
FERMILAB-MASTERS-1985-01

A FASTBUS LOGIC STATE ANALYZER

BY

SERGIO ZIMMERMANN

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering
in the School of Advanced Studies of

Illinois Intitute of Technology

Chicago, Illinois
December, 1985

ACKNOWLEDGMENT

To make this thesis
institutions from U.S.A.
directly and indirectly.

possible many persons and
and Brazil contributed both,

From U.S.A. the Author wishes to thank Dr. George D.
Kraft, his adviser from IIT, for his support and help in
this thesis. He wishes to thank Edward Barsotti, leader of
the Data System Group of CDF from Fermilab, for chosing him
to develop this work and supporting its development. He
wishes to thank Willian Graves for helping him to correct
the manuscripts, Rudy Vabalaitis for doing the figures and
Joel Zautner for helping him to test the hardware and
software of the Snoop Modules. All these gentlemen are from
the Data System Group of CDF of Fermilab. He wishes·to
thank Jeffrey Marsh from the Software Group of CDF of
Fermilab for explaining him features of the VAX/VMS
Operating System. He wishes to thank Dr, Leon Lederman and
Dr. Roy Rubinstein from Fermilab, for proposing and
organizing this joint colaboration Fermilab-Brazil. He
wishes to thank the designers of the Snoop Module, Helmut V.
Waltz and David B. Gustavson, from the Stanford Linear
Accelerator Center, for providing the two Snoop Modules and
associated valuable information.

From Brazil, the Author wishes to thank his colleagues
of the Electronic Division of the Instituto de Fisica da
UFRGS, Miguel Fachin Jr., Mauro Wyrsykoski, Mauro Fin,
Arthur Boss Jr., Agostinho Bulla, Celso Muller and Paulo
Pedro Petry for handling the extra load of work while he was
absent. He wishes to thank Dr. Fernando Zawislak, Dr.
Bernardo Liberman, Dr. Edemundo do Rocha Vieira and Dr.
James Viccaro from the Instituto de Fisica da UFRGS for
giving him valuable support and conditions for his absence
for two years from his duties at that institution. He
wishes to tha�k Miguel Fachin Jr., Aderbal Fernandes Lima
and Marco Bittencourt from Equipamentos Cientificos e
Indust�iais Ltda. for handling the extra load of work. He
wishes to thank the Conselho Nacional de Desenvolvimento
Cientifico e Tecnologico for the financial support.

The Author wishes to thank his wife, Marisa, his
parents, Bruno and Emma, and his brother and sister-in-law
Paulo and Cristina, and� friend, Carlos Gary Faria for all
the help and support.

s . z .

iii

ACKNOWLEDGMENT .

LIST OF TABLES .

LIST OF FIGURES

CHAPTER
I. INTRODUCTION

TABLE OF CONTENT·s

II. MONITORING FASTBUS IN THE DATA AQUISITION
SYSTEM•

Error Detection And Reporting Specified By

Page
iii

vi

vii

6

The FASTBUS Standard 6

I I I.

Monitoring Using Display Modules And Test
Point Boards • 8

The Need For Another Form Of Monitoring:
The FASTBUS Logic Analyzer , 10

HARDWARE CHANGES AND TESTS IMPLEMENTED
WITH-THE SNOOP MODULE .. , , . , . , .

Hardware Modifications Regarding The

1 1

Arbitration Cycle , , .. , . 11
Hardware Modifications To Record FASTBUS

AS, AK, DS And DK Lines . , . , , . . 14
Hardware Modifications To Increase Self

Test Capabilities , . . 14
Test Recording FASTBUS Transactions Into

The Silo Memory , 14

IV. SOFTWARE FOR THE FASTBUS LOGIC STATE ANALYZER 17

The Snoop Module Interfaced To A Terminal . 17
The Snoop Module Interfaced To A Host

Computer 25

V, FUTURE DEVELOPMENTS

VI, CONCLUSIONS

APPENDIX

A. FASTBUS DESCRIPTON

B. SNOOP MODULE DESCRIPTION

C. SNOOP MODULE SOFTWARE •.

iv

46

48

49

64

74

BIBLIOGRAPHY • •

V

Page
108

LIST OF TABLES.

Table Page
1 • Slave Data Time ss Responses 7

2. Partial CSR-2 Bit Assigments 8

3. FASTBUS Signals 55

4 . FASTBUS Signals Recorded in the Silo Memory 70

vi

LIST OF FIGURES

Figure
1. Basic FASTBUS Elements ..

2. Examples of FASTBUS System Topology

3. Basic Circuit of FASTBUS Displays Modules

4. Original Arbitration Circuitry in the Snoop
Module

5. Changes Implemented in the Arbitration
Circuitry

6. Original Circuit of the Input/Output Buffers
Connected to FASTBUS AD and MS lines .

7. Changes Implemented to Enable Tests with the
Silo Memory •••

8. The Snoop Module Interfaced to a Terminal and
Connected to one FASTBUS Segment . • ••

9. Operation of the Snoop Module Connected to a
Terminal .

10. Example of Forth Words Written to Control the
Trigger Position .

11. The Snoop Module Interfaced to a Host and
Connected to a FASTBUS System

12. Interactions Among the Groups of Routines

13. Main Menu

14. First Page of the Setup for Recording Menu

15. Second Page of the Setup for Recording Menu

16. Trap Words Menu

17. Analysis of the FASTBUS Transactions Recorded
Menu .

'

18. Stop Recording Menu

19. Example of a Host Computer Function Subprogram

Page
2

3

9.

1 2

1 3

1 5

1 5

1 8

24

25

27

28

29

30

30

31

31

32

to Setup the Snoop Module • • • 36

vii

Figure
20.

21 •

Examples of Forth Words Used by the Host to
Control and Read-the Snoop Modules .

The Serial Interconnection of the Host and the
Snoop Modules

22. Typical Data Link Message Traffic

Page

37

38

42

23. Data Link with a NAK • 43

24. Data Link with the Occurrence of Timeout . 43

25. Part of the Communication Functions for the
VAX 45

26. Example of FASTBUS Transaction Expressed in
Disassembled Form 47

27, Basic Handshake Read Operation (As Seen by
Master) . . . 56

28. Snoop Module Organization 66

29. Snoop Module Block Diagram 67

30. Address and Data Trap Logic 68

31. Activity History Silo Memory . 69

32. Typical Wait-Step Logic 71

viii

CHAPTER f
INTRODUCTION

FASTBUS (1)* is a standardized modular data-bus system

for data aquisition, data processing and control. A FASTBUS

system consists of multiple bus segments which can operate

independently or be linked together with Segment

Interconnects (see Appendix A) for passing data and other

information.

At Fermi National Accelerator Laboratory (Fermilab), a

data acquisition system for the Collider Detector Facility

(CDF) based on FASTBUS is being developed.

about 60 FASTBUS Segments interconnected.

It will use

Some form of

diagnostic system, a kind of FASTBUS Logic State Analyzer,

will be necessary to help to find, in real time, software

and hardware faults occurring on the bus of this system.

The faults that are expected to happen on FASTBUS will

range from very simple faults, like a constant absence of a

signal on one FASTBUS line, to very complex faults, such as

an error created by a faulty interaction among different

FASTBUS Masters.

What tool(s) should be developed to expose these

problems? There are currently no adequate tools (software

or hardware) for examinipg improper behavior on FASTBUS. At

this moment it is possible to foresee that a system that

could record FASTBUS transactions into a silo memory (see

*Numbers in parentheses refer to numbered references in
the bibliography.

.. ~ ·,

l
i' ·~ '

2

Appendix B) for later analysis, would be very helpful. The

silo memory should be able to record activity on, at least,

the most important FASTBUS lines.

The electric connections among FASTBUS modules are made

by a set of signal lines called a Segment. The usua~

situation is that the required functionality at a given

location is attained by a number of Modules being grouped

together in a Crate in order to share a common backplane bus

(see Fig. 1).

bus.

CRATE
AUXILIARY
CONNECTORS

CRATE
SEGMENT
CONNECTORS

SEGMENT
INTERCONNECTION
TO/FROM
OTHER SEGMENTS
PROCESSO~
INTERFACE, ETC.

TO SEGMENT
INTERCONNECT
MODULE

"---c: Pt_UG-IN MODULES
MASTER
SLAVE
SEGMENT INTERCONNECT
SPECIAL PURPOSE

Figure 1. Basic FASTBUS Elements

Multiple Masters on a single Segment share a common ,,

Contention for use of a common bus may reduce

throughput, as seen by a given Master, because of the time

the Master spends waiting to gain Mastership. Since

Segments operate independently, distributing the Masters

3

among several Segments can reduce \he contention problem.

Even so, a Master on one Segment must be able to quickly

communicate with a slave on another Segment, This ability

is provided by Segment Interconnects (Sis) which temporarily

link independent segments (see Fig. 2).

HOST PROCESSOR

-~ ~L;:J

SEGMENT
INTERCONNECT

CRATE
SEGMENT

(TERMINATED)

Figure 2. Example of FASTBUS System Topology

A system with this characteristic should have the -

following facilities:

1. The recording ot FASTBUS cycles should be done in

one segment or in different segments at the same

time, depending upon the needs of the system,

4

2. It should have trigger capabilities to select only

the FASTBUS cycles of interest.

3, It should be able to present to the user the cycles

recorded in a comprehensive manner.

4. It should be easy to operate.

5. It should be able to analyze FASTBUS transactions

and minimally interfere with the FASTBUS

operations.

The Snoop Module (see Appendix B) was developed at the

Stanford Linear Accelerator Center. It was used to develop

this FASTBUS diagnostic system. The Snoop Module consists

of a high-speed emitter-coupled logic (ECL) front-end, with

test capabilities, controlled by a monitoring and

microprocessor. Some modifications in the hardware of the

Snoop Module were done in order to implement the

characteristics required by this diagnostic system.

The following steps were done to implement the FASTBUS

Analysis System using Snoop Modules:

1. Fully test and debug the Snoop Module.

2. Implement a set of FASTBUS monitoring tests that

take full advantage of the flexibility of the Snoop

module and are useful to trace FASTBUS problems.

3 . Implement specific modifications to the

circuitry of th~ Snoop Module.

basic

4. Develop software tools that enable the user, in an

easy way, to set the FASTBUS monitoring tests.

5.

6.

5

Network the

configuration

Snoop Modules in

and test their

a multi-segment

ability to trace

FASTBUS problems.

Test the

monitor

ability

FASTBUS

configurations.

of this diagnostic

transactions in

system to

different.

6

CHAPTER II

MONITORING FASTBUS IN THE DATA ACQUISITION SYSTEM

FASTBUS is a very new standard which has never been

used in an application of this size before. Consequently,

there is no clear understanding of the types of problems

that will occur during operation of the system.

To identify and trace such problems, several different

forms of monitoring the bus have been implemented. In the

next sections, a description of the FASTBUS monitoring

capabilities is given and in what specific situations these

capabilities are used.

Error Detection and Reporting Specified .2-1_ the FASTBUS
Standard

The FASTBUS standard specifies mandatory and optional

error detection and reporting techniques. The FASTBUS Slave

Status Responses are one example of mandatory error

detection and reporting. The Slave Status Responses are

encoded on the FASTBUS SS lines and are sent to a Master by

a Slave or Segment Interconnect, along with the appropriate

FASTBUS acknowledgement. These responses are used by the

Masters to determine their next course of action. Two sets

of Slave Status Responses are defined for FASTBUS: one for

Address Cycles and another for Data Cycles. The Slave
'

Status Responses for a Data Cycle are shown in Table 1.

These responses can be used by the Master to report the type

of error found and can help the service person in tracing

the fault.

7

Table 1. Slave Data Time SS Responses

SS<2:0> Interpretation

0 Valid Action

1 Busy

2 End of Block

3 User Defined

4 Reserved

5 Reserved

6 Data Error - Data Reject

7 Data Error - Data Accept

The FASTBUS standard also specifies some optional error

detection mechanisms which report the occurrence of errors

using bits in a Control and Status Register (CSR). For

example, Table 2 shows bits 8 through 13 of CSR-2 and their

significance when a FASTBUS Master reads these bits. A user

of a FASTBUS system can read these bits as an aid in

determining the cause of the errors which may occur.

Finally, the FASTBUS standard provides a set of user

defined error detection and reporting techniques for FASTBUS

module designers. See, for example, response SS=3 on Table

1 •

Table 2.

Bit

08

09

1 0

1 1

1 2

1 3

Partial CSR 2 Bft Assignments

Significance for a read performed

by a FASTBUS Master.

Non-existing Address

Device Data Overflow

Word Count Overflow

Device Full

Device Not Empty

Inputs Not Present

Monitoring Using Display Modules and .Test Point Boards

8

Display Modules (2) are FASTBUS modules which show the

logical level of each FASTBUS line. This is accomplished by

means of buffers which drive light emitting diodes (LEDs) on

the front panel of the module (see Fig. 3). They also have

internal circuitry which allows the user to assert the

FASTBUS Wait line each time a transition occurs on the AR,

AG, AS, AK, DS or DK lines. This provides a means to

perform single step operations on FASTBUS.

Test Point boards are boards with the same dimensions

as a FASTBUS module. Through a connector, each FASTBUS line

is accessible and is interfaced by a buffer to the front

panel of the board. The state of all FASTBUS lines can be

examined using this board and an oscilloscope.

H

R

DI!!

OTHER
SOURCES

H D Or----------------~~
H.......,..;,_..---c,

SINGLIE
STll!P R

H

Figure 3. Basic Circuit of FASTBUS Display Modules

9

The Display Modules and the Test Point boards are

useful for the development of FASTBUS modules. However,

they proved to be of little value for tracing faults on a

huge FASTBUS system. ,For example, a FASTBUS multi-master

system cannot normally be single stepped.

1 0

The Need for Another Form of Monitortng: The FASTBUS Logic

Analyzer

There are faults which occur on FASTBUS that can only

be produced by the data acquisition system itself, or that

may be simulated on test systems external to the data

acquisition. A logic state analyzer is the main tool used

to locate these faults.

However, logic state analyzers are not designed for

monitoring FASTBUS. They have the following disadvantages

when used to trace problems on FASTBUS:

1. It is difficult to connect them to a FASTBUS

Segment.

2. It is difficult to configure them to record FASTBUS

transactions in the most efficient way.

3. It is difficult to use them to trace data and

control information going from Segment to Segment.

4. Logic state analyzers of good quality are expensive

(approximately $25,000).

Because of these disadvantages, the usage of Snoop

Modules was implemented to monitor FASTBUS. The S~oop

implementation is described in this thesis.

CHAPTER III

HARDWARE CHANGES AND TESTS IMPLEMENTED WITH

THE SNOOP MODULES

1 1

Some hardware changes had to be implemented on the

Snoop Module board in order to provide certain modes of silo

memory recording which were not available on the original

board. More hardware changes were made to implement

additional self test capabilities.

Module, itself, was subject to a

establish how reliably it functioned.

Finally, the Snoop

variety of tests to

Hardware Modifications Regardin~ the Arbitration~

The original circuitry of the Snoop Module did not

provide a means to detect specific Arbitration Cycles on the

bus. This is an important condition to select which FASTBUS

transactions must be recorded into the silo memory,

The Arbitration Logic circuit of the Snoop Module was

modified in order to implement this feature. This circuit

enables the Snoop Module to request mastership of the bµs.

Figure 4 shows the original circuit; and Figure 5 shows the

circuity with the changes implemented.

The (XOR-NOT) gates are comparators which have their

outputs set to one when both the Internal Arbitration Level

and the Arbitration Level of the Master which granted bus

mastership are equal.

RGK --R....,..........,....,_ _ __,

IAR -------1
BAG -------1>C

IAll.n : INTER NA!.. JUilBGTRA TIOH LEVEL

Aln : FASTSUS AAl3lil'IPIATD0&'4 UN!S

BAG : FASTBUS ARBD"ffnATION GRANT

DAR : INTERNAL AREDTRATBON REQUEST

IIGK : FASTIHJS ~n,un AC&UfO'Wtl.lEDGE

1 2

Figure 4. Original Arbitration Circuitry in the Snoop Module

MINE

D 01-----1-----4
BAG -------f,1"-

R

1.3

MATCH

EAT---......,i~-,c

BAG ------~c
Al 1!'111 : AIIUUTAATION LEVEL TRAIP

ALn : FAS11'8UI AIAIIHTRATnON LINES

BAG : FAS11'DUS ARIBBTRATDON GRANT

RAT : RESET ARIIUTRATION TRAP

EAT : IHIAIILl!E ARIDITAATBON T&lAP

Figure 5. Changes Implemented in the Arbitration Circuitry

1 4

Hardware Modifications to Record FAST~US AS, AK, DS and DK

lines

When timing monitoring is being done on FASTBUS, it is

imperative to record the FASTBUS timing lines (AS, AK, DS

and DK) into the silo memory. This feature is necessary to.

enable the user to determine when the Address and Data

Cycles have occurred. This facility was implemented by

adding one more 1 K x 4 ECL randon access memory (RAM) to

the silo memory.

Hardware Modifications~ Increase Self Test ~apabilities

Hardware changes were implemented to enable the user to

test part of the front-end logic of the Snoop Module,

independent of FASTBUS transactions.

The output buffers which enable the Snoop Module to

drive the FASTBUS lines (see Fig. 6) were modified as shown

in Figure 7. With this new scheme, known test data may be

recorded into the silo memory for later checking independent

of the FASTBUS transactions.

Test Recording FASTBUS Transactions Into The Silo Memory

Many tests were done with the Snoop Module in order to

debug and test the board. One of the tests implemented was

done to determine if the'trigger and the recording into the

silo memory were reliable operations.

FROM

FROM
PATTERN
REGISTER

FROM MASK
REGISTER

FASTBUS .-----,_____
AD OR MS L__S. -

I>------"MATCH
-~'--0---------4----/ ./

LINES ~~'-TO SILO
,._..,.__ _________ _, __ ~~~MEMORY

ENABLE
AD OR MS

ON
fASTBUS

Figure 6. Original Circuit of the Input/Output Buffers
Connected to FASTBUS AD and MS Lines

FROM
FASTBUS
AD OR MS

LINES

FROM
PATTERN
REGISTER

FROM MASK
REGISTER

.-,-__ ...,.MATCH

~- -" TO SILO
'--+------------~--~~MEMORY

ENABLE
AD OR MS

ON
FASTBUS

Figure 7. Changes I~plemented to Enable Tests with
the Silo Memory

1 5

1 6

A Snoop Module was connected to~ FASTBUS Segment where

a Master was performing known FASTBUS cycles involving

arbitration, address and data with two different Slaves,

Two different triggers (see Appendix B) were used to start

recording FASTBUS transactions into the silo memory. These-

two triggers were alternated and used to record different

patterns of data in the silo memory. The silo memory was

filled using one trigger and then checked for errors;

afterwhich, the other trigger was used to refill the silo

memory for further error checking. This error checking,

which was performed by the control microprocessor of the

Snoop Module, was repeated 24 hours a day for two weeks

without a single error being detected.

1 7

CHAPTER IV

SOFTWARE FOR THE FASTBUS LOGIC STATE ANALYZER

Two different operation modes have been developed for

using the Snoop Modules: one consists of a terminal

interfaced to a single Snoop Module residing in one Segment,

and the other consists of a host computer connected to one

or more Snoop Modules residimg on different Segments. The

following sections describe these two configurations and

their associated software.

The Snoop Modu~ Interfaced~~ Terminal

Figure 8 shows a typical configuration of a Snoop

Module monitoring a FASTBUS segment when interfaced to a

terminal.

developing

This mode of operation is well suited for

FASTBUS modules in a test system or for

monitoring single segments of a data acquisition system.

Its setup time is minimal and no connection to a host

computer is needed.

An on-board microprocessor controls the front-end logic

of the Snoop Module through

registers (see Appendix B).

a set of control and status

The application software

developed provides the user with a set of commands which

enable him to control these registers and read the silo

memory. This software was written in two different

languages: Forth (3 and 4) and Assembler. Assembler was

used in all speed critical points.

MASTER
MODULE

SNOOP

TERMINAL

1 8

Figure 8. The Snoop Module Interfaced to a Terminal and
Connected to One FASTBUS Segment

The commands, normally called words by Forth, allow the

user to configure the Snoop Module to record FASTBUS

transactions, to observe the different steps in the

recording process, and to examine the silo memory. These

words give the user pomplete control of the various

monitoring capabilities of the Snoop Module (see Appendix

C) •

1 9

These Forth words are listed berow:

1. Words to set the Arbitration, Address and Data

Traps:

a. <pattern (byte)> TP-L!: Set the AL trap for

the Arbitration Trap.

b. <pattern (double word)> <mask (double word)>

TP-A-ADI: Set the AD trap for the Addres~

Trap.

c. <pattern (double word)> <mask (double word)>

TP-D-AD!: Set the AD trap for the Data or the

Second Address Trap.

d. <mask (double word)> TP-A-AD-M!: Set the mask

of the AD trap for the Address Trap.

e. <pattern (double word)> TP-A-AD-P!: Set the

pattern of the AD trap for the Address Trap.

f. <mask (double word)> TP-D-AD-M!: Set the mask

of the AD trap for the Data or Second Address

Trap.

g. <pattern (double word)> TP-D-AD-P!: Set the

pattern of the AD trap for the Data or Second

Address Trap.

h. <pattern (byte)> <mask (byte)> TP-A-MS!: Set

the MS trap for the Address Trap.

i. <pattern (byte)> <mask (byte)> TP-D-MS!: Set

the MS trap for the Data or the Second Address

Trap.

2.

20

j. <mask (byte)> TP-A-MS-M!: Set the mask for the

MS trap for the Address Trap.

k. <pattern (byte)> TP-A-MS-PI: Set the pattern

for the MS trap for the Address Trap.

1. <mask (byte)> TP-D-MS·-M!: Set the mask for the

MS trap for the Data or Second Address Trap.

m. <pattern (byte)> TP-D-MS-P!: Set the pattern

for the MS trap for the Data or Second Address

Trap.

n. ?TP: Show all traps set to the trigger

sequence chosen.

0 • ?TP-L: Get the setup of the AL trap for the

Arbitration Trap.

p. ?TP-A: Get the setup for the AD and MS trap

for the Address Trap.

q. ?TP·-D: Get the setup for the AD and MS trap

for the Data or the Second Address Trap.

Words to set different Trigger Sequences:

a. TR-SEQ-LAD: Set arbitration, address and data

cycle as trigger sequence.

b. TR-SEQ-LAA: Set arbitration, address and

another address cycle as trigger sequence.

c. TR-SEQ-LA: Set arbitration and an address
' cycle as trigger sequence.

d. TR-SEQ-AD: Set address and data cycle as

trigger sequence.

21

e. TR-SEQ-AA: Set address ~nd a second address

cycle as trigger sequence.

f, TR-SEQ-A: Set address cycle as trigger

sequence.

3. Words to set the Trigger Source:

a. TR-SRC-I: Set the use of the internal trigger

source.

b. TR-SRC-E: Set the use of the external trigger

source.

c. TR-SRC-M: Set the use of the microprocessor to

trigger. The trigger is asynchronous with

FASTBUS transactions.

4. Words to set the Position of the Trigger among

other transactions recorded:

5.

6 •

a. TR-POS-B: Set the trigger position to the

beginning of cycles recorded.

b. TR-POS-E: Set the trigger position to the end

of cycles recorded.

Words to select the type of FASTBUS cycles to

record:

a . TY-REC-ALL: Set to record all types of cycles.

b . TY-REC-NOD: Set to record all type except data

cycles.

Words to select'the type of sampling strobe:

a. SS-SRC-FB: Set FASTBUS transactions as source

for generation of sampling strobes.

22

b. SS-SRC-IC: Set the internal 50 MHz clock as

source for generation of sampling strobes.

c. SS-SRC-EC: Set an external clock as source for

generation of sampling strobes.

7. Words to read the setup of the fast front-end.

logic:

a. ?SET-REC: Show all the setup of the fast

front-end logic for the recording of FASTBUS

transactions into the silo memory.

b. ?TR-SRC: Show the trigger source setup.

c. ?TR-POS: Show the trigger position setup.

d. ?TR-SEQ: Show the trigger sequency setup.

e. ?TY-REC: Show the type of cycle to record

setup.

f . ?SS-SRC:

setup.

Show the sampling strobe source

8. Words to control the silo memory address counter:

a. <silo address (word)> SIA!:

address counter.

Set the silo

b. ?SIA: Read the silo address counter.

c. SIA1+: Increment the silo address counter by

1 •

9. Words to read the silo memory:

a. <1st address (word)> <no. of cycles to list

(word)> SILO: List all FASTBUS lines recorded

in the silo memory, starting at 1st address,

until the number of cycles to list is

23

completed,

b. SILOC: Read all FASTBUS lines recorded in the

silo memory in the address previous set in the

silo memory address counter. After listing,

decrement the address counter by one.

C • LID: List the identification of each FASTBUS

line shown by SILOC.

10. Words to control the execution of the recording

process:

a . START-REC: Record FASTBUS cycles.

b. ?STATUS-REC: Read the status of the recording

into the silo memory of the Snoop Module. It

stays showing the status until <ESC> is pressed

or the recording operation finishes.

c. STOP-REC: Stop the recording into silo memory.

d • REC: Start recording and show the status of

the recording. Stop recording when <ESC> is

pressed or when the recording process finishes.

Figure 9 gives a typical example of the interaction

between the user and the Snoop Module in this mode of

operation. Note that comments were added just for

illustration and that "OK" is the prompt sent by F~rth.

Figure 10 shows the Forth words written to control the

trigger position when the user is working with this mode of

operation.

TR-SEQ-AD OK

TR-POS-B OK

;Set the trigger sequence:
;address and data cycles.

;Set trigger position.

?TR-POS ;Check trigger position set.
TRIGGER POSITION: Start of FASTBUS cycles recorded OK

?TP-A ;Read the address trap
;previously set.

ADDRESS TRAP: AD pattern: #00000018 AD mask: #00000000
MS pattern: #1 MS mask: #0

OK
REC ;Start the recording operation.

24

TRIGGER WAS NOT FOUND ;Stop this process by typing the
OK ;key <ESC>.

#17. TR-A-AD! OK ;Change the AD lines trap for
;address trap.

REC ;Start again the recording
;operation.

OK

0 5
SIAD
000
001
002
003
004
005
OK

TRIGGER WAS FOUND ;Snoop front-end logic found
;the trigger sequence.

CYCLES BEING RECORDED ;Record FASTBUS cycles into
;silo memory.

IT IS NOT RECORDING ;Finishes automatically th~
;recording.

SILO ;Examine some cycles recorded
AiagGKar AL EGrd AD PApe SRwt MSss TOdt

0 0 1 0 1 1 0 0 00000017 1 1 0 0 1 0 0 0
0 0 1 0 1 1 0 0 00000000 1 1 0 0 2 0 0 1
0 0 1 0 1 1 0 1 OOA200.00 0 1 0 0 0 0 0 1
0 0 1 0 1 1 0 0 00000018 1 1 0 0 0 0 0 0
0 0 1 0 1 1 0 0 00004000 0 1 0 0 2 0 0
0 0 1 0 1 1 0 0 12AC3280 1 1 0 0 0 0 0

Figure 9. Operatiod of the Snoop Module Connected
to a Terminal

TR-POS-E

CB-TR-BG/END* CCR41

TR-POS-B

CB-TR-BG/END* SCR4!

?TR-POS
." TRIGGER POSITION: "
CW4@ CB-TR-BG/END*

25

(Set t'rigger position in the)
(end of cycles recorded.)
(Do this resetting bit in)
(control register 4.)

(Set trigger position in the)
(begin of cycles recorded.)
(Do this setting bit in)
(control register 4.)

(Show the trigger position)
(set.)

AND (Do this by reading bit)

IF
ELSE
THEN

(in control register 4.)
." Start of FASTBUS cycles recorded"
." End of FASTBUS cycles recorded"
SPACE ;

Figure 10. Example of the Forth Words Written to Control
the Trigger Position

The Snoop Module Interfaced~~ Hos~ Computer

The employment of a host computer to control the Snoop

Module creates numerous interesting possibilities:

a. The use of software utility packages resident in

the host to develop the software of the Analysis

System, like the menu oriented command interface,

software graphics packages, etc.

b. The use of the devices connected to the host like

disks, graphic printers, etc.

c. The use of the host computer to analyze the data

recorded by the Snoop Modules. For example, if an

error happens a few times every hour, a program can
'

be developed for the host to automatically setup

the Snoop Modules and check the

recorded.

transactions

26

d. The application software developed for the host

computer is relatively independent of the Snoop

Module hardware, decreasing the number of changes

necessary in the software in case of hardware

upgrading.

A VAX from Digital Equipment Corporation is used for

the host computer in this system. These computers are also

used to control the data acquisition system.

Figure 11 shows a possible configuration in which two

Snoop Modules controlled by the host computer are monitoring

a FASTBUS system. Note that the Unibus Processor Interface

(5) is a FASTBUS module which interfaces the VAX and

FASTBUS. One typical capability which this configuration

provides is the recording of data and control information

going from a Master located in one Segment to a Slave

located in another. This can be accomplished in the

following way:

programmed to

the Snoop Module, closer to the Master, is

detect the trigger sequence of interest, and

the other Snoop Module programmed to receive the trigger

from the first. When the trigger sequence is detected by

the Snoop Module closer to the Master,

recording the bus activity at the

both

same

modules start

time. Once the

recording process is finished, the user can call the host

facilities to analyze the FASTBUS transactions.

The application software developed for this type of

configuration can be divided into two groups: software

resident in the host computer and software resident in the

27

Snoop Module. This software is de~cribed in the following

sections. The communication between the host and the Snoop

Modules is described at the end of this chapter.

TO OTHER UNITS TO OTHER UNITS

M

SNOOP
TR

OUT

RS422
SERIAL

M: MASTER MODULE
Sl:SEGMENTINTERCONNECT
S : SLAVE MODULE

SI

UPI : UNIBUS PROCESSOR INTERF ACIE
TR OUT : TRIGGER OUT

TR IN : TRIGGER IN
C: RS422/RS232 CONVERTER

SNOOP

TR
IN

RS232
SERIAL

UPI

VAX

Figure 11. The Snoop Module Interfaced to a Host and
Connected to a FASTBUS System.

The Software Resident in the Host Computer: the

application software developed for the .host computer was

written in FORTRAN (6).

This software has three different groups of routines:

1. Routines which 'enable the user to control the

system and analyze the transactions recorded.

1 2.

28

2. Routines to control the Snoop Module and read the

silo memory.

3. Routines to perform the communication with the

Snoop Modules.

The interaction among these groups is shown on Figure

CONTROL
COMMUNI-MENU - -- AND -

CATDON
ROUTINES - READ -

ROUTINES - ~

ROUTINES

Figure 12. Interactions Among the Groups of Routines

A software package was developed at Fermi National

Accelerator Laboratory which enables programs to obtain both

the commands and the data for the FASTBUS logic analyzer by

means of menus (7). This software package was used to

implement the menus for the Analysis System. In total there

are five different types of menus:

1 • The main menu.

2. The Snoop Module setup menu.

3 • The trap words setup menu.

4. The analysis of the recorded FASTBUS cycles menu.

5 . The stop recording menu.

Figure 13 shows the main menu. This menu is activated

when the FASTBUS logic analyzer software begins running.

This menu allows the user to choose the operation which he

whishes to execute. Note that just two of the options

29

presented have been developed: o p t i o· n s A an d B . The other

options will be part of future developments and are

explained in Chapter V.

=~========== n n==M en u================
FASTBUS LOGIC STATE ANALYZER

M A I N M E N U

A - Setup for the Recording of FASTBUS Transactions

B - Analysis of the FASTBUS Cycles Recorded

C - Setup for the assertions of the Wait Line.

D - Save Information on Disk

E - Call Information from Disk

F - Selftest of the Analysis Modules

===-

Figure 13. Main Menu

Figures 14 and 15 show the menus used to setup the

Snoop Modules before recording FASTBUS transac~ions. This

menu provides a means of setting-up the front-end logic of

the Snoop Modules for different forms of recording. Option

D of Figure 14 is of particular interest. In this mode of

operation, when the Snoop Modules are interfaced to a host

computer, the recording process is completed only when all

modules have stopped recording into their silo memory. In

the case in which a Snoop Module is located in a FASTBUS

segment and no transactions are occurring, this option

allows the user to disconnect the Snoop Module from the

Analysis System without having to change its internal setup.

Also note that this menu consists of two switchable pages.

SETUP FOR THE RECORDING OF FASTBUS TRANSACTIONS
A ANALYSIS MODULE NUMBER [n]
B RECORD FASTBUS TRANSACTIONS
C EXECUTE THE MENU OF ANALYSIS OF FASTBUS CYCLES RECORDED
D CONNECTED TO THE ANALYSIS SYSTEM Option: [Yes/No]
E TRIGGER SOURCE Option: [n]

1 - Internal trap sequence
2 - External
3 - Record Command

F TRIGGER POSITION
1 - Start of cycles recorded
2 - End of cycles recorded

G SET TRAP WORDS
H NEXT PAGE

Also 1=Previous Menu

Option: [n]

30

============================~===============================

Figure 14. First Page of the Setup for Recording Menu

A TRIGGER SEQUENCE Option: [n]
1 - Arbitration, address and data cycle
2 - Arbitration, address and a second address cycle
3 - Arbitration and a second address cycle
4 - Address and data cycle
5 - Address and second address cycle
6 - Address cycle

B SAMPLING STROBE SOUR CE Option: [n]
1 - FASTBUS transactions
2 - Internal clock (50 MHz)
3 - External clock

C TYPE OF CYCLE TO RECORD Option: [n]
1 - All FASTBUS cycles
2 - Arbitration and address cycles

D LAST PAGE

Also 1=Previous Menu
================· ===

Figure 15. Second Page of the Setup for Recording Menu

Figure 16 shows one example of the Trap Words Menu.
'

This is a menu with different formats, depending upon the

Trigger Sequence chosen. For example, if the trigger

sequence chosen was just an Address Cycle, this menu will

allow the user to set only an address trap.

31

T R A P W O R D S
Sequence: Arbitration, address and data cycle

A AL pattern for Bus Arbitration Trap Patt.ern = [00]

B AD pattern for the Address Trap Pattern [00000000]
C AD mask for the Address Trap Mask = [FFFFFFFF]
D MS pattern for the Address Trap Pattern = [00]
E MS mask for the Address Trap Mask [FF]

F AD pattern for Data Trap Pattern [00000000]
G AD mask for Data Trap Mask [FFFFFFFF],
H MS pattern for the Data Trap Pattern = [00]
I MS mask for the Data Trap Mask [FF]

Also 1=Previous Menu
=======================~====================================

Figure 16. Trap Words Menu

Figure 17 shows the menu for the analysis of the

FASTBUS transactions recorded into the silo memory. Options

A, Band Care presently developed. Option C is usef~l when

the user wants to compare the FASTBUS transactions recorded

by one Snoop Module with the transactions recorded by

another.

=-==============Menu================
ANALYSIS OF THE FASTBUS TRANSACTIONS RECORDED

A Record FASTBUS Transactions

B List of transactions from one Module

C List of transactions from two Modules

D Timing Diagram

E Disassemble list of transactions

Also 1=Previous Menu
--------------=-----======-=-================================

Figure 17, Analysis of the FASTBUS Transactions
Recorded Menu

32

The last menu developed is the menu to stop the

recording process. It is shown in Figure 18. This menu is

shown when the user activates the recording process (option

B ;f Figure 14 and option A of Figure 17),

================Men u======~=====m==m
STOP RECORDING MENU

A Stop Recording and Return to the Analysis Menu

B Stop Recording and Return to the Setup Menu

Also 1=Previous Menu
=====-==========- ===

Figure 18. Stop Recording Menu

The menus interact with the Snoop Module by means of a

set of function subprograms.

perform the following:

These function subprograms

1. Setup the Snoop Modules.

2, Read the silo memory of the Snoop Modules,

3, Control the recording process,

4. Build different forms of tables to enable the user to

analyze the transactions recorded.

A list of these function subprograms and

respective use is given below:

1. Function subprograms

arbitration trap:

to set and

STATUS=AN_F_set_trap arb AL (mod_no,patt)

STATUS=AN_F_get_trap_arb_AL (mod_no,patt)

read

their

the

33

2. Function subprograms to set and read the address

trap:

STATUS=AN_F_set_trap_add_AD_mask (mod_no,mask)

STATUS=AN_F_get_trap_add_AD_mask (mod_no,mask)

STATUS=AN_F_set_trap~add_AD_patt (mod_no,patt)

STATUS=AN_F_get_trap_add_AD_patt (mod_no,patt)

STATUS=AN_F_set_trap_add_MS_mask (mod_no,mask)

STATUS=AN_F_get_trap_add_MS_mask (mod_no,mask)

STATUS=AN_F_set trap_add_MS_patt (mod_no,patt)

STATUS=AN_F_get_trap_add_MS_patt (mod_no,patt)

3. Function subprograms to set and read the data or

another address trap:

STATUS=AN_F_set trap dat_add AD mask (mod_no,mask)

STATUS=AN_F_get_trap_dat_add_AD_mask (mod_no,mask)

STATUS=AN_F_set_trap_dat_add_AD_patt (mod_no,patt)

STATUS=AN_F_get_trap_dat_add_AD_patt (mod_no,patt)

STATUS=AN_F_set_trap_dat_add_MS_mask (mod_no,mask)

STATUS=AN_F_get_trap dat_add_MS_mask (mod_no,mask)

STATUS=AN_F_set_trap_dat_add_MS_patt (mod_no,patt)

STATUS=AN_F_get_trap_dat_add_MS_patt (mod_no,patt)

4. Function subprograms to set and read the trigger

sequence:

STATUS=AN_F_set_trtgger sequence (mod_no,tr_seq)

STATUS=AN_F_get_trigger_sequence (mod_no,tr_seq)

5. Function subprograms to set and read the trigger

source:

STATUS=AN_F_set_trigger_src (mod_no,trigger_src)

34

STATUS=AN_F_get_trigger_src (mod_no,trigger_src)

6. Function subprograms to set and read the sampling

strobe source:

STATUS=AN F set strobe src (mod_no,strobe_src)

STATUS=AN_F_get_stro6e_src (mod_no,strobe_src)

7. Function subprograms to set and read the position

of the trigger:

STATUS=AN F set trigger_pos (mod_no,trigger_pos)

STATUS=AN_F_get_trigger_pos (mod_no,trigger_pos)

8. Function subprograms to set and read the type of

cycle recorded:

STATUS=AN F set type_cycles_rec (mod_no,type_rec)

STATUS=AN_F_get_type_cycles_rec (mod_no,type_rec)

9. Function subprograms to control the execution of

the recording process:

STATUS=AN F set start rec

STATUS=AN_F_set_stop_rec

STATUS=AN_F_get_status_rec (mod_no)

10. Function subprograms to build lists to analyze the

transactions recorded in the silo memory:

STATUS=AN_F_analyze_list_one_mod (mod_no)

STATUS=AN_F_analyze_list_two_mod (modA no,modB_no)

11. Function subprograms to connect or disconnect the

Snoop Module from the Analysis System:

STATUS=AN F set mod_hiber (mod_no)

STATUS=AN_F_set_rnod_wake (rnod_no)

STATUS=AN_F_get_mod_dreams (mod no)

35

Each of these function subprograms returns to the

caller routine a number (STATUS) indicating if the operation

was successfully completed.

Figure 19 shows an example of one of the functions

subprograms written. In 'this subprogram the command

"Encode" translates a hexadecimal number to ASCII.

Software Executed by the Snoop Modules When Connected

with the Host. When the Snoop Module is connected to

the host computer, it executes software similar to that

which it executes when it is connected to a terminal. The

basic difference between the two modes of operation is in

the form of communication, which is described in the next

section.

The host computer sends Forth words and numbers to the

Snoop Modules to control and read the Snoop Module. These

words are similar to the words used when the Snoop is

connected to a terminal, with the difference that numbers

set the different options. When the host reads the setup of

the Snoop Module, again, it reads numbers instead of

messages. These numbers are the numbers specified in the

menus (for example, see Fig. 14 and 15). There are some

words which are used in both modes of operation - the first

mode is when the Snoop Module is interfaced to a terminal,

and the second mode when it is interfaced to a host. Figure

20 shows some examples of these words.

Integer*4 Function AN F set trigger src
- - - (mod=no,trigger_src)

C
c Description
C ==========~
c Set the trigger source of the Snoop Module
C
c Call Parameters
C ===============

C

Integer*4
Integer*4

mod no
trigger_src

c External Routine: Transmit data to the module.
C ============:==========~~=~===~~-====~=====~a=

External AN_N_output data
C

c Parameter Statements
C ====================

C

Include
Parameter

'ANALYZER PAR.FOR/nolist'
out char no= 9

c Local Declarations

Integer*4 ANN out data buffer size
Character*(out char no) ANN out data buffer
Integer*4 ok -

C

c Data Statements
C ===============

C

Data
Data

ANN out data buffer
ANN out data buffer

I ' TR-SRC ! I/
size I out char no/

c Format Statement
C ================
100 Format(I1)
C
c Executable Code
C ==

Encode (1,100,AN N out data buffer) trigger src
ok =ANN output-data (mod no, -

- - - ANN output data buffer,
AN-N-output-data-buffer size)

if (ok .ne. AN_N_success-)-then - - -
AN_F_set trigger_src AN F network error

else
AN F set trigger src AN F success

endif- - - · -
return
end

Figure 19. Example of a Host Computer Function
Subprogram to Setup the Snoop Module

36

n TR-SRC I

n TR-POS!

?SS-SRC.

n TP-L!

Set the trigger source
n == 1: Internal trigger source
n = 2: External trigger source
n = 3: Asynchronous trigger

Set the trigger position among the cycles
recorded
n = 1: Start of cycles recorded
n = 2: End of cycles recorded

Read the sampling strobe source set
n = 1: FASTBUS transactions
n 2: Internal clock (50 MHz)
n = 3: External clock

Set the arbitration trap
n = pattern of the trap

Figure 20. Examples of Forth Words Used by the Host to
Control and Read the Snoop Module

37

The Communication Among the Host and the Snoop Modules.

The amount of data exchanged between the host computer and

the Snoop Modules is small and can be done adequately at low

data rates (for example, 9600 bits per second). Therefore,

a simple form of communication was developed using serial

lines. Another feature provided by this simple

communication technique is the ability to send broadcast

messages. This is important to synchronize the operations

of different Snoop Modules.

The basis of this serial communication technique is the

Binary Synchronous Communication (BISYNC) protocol from

International Business Machines, which "provides a set of

rules for synchronous transmission of binary coded data"

(8) • To develop this serial communication protocol, the

control characters of BISYNC, as well as, a subset of its

38

data transfer rules were used. Figure 21 shows the

interconnection of the host computer with the Snoop Modules.

RS232 RS422/ RS422 HOST
RS232

COMPUTER CONVERTER

SNOOP SNOOP
MODULE MODULE

#1 #2

Figure 21. The Serial Interconnection of the Host and
the Snoop Modules

The protocol consists of the following:

1. The communication is asynchronous and uses only

ASCII characters.

2. A centralized multipoint environment is used, with

the host being the control station and the Snoop

Modules the tributary stations.

3. The control station regulates all transmission by

means of polling and selection. By sequentially

polling each tributary station, the control station

directs the incoming message traffic. The outgoing

traffic is regulated by the control station

selecting the desired tributary station to receive

the mes~age. All transactions are between the

39

control station and the selected tributary station.

4. The operation to start any communication is

accomplished by the control station transmitting

the following message:

[EOT Polling 1 or selection ENQ PAD]

5. The polling or selection field is made up of 3

characters which contain the necessary information

to perform polling or selection with different

modules. The first two characters are the address

of the tributary station in ASCII and the third is

a P for polling and a S for selection. If the

module number is smaller the 10, it is sent a space

and the decimal module address.

6. The control or the tributary station can be in the

receiving or transmitting mode, depending on

whether data or control must be received or

transmitted by the station.

7. The control station can send only one block of text

per selection. If it has to send more characters

than can be supported by the block size, it has to

select the tributary again for additional

transmission of another message block.

8. The meaning of the control characters for the

FASTBUS logic analyzer serial communication

protocol are as following:

40

a, STX - START OF TEXT: This character precedes a

block of text characters. Text is that portion

of a message treated as an entity to be

transmitted through to the ultimate destination

without change.

b. ETX END OF TEXT: The ETX character

terminates the text. ETX requires a reply

indicating the receiving station status, with

the exception of the broadcast message.

c. EOT - END OF TRANSMISSION: This character

indicates the end of a message transmission,

which may contain one or more text messages.

It causes a reset of all stations on the line.

It is also used to respond to a poll when the

polled station has nothing to transmit.

d. ENQ - ENQUIRY: The ENQ character is used to

obtain a repeat transmission of the response to

a message block if the original response was

garbled or was not received when expected. It

also indicates the end of a poll or selection

sequence.

e. ACK - AFIRMATIVE ACKNOWLEDGEMENT: This reply

indicates that the previous block was accepted

without error and the receiver is ready to

accept the next block of transmission.

f. NAK - NEGATIVE ACKNOWLEDGEMENT: NAK indicates

that the previous message was received in error

g •

and the receiver is ready to accept a

retransmission of the erroneous block.

PAD - PAD CHARACtER: A PAD character is added

following each transmission to ensure that the

last significant character is sent before the

data set transmitter turns off. BELL character

(hex '07') is used as PAD.

9. The parity bit is use to validate the characters

received by the tributary and control station.

10. Address O is the broadcast address. All tributary

stations recognize this address and accept the text

if it is correct. There is no reply from the

tributary stations.

11. A timeout is used to limit the waiting time

tolerated by the control station to receive a

reply. When a timeout occurs, the control station

will again send its previous message and wait for

the reply. If a specific number of timeouts occurs

for the same message, the control station assumes

that the tributary is damaged or disconnected from

the network, and aborts the transmission.

12. The control station checks for errors in the

transmission, or replies, indicating that errors

are being detected by the tributary stations. If

these errors happen repeatedly, it aborts the

42

operation and reports the fault. Some examples of

this error detection are the control stations

repeatedly receiving NAK as replies when a text is

being transmitted or repeatedly receiving ENQ as an

answer for an ACK afier a text was successfully

received.

Based on these rules, the process for reading some data

from the Snoop Modules is the following: first the host has

to select the Snoop Module and indicate which data it needs

to read; after this it has to poll the Snoop Module and read

the data. Figures 22, 23 and 24 show examples of this

protocol.

CTRL

TRIB

TIRB 2

CTRL

TRIB 1

TRIB 2

CTRL

TRIB

TRIB 2

[EOT 2 S ENQ PAD] [STX Text ETX PAD]

[ACK PAD]

[ENQ 1 P ENQ PAD]

[ACK PAD] [STX Text ETB PAD]

[ACK PAD] [ACK PAD]

[STX Text ETX PAD] [EOT PAD]

Figure 22. Typical Data Link Message Traffic

CTRL [EQT 2 S ENQ PAD] [STX Text ETX PAD] ••
TRIB 2 [ACK PAD] [N] AK PAD .•

CTRL .. [STX Text ETX PAD] [EOT PAD]

TRIB 2

CTRL

TRIB 1

CTRL

TRIB

[ACK PAD]

Figure 23. Data Link with a NAK

[EOT 1 S ENQ PAD] [STX Text ETX PAD]
(Timeout)

[ACK PAD]

•. [STX Text ETX PAD] [EOT PAD]

[ACK PAD]

Figure 24. Data Link with the Occurrence of Timeout

Two function subprograms were developed for the host

which enable it to communicate with the Snoop Modules: a

function to send data to the modules and another to read

data from the modules. These functions are invoked by the

following:

ST A TUS = AN_N _1 npu t_da ta (mod,_no. i n __ buf fer, i n_buf fer _size,

no char received)

STATUS= AN_N_output data(mod no,out buffer,out_buffer_size)

Each of these function subprograms returns a number

(STATUS) to the caller routine indicating if the operation

was successfully completed. If some error was detected in

44

the operation, this number corresponds to the error

detected.

Figure 25 shows part of the software that performs the

operation which starts the communication with a tributary.

Note that the System Service Routines of the VAX/VMS

computer (9) are called to perform the following tasks:

1 • Assigning a

(sys$assign).

serial port to this process

2. Transmiting and receiving of the characters

exchanged with the Snoop Module (sys$qio and

sys$qiow).

3. Checking for timeout (sys$schdwk).

4. Causing the process to

(sys$hiber).

go into hibernation

5. Stoping the process in case of error in one of the

previous operations (call lib$stop).

As it has already been explained, the Snoop Module has

to be able to interface to a terminal or to the host. In

order to accomplish this goal, the communication protocol

was made switchable between one mode which performs

communication with a terminal and another mode which permits

communication with the host (see Appendix C).

The protocol necessary to perform the communication

directly with a terminal already exits in the Forth software

package resident on the Snoop Module - it is the standard

way that Forth communicates with the user.

c Assign the serial port SNOOP$PORT to this
c process if it was not previously assigned.
C

C

if (.not, assign done) then
ok "'sys$assign ('SNOOP$PORT',serial port,,)
if (.not. ok) call lib$stop (ok)-
assign_done a .true.

endif

c Queue a read to the serial port to receive the
c answer from the tributary. When the answer is
c received, an interruption is generated and the
c subroutine "AN_N_sel_int" or "AN_N_poll_int" is
c executed, depending if it is selection or polling.
C

ok=sys$qio (,%val(serial port) ,
%val(io$ ttyreadall .or. io$m purge)
%ref(io status block) ,

45

ANN sel int ,-, !or ANN poll int

C

%ref(in buffer),%val(in buffer size)-,
%ref(terminator_mask) -,) -

c Send the inicialization message selecting or polling
c the tributary station: [EOT mod no Sor P ENQ PAD].
C

C

byte count= 1
out buffer (byte count) = EOT
byte count= byte count+ 1
out buffer (byte count) == mod no ascii (1 :1)
byte_count = byte count+ 1
out buffer (byte_count) mod no ascii (2:2)
byte_count = byte count + 1
out buffer (byte_count) = 'S' !or 'P'
byte_count = byte count+ 1
out buffer (byte_count) ENQ
byte_count = byte count+ 1
out buffer (byte count) = PAD
ok=sys$qiow (,%val(serial port) •

%val(io$ wrTtevblk.or.io$m noformat)
%ref(io ;\atus block) , , -;
%ref(out buffer) ' %val(byte count)

if .not. ok) call lib$stop (ok) -

c Wait for the answer by turning the process into
c hibernation. Schedule a wake up to test timeout.
c The timeout flag is turn false in the int. routine.
C

timeout flag= .true.
ok = sys$schdwk ('
if (.not. ok) call
ok sys$hiber ()

timeout period ,)
lib$stop--(ok)

Figure 25. Part of the Communication Functions for the VAX

CHAPTER V

FUTURE DEVELOPMENTS

46

There are more developments involving the FASTBUS Logic

Analyzer which Fermilab plans to pursue in the next year.
l

It is anticipated that the use of this FASTBUS logic

analyzer facility will point towards other implementations

which test and diagnose errors on FASTBUS and are not

presently identified.

Part of these new developments were pointed out in the

discussion about the menus in Chapter IV. These future

developments are:

1, Routines to allow the Snoop Module to control the

assertion of the FASTBUS Wait line.

2. Routines to save and recall information from the

disk of the host computer.

3. Routines to provide selftest capability to the

Snoop Module.

4. Routines to show the FASTBUS transaction recorded

in the silo memory in timing diagram form and in a

FASTBUS disassembled form. As an example of a

FASTBUS transaction expressed in disassembleo form

see Figure 26.

47

SIAD AiagGKar AL EGrd AD PApe SRwt MSss OPERATION
000 0 0 1 0 1 1 0 0 00000017 1 1 0 0 1 0 Primary Add
001 0 0 1 0 1 1 0 0 00000000 1 1 0 0 2 0 Secondary Add
002 0 0 1 0 1 1 0 1 OOA20000 0 1 0 0 0 0 Randon Read
003 0 0 1 0 1 1 0 0 00000018 1 1 0 0 0 0 Primary Add
0011 0 0 1 0 1 1 0 0 00004000 1 1 0 0 2 2 ERROR=Parity
005 0 0 1 0 1 1 0 0 12AC3280 1 0 0 0 0 ERROR.aTimeout

Figure 26. Example of FASTBUS Transaction Expressed
in Disassembled Form

CHAPTER VI

CONCLUSIONS

48

The FASTBUS Analysis System described in this thesis

was developed at Fermilab. ,It was incorporated in systems

similar to the configurations shown in Figures 8 and 11.

They were used to test the ability of this Analysis System

to record FASTBUS messages being exchanged between Masters

and Slaves. The Analysis System worked properly.

The data acquisition system being built for the

Collider Detector at Fermilab is already in operation in a

simple configuration and a detailed implementation is

presently being completed. On October 13, 1985, it was used

for detecting a proton-antiproton collision for the first

time.

From the experience gained in tracing software and

hardware faults in the FASTBUS of the present configuration

of this data acquisition system, it has been established

that this Analysis System will be very useful in diagnosing

various classes of FASTBUS faults.

The complexity of Electronic Systems is increasing very

rapidly due to the need for increased processing spe~d and

the low cost of electronic hardware. Other distributed

processing systems which use techniques similar to this data

acquisition system are being developed around the world.

The work developed in this thesis is an approach that can be

used by these other systems to trace faults on their system

buses.

}
I ' l

49

APPENDIX A

50

FASTBUS DESCRIPTION

This Appendix is a copy of parts of the FASTBUS

specification manual (1).

Introduction

FASTBUS is a standardized modular multi-master data-bus

system for data acquisition, data processing and control

applications. A typical FASTBUS system consists of multiple

Crate Segments which operate independently but connected

together for passing data and other information. FASTBUS

can operate asynchronously using a handshake protocol to

reliably accomodate different speed devices without prior

knowledge of their speed. It can also operate synchronously

without handsake for transfer of data blocks at maximum

speed. It also has a multiplexed bus of data and address of

32 lines. These basic characteristics give to FASTBUS

Systems a high throughput and speed of operation.

Most FASTBUS design features stem from a consideration

of the requeriments of contemporary data acquisition

systems. The need for high speed is met by providing for

parallel operation of many processors which can communicate

with each other as well as with data acquisition and control

devices. The communication protocol used by processors and

devices has a large data and address field and is defined in

an implementation-independent manner so as to be able to

take advantage of advances in technology. The need for

flexibility is met by a modular design which readily permits

~ I
l I

51

many options in system configuration.

Modular instrumentation systems are distinguished by

the method used to interconnect the devices that form the

system. Mechanical, electrical, and logical aspects of the

connection have to be specified. The electrical connections

are made by a set of signal lines called a SEGMENT. While

FASTBUS DEVICES can be simply connected by CABLE SEGMENTS,

such an arrangement may incur speed penalties. The more

usual situation is that the required functionality at a

given location is attained by a number of MODULES grouped

together in a CRATE in order to share a common backplane bus

(Fig. 1). This bus, called a CRATE SEGMENT or SEGMENT,

like the CABLE SEGMENT forms a logical element of a FASTBUS

system.

Using the FASTBUS protocol, a SEGMENT functions as an

autonomous bus interconnecting one or more MASTER DEVICES

with a number of SLAVE DEVICES. All bus operations involve

a MASTER-SLAVE relationship between the initiator, which

must be a MASTER, and the responder, which must be a SLAVE.

A MASTER is capable of requesting and obtaining control of

the SEGMENT to which it is connected in order to communicate

with the SLAVE. If the communication is with another MASTER

then, for the duration of the operation, the responding

MASTER acts as a SLAVE. A SLAVE cannot gain bus mastership

but can make a Service Request that a MASTER on the same

SEGMENT can use to initiate a procedure to service the

request. MASTERS have a more versatile interrupt mechanism

52

in that they can gain bus mastership and write an interrupt

message to an interrupt service device. With multiple

MASTERS on a SEGMENT~ techniques must be provided to resolve

concurrent requests for use of the bus. Each MASTER is

assigned an Arbitration Level to use during Arbitration

Cycles, In response to timing signals from the SEGMENT

Arbitration Timing Controller, circuitry in each MASTER

determines which of the contending MASTERS will next be

granted bus mastership. No time penalty is usually

associated with this arbitration procedure since the next

MASTER can be selected before the current MASTER completes

its operation.

Multiple MASTERS on a single SEGMENT share a common

bus. Contention for use of this bus may reduce throughput

as seen by a given MASTER because of the time its spends

waiting to gain Mastership of a busy bus. Since SEGMENTS

operate independently, distributing the MASTERS among

several SEGMENTS can reduce the contention problem and

increase throughput to the extend that the information

needed by each MASTER can be localized on its SEGMENT.

A MASTER on one SEGMENT must also be able to quickly

communicate with a SLAVE on another SEGMENT. This ability

is provided by SEGMENT INTERCONNECTS (Sis) which temporarily

link independent SEGMENTS (Fig. 2). All SEGMENTS through

which the operation passes must be available at the same

time in order to complete an intersegment operation. The

arbitration mechanism, along with circuitry in each SI,

t

I

53

extends the resolution of bus contention problems to off- as

well as on-SEGMENT MASTERS. Since one SEGMENT can be linked

to any of a number of different SEGMENTS, system

configurations can be implemented which optimize

time-critical data paths,

While most, if not all, MASTERS will have some

processing ability, the FASTBUS system design also envisages

the connection of large and small computers to the system.

Such a connection is made by a PROCESSOR INTERFACE which

gains entry to the FASTBUS system through either a CABLE or

a CRATE SEGMENT (Fig. 2). System requirements dictate that

each system contain one processor which has complete

knowledge of the structure of the system. In particular, it

must be able to access every SEGMENT of the system and know

how the SEGMENTS are to be interconnected. This processor,

called the HOST, initializes the system by telling each side

of each SI what operations it is to pass on to its other

SEGMENT. By using GEOGRAPHICAL ADDRESSING, the HOST can

ascertain the physical location and type of each DEVICE in

the system and, as

DEVICES, LOGICAL

needed, assign LOGICAL ADDRESSES

ADDRESSES allow a DEVICE to

to the

use an

INTERNAL ADDRESS Field matched to its needs which is

independent of position within a SEGMENT.

The principal characteristics and capabilities of

FASTBUS can be summarized as follows:

54

1. Speed limited only by propagation and logic delays

(typically better than 10 MHz for ECL)

2, Large Address and Data Fields (32 bits)

3, Segmented Bus to allow parallel processing

4. System-wide commun

5, Block transfers with or without handshake

6. Uniform system-wide protocol

7, Interrupt and arbitration features.

The FASTBUS operations make use of a multiline bus

whose signal assignments are as indicated in Table 3. A

CABLE SEGMENT consists of the group of 60 lines at the top

of the list while a CRATE SEGMENT includes in addition the

other listed lines as well as power lines.

FASTBUS Operations

Most FASTBUS operations begin with a MASTER requesting

and being granted bus mastership. The MASTER then selects a

SLAVE by a primary address cycle and follows this by any

number of data transfer cycles after which the bus is

released.

The primary address cycle is started by the MASTER

asserting the SLAVE'S address on the 32 Address Data (AD)

lines followed by Address Sync (AS) (see Fig. 27). This

assertion of the address word sets up a path, through

SEGMENT INTERCONNECTS if necessary, between MASTER and

SLAVE. When the SLAVE recognizes its address, it responds

with the Address Acknowledge signal (AK).

w
f
,.·· I

Mnemonic

AS
AK
EG

MS
RD
AD
PA
PE
ss
DS
DK

WT
SR
RB
BH

AG
AL
AR
AI

GK

TX
RX

GA

TP
DL
DR
TR

UR

FP

R

Table 3. FASTBUS Signals

Signal Name

Address Synchronism
Address Acknowledge
Enable Geographical

Mode Select
Read
Address/Data
Parity
Parity Enable
Slave Status

Data Synchronism
Data Acknowledge

Wait
Service Request
Reset Bus
Bus Halted

Arbitration Grant
Arbitration Level
Arbitration Request
Arbitration Request
Inhibit
Grant Acknowledge

Serial Line Transmit
Serial Line Receive

Geographical Address
Pins (position encoded,
not bussed)
T Pin (not bussed)
Daisy Chain Left
Daisy Chain Right
Terminated Restricted
Use
Unterminated Restricted
Use
F Pins (Free use, not
bussed)
Reserved

Use

T
T
CT

C
C
I
I
I
I

T
T

A
A
A
C

TA
IA
A
CA

TA

s
s

F

X
X
X
X

X

Number

3
1

32
1
1
3

1
1
1
1

1
6
t
1

1
1

5

1
3
3
8

2

5

55

Table 3,(continued

Description of Symbols

T Timing for address and data cycles
C Control for address and data cycles
I Information for address and data cycles
CT = Control and timing
A = Asynchronous - timing not directly related

to data transfers
TA = Timing for Arbritation bus
IA = Information for Arbitration bus
CA = Control for Arbitration bus
S = Serial data, timing independent of parallel bus
F = Fixed information - constant
X = Special Purpose

56

The protocol requires that AS and AK remain asserted

until the operation is completed.

ADDRESS
I

AS

RD--------
AK------J

os---------

DATA ~GNAL
GENERATED av:
MASTER/SLAVE

-..------- MASTER

'+1--..,._------~MASTER

---SLAVE
.._...,_ _______ MASTER

-------SLAVE

Figure 27. Basic Handshake Read Operation
(As Seen by Master)

On receipt of the AK response from the SLAVE, the

MASTER removes the address information from the AD lines and

uses these lines for data during the ensuing data transfer

cycles. After the AS/AK lock between MASTER and SLAVE has

thus been established, a Read operation can be initiated by

the MASTER asserting the Read (RD) and Data Sync (DS) lines

as in Fig 27. The SLAVE responds by placing data on the AD

57

lines and issuing DK which is used by the MASTER to latch

the data. For a Write operation, the MASTER asserts data on

the AD lines and follows this assertion by the Data Sync

(DS). The SLAVE responds by issuing a Data Acknowledge

(DK). The operation is te~minated by the MASTER removing

all its signals, including AS, from the bus. The SLAVE,

sensing the removal of AS, removes all its signals including

AK.

Since Address and Data Cycles are easily

distinguishable, the three Mode Select lines MS<2:0>, are

used by the MASTER to modify the meaning of the address

information and to independently specify the type of data

transfer. In a primary address cycle, control or data space

can be specified as well as single or multiple listener

(Broadcast) mode. In a data cycle, random data, secondary

address, or handshake or pipelined (non-handshake) block

transfer can be specified.

Similarly the three Slave Status information lines,

SS<2:0>, are used to indicate the success or reason for

failure of an Address or a Data Cycle. Addressing

difficulties can occur at SEGMENT INTERCONNECTIONS because

the SI does not respond (Network Failure) or cannot gain

access to its Far-side SEGMENT (Network Busy) or gets

preempted by a higher priority operation (Network Abort).

Bus lockup caused by unused addresses on the destination

SEGMENT are avoided by timers in the MASTER and in the SI

which places the address on the destination SEGMENT.

58

During a Data Cycle, in addition to being able to

indicate that it can either accept no more data or has no

more data to send, a SLAVE can also signal that it is

currently busy or that it has detected one of several

classes of error.

Arbitration for Bus Mastership

One of the most important requirements of a

multi-processor system is a method for allocating control of

the SEGMENTS to the various MASTERS which may be contending

for bus Mastership simultaneously. Part of the circuitry to

accomplish this, which resides on each independent SEGMENT,

is called the Arbitration Timing Controller (ATC).

Ten bus lines are dedicated to SEGMENT priority

arbitration. Each master is assigned a six-bit Arbitration

Level. Masters wishing to gain bus mastership assert the

Arbitration Request line (AR).If the Grant Acknowledge, GK,

line is not asserted, the ATC starts an Arbitration Cycle by

asserting the Arbitration Grant, AG, signal, Requesting

Master respond by asserting their arbitration levels on to

the six Arbitration Level Lines AL<5:0>. On each

Arbitration Level line an asserted bit will override any

non-asserted bits. Each requester continually compares its

Arbitration Level with the code on the AL lines bit-by-bit

from most to least significant positions. If a requester

detects a bit on the bus which it is not asserting, it

removes from the bus all of its own bits of lesser

t i
~ t

I

59

significance. After a time determined by the ATC, only the

highest Arbitration Level remains asserted on the AL lines

and each competitor knows if it has won or lost. When the

Arbitration Timing Controller has determined that the bus is

completely free (AS=AK•WT=GK=b) it stops asserting AG and

the winning Master responds by asserting GK and assuming bus

Mastership. The MASTER continues to assert GK until it is

willing to allow another Arbitration Cycle. This is usually

after the last Address Cycle of its sequence of operarions

thus allowing the next MASTER to be selected before the

current MASTER has finished its Data Cycles.

Of the 64 possible priority codes, zero is not used

because it is easily confused with an idle bus. Codes 1

through 31 are available for use within the SEGMENT, and 32

through 63 are available for use as "system" priorities for

unique assignment within communicating parts of a system.

The Local priorities 1-31 must be assigned uniquely to

DEVICES within a given SEGMENT, but can be reused on every

SEGMENT. When a SEGMENT INTERCONNECT connects a MASTER to

another SEGMENT, the Level used for arbitration on the

second SEGMENT will normally be that of the SI rather than

that of the originating MASTER. However, if one of the

system priorities was used by originating MASTERS, the SI

will propagate that priority onto the second SEGMENT, which

it is free to do since the system priorities are unique

along a route. The system priorities can be useful in

preventing undue delay for important Broadcasts, and can

60

help expedite important messages which might otherwise

suffer from fluctuating priorities as they form paths

through the system.

No interruption or preemption of the current operation

is possible. A MASTER is fre~ to keep the bus as long as it

wishes. If it sees AR=1 while AS=AK=1, it knows that other

MASTERS in the system are being blocked by the current

operation. The controlling MASTER should normally release

the bus within a reasonable time in order to allow other

MASTERS to acquire bus Mastership. It should allow either

one Arbitration Cycle or a random Retry Delay to occur

before again requesting bus Mastership. The general

solution to the problem of contention and deadlock in

FASTBUS is to give up and retry after a random delay.

Control and Status Registers

Certain registers and functions in DEVICES need to be

separated in address space from the normal data registers in

a way which provides some protection from accidental access

and which does not interfere with the allocation of

addresses to the normal data portions of the DEVICES. For

example, two memory DEVICES should be able to have their

addresses set so that the memories are adjacent in address

space, allowing them to be used as one larger memory.

However, they may contain control registers and status

registers associated with memory protection or error

detection and correction, and these registers must also be

61

accessible. Furthermore, it is desirable that DEVICES have

basic status and information registers in standard locations

so that they can be readily accessed by standard shared

programs.

The method chosen to abcomplish this is to select

control/status register (CSR) space in a primary address

cycle by suitable coding of the MS lines. This is followed

by a secondary address cycle to select a register in CSR

space, and a data cycle to transfer to or from the

registers. Secondary addressing provides a full 32-bit

address for use within a DEVICE, which is enough address

space so that it can easily be allocated in standard ways

without fear of a shortage. Standard locations in dedicated

CSR registers are specified for all the usual control and

status bits. DEVICES are required to contain an identifier

unique to the DEVICE type which is used during system

initialization. This identifier is located in status

register O so that even simple DEVICES with no address

decoders can respond correctly with little added cost.

Segment Interconnects

A SEGMENT INTERCONNECT monitors the activity on the two

SEGMENTS it connects, waiting for an address to appear which

is in the set of addresses it has been programmed to

recognize. It responds to a recognized address asserted on

one of the SEGMENTS (Near side) by requesting use of the

other SEGMENT (Far side) and asserting the given address on

62

that SEGMENT when it gains control, The two SEGMENTS remain

locked together until the operation is complete. The

address asserted on the Far side may, in turn, be recognized

by another SEGMENT INTERCONNECT and may be passed to yet
)

another SEGMENT. An arbitrary number of SEGMENTS can be

linked as needed for a given operation. The address

contains all the information needed to direct the

appropriate Sis to form the correct connections.

When a MASTER initiates FASTBUS operation it always

starts an internal Response Timer set to timeout at a time

appropriate for the SEGMENT on which it resides. If the

operation has to pass through one or more Sis, the MASTER

must be made aware that additional delays will be

encountered before a response is received. Any SI passing

an operation asserts WAIT (WT) on the SEGMENT from which the

operation arrived and starts a timer suitable for the

SEGMENT to which the operation is passed. The WT signal

causes a MASTER (and the Sis acts as a MASTER on the SEGMENT

to which it passes an operation) to stop its timer. The

timer is reinitialized when the WT signal is removed. In

this way an operation can work its way through a system

without causing timeouts to occur unless, of course, a

SEGMENT is reached which neither gives a normal response nor

asserts the WT signal.

I r
f

l

63

Interrupts

An interrupt is a request from a DEVICE to a processor

for service or attention.

cros.s SEGMENT boundaries,

Since Interrupts may have to

and since they must carry

information, they are handled'by normal FASTBUS operations.

The interrupting DEVICE addresses an interrupt-sensing

control register region in a processor interface and writes

its own address and possibly other information into the

registers. The processor then has all the information

needed to access the interrupting device and service it at

some later time.

Ancillary Logic on~ Segment

The implementation of a Segment requires circuitry

which is common to all Devices on the Segment. This

Ancillary Logic controls the execution of

Cycles, monitors Address

Addresses on the Segment

cycles and flags

with EG, generates

Arbitration

Geographical

the System

Handshake for Broadcast operations, issues signals to halt

activity on the Segment when the Run/Halt switch is set,

provides logic ones and zeroes for encoding tha GA pins and

provides terminators at both ends of the bus for most signal

lines. Like a Master, the Ancillary Logic has to be aware

of the timing characteristics of the bus to which it is

attached.

64

APPENDIX B

65

SNOOP MODULE DESCRIPTION

This appendix was written based on articles published

(1 0 , 1 1

David B,

and 12) and on interviews with Herout V. Walz and

Gustavson, the designers of the Snoop Module.

Introduction

The FASTBUS Snoop Module has been devised for

diagnosing problems inside crate segments, and for

monitoring communications from segment to segment in FASTBUS

systems. Since all bus-segment signal lines are accessible

at each crate module location, such a diagnostic module may

be used to monitor and record in a silo memory FASTBUS

transactions within a crater segment. The FASTBUS wait line

(WT) may be used to single-step bus cycles and implement

programmable trap functions.

Snoop Module Organization

The basic hardware organization of the Snoop Module is

show in Figure 28. A fast front-end section connects the

module to the crate segment bus, This section handles

diagnostic recording and control of the crate segment., with

response capability to match the fastest device on the bus.

It also provides interface and control for master-slave

operation and connection to the serial bus lines. Hardware

realization is on emitter coupled logic (ECL) in general,

with all speed-critical parts implemented with 100 K ECL

circuits and a high degree of parallelism. Control and

66

supervision of the fast front-end section is handled by a

compact microprocessor section, which includes a second,

general-purpose, UART-type serial port. A powerful 16-bit

CPU (MC68000) has been selected to optimize handling of
•/

serial communications, interrupt driven control of the

front-end diagnostic functions and master-slave operations,

and replacement of random logic by firmware-based processor

control throughout the module.

Fast ECL
1001< Fronl End

Interface
And Control

TTL/MOS
M1c,o-

Proceu0f
System

RS232/422
Interface

Gel'lerol
PurpoH
Serial
POf't

Figure 28. Snoop Module Organization

The module organization combines the low functional

complexity and extensive hardware parallelism of the fast

ECL front-end with the high level of integration of the

processor section, achieving a single-width module

implementation. A detailed block diagram is show in Figure

29, Based on this block diagram, a description of important

design details is offered in the following two sections.

100K ECL FRONT-END
AND MASTER/SLAVE
INTERFACE MISC CLOCK

OECOOING

SEL-

HISTORY SILO
MEMORY 1024W

AOORESS B DATA
TRAPS

PARITY ERROR
TRAP

CLOCKS DIVIDER

3

ECL-TTL
TRANSLATCR>

6MHz

8~3GA -CIO
MANU4L COUNTER-TIMER-

IRS INTERRUPT
'---.....-"""'""

12
--' PERIPHERAL

BEOB IRS

cw,sw
PORTS

BUS MASTER
ARBITRATION LOGIC

GEO ADDRESS
TP LOGIC

3 4
TEST

RAM
ROM

MEMORY

FRONT PANEL
INTERFACE

INTERFACE

XBClOCK

FSON
tNTERFACE

:r 300118

67

WAIT STEP
LOGIC

BUS DRIVER GATES
AO,MS,SS,PA,PE ,R RS 232/422 5<>-t9.2KD

FB CRATESEGMENT -GEN. PURPOSE TX lt>t
UART PORT FB FSON LINES

Figure 29. Snoop Module Block Diagram

Fast ECL Front-End

The fast ECL front-end contains the basic diagnostic

funtions of the Snoop Module: programmable wait-step logic,

traps for address, address-data, address-address, and

parity-error detection, activity history silo memory, and

master-slave interface logic. To allow processor con~rol of

status word registers, address this section, control and

decoding, and ECL-TTL level conversion are also provided.

This section is implemented with a mixture of 100 Kand 10 K

ECL integrated circuits.

68

Address-Dat~ and Parity-Error Traps. The address-data

rap is illustrated in Figure 30. The 32 AD lines, and the

S<1 :O> lines are compared with a pair of 34 bit registers

tt address and data sync times. The contents of these

~egisters allows each bit to be specified as O, 1 or "don't

care". The trap may be used as an address trap, an

address-data or an address-address combination trap. The

combination trap can be utilized to detect extended address

cycles and trigger the recording in the silo memory or

assert the FASTBUS wait line.

34

REG OUT ENABLE

34 BIT

COMPARE
68

_______ _..,_ ooeus

LOAOAT
SEL

FB--+-...... FIOOtOI n;.--t-,,.._--1------<
AD,MSO,MSI F100102

FIOOI07 LOAOOT
SEL

TRIGGER
SILO
MEMORY

EOUAL

---·-----+- 00 BUS
8

Fl00131
4E-.-'4:~E--Cll0 D

CP~--+- AS+l\

MS SD --- EN ATRAP
CPc

FIOOl31 FIOOl31
-~0 D 0

so--- Q CP
MS CP MS so

CPc CPc

A -ADDRESS
D-DATA

ASt6
EN AATRAP OR

ADTRAP

...__--1---....----i----..,.-- SILO TRIGGER
RESET

STROBE A
0A D MATCH

Figure 30, Address and Data Trap Logic

r

69

The response time for address or data detection is 8

ns. The parity-error trap consists of a 33 bit parity

checker (F100160) driving an array of five parallel

flip-flops. These flip-flops are clocked by appropriately

delayed timing signals and their outputs are used as wait

sources driving the WAIT output line. The response time for

parity-error detection is 15 ns.

Activity History Silo Memory. The silo memory is able

to record K FASTBUS cycles with a speed in excess of 50

MHz (Fig . 3 1) ,

FB
INPUTS
6 AL
AG,AI
GK,EG
OT,RO
3MS, 16

AR

32 AD
PA,PE' 36
SR,WT

g1LO RAM
1 047'
~B>< 24W

RAM E'S 16B><1024W
DIN OOUT

AB.
WE

RAM -
4B><1024W CS

___________ ..,.__""--fil
7

---------.,.---.1-+-DIBUS
8

BUFFER RD N

r---+
8
--a!"--... , SILO ADORESS BUS

ADDRESS LO
REGISTER

r--__,,---w:J&.J.i.!:R!.JwE3
3 ss __ O IN D OUT ~'---k8~2

TOF

AB"""4E=:::--+--+-'
WE~ '------": -RESET

---.J.--OOBUS
8

TIME OUT
FAILURE
DETECT

TIMING LOGIC,
START-STOP FF, WAIT FF

CLOCK SEL, RECORD MOOE SEL

50MHz
INT
osc

EKT
..__"'°CLOCK

INPUT

Figure 31. Activity History Silo Memory

70

For each cycle, 55 bus signals and a time-out failure

bit (TOF) are recorded. Several programmable modes for

start and stop of silo recording are available. For

example, the address-data trap, described previously, may be

used to start recording wi'th automatic stop and wait

generation when the memory is filled. Choices of FASTBUS-

synchronized or real-time clock recording modes are

available. For read-out the silo is addressed from the

processor and each word is multiplexed onto the 8-bit data

bus to the processor in 7 bytes. The data path from the

crate segment bus lines through the silo memories onto the

data input bus to the processor is also used during WAIT= 1

to read the bus status. Table 4 shows the FASTBUS lines

recorded.

Table 4. FASTBUS Signals Recorded in the
Silo Memory

AL<5:0>
AG
AI
GK
AR

- Arbitration Level
- Arbitration Grant
- Arbitration Request Inibit
- Grant Acknowledge
- Arbitration Request

RD - Read
MS<2:0> - Mode Select
PA - Parity Enable
PE - Parity Enable
SS<2:0> - Slave Status
SR - Service Request
WT - Wait
EG - Enable Geographic Address
AD<32:0> - Address/Data

71

Programmable Wait-Step Logic. The wait-step logic

asserts the WAIT line in response to bus timing and control

signal transitions. The selection of signals used as

trigger inputs is made by setting enable bits in two control

word registers. Available trigger sources are AS, AK, DS,

DK, AG, GK, address-data trap, and parity-error trap.

A typical wait circuit is shown in Figure 32, The wait

response delay is 5 ns.

FB Receiver
Timing Buffer WTASt To SWI Line Input Woit Step

Status Input Byte
FIOOll2 FlipFlop

AS CP 0 Typically
:S Input

F100131 Wire Or FIOOIOI
FB Wail

D Q
Output

MR WT
EASt

Enable Reset From CWI
Register Wait -Other Woit

Sources

Typ,col Propagation Delays
From Timing ll'li)ut To Wo1t Output:

IC Deloy =- 2.8ns
Estimated Total Circut Deloy • Sns

Figure 32, Typical Wai.t-Step Logic

Master-Slave Interface Logic, To support master-slave

capability of the Snoop Module, hardware is provided for bus

priority arbitration with a control word register for the

module arbitration level. For slave mode, geographic

address recognition is implemented. FASTBUS protocol

response and generation is handled with processor

interrupts, status word input buffers and control word

output registers. Master-slave operation is described in

72

more detail in some of the next sections.

Control Processor

Processor design is the result of the following Snoop

Module requirements:

1 • Highly compact implementation in order to

accomodate all module hardware on one PC board.

2. Multi-channel, programmable, high-speed interrupt

handling.

3, Maximum CPU execution speed to optimize throughput

and minimize memory requirements.

4. CPU with 32 bit registers and instructions to

handle 32-bit wide FASTBUS data.

The implementation uses approximately 25 integrated

circuit packages. For the CPU the MC68000 (12 MHz)

microprocessor was chosen.

Two interrupt handling schemes are combined. The 15

interrupt inputs from the fast front-end section and the

module front panel are processed by a Zilog 8536A CIO.

Interrupt sources from the dual serial IO port (Zilog 8530A

SCC) and CIO are connected into a Zilog-type daisy chain

configuration. Both interrupt handlers are then connected

to the interrupt control inputs of the CPU.

The serial ports are available from the sec controller

unit. By means of jumpers the serial interface standard is

selected from RS232 and RS422 formats. Standard modem

control signals are also available. Receiver, transmitter

73

and status interrupts are generated to the CPU.

Software

The control microprocessor of the Snoop Module executes

an EPROM based Forth, This Forth, besides its standard

words, has an MC68000 Assembler compiler defined, This

Assembler was written in Forth and also uses the reverse

polish notation.

•,

74

APPENDIX C

75

SNOOP MODULE SOFTWARE

This appendix lists the software developed for the

control microprocessor of the Snoop Module. This software

was written in Forth and Assembler. Assembler was used in

all speed critical points.

The words developed for this application were written

in the VAX computer, using the the VAX Editor (13) to create

the disk file. After this they were downloaded to the Snoop

Module through a Fortran written routine. This Fortran

routine read a line of this file and sent it to the Snoop

Module through a serial port. If the Snoop Module answered

with a message that was different than the prompt OK, the

entire message was displayed on the terminal. This allowed

the program grammar to be debugged.

After downloading these words and debuging them, the

Forth Vocabulary was increased permanently by transfering

the entire program to an EPROM Programmer and writing a new

set of EPROMs.

O. #18000. #4000 LCMOVE
1 i/FEFF95. LCI
: NECHO l/7CA IID22 I ;
NECHO
FORGET NECHO
ll1EF8 DP !

ECHO /IBEC IID22 1 ;

76

(Memory map EPROM Forth into RAM)

(Turn of the Echo)

(Forget the NECHO)
(Change deposit pointer)

DOCOL 11962 , ; IMMEDIATE (~nables definition be executed)

(***)
(
(

(
(
(

Useful Words and Constants)

Description)
=========::==)
Useful Forth Words for this application)

1 CONSTANT .TRUE,
0 CONSTANT .FALSE,
1 CONSTANT .YES.
0 CONSTANT .NO.

BASE@
BASE!

OCON STANT
DVARIABLE

L2!
L2@

JUST-CR

ARRAY

BASE @
BASE

CREATE , , DOES> DUP @ SWAP 2+ @ SWAP
CREATE 4 ALLOT DOES>

2SWAP 20VER L! ROT ROT 2, D+ L!
2DUP 2. D+ L@ ROT ROT L@ ;

#OD EMIT ;

(DEF WORD ARRAY: <SIZE> ARRAY <NAME> =>)
2 era DOES> 2 cal

(***)
(
(
(
(

Description)
===========)
The next words are the words done for the control)
of the Fast Fornt-End logic of the Snoop Module.)

(===)

(
(

Simbolic addressing for the Snoop Module)
==================================·=====)

(Labeling Description:)
(A~addr, SI=silo, B=byte, CW=control word, SW=status word)

/IFEFFE9.
#FEFFED.

DCONSTANT ASIB1
DCONST~NT ASIB2

77

IIFEFFE1. DCONSTANT ASIB3
/IFEFFE3. DCONSTANT ASIB4
#FEFFE5. DCONSTANT ASIB5
f/FEFFE7. DCONSTANT ASIB6
#FEFFEB. DCONSTANT ASIB7
/IFEFFC3. DCONSTANT ACW1
IIFEFFC5. DCONSTANT ACW2
/IFEFFC7. DCONSTANT ACW3
/IFEFFC9. DCONSTANT ACW4
/IFEFFCB. DCONSTANT ACW5
/IFEFFCF. DCONSTANT ACW7
/IFEFFD1. DCONSTANT ACW8
//:FEFFC5. DCONSTANT ASW1
//:FEFFC7. DCONSTANT ASW2
IIFEFFC9. DCONSTANT ASW3

/IFEFFCD. DCONSTANT ATPL (AL pattern for the L trap)
//:FEFFDD. DCONSTANT ATPDMS (MS mask and pattern for D trap)
/IFEFFDF, DCONSTANT ATPAMS (MS mas I< and pattern for A trap)
IIFEFFF1. DCONSTANT ATPDAD (AD mask pattern for D trap)
/IFEFFE1. DCONSTANT ATPAAD (AD mask pattern for A trap)

/fFEFFC 1. DCONSTANT ASIALO (AO to A7 of Silo Address)
#FEFFC3, DCONSTANT ASIAHI (AB to A9 of Silo Address)

//FEFF89. DCONSTANT ACIO-PA (Port A of CIO)
/fFEFF8B, DCONSTANT ACIO-PB (Port B of CIO)
IIFEFFBD. DCONSTANT ACIO-PC (Port C of CIO)
IIFEFF8F. DCONSTANT ACIO-C (Control of CIO)

(Control and Status Word Bits)
(=-==========================)

(Control Word 2)

111 CONSTANT CB-TR-RES-L
/PIO CONSTANT CB-SEL-AA/AD*
1180 CONSTANT CB-SEL-SEQ/SIN*

(Control Word 3)

If 4 CONSTANT CB-SILO-AD-RES
if 8 CONSTANT CB-MP-SILO-AD-DEC
111 0 CONSTANT CB-MP-START-REC
#20 CONSTANT CB-MP-STOP-REC

(Control Word 4)

ff 1 CONSTANT CB-FB/RT*-SEL
If 2. CONSTANT CB-EXT/INT*-CP
II 4 CONSTANT CB-REC-DAT
flB CONSTANT CB-TR-ST/SP*

(Control Word 5)

#2 CONSTANT CB-SILO-EN*
#40 CONSTANT CB-ITREN
#80 CONSTANT CB-EXTREN

(Control Word 7)

#4 CONSTANT CB-L-TP

(Status Word 1)

#1 CONSTANT SB-BAR
#2 CONSTANT SB-BAS
#4 CONSTANT SB-BDS
#8 CONSTANT SB-BDK

(Status Word 3)

IF1 CONSTANT SB-REC*

(Zilog CIO)

#1 CONSTANT CB-SILO-TR*
#2 CONSTANT CB-0422-EN

(Status message numbers)
(======================)

#10 CONSTANT MES#-NO-REC-PROC-EN
#11 CONSTANT MES#-NO-TR-INPUT-EN

(Other Constants)
(===============)

#7FF CONSTANT TIME

78

(====================~====================================)

(Variables)
(=========)

VARIABLE REC-PROC-EN (,TRUE,, => START REC was typed)
VARIABLE EXTREN (.TRUE;, => external trigger)
VARIABLE DREAMS (. TRUE., => Module in hibernation)

VARIABLE CW1 (Control words)
VARIABLE CW2
VARIABLE CW4
VARIABLE CW5
VARIABLE CW7
VARIABLE CW8

VARIABLE TPL. (AL pattern for L trap)

'['· .. '.·.· ...

,,,

:~
a

' ~"'
'

DVARIABLE
DVARIABLE
DVARIABLE
DVARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

(
(

TPDAD-PATTERN
TPDAD-MASK
TPAAD-PATTERN
TPAAD-MASK
TPDMS-PATTERN
TPDMS-MASK
TPAMS-PATTERN
TPAMS-MASK

(AD pattern for D trap)
(AD mask ffor D trap)
(AD pattern for A trap)
(AD mask for A trap)
(MS pattern for D trap)
(MS mask for D trap)
(MS pattern for A trap)
(MS mask for A trap)

Useful words to Display Numbers)
2=•===m==•ma=~-~~3~~•=a=======•)

HEX->ASCII (Converts one hex number <O .. F> to ASCII)
DUP 9 > IF #37 + ELSE #30 + THEN ;

79

NHU. (List a unsigend hexadecimal nibble number)

(
(

(
(

·• .
(
(

(

#F AND HEX->ASCII EMIT ;

BHU. (List a unsigned hexadecimal byte number)
BASE@ HEX SWAP O <# # # # # #>
SWAP 4 + SWAP 4 -
TYPE BASE! ;

DHU. (List unsigned hexadecimal double number)
BASE@ HEX ROT ROT<##########> TYPE BASE! ;

CW1@
CW2@
CW4@
CW5@
CW7@
CW8@

CW1 I
CW2!
CW3!
CW4!
CW5!
CW7!
CW8!

SCW1 !

Useful words for this application)
================================-)

Load the respective control word form the memory)
to the top of Satck.)

CW1 @
CW2 @
CW4 @
CW5 @
CW7@
CW8@

Set the respective control word and save in)
memory)

DUP CW1 ! ACW1 LC!
DUP CW2 ! ACW2 LC!
ACW3 LC! ;
DUP CW4 ACW4 LC!
DUP CW5 ACW5 LC!
DUP CW7 ACW7 LC!
DUP CW8 ACW8 LC!

Set or clear one bit in a control word)

CW1@ OR CW1 !

(

80

CCW 1 I //FF XOR CW1@ AND CW 1 I
SCW21 CW2@ OR CW21
CCW21 liFF XOR CW2@ AND CW2!
SCW41 CW4@ OR CW4 !
CCW41 I/FF XOR cw1rn AND CWI.! !
SCW51 CW5@ OR CW5!
CCW51 //FF XOR CW5@ AND CW5!
SCW71 CW7@ OR CW7!
CCW71 #FF XOR CW7@ AND CW7!
SCW8! CW8@ OR CW8!
CCW8! II FF XOR CW8@ AND CW81

Toggle one bit in a control word)

TCW1 ! CW1@ XOR CW1 !
TCW2! CW2@ XOR CW2!
TCW4! CWI.!@ XOR CW4!
TCW5! CW5@ XOR CW5!
TCW7! CW7@ XOR CW7!

Read to the top of stack a :3 t 8 'c us word)

SW'I@ ASW1 LC@
SW2@ ASW2 LC@
SW3@ ASW3 LC@

Read the silo memory)

SI 1@ AS I B1 LC@
SI2@ ASIB2 LC@
S13@ ASIB3 LC@
SI4@ ASIB4 LC@
SI5@ ASIB5 LC@
SI6@ ASIB6 LC@
SI7@ ASI87 LC@

===============~================~=============~~========~)

TEST: If the is recording, EXIT form word)

?REC-PROC-EN-EXIT
REC-PROC-EN@ .TRUE.
IF

CR . " It can not execute this word: It is recording "
BEGIN

DEPTH
WHILE

DROP
REPEAT
R> DROP EXIT

THEN ;

1
l,

I

81

(Words to Handle the Pattern and Mask for the Traps)
(===~=rn=3==D======3n~=======a~n=~=anzgnAnn=mnua~a=m)

TP-LI (Set AL lines trap for L Trap)
(<AL TRAP> --)

?REC-PROC-EN-EXIT
TPL@ #CO AND
OR DUP TPL
It 3F XOR
ATPL LC! ;

SHUFF3 ASSEMBLER
3 D2 MOVEQ,

(Mask bits 6 and 7 of byte)
('Restore new L Trap)
(Complement trap)

(Word used in the 2 next words)

BEGIN,
D1 AO () .BYTE MOVE,
2 AO .LONG ADDQ,
D1
DO

8 BY-COUNT .LONG LSR,
AO () .BYTE MOVE,

2 AO ,LONG ADDQ,
DO 8 BY-COUNT . LONG LSR,

D2 F -UNTIL,
FORTH ;

CODE TP-A-AD-NT!
(<32 BITS TO

ATPAAD /IL AO
SP) + DO
SP)+ D1
DO TPAAD~MASK
D1 TPAAD-PATTERN
SHUFF3

NEXT;
TP-A-AD!

?REC-PROC-EN-EXIT
TP-A-AD-NT!

CODE TP-D-AD-NT!
(<32 BITS

ATPDAD /IL AO
SP) + DO
SP) + D1

TO

DO TPDAD~MASK
D1 TPDAD-PATTERN
SHUFF3

NEXT;
TP-D-AD!

?REC-PROC-EN-EXIT
TP-D-AD-NT!

(Set the AD lines trap for A trap)
MATCH> <32 BIT MASK, 1=IGNORE> --)

,LONG MOVE,
.LONG MOVE, (DO = mask)
.LONG MOVE, (D1 = pattern)

.W ,LONG MOVE,

.W ,LONG MOVE,

(Set the AD lines trap for D trap)
MATCH> <32 BIT MASK, 1=IGNORE> --)

,LONG MOVE,
. LONG MOVE, (DO = mas I<)
.LONG MOVE, (D1 pattern).

.W .LONG MOVE,

.W .LONG MOVE,

TP-A-AD-P! (Set AD trap pattern A trap)
TPAAD-MASK 2@ TP-A-AD!

TP-A-AD-M! (Set AD trap mask A trap)
TPAAD-PATTERN 2@ 2SWAP TP-A-AD!

82

TP-D-AD-PI (Set AD trap pattern D trap)
TPDAD-MASK 2@ TP-D-ADI

TP-D-AD-Ml (Set AD trap mask D trap)
TPDAD-PATTERN 2@ 2SWAP TP-D-AD!

CODE TP-A-MS-NT! (Set the MS lines trap for A trap)
(<16 BITS TO MATCH> <16'BIT MASK, 1•IGNORE> --)

NEXT;

SP)+ DO MOVE,
SP)+ D1 MOVE,
DO TPAMS-MASK .W MOVE,
D1 TPAMS-PATTERN .W MOVE,
D1 1 BY-COUNT ~SR,
D2 1 BY-COUNT .BYTE ROXR,
DO 1 BY-COUNT LSR,
D2 1 BY-COUNT ,BYTE ROXR,
D1 1 BY-COUNT LSR,
D2 1 BY-COUNT .BYTE ROXR,
DO 1 BY-COUNT LSR,
D2 1 BY-COUNT .BYTE ROXR,
D2 ATPAMS .L .BYTE MOVE,

TP-A-MS!
?REC-PROC-EN-EXIT
TP-A-MS-NT!

CODE TP-D-MS-NT! (Set the MS lines trap for the D trap)
(< 1 6 BITS

SP) + DO
SP) + D1
DO TPDMS.a.MASK
D1 TPDMS-PATTERN
D1 1
D2 1
DO 1
D2 1
D1 1
D2 1
DO 1
D2 1
D2 4
D2 ATPDMS ,L

NEXT;
TP-D-MS!

?REC-PROC-EN-EXIT
TP-D-MS-NT!

TO MATCH> < 1 6 BIT MASK, 1=IGNORE> --)
MOVE,
MOVE,

.w MOVE,

.w MOVE,
BY-COUNT LSR,
BY-COUNT .BYTE ROXR,
BY-COUNT LSR,
BY-COUNT .BYTE ROXR,
BY-COUNT LSR,
BY-COUNT .BYTE ROXR,
BY-COUNT LSR,
BY-COUNT ,BYTE ROXR,
BY-COUNT LSR,

.BYTE MOVE,

(<16 BITS TO MATCH> <16 BIT MASK, 1=IGNORE> --)
TP-A-MS-M! (set MS trap mask, A trap)

TPAMS-MASK@ TP-A-MS! ;
TP-A-MS-P! (Set MS trap pattern, A trap)

TPAMS-PATTERN@ SWAP TP-A-MS! ;
TP-D-MS-M! (·set MS trap mask, D trap)

TPDMS-MASK@ TP-D-MS! ;
TP-D-MS-P! (Set MS trap pattern, D trap)

83

TPDMS-PATTERN@ SWAP TP-D-MS! ;

?TP-L. (List the L trap)
TPL@ #3F AND BASE@ HEX SWAP : BASEi ;

?TP-L (List the L trap with label)
" ARBITRATION TRAP"

CR " AL lines trap : Pattern•#"
?TP-L. CR

?TP-A-AD-P.
TPAAD-PATTERN 2@ DHU.

?TP-A·-AD-M.
TPAAD-MASK 2@ DHU. ;

?TP-A-MS-P.
TPAMS-PATTERN@ .

?TP-A-MS-M,
TPAMS-MASK @ • ;

?TP-A
" ADDRESS TRAP"

(Trap

(Trap

(Trap

Trap

(List

A: List the

A : List the

A: List the

A: List the

all A trap

AD pattern)

AD mask)

MS pattern)

MS mask)

with labels)

CR " AD lines trap : Pattern
Mask=#" ?TP-A-AD-M.

= it" ?TP-A-AD-P.
II

CR " MS lines trap : Pattern= II" ?TP-A-MS-P.
7 SPACES

II Mask - #" ?TP-A-MS-M. CR ;

?TP-D-AD-P. (Trap D: List the AD pattern)
TPDAD-PATTERN 2@ DHU.

?TP-D-AD-M. Trap D: List the AD mask)
TPDAD-MASK 2@ DHU. ;

?TP-D-MS-P. Trap D: List the MS pattern)
TPDMS-PATTERN @ .

?TP-D-MS-M. (Trap D: List the MS mask)
TPDMS-MASK @ . ;

?TP-D (List all A trap with labels)
11 ADDRESS TRAP"

CR "AD lines trap Pattern=#" ?TP-D~AD-P.
" Mask=#" ?TP-D-AD-M.

CR II MS lines trap : Pattern #" ?TP-D-MS-P.
7 SPACES

11 Masi<"' If" ?TP-D-MS-M. CR

?TP
?TP-L ?TP-A ?TP-D ;

======================================~========a=========)

(Description)
(=======,.===)
(Words to handle the Silo Address Counter.)
(Note that the silo address counter is actually)
(decremented, but this is transparent to the user.)

l
t .

.

.

.

(
(

All numbers that are read or stored are)
complemented.)

84

SIA1+ (Increment by one the Silo Address)
?REC-PROC-EN-EXIT
CB-MP-SILO-AD-DEC CW31

SIA@ (Read Silo Address into the stack)
ASIAHI LC@ 3 AND SWAB
ASIALO LC@ OR
#3FF XOR ; (Complement the address)

SIA! (Load Silo Address into counter)
?REC-PROC-EN-EXIT
#3FF XOR (Complement the address)
CB-SILO-AD-RES CW3!
DUP SWAB 3 AND CW1@ #FC AND
OR CW1 ! ASIALO Le!
SIA1+ ; (Load into the address latch)

SIA. (List the Silo Address)
BASE@ HEX
SIA@ 0 <#####>TYPE SPACE
BASE! ;

SIA (List the Silo Address with label)
." Silo Address Counter=#" SIA, SPACE ;

(===)

(
(
(

LID

Description)
----=--=---)
Words to read the Silo Memory)

(List the name of each line from Silo Memory)
3 SPACES

"SIAD AiagGKar AL EGrd
"PApe SRwt MSss TOdt" SPACE

AD tt

SILOC (Reads one sampling of FASTBUS cycle recorded)
Silo Address must be) (into Silo Memory. The

(set previously.)
?REC-PROC-EN-EXIT
BASE@ HEX
SPACE SIA. 2 SPACES
SI1@

DUP AND NHU. SPACE
2 I AND NHU. SPACE

SI2@
DUP #80 I NHU. SPACE
1 AND NHU. SPACE

SI1@
DUP #CO AND #40 I NHU.
4 / #F AND NHU. 2 SPACES

(List Silo Address)

(AI)
(AG)

(GK)
(AR)

(AL5-4)
(AL3-0)

SI2@
DUP #40 AND #40 I NHU. SPACE
#10 AND #10 / NHU. 2 SPACES

SI3@
DUP #10 / NHU.
#F AND NHU.

S Ill@
DUP 1110 I NHU.
/IF AND NHU.

SI5@
DUP 1110 I NHU.
#F AND NHU.

SI6@
DUP #10 / NHU.
#F AND NHU. 2 SPACES

(EG)
(RD)

(AD31-28)
(AD27-24)

(AD23-20)
(AD19-16)

(AD15-12)
(AD11-8)

AD7-4)
AD3-0)

SI7@
DUP
DUP
DUP
111 0

#80 AND
#40 AND
#20 AND
AND If 1 0

#80 / NHU. SPACE (
#40 / NHU, 2 SPACES (

PA)
PE)
SR)
WT)

#20 / NHU. SPACE (
/ NHU, 2 SPACES (

SI2@
2 / 7 AND NHU. SPACE

S I7@
DUP 2 I 1 AND NHU. 2 SPACES
1 AND NHU, SPACE

SI2@
#20 AND #20 / NHU. SPACE

SIA1+ BASE! ;

(MS)

(SS)
(TO)

(DT)

85

SILO (List silo memory using Lines ID.)
(Stack: <FIRST ADDRESS> <NO.OF CYCLES>-~)

?REC-PROC-EN-EXIT
CR LID CR (List the 1st line ID.)
OVER SIA!
OVER SWAP -
1 (Counter=#10 -> list lines ID.)
ROT ROT
DO

1+ DUP #10 AND
IF

DROP 1
LID CR

THEN

(Counter is at #10?)

(Yes. Counter=1)
(tist the lines ID again)

2 SPACES SILOC CR
LOOP DROP ;

(========~=======~==)

(
(
(
(

(

Description)
===========)
Words to set the Fast Front-End Logic of the)
Snoop Module to record FASTBUS cycles.)

Set Words)

86

SS-SRC-FB
CB-FB/RT*-SEL

(Set FASTBUS cycle to generate strobes)
SCW4 I ;

SS-SRC-IC (
CB-EXT/INT*-CP
CB-FB/RT*-SEL

Set internal clock to generate strobes)
CCW41
CCW4 ! ;

SS-SRC-EC (
CB-EXT/INT*-CP
CB-FB/RT*-SEL

SS-SRC !

Set external clock to generate strobes)
SCW41
CCW41 ;

(Set the generator of strobes.)
(Read the number form stack)
(1=FASTBUS, 2=Int.Clock, 3=Ext.Clock)

DUP 1 =
IF DROP SS-SRC-FB
ELSE

2 =
IF SS-SRC-IC

SS-SRC-EC ELSE
THEN

THEN ;
?SS-SRC@ (Which is the sampling strobe source?)

(Answer into stack)
CW4@
IF 1

CB-FB/RT*-SEL AND

ELSE CW4@
IF 3
ELSE 2
THEN

CB-EXT/INT*-CP AND

THEN ;
?SS-SRC.

?SS-SRC@ . ,
(Which is the sampling strobe source?)
(List the correspondent number)

?SS-SRC (Which is the sampling strobe source?)
(List a message)

." SAMPLING STROBE SOURCE: "
?SS-SRC@ DUP 1 =
IF DROP "FASTBUS Transactions"
ELSE 2 =

IF
ELSE
THEN

THEN SPACE

"Internal Clock (50 MHz)"
" Extrenal Clock"

TR-SRC-I (Set trigger source
?REC-PROC-EN-EXIT
CB-ITREN SCW5!
CB-EXTREN CCW5!
"FALSE. EXTREN

internal)

TR-SRC-E (Set trigger source= external)
?REC-PROC-EN-EXIT
.TRUE, EXTREN (It is not possible to load directly)

(into the CW5. Store into flag.)

(Will be store at CW5 at START-REC.)
CB-ITREN CCW51
CB-EXTREN CCW51 ;

TR-SRC-M (No trigger source needed)
?REC-PROC-EN-EXIT
CB-EXTREN CCW51
CB-ITREN CCW51
,FALSE. EXTREN

TR-SRCI (Set trigger source 1aI,2•E,3=none)
?REC-PROC-EN-EXIT
DUP 1 =
IF

DROP
TR-SRC-I

ELSE
2 =
IF

TR-SRC-E
ELSE

TR-SRC-M
THEN

THEN ;

?TR-SRC@

CW5@ CB-ITREN
IF 1
ELSE

(Which is the trigger source?)
(Answer into the stack)
AND

EXTREN@ .TRUE.
IF 2
ELSE 3
THEN

87

THEN ;
?TR-SRC,

?TR-SRC@
?TR-SRC

(Trigger
. ,

(Trigger
SOURCE: "

source?

source?

<answer is a number>)

<answer is message>)
• 11 TRIGGER
?TR-SRC@
DUP 1 =
IF DROP
ELSE 2 =

IF
ELSE
THEN

THEN SPACE

." Internal trigger sequence"

"External trigger"
"No trigger used"

TR-SEQ-LAD (Set trap seq.= arb., add, data)
?REC-PROC-EN-EXIT
CB-SEL-SEQ/SIN* SCW2!
CB-SEL-AA/AD* CCW2!
CB-L-TP SCW7!

TR-SEQ-LAA (Set trap seq.= arb., add, add)
?REC-PROC-EN-EXIT
CB-SEL-SEQ/SIN* SCW21
CB-SEL-AA/AD* SCW21
CB-L-TP SCW71

TR-SEQ-LA (Set trap seq.= arb., add)
?REC-PROC-EN-EXIT
CB-SEL-SEQ/SIN* CCW21
CB-L-TP SCW71

TR-SEQ-AD (Set trap seq.= add, data)
?REC-PROC-EN-EXIT
CB-SEL-SEQ/SIN* SCW21
CB-SEL-AA/AD* CCW2!
CB-L-TP CCW71

TR-SEQ-AA (Set trap seq.= add, add)
?REC-PROC-EN-EXIT
CB-SEL-SEQ/SIN* SCW2!
CB-SEL-AA/AD* SCW2!
CB-L-TP CCW7!

TR-SEQ-A (Set trap seq.= add)
?REC-PROC-EN-EXIT
CB-SEL-SEQ/SIN* CCW2!
CB-L-TP CCW7!

TR-SEQ! (Number set the trigger sequence)
DUP 1 =
IF DROP TR-SEQ-LAD
ELSE DUP 2 =

IF DROP TR-SEQ-LAA
ELSE DUP 3 =

IF DROP TR-SEQ-LA
ELSE DUP 4 =

IF DROP TR-SEQ-AD
ELSE 5 =

IF TR-SEQ-AA
ELSE TR-SEQ-A
THEN

THEN
THEN

THEN
THEN ;

?TR-SEQ@

CW7@ CB-L-TP
IF

0
ELSE

(Which is the trigger seq. set?)
(Leave the answer into the stack)
(6 A , 5 = AA , 4 AD)
(3 = LA , 2 = LAA , 1 =LAD)

AND

88

3
THEN
CW2@ CB-SEL-SEQ/SIN* AND
IF

1 +
CW2@ CB-SEL-AA/AD* AND
IF

1 +
THEN

ELSE 3 +
THEN ;

?TR-SEQ.
?TR-SEQ@

?TR-SEQ
• 11 TRIGGER
?TR-SEQ@
DUP 1 =
IF DROP
ELSE

DUP 2 =

(List the number of trap sequence)

(List the type of trap sequence)
SEQUENCE: "

11 Single address cycle"

IF DROP II Address cycle followed by a data cycle"
ELSE

DUP 3 =
IF DROP "Two different address cycles"
ELSE

DUP 4 =
IF DROP "Arbitration cycle followed by"

"address cycle"
ELSE

5 =
IF ." Arbitration, address and data cycle"
ELSE

89

." Arbitration followed by two different address
• 11 cycles"
THEN

THEN
THEN

THEN
THEN SPACE

TY-REC-ALL (Set to record all types of cycles)
?REC-PROC-EN-EXIT
CB-REC-DAT SCW4! ;

TY-REC-NOD (Set to record no data cycles)
?REC-PROC-EN-EXIT
CB-REC-DAT CCW4! ;

TY-REC! (Number set the type of cycle record)
?REC-PROC-EN-EXIT
1 =
IF

TY-REC-ALL
ELSE

TY-REC-NOD
THEN ;

?TY-REC@ (Which type of cycle is to record?)
(Leave the answer into stack.)
(1 = All, 2 • No data cycle)

CW4@
IF 1

CB-REC-DAT AND
ELSE 2 THEN ;

?TY-REC.
?TY-REC@

(Number of the type of cycle to rec)

90

?TY-REC (List message about ty. cycle to rec.)
." TYPE OF CYCLE TO RECORD: "
?TY-REC@ 1 =
IF ." All FASTBUS cycles"
ELSE ." Only arbitration and address cycles"
THEN SPACE

TR-POS-E (Trigger position: end cycles rec.)
?REC-PROC-EN-EXIT
CB-TR-ST/SP* CCW4! ;

TR-POS-B (Trigger position: start cycles rec.)
?REC-PROC-EN-EXIT
CB-TR-ST/SP* SCW4!

TR-POS! (Set trigger position: 1-Start, 2- End)
?REC-PROC-EN-EXIT
1 =
IF TR-POS-B
ELSE TR-POS-E
THEN

?TR-POS@ (
(

CB-TR-ST/SP*
1
2

CW4@
IF
ELSE
THEN SPACE

Which is the trigger position?)
Number into stack: 1-Start, 2-End)

AND

?TR-POS. (List number of trigger position)
?TR-POS@ • ,

?TR-POS List message about trigger pos. set)
." TRIGGER POSITION: "
?TR-POS@ 1 =
IF ." Begin of FASTBUS cycles recorded"
ELSE ." End of FASTBUS cycles recorded"
THEN SPACE

?SET-REC
CR 1 0 SP ACES

91

." SET OF THE ECL LOGIC TO RECORD FASTBUS CYCLES" CR CR
'?TR-SRC CR
?TR-SEQ CR
?TR-POS CR
?TY-REC CR
?SS-SRC CR
?TP-L
?TP-A
?TP-D

(==•)

(
(
(
(

(
(

(
(

Description)
===========)
Set of words to perform recording operations into)
silo memory of the Snoop Module)

Useful Words)
=============)

?TERM-EXIT (If <ESC> pressed, leave the word)
(that called)

?TERMINAL IF R> DROP EXIT THEN ;

TIMER (Wait the time given in the stack)
0 DO

1120 #20 * DROP
LOOP ;

MES-NO-REC-PROC-EN
"THE RECORD PROCESS IS NOT ACTIVATED"

Set Words)
=========)

?TR-INPUT-EN@ (Is some source of trigger enabled?)
(If no, print message)

CW5@ CB-ITREN
CW5@ CB-EXTREN
OR
IF

.YES.

AND
AND

ELSE
MES/I-NO-TR-INPUT-EN

THEN

?TR@ (Is the Snoop Triggered?)
(Answer into stack)

.TRUE. = REC-PROC-EN@
IF

?TR-INPUT-EN@
IF

ACIO-PB LC@
IF

.YES.

CB-SILO-TR* AND

.YES.
ELSE

.NO.
THEN

THEN
ELSE

MES#-NO-REC-PROC-EN
THEN

?TR. (Is the Snoop Triggered?)
(Answer as# listed)

?TR
?TR@

5 SPACES
?TR@ DUP
.YES·. =

(Is the Snoop Triggered?)
(Message as answer)

IF DROP ." TRIGGER FOUND"
ELSE

DUP oNO. =
IF DROP "WAITING FOR TRIGGER"
ELSE

MES#-NO-REC-PROC-EN
IF MES-NO-REC-PROC-EN
ELSE "NO SOURCE OF TRIGGER ENABLED"
THEN

THEN
THEN 20 SPACES JUST-CR ;

?BUS-ACT@ (There are activity into the bus?)
SB-BAR SB-BAS OR SB-BDS OR SB-BDK OR
DUP SW1@ AND .NO.
l/7FF p DO

DROP
OVER SW1@ AND
SWAP OVER XOR
IF

.YES.
LEAVE

ELSE
.NO.

THEN
LOOP
SWAP DROP SWAP DROP ;

?BUS-ACT. ?BUS-ACT@ . ;
?BUS-ACT 5 SPACES ?BUS-ACT@

.YES.
IF ." BUS IS ACTIVED"
ELSE ." NO BUS ACTIVITY DETECTED" THEN
20 SPACES JUST-CR ;

92

? REC@
REC-PROC-EN@
IF

(Is recording cycles into silo memory?)
.TRUE. =

SW3@ SB-REC* AND

IF .NO.
ELSE .YES.
THEN

ELSE
MES#-NO-REC-PROC-EN

THEN
?REC. ?REC@ . ;
?REC

5 SPACES
?REC@ DUP • YES. =
IF

DROP "CYCLES BEING RECORDED"
ELSE

.NO. ,.
IF "IT IS NOT RECORDING"
ELSE MES-NO-REC-PROC-EN
THEN

THEN 20 SPACES JUST-CR ;

?STATUS-REC (Status of the recording procedure)

93

(<ESC> or the recording done leave this loop)
CR
REC-PROC-EN@ .TRUE. =
IF

?TR-INPUT-EN@ .YES. = (Is the trigger input enabled?)
IF

BEGIN
?TERM-EXIT
?BUS-ACT@ .YES.
IF

Yes. Is the bus active?)

(Yes. Is the Silo Triggered?)
?TR@ .YES. DUP NOT
IF TIME TIMER THEN
?TR

ELSE
?BUS-ACT
.FALSE.
TIME TIMER

THEN
UNTIL CR

THEN
BEGIN

?BUS-ACT@ .YES.
?TERM-EXIT
IF

. NO. = DUP ? REC@
IF
?REC

CR THEN

ELSE
?BUS-ACT
.FALSE.

THEN
TIME TIMER

UNTIL

(There is bus activity?)

(Is still recording?)

ELSE
MES-NO-REC-PROC-EN

THEN CR

STOP-REC
CB-TR-RES-L SCW21
CB-EXTREN CCW5!
CB-MP-STOP-REC CW3!
CB-SILO-EN* SCW51
.FALSE. REC-PROC-EN !

START-REC
DREAMS@ .FALSE. =
IF

0 SIA!
,TRUE. REC-PROC-EN
CB-SILO-EN* CCW5!
EXTREN @
CW5@ CB-ITREN AND OR
IF

94

(Stop recording)
(Reset trap sequence)
(Reset external trigger input)
(Stop recording)
(Disable recording into silo)

If hiber, does not record)

(Inicialize the Silo Address)

(Enable recording into silo)
(There is trigger in. enable?)

CW4@ CB-TR-ST/SP*
IF

AND NOT (Yes.Position trigger?)

CB-MP-START-REC CW3!
THEN
EXTREN@ .TRUE. =
IF

CB-EXT REN
ELSE

CB-TR-RES-L
THEN

ELSE

SCW5!

CCW2!

CB-MP-START-REC CW3!
THEN

THEN

(Micro starts the rec.)

(Is the trigger int or ext?)

(Enable trap sequence)

(Micro. start the rec.)

REC START-REC ?STATUS-REC STOP-REC ;

(===)

(Description)
(==---------)
(Control if the module executes the action asked)
(by the host.)

HIBER (Does not execute)
.TRUE. DREAMS !

WAKE (Execute)
.FALSE. DREAMS

?DREAMS. (Which is its state?)
DREAMS @ • ;

(=------------------==-===================================)

(
(

INIT

Initialization procedure)

.FALSE. REC-PROC-EN

.FALSE. EXTREN

.FALSE, DREAMS

0 CW 1 I
1 CW2!
#27 CW3 I
fl 2 D CW41
f/7 A CW5!
fl 3 CW'(I
II FF CW8!

0 • f/FFFFFFFF. TP-A-·AD!
0 • 1/F'FFFFFFF. TP-D-AD!
0 7 TP·~A-M.S !
0 7 TP···D-MS !
0 TP ·-L !

ACIO-C LC@ DROP
1 ACIO·.,C LC!
0 ACIO-C LC!
#2B ACIO-C LC!
#FD ACIO-C LC!

(Control words)

(Trap words)

(Zllog CIO)
(Fle:3et thE-, CTO)

95

INIT

(Word Name)
(=========)
(EPROM)

(Description)
(u~~n=n••~=a)
(Reads the program from RAM to the DATA IO in the)
(Intel Format to create a EPROM with the)
(new program.)

, EPROM Read program in Intel format)

DO
<last address> <first address> EPROM)

(:) CR 113A EMIT
111 0 (Initialize the check sum)
#10 BHU.
I #100 I DUP BHU. +
I #FF AND DUP BHU. +

Emit address)

0 BHU. (Emit 00)
I #10 + I (Indexes to read each byte)
DO

IC@.+ #FF AND Find check sum)

I
.

,

'

96

IC@ BHU. Emit byte)
LOOP
1- ltFF XOR
BHU.

(Complement of 2 to check sum)
(Emit check sum)

#10 +LOOP
CR
ft3A EMIT
0 BHU.
0 BHU. 0 BHU.
1 BHU.
CR ;

(End of transfering)
(:)
(00)
(1 0000)
(0 1)

(***)

(Description)
(===========)
(This modules control the communication with the host)
(of the FASTBUS LOGIC STATE ANALYZER,)
(To the FORTH in the Snoop Module be able to perform)
(this communication protocol, the EXPECT, KEY and)
(EMIT routines have to be changed. The EXPECT had to)
(be changed, basically, in the following way:)
(- Detect when the module is addressed and if the)
(operation is polling or selection.)
(- If it was selection, receive the text sent)
(checking for erros. When all text were received,)
(pass it to the Forth INTERPRETER to execut it.)
(- If it was polling and there is text to send to)
(the host, send it, otherwise send EOT.)
(A basic difference in this communication regarding)
(the normal use of the EMIT and EXPECT routines is)
(that text will be sent just when the module is)
(polled. The KEY routine had to be changed to delete)
(CTRL Sand CTRL Q which are used by the host to)
(synchronize the-communication.)

(Constant Declarations)
(=------=--=-------~~-)
110 4 CONSTANT EQT (control characters of the protocol)
ff O 3 CONSTANT ETX
II 02 CONSTANT STX
#05 CONSTANT ENQ
110 6 CONSTANT ACK
#07 CONSTANT PAT
1/: 1 5 CONSTANT NAK
1117 CONSTANT ETB
115 3 CONSTANT s
#50 CONSTANT p
1114000. DCONSTANT OUTBUF BEGIN
/117FFB. DCONSTANT OUTBUF-END
/l17FFC. DCONSTANT OUTPUT POINT ADDRESS

(Varible Declarations)

CHAR TRANS BLOCK (# of characters transmited)
(Input Text address) INTEXT ADD

POINTER
INBUF /128 ALLOT
INBUF END

(Pointer of general use)
#28 ALLOT (Input buffer m 82)

(Input buffer end address)
(If true, the module addressed)

97

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
#2031 MOD_

MOD ADD FLAG
LAST MES (Save last message in case of ENQ)
MOD NO
NO !

(Module Name)
(===~:======)
(NEW KEY)

(Description)
(-=-------=-)
(This module substitue the original KEY of the FORTH.)
(Its function is to delete CTRL Sor CTRL Q that are)
(sent by the VAX to synchronize-the communication of)
(both units. When any of these 2 characters are read,)
(the routine delete then and wait for the next)
(character. It is written in Assembler.)

CODE NEW KEY
flFEFF81. /IL
BEGIN,

BEGIN,
BEGIN,

AO ()
1

NE
UNTIL,
4 AO D)
l!O O 7 F
/11 1

NE
UNTIL,
#13

NE
UNTIL,
DO

NEXT;

AO

D1
D1

DO
DO
DO

DO

SP -)

.LONG MOVE, (AO=Address of ACIA)

.BYTE MOVE, (There is character)

.BYTE ANDI, (to read?)

. BYTE MOVE, (Yes • Read)
ANDI, (Masi< the 8th bit)

.BYTE CMP I, (Is CTRL Q?) -

.BYTE CMP I, (No. Is CTRL _Q,?)

MOVE, (No. Save into the stack)

(===)

(Module Name)
(===========)
(NEW EMIT)

(Description)

98

(m~=••===mam)
(This module substitue the original EMIT routine of)
(the FORTH. When it is called, it moves the character)
(that is into the top of the stack to an internal)
(buffer located in the RAM memory between the)
(addresses OUTBUF BEGIN to OUTBUF END. The pointer)
(that address this memory is a long word and)
(is always reset to OUTBUF BEGIN when the module is)
(selected. Therefore, if the host wants to read some)
(data, it has to select the module asking for the)
(data to read and then poll the module and read this)
(data. If the procedure is not this, the pointer)
(will empty the buffer. Written in assembler)

CODE NEW EMIT
OUTBUF POINT ADDRESS #L

AO .LONG MOVE, (Address pointer -> AO)
AO () A1 .LONG MOVE, (Move to A1 the pointer)
SP) + DO .WORD MOVE, (Stack-> DO)
DO A1 () .BYTE MOVE, (DO -> buffer)
II 1 A1 .LONG ADDQ, (Add one to the pointer)
A1 AO () . LONG MOVE, (Save the new pointer)

NEXT;

(===)

(
(
(

(
(
(
(
(
(
(
(
(

Module Name)
·==========)
WRITE BYTE)

Description)
============)
This module writes characters to the serial port.)
It has the capability to detect CTRL Sand CTRL Q)
that the VAX sends in order to synchronize it) -
receiver with the speed that the Snoop sends)
characters. When the Snoop receives CTRL Sit stop)
sending characters and when receives CTRL_Q it)
start again.)

CODE WRITE BYTE
/IFEFFB(:- /IL AO
//10 #W DO
BEGIN,

.LONG MOVE, (Address of ACIA -> AO)
MOVE, (# times wait CTRL_S)

BEGIN,
AO ()
1
NE
IF,

4 AO D)
111 3
EQ
IF,

BEGIN,

D1
D1

D1
D1

.BYTE MOVE.

.BYTE ANDI,

.BYTE MOVE,

.BYTE CMPI,

(Character to read?)

(Yes, Read.)
(Is CTRL S?)

BEGIN,
AO ()
1

NE
UNTIL,
4 AO D)
fl 1 1
EQ

UNTIL,
THEN,

NE

THEN,
1 /IW
AO ()
1

UNTIL,
DO EQ
-UNTIL,
SP) +
DO
1122. /IL
D7
1

NEXT;

DO

AO ()
D1
D1

4 AO D)
AO
AO
AO ()

99

D1 .BYTE MOVE, (Character to read?)
D1 . BYTE ANDI,

D1
D1

.BYTE

.BYTE

. BYTE

MOVE,
.BYTE
.LONG
,LONG
ADDQ,

.BYTE MOVE,

.BYTE CMPI,
(Yes. Read)
(Is CTRL_Q?)

MOVE, (Is possible to output?)
MOVE,
ANDI,

(Yes. Check again?)

(Yes. Output.)
MOVE,
MOVE, (Up to date the cursor)
ADD, (position.)

(===)

(Module Name)
(. ---==--===)
(READ BYTES)

(Description)
(===========)
(This routine reads the bytes being sent by the Host.)
(Anytime that EQT is received, it disconnect the)
(transmitter from the Network and empty the input)
(buffer. It will read the bytes until the PAT, which)
(signal the end of that message.)

(Executable Code)
(===============)

READ BYTES
INBUF
BEGIN KEY
DUP EQT =
IF

(Create a pointer in the stack)
(Read one byte)
(Is the byte read EOT)

.FALSE. MOD ADD FLAG !
SWAP DROP INBUF SWAP
OVER Cl

(Disconnect from network)
(Signal: is not addressed)
(Reset pointer)
(Store EOT in input buffer)
(Increment by 1 the pointer) 1 +

.FALSE.
ELSE

Signal must continue reading)

DUP PAT"'
IF

DROP .TRUE.
ELSE

100

(Is the byte read PAT?)

Signal to stop reading bytes)

SWAP DUP INBUF END@
IF

> (Is input buffer full?)

SWAP DROP
ELSE

SWAP OVER Cl

(Do not save the byte)

(Save the byte)
(Increment by 1 the pointer) 1 +·

THEN
.FALSE. (Signal to continue reading)

THEN
THEN
UNTIL
0 OVER C!
0 SWAP 1 + C ! ; (Store two O in the end of buffer)

(==--=----------==)

(Module Name)
(===========)
(INPUT_TEXT)

(Description)
(===========)
(This routine inputs text from the host after the)
(Snoop was addressed. It is called by NEW EXPECT. It)
(is called with no data stored into the stack, but)
(with INBUF_ADD and INBUF_END initialized. As soon)
(as it start executing this routine, it sends an ACK,)
(to ACK the address. There is just 1 way to leave)
(this routine: when the address connection with the)
(host is broken. It leaves the routine with a flag)
(.true. or .false .. If .true. there is data into the)
(the area point by INTEXT ADD. This text is passed)
(to the Forth INTERPRETER~)

(Utility Routines)
(================)

SEND ACK ACK WRITE BYTE
PAT WRITE BYTE
ACK tAST MES !

SEND NAK NAK WRITE BYTE
PAT WRITE-BYTE
NAK LAST MES !

(Send acknowledge)

(Send No Acknowledge)

SEND LAST MES (Repeat the previous ACK or NAK sent)
LAST MES@ WRITE BYTE
PAT WRITE BYTE

(Main Routine)

1 01

INPUT TEXT
SEND ACK

Read the text)

.FALSE.
BEGIN

DROP
READ BYTES
MOD ADD FLAG@
IF

1
IF

INBUF

(This flag is simply deleted)
,

(Delete the flag)
(Read the bytes sent by the host)
(Is the module still addressed?)

Was the parity correct?)

Inicialize the buffer pointer)
DUP C@ STX =
IF

(There is STX begin of buffer?)

.FALSE. SWAP
INTEXT ADD@
1120 POINTER@

POINTER ! (pointer to INTEXT)
C! (Store a space in the first)

(character of INTEXT. It is)
(necessary.)

POINTER@ 1+ POINTER ! (Pointer+ 1)
1+ INBUF END@ SWAP (Start saving buffer)
DO

IC@ 0 = NOT (Is NOT end of buffer?)
IF

IC@ ETX (Is end of text block?)
IF

0 POINTER@ C! Mark end of buffer)
0 POINTER@ 1+ C!
DROP .TRUE. (Leave BEGIN •• UNTIL loop)
LEAVE

ELSE
I POINTER@ 1 CMOVE (Save input text)
POINTER@ 1+ POINTER (Pointer+ 1)

THEN
ELSE

LEAVE
THEN

LOOP

DUP
IF

SEND ACK
ELSE

SEND NAK
THEN

ELSE

(If flag .true. data in inbuf,)
(otherwise flag .false.)

C@ ENQ (There is ENQ in begin of buffer?)
H'

SEND LAST MES
.FALSE. (Doesn't leave BEGIN .• UNTIL loop)

"

t

ELSE
SEND NAK
.FALSE.

THEN
THEN

ELSE
SEND NAK
.FALSE.

THEN

102

(Doesn't leave BEGIN •• UNTIL loop)

(If flag .true. data in inbuf,)
(otherwise flag .false.)

(If flag .true. data in inbuf,)
(otherwise flag .false.)

DUP
ELSE

.FALSE.

.TRUE.
(No data in inbuf)
(Leave this BEGIN •.• UNTIL loop)

THEN
UNTIL

DUP
IF

Read the End of Transmission)

(Is the text correct?)

BEGIN (Must read now just EOT)
READ BYTES
INBUF DUP
C@ EOT

(Initialize a buffer pointer)
(Is EOT?)

IF
4 + C@ ENQ
IF

DROP . f'ALSE.
.TRUE.

ELSE
.TRUE.

THEN
ELSE

C@ ENQ =
IF

MOD ADD FLAG
IF

(

(
(

(

@ (

Was it a new polling?)

Invalid text. Drop old flag)
Leave BEGIN ... UNTIL loop)

Valid text. Leave loop)

Is asking for last message?)

There is address connection?)

SEND LAST MES (Send last message)
.FALSE. (Do not leave loop)

ELSE
DROP .FALSE.
.TRUE.

THEN
ELSE

MOD ADD FLAG@
IF

SEND NAK
.FALSE.

ELSE
DROP .FALSE.
.TRUE.

THEN

(Error in the text)
(Leave the BEGIN .•. UNTIL loop)

(There is address connection?)

(Do not leave loop)

(Error in the text)
(Leave the BEGIN ••• UNTIL loop)

(

THEN
THEN

UNTIL
THEN

Reset the OUTPUT TEXT POINTER)

1 03

DUP
IF

(Was the text read correct?)

OUTBUF BEGIN
OUTBUF-POINT ADDRESS L21 (Yes. Reinicialize pointer)

THEN ;

===========~======2=~=================~================~=)

(Module Name)
(===========)
(OUTPUT TEXT)

(Description)
(===========)
(This routine outputs the text stored into the output)
(text buffer. The output text buffer is located into)
(RAM from address OUTBUF BEGIN to OUTBUF END and)
(the pointer that signal-its end is stored
(at OUTBUF POINT ADDRESS. This routine)
(is called-by NEW EXPECT when the module is polled)
(by the host. The-output text buffer is filled by)
(NEW EMIT.)

(Utility Routines)
(================)

?OUTTEXT EMPTY (Test if the output text buffer is empty)
2DUP OUTBUF POINT ADDRESS
L2@ D< NOT-; (.TRUE.=Empty, .FALSE.= Still with data)

(Main Routine)
(============)

OUTPUT TEXT
OUTBUF BEGIN (Start pointer to output text buffer)
BEGIN

?OUTTEXT EMPTY (Output text buffer empty?)
NOT

WHILE

Transmit the text)

STX WRITE BYTE
DECIMAL 7"'8" 0
DO

(Transmit STX)
(Maximun # of characters per block)

2DUP LC@ WRITE BYTE (Send a character)
1 • D+ (Increment the pointer)

104

I 1 + CHAR TRANS BLOCK (Save# char. this block)
(Is the end of text?) ?OUTTEXT EMPTY -

IF
LEAVE

THEN
LOOP
?OUTTEXT EMPTY
IF

ETX WRITE BYTE
ELSE

ETB WRITE BYTE
THEN
PAT WRITE BYTE

(Yes. Leave the loop)

(It was end of text?)

(Yes. Transmit the ETX)

(No. Transmit the ETB)

(Send PAT)

Read the answer of the host)

BEGIN
READ BYTES
MOD ADD FLAG@
IF

1
IF

(Is the module still addressed?)

(Parity error?)

INBUF C@ ACK = NOT (Yes. Host NOT send ACK?)
IF

INBUF C@ NAK (Yes. Host send NAK?
IF

CHAR TRANS
0 D-
.TRUE.

(Yes. Retransmit block again)
BLOCK@ (Load# of character)

ELSE
ENQ WRITE BYTE
PAT WRITE-BYTE
.FALSE.

THEN
ELSE

.TRUE.
THEN

ELSE
ENQ WRITE BYTE
PAT WRITE BYTE
.FALSE.

THEN
ELSE

2DROP
POINT ADDRESS

(Calculate old pointer)
(Leave this loop)

Ask for the answer again)

(Do NOT leave this loop)

(Leave this loop)

(Ask for the answer again)

Do NOT leave this lpop)

OUTBUF
L2@

.TRUE.
(No. Overwrite the pointer to stop)
(Leave this loop)

THEN
UNTIL

REPEAT
DROP
MOD ADD FLAG@
IF

(Drop pointer)
(Is the module still addressed?)

EQT WRITE BYTE
PAT WRITE BYTE
40 0 DO I-DROP LOOP
EOT WRITE BYTE
PAT WRITE-BYTE

THEN ;

(Yes. Send EOT)

(Wait a short time)
(Send EOT again)

105

a====~===~a~~===2====~=========~====:===aaaacmu==========) ,

(Module Name)
(=~n=~======)
(NEW_EXPECT)

(Description)
(===========)
(This routine substitue the original EXPECT routine)
(of the FORTH of the Snoop Module. It has the)
(possibility to perform the necessary network)
(procedure for the FASTBUS Logical Analyzer.)
(This routine call, principally, 3 other routines:)
(READ BYTES, INPUT TEXT and OUTPUT TEXT, which were)
(already described-earlier. Basically this routine)
(detects the address of the Snoop Module being)
(transmitted by the VAX and connects the Module to)
(the VAX. After this, it checks to see if the module)
(is being polled or selected. If it is being polled)
(it executes the routine OUTPUT TEXT and, if is being)
(selected, it executes INPUT TEXT. The only time that)
(the loop of this routine is-left is after a)
(selection and the text was received successfully.)

NEW EXPECT DOCOL
INBUF + INBUF END
INTEXT ADD
#FF #FEFF92. L!
#0 ACIO-PB LC!
.FALSE. MOD ADD FLAG !

(Initialize input buffer end)
(Initialize input text add.)
(Turnoff the LED= not add.)
(Disable RS422 output)
(Deaddress the module)

READ BYTES
BEGIN (Leaves this loop when received text)

BEGIN
1 Was the parity correct?)
IF

INBUF
DUP C@
IF

(Create a pointer to input buffer)
EOT = (1-Does inbuf start with EOT?)

1+ DUP C@
MOD NO C@ (2-Is the address the same?)
SWAP 1+ SWAP OVER C@ MOD NO 1+ C@ =
AND
IF

1 +
DUP C@ DUP
SWAP P
OR

s =
(3-Is selection or polling?

106

IF
1 +
DUP C@ ENQ a (4-Does it finishes ENQ?)
IF

DROP .TRUE. (The module is addressed)
.TRUE. MOD ADD FLAG
/f7F IIFEFF92. -LI (Turn on LED•add.)
CB-0422-EN (Enable output RS422)
ACIO-PB LC!

ELSE
DROP .FALSE.

THEN
ELSE

DROP .FALSE,
THEN

(It wasn't addressed)

ELSE
2 - DUP C@ O = (Is broadcast address?)
SWAP 1+ SWAP OVER C@ 0 =
AND
IF

1+ DUP C@ S
IF

Is selection?)

1+ DUP C@ ENQ (Does it finish with ENQ?)
IF

DROP .TRUE. (The module is addressed)
.TRUE. MOD ADD FLAG
/l7F //FEFF92. L!

ELS"E
DROP .FALSE.

THEN
ELSE

DROP .FALSE.
THEN

ELSE
DROP .FALSE.

THEN
ELSE

DROP . FALSE.
THEN

THEN
ELSE

DROP .FALSE.
THEN

ELSE
.FALSE.

THEN
NOT
WHILE

READ BYTES
REPEAT
INBUF 3 + C@
IF

INPUT TEXT

(If module addressed, leave loop)

S (Is selection?)

(Input text of data. Return)
(TRUE if text was received correctly.)

ELSE
OUTPUT TEXT
.FALSE •

1 07

(It returns with the module deadd.)

(Output text of data)
(Dono go to the INTERPRETER)

• FALSE. MOD
THEN

ADD FLAG (Deaddress the module)

#FF #FEFF92. LI
#0 ACIO-PB LC!

UNTIL ;

(Module Name)
(===========)
(HST)

(Description)
(===========)

(Turnoff the LED)
(Disable RS422 output)

(When this routine is executed, the Snoop module)
(start using the Network Protocol to communicate)
(with the Host. To return to the protocol to)
(communicate with a terminal is necessary to reset)
(or turn the Snoop on.)

HST OUTBUF BEGIN
OUTBUF POINT ADDRESS L2!
#6CO f/C50 !
' NEW EMIT 2- UEMIT I
' NEW EXPECT UEXPECT !
' NEW-KEY 2- UKEY
#20 #17CF C!
fl 2 0 # 1 7 DO C !
f/7CA fl17DA !

(Init. OUTBUF POINT ADDRESS)
(Disable the CR word)
(Change EMIT by NEW EMIT)
(Change EXPECT by NEW EXPECT)
(Change KEY by NEW KEY)
(Change OKNN by 2 spaces)

(===)

voe-LINK@ #3AA !
fl80F4 2@ #38A 2 !

.end

(Link this new vocabulary to the old)

(Signal VAX program to stop download)

(**~****)

108

BIBLIOGRAPHY

(1) U.S. NIM Committee, 1983. FASTBUS Modular ~ Speed
Data Acquisition and Control System for~ Energy
Physics and Other Applications. U.S. Department of
Energy, Washington, DC.

(2)

(3)

(4)

(5)

Treptow, K. 1 9 8 3. FASTBUS Module. Data Dis2lay System
Group of CDF Note no. DS$LIB0002_9_,_ Fermi National
Accelerator Laboratory, Illinois.

Brodie, L. 1 9 8 1 . Starting Forth. 1st ed. ,
Prentice-Hall, Inc., New Jersey.

Brodie, L. 1 9 8 4. Thinking_ Forth. 1st ed. ,
Prentice-Hall, Inc., New Jersey.

Barsotti,
Overview
FASTBUS.

E. J., Larwill, M. H., Ingen, C., 1983.
of the new UNIBUS Processor Interface to
CDF Note no. 230, Fermi National Accelerator

Laboratory, Illinois.

(6) Digital Equipment Corporation. 1982. VAX-11 FORTRAN

(7)

(8)

(9)

(1 0)

(1 1)

(1 2)

Language Reference Manual. Order no. AAD034C-TE.
U.S.A.

White, V., 1985. Mencom, A Menu Oriented Command
Interface Package, CDF Note no. ~.O., Fermi National
Accelerator Laboratory, Illinois.

International Business Machines Corporation, 1970.
General Information - Binary Synchronous Communications,
(GA27-3004 File TP-09). 3rd ed., IBM Corporation, North
Carolina.

1982. VAX/VMS System Digital Equipment Corporation.
Services Reference Manual.
U.S.A.

Order no. AA~D018C-TE.

H. V. Walz and R. Downing, 1981. FASTBUS Snoop
Diagnostic Module. IEEE Trans. on Nuclear Science,
NS-28, No.1, pp.380-384. U.S.A.

H. V. Walz, D. B. Gustavson and R. Downing, 1983.
Progress on the
FASTBUS, IEEE Trans.
pp.220-222. U.S.A.

SLAC Snooe Diagnostic Module for
on Nuclear Science, NS-30, No. 1,

H. V. Walz and D. B. Gustavson, 1983. Status .2..f. the
SLAC Snoo~ Diagnostic Module for FASTBUS, IEEE Trans.
on Nuclear Science, NS-30, No. 4, pp.2276-2278. U.S.A.

1 09

(13) Digital Equipment Corporation, 1984. VAX EDT Reference
Manual. Order No. AA-J726A-TC. U.S.~

I

!,,
.ii).

