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Abstract

In this note we present the methods and sensitivity for a search for sterile neutrinos
based on the 3+1 model in the MicroBooNE experiment. The recently released results
by MicroBooNE show no sign of the MiniBooNE/LSND low-energy-excess anomaly.
The 3+1 model examined here expands on the standard model of neutrinos by adding a
fourth neutrino flavor and is not necessarily ruled out by the lack of a low energy excess.
The search presented relies on Deep-Learning-based reconstruction tools and looks for
charged current quasi-elastic-like (CCQE-like) events kinematically consistent with a
2-body interaction. Using two orthogonal samples of CCQE electron neutrino events
and CCQE muon neutrino events, we test this model allowing for electron neutrino
appearance, electron neutrino disappearance, and muon neutrino disappearance. We
present the sensitivity to the oscillation parameters using the Wilks’ theorem exclusion
confidence levels. We demonstrate the use of a minimizer to find the best fit and discuss
the effect of using a Feldman-Cousins’ procedure instead of Wilks’ theorem to determine
sensitivity.

1 The MicroBooNE Detector
MicroBooNE, located in Batavia, Illinois at the Fermilab National Accelerator Laboratory

(FNAL), is a short-baseline accelerator neutrino experiment [1]. One of the major goals is
to investigate the MiniBooNE low energy anomaly [2]. MicroBooNE receives neutrinos from
the Booster Neutrino Beam (BNB). It has a 470 m baseline, and utilizes the same beam as
MiniBooNE. The MicroBooNE detector consists of a liquid argon time projection chamber
(LArTPC), a light collection system, and an external cosmic ray tagging device. The TPC
employs three wire readout planes which enables 3D position reconstruction. As charged
particles traverse a volume of liquid argon, they leave trails of ionization electrons. A uniform
electric field in the detector volume causes these electrons to drift to one side of the chamber.
The anode is parallel to the cathode plane and parallel to the beam direction. The applied

1

This document was prepared by MicroBooNE Collaboration as a result of the use of facilities of the U.S. Department of Energy (DOE), which are managed by Fermi Research Alliance, LLC (FRA), 
acting under Contract No. DE-AC02-07CH11359. Neither FRA, DOE, the U.S. Government, nor any person acting on their behalf: (a) make any warranty or representation, express or implied, 

with respect to the information contained in this document; or (b) assume any liabilities with respect to the use of, or damages resulting from the use of any information contained in the document.



electric field is 273 V/cm, leading to ≈ 0.11 cm/µs electron drift velocity. The plane-to-plane
spacing is 3 mm and the wires in each plane are separated by 3 mm. The collection plane
is oriented vertically and the induction planes are at ±60◦ relative to the vertical [1]. The
light collection system is a PMT optical system. It collects scintillation light produced in
the interaction and is used for beam triggering. The cosmic ray tagger is not utilized in this
note as it was not active during much of the data taking for the data used here [1].

2 3+1 Sterile Neutrino Model
One proposed solution to the MiniBooNE anomaly is a fourth light sterile neutrino in

addition to the three standard model neutrino flavors [3]. These sterile neutrinos are assumed
to have no weak interactions and a mass on the order of 0.1 eV - 10 eV. The mass state is
also assumed to have small weak flavor content. These assumptions allow for the currently
observed anomalies at LSND and MiniBooNE which feature small oscillation-like signals at
a relatively small L/E (∼ 1 m/MeV) [2, 4]. The assumption is made that the three standard
model mass splittings degenerate at 0 ev2 relative to the sterile neutrino mass splitting, as
they are known to be ∼ 10−3 and ∼ 10−5eV 2. In order for a neutrino to be able to explain
the short-baseline anomaly the sterile neutrino mass splitting should be ∼ 1eV 2.

∆m2
21 ≈ ∆m2

31 ≈ ∆m2
32 ≈ 0(eV )2 (1)

This allows the oscillation probability equations to be written in a simplified form. This
analysis is sensitive to 3 oscillation channels: νµ → νe (νe appearance), νe → νe (νe disap-
pearance), and νµ → νµ (νµ disappearance). The νe flux from the BNB is not large enough
to observe νµ appearance with any statistical significance. The oscillation probabilities are:

P (νµ → νe) = 4|Uµ4|2|Ue4|2 sin2 x41

= sin2(2θµe) sin
2 x41 (2)

P (νe → νe) = 1− 4|Ue4|2|(1− |Ue4|2) sin2 x41

= 1− sin2(2θee) sin
2 x41 (3)

P (νµ → νµ) = 1− 4|Uµ4|2|(1− |Uµ4|2) sin2 x41

= 1− sin2(2θµµ) sin
2 x41 (4)

where x41 =
L∆m2

41

E
, L is the neutrino travel distance and E is the energy of the neutrino.

There are three independent parameters that will be fit over: |Ue4|, |Uµ4|, and ∆m2
41 where

|Ue4| and |Uµ4| are the explicit PMNS matrix terms. The ranges tested in this analysis
are: ∆m2

41, 25 logarithmic spaced values [0.01,100] MeV 2; Ue4, 25 logarithmic spaced values
[0.01,0.5]; and Uµ4, 25 logarithmic spaced values [0.01,0.5]. L for each neutrino is calculated
from the ‘true’ value generated in the MicroBooNE simulations. The E used when scaling
the simulation is the reconstructed neutrino energy.
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3 CCQE-like 1l1p Event Reconstruction and Selection
This study utilizes an event selection which looks for charged current quasi-elastic (CCQE-

like) events kinematically consistent with a 2-body interaction with one lepton and one
proton (1l1p) in the final state. The agreement to the 3+1 sterile neutrino model will be
tested using a joint selection of two orthogonal samples of CCQE electron neutrino events
(1e1p) and CCQE muon neutrino events (1µ1p). This reconstruction chain and the event
selections have already been used to search explicitly for the low-energy excess anomaly seen
in MiniBooNE and rejected the MiniBooNE signal at 2.4σ [5, 6]. The purity for the correct
flavor of neutrinos regardless of the interaction type for the two selections are 90.7% and
97.8% for the 1e1p and 1µ1p selections respectively. This purity metric is important as all
interactions of a certain neutrino flavor will be oscillated in the same way. The efficiencies
are 6.6% and 3.27% for the 1e1p and 1µ1p selections respectively.

The data that is used in this study was taken from 2016 to 2018, and recorded over three
run periods with 6.67×1020 total protons-on-target (POT) in the three runs. The simulation
samples are scaled to match this POT.

The kinematic variable this oscillation analysis is performed in is neutrino energy, which
is calculated as:

Erange
ν = Kp + Kℓ +Mℓ +Mp − (Mn − B) (5)

where K is kinetic energy determined from the reconstructed charged lepton (ℓ) or proton
(p); M is mass; p is the proton in the nucleus; n is the neutron in the nucleus; and B is the
average binding energy, assumed to be 40MeV [7].

In order to search for the MiniBooNE low-energy excess in Ref. [5], the neutrino energy
binning for the 1e1p selection was set to be 200-1200 MeV in 100 MeV bins. The 1e1p binning
has been expanded for this analysis to capture any high energy oscillation behavior. It has
been expanded to: [200-1200] in 100 MeV bins + [1200-1600] in 1 400 MeV bin + [1600-2400]
in 1 800 MeV bin.

The uncertainties are incorporated into this analysis using the covariance matrix formal-
ism. The systematic uncertainties are the same as that presented in Ref [5]. However, there
are a few key differences from the previous analysis that affect the systematic uncertain-
ties. These are: a change in 1e1p range to allow for sensitivity to higher energy oscillations;
changing the 1µ1p selection to include high-statistics π0 samples (change is within simulation
statistical error); and removal of the background fitting performed on the νµ background to
the 1e1p selection (the largest change). The total covariance is regenerated for each oscillation
parameter set.

The total fractional covariance matrix is shown in Figure 1 for both no oscillation and
maximum oscillation. The contributions of each type of uncertainty to the total spectrum is
shown in Figure 2. This has been broken up into the 1e1p and 1µ1p spectra.

Fig 3 shows the results of applying the selection to both simulation and data as used in
Ref [5]. The simulation has no sterile neutrino signature in this figure. Note, the spectrum
shown in Fig 3 (a) does not have the two extra high energy bins as this is from a previous
data/simulation comparison and data is not yet included in this study.
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(a) null model (b) maximum oscillation

Figure 1: Total fractional covariance matrices for (a) the null model and (b) maximum oscillation.
Bins 0-9 are the original bins of the 1e1p selection (indicated by red line). Bins 10-11 are
the additional high energy 1e1p bins (indicated by white line). Bins 12-29 are the 1µ1p
bins.

(a) 1e1p selection, no oscillation (b) 1e1p selection, maximum oscillation

(c) 1µ1p selection, no oscillation (d) 1µ1p selection, maximum oscillation

Figure 2: Systematic uncertainties on the 1e1p selection (a,b) and the 1µ1p selection (c,d) broken
up by contribution type. The y axis has been set to the same value (0.6) in all plots.
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(a) 1e1p (b) 1e1p

Figure 3: Predicted Ereco
ν spectrum for the 1e1p (a) and 1µ1p (b) selections, with the data selection

represented by black points. Adapted from Ref [5].
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4 Sensitivity to the 3+1 Model
This analysis combines the 1e1p selection with the 1µ1p selection in a joint fit and tests

three oscillation channels concurrently. νe appearance, νe disappearance, and νµ disappear-
ance are all allowed to occur. To find the best fit oscillation parameters in this analysis for
a given x, we seek the maximum likelihood, or equivalently, the minimum − ln(L), where L
is the likelihood. We also multiply by a factor of 2 to match up with Wilks’ theorem since it
will be used to determine sensitivity. The test metric is then:

− 2 ln(L) =
i=N∑
i,j

[(xi − µ(θ)i)M
−1
tot,ij(xj − µ(θ)j)] + ln(|M |) (6)

where x is the observation, µ(θ) is the expectation for a given set of oscillation parameters,
|M | is the determinant of the covariance matrix, and N is the number of bins. There are 31
bins coming from the 12 1e1p energy bins and the 19 non-zero 1µ1p bins. This is the metric
used to test agreement to various fit parameters in this analysis.

The method used to determine sensitivity in this study utilizes Wilks’ theorem [8]. Wilks’
theorem states that, as long as some general conditions are satisfied, −2ln(L) approaches a
χ2 distribution in the limit where the data sample is large [9]. In other words,the maximum
ln(L) ratio (R) follows a χ2 distribution with n degrees of freedom (DOF). R is defined here
as:

R = −2 ln
L(θ)

L(θbf )
(7)

where L(θ) is L for a given set of oscillation parameters, and L(θbf ) is the L for the best fit
oscillation parameters. R written out fully for this analysis is therefore:

R =
i=N∑
i,j

[(xi − µ(θ)i)M(θ)−1
tot,ij(xj − µ(θ)j)] + ln(|M(θ)|)

−
i=N∑
i,j

[(xi − µ(θbf )i)M(θbf )
−1
tot,ij(xj − µ(θbf )j)]− ln(|M(θbf )|) (8)

where M(θ) is the total covariance matrix for a given set of oscillation parameters.
To build the Wilks’ theorem exclusion sensitivity, R is calculated at each point in param-

eter space with µ(θ) and M(θ) as the expected number of events and covariance matrix for
the parameters, x is the null oscillation spectrum, and µ(θbf ) and M(θbf ) are the oscillation
parameters giving the minimum −2 ln(L) when compared to the null oscillation. This value
is then compared at each point in parameter space to the Wilks’ theorem 90% confidence
level (CL) for 3 degrees of freedom (6.25).

As 3D confidence levels are not intuitive to visualize, the Wilks’ theorem result is instead
displayed in 2D slices at each of the 25 parameter values tested for each of the 3 parameters.
The result is shown in Figures 4, 5, and 6 for ∆m2

41, |Ue4|, and |Uµ4| respectively. For a given
value of a parameter the 2D exclusion contour in terms of the other 2 parameters is shown.
The color scale represents the R value at each parameter grid point and has been capped
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Figure 4: 2D slices for each ∆m2
41 value tested to construct the Wilks’ 90% confidence excluded

region. The ∆m2
41 value in each case is indicated by the plot title.

at 20.0 to allow for better visualisation for R close to 6.25 (Wilks’ 90% exclusion level for 3
degrees of freedom). The exclusion sensitivity contour is indicated by the white lines.

A region of particular interest to analyze is the global best fit from previous experiments.
The global best fit for these parameters as found in Ref. [10] are: ∆m2

41 = 1.32(eV )2,
|Ue4| = 0.116, and |Uµ4| = 0.116. The 2d slices for these parameters are shown again in Fig
7, with the global best fit point shown by the red star. Note that the 2d slices are not exactly
at the global best fit, but at the closest parameter value tested.
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Figure 5: 2D slices for each Ue4 value tested to construct the Wilks’ 90% confidence excluded region.
The Ue4 value in each case is indicated by the plot title.
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Figure 6: 2D slices for each Uµ4 value tested to construct the Wilks’ 90% confidence excluded region.
The Uµ4 value in each case is indicated by the plot title.

(a) Uµ4 (b) Ue4 (c) ∆m2
41

Figure 7: 2D slices of the Wilks’ theorem exclusion sensitivity close to the global best fit point. The
90% CL is shown by the white line. The color scale (capped at 20) indicates the R value.
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5 Finding the best fit with a Minimizer
In order to determine the best fit parameters with data, this analysis utilizes a minimizer.

The 90% confidence level is then found via a grid search. The minimizer used in this study
is TMinuit from Root [11]. The minimizer requires specification of a start point. The best
performance is found when the starting point is the minimum from a grid search. This
process allows for a finer resolution when finding the best fit oscillation.

Fig. 8 shows the R distribution for 1000 pseudo-experiments for a variety of test points.
Both the grid search only and the grid search + minimizer are shown. The corresponding
vertical lines represent the value for which 90% of R values are below for that test point.
This value is referred to as Rcrit. For each test point, Rcrit of the combined grid search and
minimizer is higher than the grid search on its own. The Wilks’ 90% test points are a series
of points which lie along the 90% sensitivity contour line found using Wilks’ theorem.

Additionally, the Wilk’s theorem 90% confidence level value for 3 degrees of freedom is
shown as a black vertical line in Fig. 8. If this analysis instead used a Feldman-Cousins
method (Ref. [12]) to determine sensitivity, the R values found in the sensitivity study
would instead be compared to the Rcrit in these plots. Rcrit is consistently higher than 6.25
when using the grid search combined with the minimizer. This indicates that using Wilks’
theorem to draw the exclusion contour lines is not a valid approximation. Wilks’ theorem and
the Feldman-Cousins method are both frequentist methods of evaluating agreement. Wilks’
theorem relies on assumptions that the Feldman-Cousins method does not. Perhaps most
importantly, the use of Wilks’ theorem assumes a large number of events. This assumption
likely is broken in the 1e1p selection. The Feldman-Cousins method does not make this
assumption. For first result on data then, the best fit will be found as described in this
section. The agreement with the null model and the global best fit will instead need to be
evaluated using the Feldman-Cousins’ method.
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(a) Null Oscillation (b) Maximum Oscillation (c) Global best fit

(d) Wilks’ 90% point 1 (e) Wilks’ 90% point 2 (f) Wilks’ 90% point 3

(g) Wilks’ 90% point 4 (h) Wilks’ 90% point 5

Figure 8: The R distribution for 1000 pseudo-experiments thrown from the specified set of oscillation
parameters. The red spectrum is the result using only a grid search. The blue spectrum
is the result of using a grid search followed by the minimizer. The Wilks’ theorem 90%
CL value is shown and compared to the 90% Rcrit from the given spectrum.
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6 Conclusions
In this note, we have provided detailed documentation of the deep-learning based joint

1e1p+1µ1p 3+1 sterile neutrino search. The physics motivations, reconstruction, selections,
and systematic uncertainties were reviewed. The exclusion sensitivity utilizing Wilks’ the-
orem when creating confidence levels was found. This showed what the excluded region is
expected to be if the data matches the null oscillation spectrum. Next a minimizer to find the
best fit oscillation parameters was described. This was used to show the difference between
Wilks’ theorem and a Feldman-Cousins method for this analysis.
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