used to explain the first order phase
transition from the ferroelectric to the paraelectric state
and the structural phase‘tranéitions obgerved in crystals

(Behera and Khare 1980, Lines and Glass 1977, Kittel 1977).

We have employed the functional diagrammatic method

6 field system. The

to study the temperature effect on the ¢
paper is organised in the following way. In section 2 we
formlate the effective potential for the model under

consideration at zero temperature and show that our model




is renormalisable. Section 3 deals with the detailed
calculation of the effective potential at finite temperature
and the calculations are done upto W0 loops level. It is
gshown that the broken Symmefry originally present in the
model can be removed, and the eritical temperature is élsd
evaluated in the high temperature limit. In section 4 we
examine the nature of the phase trénsitiqn. Wﬁen the’system
is coupled to a heat bath, the vécuum expectation vaiue
<O‘cp!6> = ¢ is replaced by the thermal ’average Qp)T = Op
| taken with respect to a Gibbs ensemble’(Kiizhnits ahd
Linde 1976, Linde 1979). The order parameter of the theory
thus becomes ﬁemperature—dependent and vanishes at fhe_
critical temperature. The na;ure of the phase tranéition

is clarified to be a first order one.
2. Evaluation of effective potential at T = O.

The model considered by us consists of a real, self
interacting Bose field ¢(x) in 1 + 1 dimensions, described
by the lagrangian density

o{{qxx)}e 50,07 - x9%(p%- B2 @

when m, » > 0. It is evident that the above lagrangian (1)
enjoys ¢ ¢ ~¢ internal symmetry. The'classical‘pbteﬁtial

corresponding to this lagrangian is given by

V() = % »%9p%(9%- m)? (2)
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such that V(g) = V(-9). The potential has three absolute

- > ’ 1
minima: one at ¢ = O and the other two at ¢ = X( £ )7 =0 .

Hence the vacuum around ¢ = 1 (m/)J% would correspond to
spontaneous symmetry breaking. On éhifting the field from
¢ — ¢+0, where o is the classical constant scalar field,

the lagrangian (1) becomes
Lioro) = (30910012 ~bR(pra)*((gra)? = B2 ()

The potential in this case is given by
V(p+o) = %}302(62’~‘E)2+%(m2—12hm62+15)364)¢2+...(4)

The propagator cofr93ponding to the shifted lagrangian can

be written as.

{zﬁfl(o,k) = k2-M? where
M2 = m2-12 Amo? + 15)304 (5)

The zero-~loop (tree appreximation) contribution to
the effectivé potential comes from;figure 1l and can be

written as

Volo) = 4200 - ) (6)




The one-loop approximation to the effective potential
(figure 2) is given by

NS .

V(o) = - -—-5- In(k2+M?) o G

(2n
On rotating this integral into Buclidean space we find

Vl(g) = 712‘ -(—g-i-:;-{? 1n(k'%+m?)-=~ 7. L o : ' (8)

’This intégral is ultraviolet divergent; to evaluate it; we

cut off the integral at k? = A2, and thus we have

7o) = Eansd | (9)

The divergence in (9) in the lowest order perturbatlon theory
is caused by -the graplrus shown in flgure 3, while there are n-

infinities associated with the 66 term; for 1nstance ‘the
graph jk::>( is finite | :

Hence we may write the effective potential as

nln( /\ )+C + C o + C ot

4 — 182 2 2_ Hhye2
V(o) = ¥ Xo*(o - 3 v 5 3

(10)

The conmstants C,, C,, axad 03 may bévdéfermined by imposing



the following normalisation conditions, viz.,

6::®h= ‘O;,

V(q)

S———

ddaf | “=4
A

m? ; S (11)

4
a7 = 156 A m
do™ §

Imposing the. conditions (11) on (10), we find that

—m?2 2
Cl =. -Iél-‘!-; ln(-—&;) - -2_4'..(2 m2

4m 8n
, 2
- 122 m A 177 - A
c, £ ln(4m2)‘— e A | (12)
15 )\é /\2 1257 ‘\2
C = el , ln( 2) + 1615 /

3 | 8n 4m

Thus the renormalised effective potential, at zero temperature,

for the model chosen by us can be written as

V(o) = & Moot B+ K 1n(iRy S




* %

This is the final expression for the effective potential at
zero temperature in the one—loopyapproximation and it does
not show any dependence on the cut off. Since this procedure
may be extended étraightforwardly to higher loops, the theory

is seen to be renormalisable.
3. Effective potential at finite temperature

In this section we may evaluate the effective
potential at finite temperature and show thét the symmetry
breaking present in the model can be removed if the tempera-
ture is raised above a certain #alue called the critical
temperature. We may denote.the‘temperature—dépéndent

-

effective potential by VT(G). At zero temperature VT(G) =V

o
possesses symmetry breaking solutions. Hence ﬁz_iﬁl = 0 fou

" do
c # 0. If the finite temperature contribution can eliminate
T ~ L
symmetry breaking, then..hg—igl = 20 QE;Lgl = 0 only if o =~
o o ‘

T : :
For large o2, AV (o) is assumed to be positive. Writing

) o2

V(o) = V°(o) + T T (o)
we have
2wl Wl 5,
2 > 2
Do =0 0 o 520




This implies that

- |

W o) | W

Jd o2 - 2
=0

Hence the critical temperature can be defined by the relation

2 = - %h | (14)
o=0

The effective potential at finite temperature to all

loops can be written as (Dolan and Jackiw 1974)
V(o) = V(o) + Vi(o) + 1 {exp(1] a’x L (0,9)))> (15)

Here VO(G) is the classical potential -~ the zero-loop contri-
bution to the effective potential. The zero-loop contribution
is temperature-independent. V?(o) gives the one-loop
approximation. Higher loops are givén by <§xp(i§ djxséﬂﬂo,¢)i>-
the sum of all the one particle irreducible‘vacuﬁm graphs.

In our case, the zero-loop contribution to the effective

potential is given by

V (o) = § »202(o?- By2 | (16)

Now we may evaluate the contribution from the one-loop to

theyeffective’potential at finite temperature. The procedure




is to replace the time integral by the sum

Jﬁ%%’ = iT; E | o (17)
n= - Y o
where «: is periodic such that @Sn = 21iTn (bosons) where

n=0, f1, T2, ¥3, ...
Accordingly, (7) may be rewritten as

T — _}_ ‘, 2 2'
Vl(c) = -3 In(k“+M )

-k
where
{»' ‘ 7 .
o= iy | | e
k ;“}“1)272
so that
I
-~ 1 dk 2, w2
| 22
(o) = LI |zminlE)
1 T2 n-
T ~ {dk 2.2m2 | p2 »
= 3 > 155 In(4n®n®T +EM), » - (19)

n
where Eﬁ = k? + M2, The evaluation of (19) is done by

performing the summation first. Writing

v(E) - In(4n3n372 + 32)

b
n
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we have

dgEE) = T 2E
. Lnan 2_ 2 :
n 4n°n°0% + B2

Using the identity

1 o T otn(nx)
P -= coth(nx) A (20)

dv E) - 2_ 1 1
& = ®le+ 5
e T—l

This leads to the result:

-E/p

v(E) = (:E2-+Tln(l-e ))

i

Hence (19) becomes

~Ey/T

Q

k(EM

}-é-;—n—-§+ﬁ?ln(l—-e ))

il

Vi(d)

(21)

I

o T
Vl(o) + Vl(c)

Vi(c) gives the usual zero temperature one-loop approximation
to the effective potential. This may be compared with the

expression (7) obtained in section 2: and
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o
o : [ —By/T
(o) = & Jaxin(1-e

O

)

gives the temperature-dependent one-loop correction term.

Introducing x2 as

2m2 _ 2 w2
X“T* = EM M=,
we have
s .
T 2 4 (2 M=, ¥
T(o) = & [dx 1n(1 - = (X°+ 72) % (22)
Py
o

-

This integral may be evaluated by expanding Vl? as a
Taylor series and in the high temperature region we find

that

_ T
V(o) = - % 72 4 p (23)

Invoking (14) we can find that the critical temperature
correct to one-loop order is
c

v 2 ‘ .

which is indeed large in the weak-coupling limit.
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We shall now proceed to evaluate the two loops

contribution to V' (o). Our motivation for doing this is

“to investigate

the effect of higher order loops in deter-

mining the critical temperature in a more precise manner.

The two loops contributions come from the two graphs

(figures 4(a) and A(b)); ‘The"éonxribution from figure 4(a)

with proper combinatorial factor can be put as

200 -

7_2 N 1 2 o,
(=24 m)([kkumz) (25)

Since we are iﬁterested only on the temperature dependent

terms, we find

T (o) =
2a

that

(122 m) (s ()

AmD?
- % M o (26)

The contribution from figure 4(b) can be expressed as

ng(d)

124.>nq3g2(_i>,f ; { 82 { ky+ ky + k)

12 R B
- k’ Xk 2 MZ kQ 2 kz Mz
k3 253 (kj + ) ( 2+M ) ( 3""

B  dk,dk, dk
s vty 3y | T
) T
ny n, ns ]
6(k1+k2+k 5,

‘ 2
4nn2T24E2 ) (41%n2T24E2 ) (4n°n?T2+Ey )
( 1 My M, M

(27)

)

l+n2+n3}
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@, F
¥rom these relations it is seen that 2. + _7 > 0
4 2

which is the condition to be satisfied by (33) that it has
one real root, so that the critical temperature is determined
uniquely. The critical temperéture correct to two loops

level is then given by

3 A;?f;;T o fal Pl 3 (35
Tc = Z 2 \’/Z +-é':-7 + 3—§ Z_ _2_'{, 55

This completes our calculation of the critical temperature

correct to two loops order.

4., Nature of phase transition

The above calculations reveal that the spontaneous
symmetry breaking pfeseht in the ¢6 ﬁodelAcan be removed by
raising the temperature above a critical value. In the:
language of Supéréonductivify, we may restate this in terms
of a phase transition from the ordered phase characterised
by <¢§ # 0 to a disordered phase characterised by {¢y = O,
as the temperature of the sSystem is raised;k Wé may follow
the method of Linde (1979) to stu@y the nature of the phase
transition. We replace the wvacuum expectation value
(p}¢}o} = ¢ by its thermal average {>p =V6T taken with

respect to a Gibbs ensemble so that the order parameter of



the theory .becomes explicitly temperature-dependent. The

ensemble average of finite temperature Green's function is

defined as (-~ =) = T (& H/f-")%» (&)

where'ﬁ‘is)the Hamiltonian governing the system. The.
paramétér characterising the thermodynamic equilibrium
state of the ¢ particles of the system is given by the

density of the particles in momentum space:

toel T

n, = 1/(e - 1) where n, = «\aﬁt &k> :

W

k= (k? + mz)% ; a; and ay are the usual creation and

annihilation operators.
The equation of motion corresponding to the

lagrangian (1) is given by

Qcp~m2cp+4)\mqa3—-3;\‘°‘q>5=() \ (36)

On shifting the field from ¢ to ¢+0 and taking the Gibbs
average of the corresponding equation,
Jo. - m?oy + 4 wmog + 12 mop, { %) + 12/\mq§ <))
2.
- 15 )20T<<@4> - 30 )Qcé ( ¢?> - 30 A2q§<:¢ )

- 15 \200 (@Y = 3 A%oq = O (37)
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Using standard finite temperature Greenfs function methods
(Abrikosov et al 1964) we may find that in the high

temperature limit

<;p2> = L. ak —— =
/ 2 2 2 1
: ! (k%+m=®)~

dI = %3‘ : o | " B - (38)
By similar calculations we may also find that
(%) = 2% N T TR o O (39)
Thus (37) becomes
3 4 6)\TUT - 3 222

T T

- m? PN
GT m OT + 4 Amo,

~ 15 A2

Bi-3

3 is_ 212 _
0’T -7 P m2 GT = 0 (40)
Assuming that O is constant we obtain

opl-m? + 4}\mc§ + 6AT —B,Azcg

2 :
-15 32z o2 -2 L] = o (41)

B3
o}
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This equation has three solutions:

= 0 | | (42)

GT =

G% = 4 xm? -15 X°1 ij4 Am?T _48 Nm?T + 90 A2

%3

Each solution of these equations defines a possible phase

6 »'m

of the field system with its characteristic excitations.
On heating the field system from absolute zero, the two

branches of of’given by (43) can coincide at a temperature
T, = 0.10%; yielding a common value for o, viz.,

2 o |
ch = %5 x - Nevertheless, this is noﬁ a phase transition,

~and as temperature increases further the two branches of
c; will again seperate. The existence of the separate
branches of cé implies that the phase transition at the

critical temperature T, is of first order.

The mass of the excitations may be found by making
the ghift o0 —) 0+80 in (40). Retaining only terms linear
in 60 and using (40)

‘ .
C1& - [m? + 15 bzcg + 45 }36% % + %5 A

%ari
t

(44)

o

6 AT - 12 )\mcz]ﬁc,r =
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from which the excitation mass is given'by

M2 = m2 45 A%12 2
MCP = m° -6 2T + Z -7 - 12 ,xmoT +
45 »2 L 62 + 15 A%0p (45)

The disordered phase is associated with excitations of mass

2m 2
M2 =m2-6)\T+§-5-)-:'—£D—— (46)
0] 4 e .
However this mass does not vanish at the critical temperature

The mass obtained from the effective potential V(o), defined

2
by M? = Q:lgg) , can be easily shown to vanish at the
0o
o=0

transition point. For the disordered phase we find

2m 2 \2m3
M2 = m? - 31 -3 &L 4 12 oD (47)
m m?

The existence of distinct solutions for GT

given by (42) and (43) may be indicative of a domain

as

structure of the vacuum. In the’case of the Higgs model

such a domain structure has been speculated upon (Linde 1979),
wherein adjaceht domains are associated with opposite signs
of Orp - The domains are separated by kinks, but this is not

a stable configuration because they define degenerate minima

of the effective potential. The situation is different in
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the @6 case. There is a five-~fold multiplicity of values

of Onp which éan be associated with different domains in the
vacuum. Eventhoﬁgh domains carrying condensate values, GT,
which differ only in sign may join together due to the
collapse of kink walls, there still may be some domains with
different absolute values of Op- These latter configurations
may be assumed to be stable. It is worth mentioning in this
context that the existence of a domain wall structure has
been very well established experimentally in the case of
ferroelectrics which are described by a Qé coupled phenomeno-
logical model defined in terms of polarisation as the order |

parameter (Lines and Glass 1977, Kittel 1977).
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Figure Captions

Figure 1. The zero-loop approximation for the effective
potential.

Figure 2. The one-loop approximation for the effective
potential.¥

Figure 3. Divergent graphs in the one-loop approximation.

Figure 4. The two-loop approximation for the effective

potential.








