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Figure 1: Measurement of neutron multiplicity in pure water versus visible energy by the
Super-K collaboration [6].

transfer with higher energy interactions producing more than one neutron. However, the
exact number of neutrons is determined by a variety of poorly understood nuclear processes
and therefore it is not well-known.

It is not enough to identify the presence or absence of neutrons in an interaction. While
the presence of neutrons can be used to remove background events, the absence of a tagged
neutron is insufficient to attribute confidence to the discovery of a proton decay observation.
The absence of a neutron may be explained by detection inefficiencies in the WCh detector
for example. On the other hand, if typical backgrounds consistently produce more than one
neutron, the absence of any neutron would significantly increase the confidence in a PDK-
like event. Calculating an exact confidence for discovery will require a detailed picture of the
number of neutrons produced by neutrino interactions in water as a function of momentum
transferred.

The Super-Kamiokande (Super-K) collaboration has attempted to measure the final state
neutron abundance. Fig 1 shows the neutron multiplicity as a function of visible energy
from atmospheric neutrino interactions in water, as detected by the 2.2 MeV capture gamma
in Super-K [6]. However, the Super-K analysis is limited by uncertainties on the detection
efficiencies for the 2.2 MeV gammas and on the flux of atmospheric neutrinos. Additionally,
neither the neutrino energy nor the momentum transfer to the nucleus can be measured
precisely. Therefore, it is difficult to incorporate these data into background predictions for
proton decay.

Therefore, there is a clear need for a dedicated measurement of neutron yield. Such detailed
measurement of the neutron multiplicity is possible in a beam with atmospheric neutrino-like
energy spectrum. We propose to build such an experiment. The Accelerator Neutrino Neu-
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Figure 2: The reconstructed kinematics of proton decay events in Super-K Monte Carlo
(al,bl), compared with those of atmospheric neutrino Monte Carlo (a2,b2) and data (a3,b3).
Atmospheric neutrino events that fall in the signal region of (a2,b2) are enlarged (Ref [8]).

10






Log(1/1033) years

2.75

2.50

pd edo

TTT T T T

225}

175 |
1.50 |

125}

075
0.50 |

025}

L

T TR N T T T T T T T T T T T TS T S B

LBNE-LAr

2015 20

20

2025 2030

year

2035 2040 2045












Figure 4: ANNIE in the SciBooNE Hall.

final-state neutron. High energy neutral current (NC) interactions tend to produce either
protons or neutrons, proportional to the abundance of each nucleon in water.

However, GeV-scale (anti-)neutrinos can produce additional neutrons through the complex
interplay of higher-order and multi-scale nuclear physics:

e secondary (p,n) scattering of struck nucleons within the nucleus
e charge exchange reactions of energetic hadrons in the nucleus (e.g., 7~ +p — n + )
e de-excitation by neutron emission of the excited daughter nucleus

e capture of 7~ events by protons in the water, or by oxygen nuclei, followed by nuclear
breakup

e Meson Exchange Currents (MEC), where the neutrino interacts with a correlated pair
of nucleons, rather than a single proton or neutron.

e secondary neutron production by proton or neutron scattering in water

Consequently, neutron multiplicity distributions tend to peak at 0 or 1 with long tails. Given
the highly non-gaussian shape of these distributions, parameters such as the mean neutron
yield are not necessarily illuminating. At the simplest level, we want to measure P(N=0),
P(N=1), and P(N>1) with particular attention to any excesses beyond tree-level expecta-
tions. These measurements, binned by interaction type and kinematics, will provide a strong
handle to constrain nuclear models, even in the absence of detailed shape information beyond
P(N=2).
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Figure 1.10: Skyshine events in SciBar at KEK. Shown is the fine time structure of
a single strip’s hits in SciBar, during the K2K neutrino data runs.

60 m 90 m
beam-on | beam off | beam-on | beam-off
Z spills 25580 | 10,072 | 33,441 | 10,233
singles (1) 16 0 14 0
singles (2) 37 0 20 1
coincidences 5 0 4 0

Table 1.6: BNB skyshine test results.

1.5 Non-Neutrino Backgrounds

We anticipate background activity in the detector caused by sources other than neu-
trino interactions in the fiducial volume. They fall into two broad categories: beam
related and beam unrelated backgrounds, described below.

Beam Related Backgrounds

The two most significant beam related backgrounds are dirt neutrinos and neutron
skyshine. Dirt neutrinos interact in the earth around the detector hall, sending ener-
getic particles into the detector, and skyshine is the flux of neutrons from the decay
pipe or beam dump that are initially projected into the air but are scattered back
toward the ground and interact in the detector. Experience with MiniBooNE indi-
cates that dirt neutrinos form a negligible background for charged current events.
The expected effect on neutral current analyses is also small due primarily to the lack
of a high energy tail in the BNB flux.
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Figure 3.7: The MRD is installed downstream of the EC. It has 12 iron plates
with thickness of 5 cm and 13 plastic scintillator planes with thickness of 6
mim.
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