

The Fermilab Antiproton Source

Design Report

April, 1981 Second Printing May, 1981

Fermi National Accelerator Laboratory

Batavia, Illinois

ANNEX QC789 .F3F1 1981

> Operated by Universities Research Association Inc. Under Contract with the United States Department of Energy

The Fermilab Antiproton Source Design Report

DRAFT

April, 1981 Second Printing May, 1981

Fermi National Accelerator Laboratory

Batavia, Illinois

Operated by Universities Research Association Inc. Under Contract with the United States Department of Energy

Contents

			<u></u>
1.	Intr	oduction and Summary	
	1.1 1.2	Purpose of the Antiproton Source Overview of the System	1 1
2.	Gene	ral Scenario	
	2.1 2.2 2.3	Introduction Scenario Listing Other Scenarios	4 4 7
3.	Targ	eting and Transport	
	3.1 3.2 3.3 3.4	Main Ring Extraction Proton_Transport 3.2.1 p Target Hall p Production Rate Antiproton Target 3.4.1 Material Choice 3.4.2 Energy Deposition 3.4.3 Target Design 3.4.4 The Lithium Lens Collector Antiproton Transport to Precooler	8 10 12 13 15 15 15 17 18 18
4.	Prec	ooler Design	
	4.1 4.2	General Structure and Layout 4.1.1 Lattice 4.1.2 Nomenclature Injection and Stacking	26 26 29 30
	4.3	4.2.1 Injection 4.2.2 Stacking Magnets 4.3.1 Main Magnets 4.3.2 Main Magnet Power Supply 4.3.3 Correction Elements	30 32 34 35 3 6 38
	4.4 4.5	Vacuum System Stochastic Cooling System 4.5.1 Stochastic Cooling Sequence 4.5.2 Hardware	39 40 40 41
	4.6	Deceleration and Rebunching 4.6.1 Deceleration 4.6.2 Bunching for Extraction	42 42 45
	4.7 4.8 4.9	Transfer to and from the Electron Accumulator Acceleration in the Precooler 8-GeV Extraction and Transport	46 47 47

Page

5. Electron Cooling Accumulator

	5.1	General Structure and Layout 5.1.1 Lattice	52 52
	5.2 5.3 5.4	<pre>5.1.2 Layout Injection Magnets Electron Cooling System 5.4.1 Equipment Description 5.4.2 Electron Cooling and Accumulation Rates</pre>	56 56 56 56 58
	5.5	RF Stacking and Unstacking 5.5.1 Injection and Stacking 5.5.2 RF Unstacking and Extraction	59 59 60
6.	Coll	iding Scenario	
	6.1 6.2	General Plan Coalescence Scenario	62 62
7.	Build	lings and Structures	
	7.1 7.2 7.3	Below - Ground Structures Above - Ground Structures Utilities and Roads	65 66 66
8.	Expe	cimental Areas	
	8.1 8.2	BO Experimental Area DO Experimental Area	67 68
	Apper	ndix A Parameters	
	Apper	ndix B Precooler Orbit Listing	

Appendix C Accumulator Orbit Listing

1. Introduction and Summary

1.1 Purpose of the Antiproton Source

The purpose of the Fermilab Antiproton source is to provide at least 10¹¹ cooled, accumulated antiprotons for acceleration in the Main Ring and Tevatron for colliding-beams experiments with 1-TeV protons. This will provide the highest available energy in the world for particle-physics experiments through at least the 1980's. Collisions at 2 TeV in the center of mass will provide a unique experimental tool in a new energy range.

The design of the Antiproton Source has been carried out by the Colliding Beams Department of the Accelerator Division in collaboration with Argonne National Laboratory, Lawrence Berkeley Laboratory, the Institute of Nuclear Physics at Novosibirsk, and the University of Wisconsin.

A project of similar purpose is under way at CERN. Its objective is to achieve colliding proton-antiproton beams at 540 GeV in the center of mass in the CERN SPS. The Antiproton Accumulator (AA), a ring that is roughly equivalent in function to the Precooler and Accumulator described here, has been built and The AA is a different design solution to is in operation. different design problems. The most important reason for the differences between the two projects is the different length of the proton beam that is the original source of antiprotons. The CERN PS beam proton beam is approximately 628 meters long, but the Fermilab Main Ring beam is 6280 meters long, a factor 10 larger. The larger size of our Precooler comes from the fundamental need to fold this longer beam into small pieces. It would be possible to extract the Main Ring beam in more batches and fill a Precooler of smaller radius, but the momentum spread of the p beam would increase and would soon go beyond what is possible to cool.

1.2 Overview of the System

Accumulation of antiprotons in a small enough phase-space volume to be usefully accelerated requires beam cooling. The system designed and described here makes use of both electron cooling and stochastic cooling in the energy and intensity ranges for which they are best suited, electron cooling at low energy and higher intensity both longitudinally and transversely, stochastic cooling longitudinally and at higher energy and low intensity.

Protons are accelerated to 80 GeV in the Main Ring in the time-honored fashion and the ring is flat-topped. The 80-GeV proton beam is extracted sequentially at F17 in Booster-length batches at 100-msec intervals, while the remaining batches circulate in the Main Ring. Each extracted batch is transported to the Antiproton Target Hall and targeted. Antiprotons of 4.5-GeV kinetic energy are collected and focused by a lithium lens and transported to the Precooler, a storage ring of Booster length (75.47 m average radius) to be built on a presently unoccupied site next to the Main Ring, as shown in Fig. 1-1. Each batch of beam is rotated in phase space to reduce its momentum spread and stacked with the previous antiproton batches. Depletion of the target by shock heating during the pulse limits the combination of intensity, pulse length, and spot size on the target. We have therefore split up the Main Ring pulse into batches of smaller length to preserve the target. The proton and antiproton beams will also be scanned approximately 0.5mm across the target during the pulse to spread the heating. This will make possible a smaller proton beam spot size. Within the limits imposed by target integrity, it is estimated that approximately 1.6x10⁷ antiprotons per Main Ring pulse can be collected and stacked in the Precooler within a total relative momentum spread of 2% and transverse emittances of 5π mm-mrad in each plane.

The batch is now taken through a sequence of longitudinal stochastic cooling and deceleration steps. Each cooling step is continued until the cooling rate slows significantly because of bad mixing, then decelerated to re-establish mixing. After three such steps, the p batch is at 200 MeV with a total relative momentum spread of 0.55% and transverse emittances of 40π mm-mrad from adiabatic antidamping during deceleration. At this point, the batch is transferred into the Electron Cooling Accumulator, a smaller ring (32.35 m average radius) to be located south of the Precooler as shown in Fig. 1-1. This ring will be built in a new tunnel using magnets and other components taken from the present Electron Cooling Ring.

In the Electron Cooling Accumulator, the \overline{p} batch will be injected, cooled both longitudinally and transversely by an electron cooling system, then accumulated with other \overline{p} batches in a stack and cooled continually by the electron system. The cycle time for each batch is 9.85 sec and we therefore expect to accumulate 10¹¹ antiprotons in 18 hours. The stack will have a total relative momentum spread of 0.1% and an emittance of 1m mm-mrad in each plane.

After accumulation has been completed, the antiprotons will sequentially unstacked in 3 bunches. be Each bunch is sequentially transferred to the Precooler and accelerated to 8 GeV. transferred to the Main Ring in the atypical (counterclockwise) direction, accelerated to 150 GeV, then transferred to the Tevatron. Protons will have been previously injected and accelerated to 150 GeV in the clockwise direction, then coalesced into three bunches and transferred to the Tevatron. After all three p bunches are stored in the Tevatron, the p and pbunches are accelerated together to 1 TeV for colliding-beams experiments. The luminosity goal of $10^{30}/\text{cm}^2$ -sec will be reached in 23 hours of accumulation. We will shorten this time by electron cooling at 400 MeV, rather than 200 MeV.

2

It should be noted that there is a large amount of flexibility possible in this system. The Electron Accumulator Ring will hold antiprotons up to 1 GeV in energy and it is possible to vary the cooling steps within wide limits to optimize the process. It is also possible to use the same rings in different electron and stochastic cooling scenarios.

· ·

2. General Scenario

2.1 Introduction

In this chapter, we give for reference a sequential listing of the scenario of antiproton accumulation and comment on possible variations.

2.2 Scenario Listing

(i) Proton Acceleration in Main Ring	
Proton energy	80 GeV
No. of protons	2.6×10^{13}
Total no. of occupied buckets	975
Harmonio no	1112
Flat_ton length	13 800
Total avale time	9 85 860
IOUAL CYCLE LIME	9.09 Sec
(ii) Proton Beam Extraction and Transpo	ort
Septum location	
No. of sequential batches	13
Batch interval	100 msec
No. of bunches per batch	75
No. of protons per batch	2 _{v10} 12
Extraction style	Single batch
Transport to toprot	19 EDD dineles
Transport to target	TO EPB dipoles
	11 quadrupoles
(iii) Targeting	
Target	Tungsten-rhenium
Target length	5 cm
Target diameter	8 cm. rotating
	at 47 rpm
Projected rms spot size	0.22 mm
(protons)	
p momentum	5.3567 GeV/C
p kinetic energy	4.5 GeV
p momentum spread (full)	1%
p emittance (each plane)	5π mm mrad
p bunch area	0.15 eV-sec
Invariant p cross section	
per nucleus	$0.0206/GeV^2 - W$
•	nucleus
Proton absorption length	9.86 cm
p absorption length	9.09 cm
Yield ND/Np	0.6x10 ⁻⁶
(includes Li lens loss)	
Total p per MR cycle	1.56×10^{7}
Accumulation rate	$5.7 \times 10^{9} \overline{p} / hr$
	and the second second

(iv) <u>RF Rotation in Precooler</u>	
Initial rms bunch length	21 cm
Harmonic number	84
RF capture voltage at 53MHz	400 kV
Phase-oscillation period	367 11900
Phase space notation time	
Masse-space rotation time	yr µsec
momentum displacement in	li af
stacking	4%
Energy change	213 MeV
Stacking time	85 msec
Final momentum spread (full stack	:) 2.16%
Total \overline{p} stacked per MR cycle	1.56x10 ⁷
(v) Stochastic Momentum Cooling and Dece	eleration
(a) Cooling step 1	•
Energy	4.5 GeV
Initial momentum spread	2.1%
Final momentum append	0.284
Calina tina	
cooling time	4.5 Sec
(b) Deceleration 1	
Initial energy	4.5 GeV
Harmonic number	0
Back of weltage	9 911 11 1-17
Feak M Voltage	04.4 KV
Final energy	2.4 Gev
Deceleration time	0.54 sec
(c) <u>Cooling step 2</u>	
Energy	2.4 GeV
Initial momentum spread	0.5%
Final	0.13%
Cooling time	1 25 800
cooring time	1.29 360
(d) Deceleration 2	
Initial energy	2.4 GeV
Harmonic number	10
Peak of voltage	45.5 kV
Final energy	
Final energy	
Deceleration time	0.435 Sec.
(e) <u>Cooling step 3</u>	
Energy	0.85 GeV
Initial momentum spread	0.28%
Final momentum spread	0.046%
Cooling time	0.75 800
COOTING CIME	0.15 366
(f) Deceleration 3	
Initial energy	0.85 GeV
Harmonic number	14
Peak rf voltage	11.8 kV
Final energy	0.201 601
Deceleration time	
Decerenation filme	V.7 Sec

5

(g) 200-MeV bunching Harmonic number 1 4 kVRF voltage 0.44% Final momentum spread 1.0 usec Final bunch length 5 msec Bunching time Total cycle time 9.85 sec (vi) Electron Cooling and Accumulation Kinetic energy 0.2 GeV 0.44% Initial momentum spread Initial emittance (each plane) 40π mm-mrad Precooling Final momentum spread 0.1% Final emittance 1π mm-mrad Cooling time 2 sec Stack is cooled between precoolings to maintain $\Delta p/p = 10^{-3}$ and emittances of 1π mm-mrad p per cycle 1.56x10' Total accumulation time 23 hr time for $L=10^{30}/cm^2-sec$ (vii) Reacceleration Number of p bunches 3 Method of rebunching RF unstacking Precooler acceleration time 1 sec Harmonic number 14 5.01-8.80 MHz Frequency range The 3 bunches are individually recooled, accelerated to 8 GeV, transferred to the Main Ring, accelerated to 150 GeV and injected into the Tevatron. Protons have previously been accelerated, rebunched, and stored in the Tevatron. (viii) Colliding Scenario 3 Number of p bunches Number of p bunches 3 4×10^{10} Number of \overline{p} per bunch 1011 Number of p per bunch ß₩ 2 m <0.1 mm RMS p beam size 0.1 mm RMS p beam size Luminosity per intersection region

Luminosity lifetime $10^{30}/cm^2$ -secLuminosity lifetimeseveral daysRMS bunch length (\bar{p})<45 cm</td>RMS bunch length (p)45 cmBeam-beam tune shift0.003

6

2.3 Other Scenarios

There is a great deal of inherent flexibility in the design discussed in this report. It is believed that this is a considerable advantage of the design, because knowledge of beam cooling is expanding rapidly, both theoretically and experimentally.

This flexibility can be used in other cooling schemes with the same equipment. One such scheme that has been investigated would inject antiprotons into the Precooler, stack them, and cool the stack by stochastic cooling without precooling or deceleration. The performance of this scheme is limited because the stochastic cooling rate decreases as the number of antiprotons in the stack increases. Estimates show that the cooling rate becomes unmanageably long when the number of antiprotons accumulated is of the order of 3×10^9 , with a collection time of the order of 1 hour. Such a beam will give a luminosity of approximately 2 x $10^{28}/\text{cm}^2$ sec, which can be valuable for initial exploratory experiments. Higher-luminosity all-stochastic schemes would require a separate Accumulator ring.

It is also possible to vary the energy of electron cooling and accumulation. It is believed that 400 MeV p energy may be a practical upper limit without extensive electron-gun development; the Electron Accumulator Ring can store antiprotons up to 1 GeV. If development of a 550-keV electron gun (corresponding to 1-GeV antiprotons) appears feasible, the present rings will be adequate for this higher-energy cooling.

3. Targeting and Transport

3.1 Main Ring Extraction

Extraction of 80 GeV protons from the Main Ring for the production of antiprotons is to take place at location F17. At this location, a Lambertson magnet will deflect the extracted beam vertically towards the transport line, located imediately above the Main Ring magnets.

The geometry and expected beam sizes at the Lambertson location are shown in Fig. 3-1. The relevant parameters of the Main Ring Lattice are listed in Table 3-I.

TABLE 3-I PROPERTIES OF SELECTED MAIN RING MINISTRAIGHTS

Radial Plane Lattice Functions

Locat	ion	β[m]	α	Phase Relative to F17 Modulo 360°)	Space Available (in.)
C48 K	licker	102.414	0.46696	-90.11°	(Existing)
F11		67.258	1.1745	-214.27°	0.0
F12		29.601	-0.5731	-168.30°	0.0
F13		95.356	1.8584	-135.74°	0.0
F14		28.383	-0.5893	-99.29°	34.0
F15 (Bump 1)	97.247	1.8396	-66.32°	42.5
F16	•	30.093	-0.6239	-31.47°	42.0
F17 (Bump 2)				
(Extraction)	99.648	1.9388	0.00°	32.0
F18 (Bump 3)	28.865	-0.5582	35.20°	52.0
F19		94.322	1.8156	68.92°	0.0
F21		28.912	-0.6177	104.71°	28.0
F22 (Bump 4)	99.541	1.8926	136.92°	27.5
F23		30.073	-0.5983	171.32°	35.0
F24		97.400	1.9056	203.21°	0.0
F25		28.365	-0.5666	239•23°	35.0
F26		95.244	1.8100	272.60°	43.5

The existing kicker at location C48 will be utilized to provide the necessary horizontal displacement of approximately 25 mm to jump the Lambertson septum. The present kicker power supply is designed for single-turn Main Ring extraction. A simple modification is required to shorten this pulse to extract 1/13 of the Main Ring circumference at a time, a batch 1.6 µsec long. The required angular kick at C48 is -0.238 mrad or a voltage at the supply of 21.0 kV, well within the present operating range. Given the Main Ring lattice characteristics, the displacement at F17 will result also in an angular displacement of 0.467 mrad.

In order to compensate for the angle resulting from the kick across the septum and to have flexibility in the location of the Main Ring beam with respect to the F17 Lambertson during 8-GeV injection prior to 80-GeV extraction, and to allow for room during 400-GeV extraction (see Fig. 3-1) we have designed a local 4-magnet slow orbit bump to be installed at locations F15, F17, F18 and F22. This 4-magnet combination will permit independent adjustment of the beam position and angle at F17. For the configuration of -38 mm displacement and compensation for the angle resulting from the C48 kick (-25 mm at F17) the required angular kicks and magnets bending power are indicated in Table 3-II. The required apertures in Main Ring have been measured during machine studies.

TABLE 3	J-II	FOUR-MAGNET	ORBIT-BUMP	PARAMETERS
---------	------	-------------	------------	------------

MR Location	Bump angle (mrad)	Bend strength (kG-m)
F15	42	-1.134
F17	-1.04	-2.808
F18	+1.04	+2.808
F22	-1.03	-2.781

The configuration described here will permit the two following modes of operation:

(i) <u>Dedicated 80-GeV running</u>: The Main Ring will operate on a 80-GeV ramp. Allowance is to be made at F17 for 8-GeV injection aperture. Only the desired number of Booster batches to be extracted towards the p target will be injected.

(ii) <u>Parasiting on 400-GeV operation</u>: Probably only 1 Booster batch could be extracted towards the p target at 80 GeV for tests. Allowance is to be made at F17 for 8-GeV injection aperture and 400-GeV extraction aperture requirements. The F17 Lambertson has been installed and operated in the Main Ring since January, 1981. It is equipped with remote positioning devices, beam monitors and loss monitors. Power supply, controls and electronics are located in service building F1. Extraction studies are to take place during June and October 1981 to determine the best Lambertson location with respect to the center of the Main Ring orbit. Although the Lambertson can be moved away from the orbit, its location will remain fixed during 80-GeV extraction, due to the fixed location of the 80-GeV transport line; the variations in operating modes will be accomodated by the four-magnet bump to position the Main Ring orbit with respect to the Lambertson septum.

Vertical extraction was chosen at F17 to minimize the angular deflection required to clear the first Main Ring magnet downstream of the Lambertson. The return coil on the upstream end of this magnet has been modified to permit the extracted 80-GeV beam pipe to be located close to the magnet steel. This space restriction will limit the maximum energy that can be extracted at F17 to below 125 GeV. An upgrade to 125 GeV would require a second Lambertson magnet and major modifications of the upstream end of the transport line described below.

3.2 Proton Transport

The layout of the 80-GeV proton-beam transport is shown in Fig. 3-2. From the extraction point at F17, the line extends to location F25. The transport elements are located just above the Main Ring magnets. At location F25, the 80-GeV beam exits the Main Ring tunnel toward the pretarget area, p Hall, and the antiproton target area, p Target Hall.

The transport line is assembled from External Proton Beam (EPB) type magnets. Two dipoles, V1 and V2, are utilized to set the beam horizontal (19.0 in. above the Main Ring orbit) following the extraction Lambertson. Thirteen dipoles are utilized to follow the Main Ring radius by distributing them uniformly between locations F18 and F23. Five dipoles are used to provide the reverse bend to exit the Main Ring tunnel at a convenient place in location F25. This last requirement forces the beam to the inside of the Main Ring between F23 and F25, reducing some of the tunnel free space. A small-diameter pipe connects the Main Ring tunnel to the upstream end of \bar{p} Hall, where a remotely operated beam stop will permit access to most of \bar{p} Hall, and \bar{p} Target Hall during Main Ring operation.

The transport line includes eleven EPB quadrupoles with water-cooled coils upgraded to match the power supplies obtained to power them. Element Q7B is a type 5Q36 (ANL) quadrupole. The location of the elements in p Hall is shown in Fig. 3-3.

Fig. 3-2 EXTRACTED-PROTON BEAM-TRANSPORT LAYOUT

Distance to	Element	Туре	Field/Gradient	Bend
F17(inches)			(T)/ <u>(T/m)</u>	
210	Iambentson		1 082	IID
016	H1	FPR	1.272	RTGHT
1018	V1	EPB	0.920	DOWN
1180	V2	FPB	0.920	DOWN
1212	12	FDD	1 272	DUNN
1)))	01	201204	1.CIC 5.07	итоцт
1706	112 112	FDD	-2.01	DTOUT
2126	02	201204	1.212	NIGHI
2120	Q2 11)	PDD	2.07	DTOUT
2920	114 115	FDD	1.070	RIGHI
2940	п <u>р</u> 116	EFB	1.272	RIGHI
2400	02	50120A	1.212	RIGHI
2086	25 117	FDD	-5.07	סדרטיי
10116 5900		201201	2 88	urgui
4240	24 US	JUIZUA	3.00	DTCUT
5022	10	FDD	1 272	DTOUT
5550	пу 10	FDP	1 272	DIGUT
5000	11 IU 11 1	ELD	1.070	DICUT
5110	05	201204	1.4(4	RIGHI
6071	112	SQ IZUA	-3.00	חדמות
6106	112	EFD	1.272	RIGHI
0400 6616	n 13 06	EPB 201201	1.2/2	RIGHT
0040	Q0	JQ 120A	3.00	1 7778
(423 75°5		EPB	1.2/2	LEFT
7505	H ID	EPB	1.272	LEFT
7717	HID	EPB	1.272	LEFT
7049	HI(1149	EPB	1.272	LEFT
1901	HIO	EPB	1.2/2	LEFT
9105	QTA	JUIZUA FORE	15.20	
9200	Q/D 09	20120	14.01	*
9900	QO QO	3Q120A	-15.20	
10142	QYA QQD	30120A	9.90 11 ali	
10274	Úдв	JUIZUA	14.34	
10448	Q10	3Q120A	-15.20	
10688	Target Cente	r		

TABLE 3-III PROTON TRANSPORT LINE

As shown, six quadrupoles in \overline{p} Hall are utilized to produce the desired beam spot at the target. Alternative designs including a Lithium lens in the proton beam have also been considered. For the present requirements, the quadrupole solution suffices, because the minimum spot size at the target is expected to be limited by target lifetime. One above-ground power-supply service building at location F23 houses power supplies, controls, instrumentation, vacuum and water for the section of transport line within the Main Ring tunnel. A second above-ground building at location F27 will provide services for the \bar{p} Hall and \bar{p} Target Hall enclosures.

Access to \overline{p} Hall is by a hatch and labyrinth. Because of the limited amount of earth between the upstream end of the hall and the Main Ring tunnel, that end will not be accessible during Main Ring operation. The downstream end will be sealed by a 30 cm thick iron shield required to minimize soil exposure due to backward radiation from the target. Residual radiation levels in \overline{p} Hall are expected to be low enough to permit maintenance in place.

Completion of the 80-GeV beam transport line to F25 is expected by summer 1981, and to the target station by October, 1981.

<u>3.2.1 p</u> Target Hall. The antiproton producing target, proton beam dump and antiproton collection system will be located in an existing vault downstream of p Hall of dimensions 1.5 m wide and 40 m long. The floor is 6.4 m below ground with a beam elevation 1.2 m above it. An elevation view is shown in Fig. 3-4.

The upstream end of the hall, containing the target, vertical bend, and dump will be an area of high residual radiation and limited access. During normal operation of the \bar{p} source, greater than 2 x 10¹² protons per second are to be incident on the target and dump. Shielding configurations, taking into account soil irradiation, outdoor dose rate and muon fluxes have been studied to permit operation with average intensities of up to 10¹³ protons per sec.

The target will be just downstream of the thick iron shield separating \bar{p} Target Hall from \bar{p} Hall. The target design and the \bar{p} collection system are described in detail below. As shown in Fig. 3-4, antiprotons are collected by a lithium lens before a vertical bend up (BV1) of 6° separates them from the 80-GeV protons (-0.4°). A vertical translation by 2.485 m, required to get to the level appropriate for Precooler injection, takes place within \bar{p} Target Hall. The antiprotons emerge from the Li Lens as a nearby parallel beam.

The proton beam dump will be made of steel, approximately 5 m long, 1.5 wide and of a height to accomodate the antiproton transport line. It will contain a water-cooled graphite core capable of absorbing in excess of the 25 kW presently required. A closed loop water cooling system will be located in p Hall.

Access to the elements in the Target Hall is from above, possible within a structure, that will straddle the present roof hatch. As part of this structure an additional 1.8 m of shielding

p Target Hall Fig.

3-4

will be incorporated to keep the above-ground dosage level well below 50 mrem/hour.

From the point of view of accessibility, we have identified two different regions within p Target Hall:

(1)Upstream of BV1: This area contains the target itself, the lithium lens, instrumentation to monitor target performance, target, lens remote-positioning mechanism and lens electrical devices. We expect the need of relatively frequent accesses, especially during the commissioning phases of the project. Elements are to be located within elevators that will include that section of the shielding directly above them. Services are to be through the shielding. In the down position, the elevator platform will rest on alignment pins on the floor. In the up position, the elevator will place the radioactive elements for remote transfer to shielded containers. These containers, with relatively light and small components, can then be transferred to the Neutrino area remote-handling facility for maintenance. Highly radioactive components can be stored within p Target Hall shielding for cooling.

(ii) <u>Downstream and including BV1</u>: This region contains only dipole and quadrupole magnets. Access is expected to be very infrequent both during and after commissioning. Access for maintenance will require the removal of shielding blocks and lifting of the beam-transport elements with a crane.

3.3 p Production Rate

Several independent calculations exist that estimate the number of antiprotons to be captured within a given precooler acceptance. These calculations have been extended with a Monte Carlo program that includes a fit to available data on antiproton production cross sections, hadronic shower development in the target, multiple scattering, absorption and a lithium lens collector. The result of these calculations are summarized in Table 3-IV.

TABLE 3-IV PARAMETERS FOR ANTIPROTON FLUXES INTO PRECOOLLER ACCEPTANCE

Precooler acceptance (each plane) Proton beam momentum Proton beam β : Proton beam size Antiproton momentum Target material Target length 5π mm-mrad 80 GeV/c 1 m $\sigma x = \sigma y = 0.02$ cm 5.39 GeV/c Tungsten 5cm Li lens gradient Li lens radius Li lens length Lens face to target center

 $\frac{1}{E} \frac{d^3\sigma}{d^3\sigma}$ dp

Proton absorption length Antiproton absorption length Antiproton yield Antiproton yield for $\Delta p/p = 1\%$ 1000 T/m 1cm 10 cm 14.75 cm 0.0206 GeV⁻²

0.0206 GeV⁻² per W nucleus 9.86 cm 9.09 cm 1.1x10⁻⁵ p⁻¹ GeV⁻¹ 6x10⁻⁷ proton⁻¹

The antiproton yield increases with decreasing proton beam size. The choice of $\sigma = 0.02$ cm is based on the limiting behaviour of the target due to the energy density deposited (see below).

The choice of a 5-cm long high-density target (tungsten) is dictated by a 20% increase in antiproton yield of shower development vs the depth of field effect due to the very short focal distance of the lithium lens.

The antiproton yield increases with increasing Li lens gradient. An increase of 5% to 10% could be achieved by increasing this gradient. The choice of 1000 T/m permits a reasonable distance between the target and the lens.

A reduction on the lithium lens radius from 1cm to 0.25cm will result in a 20% decrease of yield for a $5\pi \times 10^{-6}$ m acceptance.

The yield in Table 3-IV corresponds to an invariant cross section per inelastic interaction of \backsim 0.66 mb GeV⁻² Other estimates of antiproton yields have been previously based on 0.80 mb/GeV⁻². This difference reflects the uncertainties in the production cross sections, including the dependence on the target nucleus and the scaling variable x.

3.4 Antiproton Target

The yield of antiprotons into a given precooler acceptance increases as the proton beam spot decreases, until multiple scattering in the target material starts to contribute to beam-size growth. Smaller proton beam sizes will result in increasing energy density deposition in the target material. A compromise must be made between the brightness of the antiproton beam and the expected lifetime of the target itself.

<u>3.4.1 Material Choice</u>. With the requirements that the target material be of high density and high melting point a compilation of mechanical properties for different materials was performed. A figure of merit to compare the mechanical properties was obtained from the yield stress divided by the coefficient of thermal expansion and the modulus of elasticity. On this basis rhenium, tungsten and tungsten-rhenium alloys are in increasing order for this figure of merit. The coefficient of heat conductivity could also be included in the figure of merit without significant altering the choice of material.

The high-temperature behavior of tungsten-rhenium alloys shows considerable increase of yield stresses with respect to tungsten, but little change on the coefficient of thermal expansion or the modulus of elasticity.

Tungsten-rhenium alloys are utilized in industry for high-temperature applications (e.g. incandescent-lamp wire and targets for high-power x-ray tubes) and a significant amount of experience and technology for their fabrication exist. Other tungsten and/or rhenium alloys exhibit interesting mechanical properties. Tungsten will be used for the following calculation, although a number of target configurations are to be tested during the R & D phase of the target-station development.

<u>3.4.2 Energy Deposition.</u> The energy deposition in tungsten was calculated using the computer code CASIM. The total energy deposited per proton vs target length is shown in Fig. 3-5.

The energy density deposited vs radius for Gaussian beams, is shown for $\sigma = \sigma = 0.02$ cm in Fig. 3-6, 0.03 cm in Fig. 3-7, and 0.04 cm in Fig. 3-8. The radial distribution is wider on the downstream face of the target due to the shower development. Also shown is the energy density expressed in (Joules gm⁻¹ pulse⁻¹) for 2 x 10¹² protons per pulse, to be compared with the integral of the enthalpy reserve for tungsten. This quantity, the integral of the heat capacity from 20°C to a given temperature, is shown in Fig. 3-9. A summary of this data is presented in Table 3-V.

Energy Deposition by Protons vs Target Length

.

Fig. 3-8

Energy Deposition by Protons vs Radius; $\sigma = 0.4 \text{ mm}$

Target Material Length		Tungste	en/Tungsten Alloys 5cm
80 GeV protons/pulse Total Beam Energy Pulses/Burst Burst Interval Beam Pulse Duration			2.0x10 ¹² 25960 Joules 13 11 s 1.6x10 ⁻⁶ s
Energy Deposited/proton Energy Deposited/pulse Energy Deposited/burst Average Energy Deposited Average Temperature dE/dx	1.13	GeV	1.82x10 ⁻¹⁰ Joules 368 Joules 4778 Joules 434 Watts <100°c 376.6 J/gm
Beam Size (Ox=Oy) Peak Energy Density/proton Peak Energy Density/pulse Peak Temperature rise	0.02 25 430.0 2800	0.03 11.0 210.0 1500.	0.04cm 9.0 GeV.cm ⁻³ 150.0 Joules.gm ⁻¹ 825. °C
<u>CERN</u> Peak Energy Density Peak Temperature rise Average Temperature			>185 Joules gm ⁻¹ 1500°C 800°C
SLAC Peak Energy Density			81 Joules gm ⁻¹

Peak Temperature rise Average Temperature 81 Joules gm⁻¹ 600°C(SLAC Report 480°C) 600°C

The operational target at the CERN Antiproton Source has been designed for a peak energy density in excess of 185 Joules gm^{-1} and a peak temperature rise of 1500°C above an average temperature of 800°C. This rhenium target has been operational for some time with no reported failures.

The SLAC Linear Collider will use a tungsten-rhenium target with peak energy densities of up to 81 joules gm⁻¹ and peak temperature rise of 600 °C over an average temperature of 600 °C.

High energy density-deposition in targets was the subject of a workshop at Fermilab. Energy-density depositions well in excess of the ones considered here are expected to result in melting, vaporization and the depletion of the target material in a time short compared with the beam pulse of 1.6 μ sec. General rules indicate the onset of shock waves for energy densities in excess of 200 Joules gm⁻¹ and energy deposition in the nanosecond range.

We will lower the energy density to less than 200 J/gm by sweeping the proton beam across the target during the pulse by several beam diameters. The acceptance of the antiproton beam will be similarly pulsed to follow.

Based on the discussion above, the expectation is that after some target-development effort, one should be able to operate with beam spot $\sigma_x = \sigma_y$ of less than 0.03 cm.

<u>3.4.3 Target Design.</u> Elastic stress calculations for Tungsten-Rhenium alloys, utilizing the temperature profiles resulting from the energy-density deposition discussed above will result in the formation of a plastic zone (material compressed to above yield point) concentric to the beam. The diameter of this zone is expected to be of the order of 0.3 mm for a beam of $\sigma_x = \sigma_y = 0.4$ mm, and grow to approximately 0.5 mm for $\sigma_x = \sigma_y = 0.2$ mm.

The failure mechanism for a solid target will probably be the following:

1. Development of a plastic zone with each heat pulse.

2. Flow of material within the plastic zone with each repeated pulse. The flow direction will be from inside to face of target.

3. Swelling at target face followed by surface cracking.

4. Surface cracks extending into the volume of the material.

In order to decrease the thermal cycling of the same volume of material, targets will be rotated at approximately 46 rpm, during the 13 beam-pulse sequence, resulting in a distribution of the beam impact point around the circumference. Target translation could provide an even larger number of impact points.

The target geometry of Fig. 3-10 is composed of a number of wedges to decrease the cost of the target manufacturing with respect to a circular rim. During the development stage, wedges could contain different designs for comparative testing. The target geometry of Fig. 3-11 results from available powder technology for the construction of high-power x-ray tubes. Because of the low average, power deposited in the target, forced-air cooling should suffice for both geometries.

In order to achieve targets that would survive smaller beam spots (larger energy density deposited) the following approaches to target design are under study:

> Laminated targets with the plane of the laminations perpendicular to the proton beam. The purpose would be to decrease the amount of material flow within the plastic zone.

Fig. 3-10 Target Geometry

• . . .

Fig. 3-11 Target Geometry using Powder Technology

Filamented targets will allow the introduction of slip planes across large temperature gradients, resulting in a lowering of the stresses.

<u>Powder</u> targets high density particles embedded in graphite by powder metallurgy would incorporate the excellent shock and high-temperature properties of graphite, allowing enough energy deposition to melt the metal particles. The lower antiproton yield resulting from the lower average target density could be overcome by the much smaller beam spot.

A research and development program is underway to test these ideas. Beam is expected to be available after October 1981.

3.4.4 The Lithium Lens Collector. Antiprotons diverging from the target are to be collected by a 10-cm long lithium lens of 1cm radius. The basic principle of this device is that an electric current uniformly distributed in a cylindrical conductor produces an azimuthal magnetic field with a constant radial gradient inside the conductor. Thus, such a conductor is an axially symmetric focusing device for a particle beam passing through the conductor To produce the desired gradient of 1000 T/m, current axially. pulses of 0.5 MA are required. Current uniformity is secured by adjusting the pulse length to make the skin depth close to the radius; nearly 1 msec full width is required for a sinesoidal A lens capable of handling such pulses at a 10 Hz pulse. repetition rate has not yet been built, and its design will in fact require some extension of the present technology. The lens now under development at the Institute for Nuclear Physics (Novosibirsk) is intended for operation at a maximum of 0.5 Hz. On the other hand, Fermilab has already received from INP four lenses of 0.25 cm radius that are conservatively rated for the required gradient and a 13 Hz cycle. These lenses cannot fulfill the plan to provide an antiproton transport system with 20π mm mrad acceptance, but do in fact serve rather well to meet the more immediate need for 5π . A lens of this design and its immediate appurtenances have been life tested for >10⁷ pulses, and destructive testing has established that the short-term maximum sustainable gradient is about 50% above the operating value. Tests of the optical performance and beam effect on service life will be made in the fall of 1981 when protons are brought to the target station.

3.5 Antiproton Transport to Precooler

The antiproton beam from the target is collected by the lithium lens and made close to parallel as input to the transport system. The entire transport system is designed to contain an antiproton beam of transverse emittance 20π mm-mrad in each plane and momentum spread 4%.

The transport line can be thought of as two distinct sections:

(1) a vertical translation of 2.485 m using 6-deg bends followed by a periodic array of quadrupoles. This section is also utilized for the return journey of cooled 8-GeV antiprotons;

(11) a horizontal bend (essentially a section of a Precooler quadrant) followed by a vertical translation of 1.966 m to put the beam parallel to the Precooler and 50 in. above it. The beam is then bent down and injected in the South straight section. Elements and strengths of the elements are given in Table 3-VI.

TABLE 3-VI TRANSPORT LINE FROM TARGET TO PRECOOLER

```
Beam Emittances (H and V): \varepsilon = 20\pi \ 10^{-6} \text{m}
     Momentum Spread: \Delta p/p = 4\% full
Sequence of Magnets
1. Vertical Translation After Target
2. Matching and FODO Transport
3. Matching
4. Dispersion Suppressors
5. Two Regular Cells
6. 1 Cell With 2 Missing Dipoles
7. 1 and 1 1/2 Regular Cells
8. Long Straight Matching
9. Vertical Translation
1. Vertical Translation after Target
D1 V1 D2 Q1 D3 Q2 D4
Q1 D4 Q2 D3 Q1 D2 V1 D1
Drifts
                  Length(m)
                     -0.915
  D1
  D2
                     3.8359
  D3
                     1.5
  D4
                     3.50
Quadrupoles
                Effective Length(ft)
                                          Strength (B'/Bp)(m^{-2})
    Q1
                          2
                                                0.5025
                          4
    02
                                               -0.41262
                    Effective Length(m) Strength (B/Bp)(m<sup>-1</sup>)
Vertical Dipoles
                            1.83
                                             (up) 0.05726
       V1
       V1
                            1.83
                                            (down) 0.05726
2. Matching and FODO Transport
D5 (in the middle of \overline{V}) Q3 D6 Q4
D7 QD D8 QF D9 QD ^{1}D9
QF D9 QD D9 QF/2
```
Drifts	Lengths(m)
D5	3.0
D6	3.1962
D7	1.6916
D8	2.574
D9	14.0757

Quadrupoles	Effective Strength(ft)	Strength $(B'/Bp)(m^{-2})$	
QF/2	1	0.1602	
Q3	2	-0.52436	
Q4	2	0.34452	
. QD	2	-0.1602	
QF	2	0.1 602	

3. Matching

QF/2	D4	Q14	D14	Q13	0	v 3	D15
Q15	D16	Q16	D17	Q17	D16	Q18	D18

Drifts	· Lengths(m)
D4	1.500
D14	1.354
0	0.50
D15	12.719
D16	0.9144
D17	5.2461
D18	0.3048

Quadrupoles	Effective Length(ft)	Strength $(B'/Bp)(m^{-2})$
QF/2	2	0.1502
Q14	2	-0.005054
Q13	2	not energized
Q15	2	-0.5
Q16	2	0.47270
Q17	2	-0.1662
Q18	2	0.2584
Vertical Bends	Effective Length(m)	Strength (B/Bp)
T	1.3716	not energized

4. Dispersion Suppressor

06	В	0	В	05	QD	04	В	03
QF	02	В	01	Q	D/2			

Drifts	Lengths(m)
01	0.450
02	2.2609
o3	1.8025
04	0.9083
05	0.2172
06	0.8172

4.	Dispersion	Suppressor

۰.

06 B 0 B 05 QD 04 B 03 QF 02 B 01 QD/2

Drifts	Lengths(m)
01	0.450
02	2.2609
03	1.8025
04	0.9083
05	0.2172
06	0.8172

Quadrupoles	Effective Length(ft)	Strength (B'/Bp)(m ⁻²)
QD QF	2 2	-0.53522 0.54216
Dipole	Effective Length(m)	Strength (B/Bp)(m ⁻¹)
В	1.3716	0.0409

5. Two Regular Cells

QD/2 0 B 0 B 00 QF/2 QF/2 00 0 B 0 B QD/2

This is repeated twice.

Drifts	Lengths(m)	
0 00	0.3048 0.72963	
Quadrupole	Effective Length(ft)	Strength (B'/Bp)(m ⁻²)
QF QD	2 2	0.54216 -0.53522
Dipole	Effective Length(m)	Strength (B/Bp)(m ⁻¹)
B	1.3716	. 0.0409
6. <u>1 Cell with</u>	n 2 Dipoles Missing	
QD/2 000 QF	0 B 0 B 00 QD/2	
Drifts	Lengths(m)	
0 00 000	0.3048 0.72963 4.08243	
Quadrupoles	Effective Length(ft)	Strength (B'/Bp)(m ⁻²)
QF QD	2 2	0.54216 -0.53522
Dipole	Effective Length(m)	Strength (B/Bp)(m ⁻¹)
В	1.3716	0.0409
7. <u>1 and 1/2</u>	Regular Cells	
QD/2 0 B 0 00 QD2 0 B	B 00 QF2 0 B 0 B 0 B	
Quadrupoles	Effective Length(ft)	Strength (B'/Bp)(m ⁻²)
QD2 QF2 QD	2 2 2 2	-0.42353 0.40420 -0.53522

Dipole	Effective Length(ft)	Strength (B/Bp)(m ⁻¹)
В	1.3716	0.0409
8. Long S	Straight Matching	
D19 Q19 D22 Q22	D20 Q20 D21 Q21 D21 Q23 D22	
Drifts	Lengths(m)	
D 19 D20 D21 D22	0.75 5.32814 1.250 3.00	•
Quadrupole	Effective Length(ft)	Strength (B'/Bp)(m ⁻²)
Q19 Q20 Q21 Q22 Q23	2 2 4 4 2	0.47357 -0.7990 0.82195 0.62407 -0.8490
9. <u>Vertic</u>	cal Translation	
V4 D23 0 Q26 D26 0 V5 D29	Q24 D24 Q25 D25 Q27 D27 Q28 D28	
Drifts	Lengths(m)	
D23 D24 D25 D26 D27	3.5046 0.75 1.15113 0.8840 0.60754	

2.1712

-1.8788

Effective Length(ft)

24242

Strength (B'/Bp)(m⁻²)

2

0.82608 -0.80589

0.78407

-0.89608 0.72807

D28

D29

Quadrupoles

Q24

Q25 Q26

Q27 Q28

Septum Dipole	Effective Length(m)	Strength (B/Bp)(m ⁻¹)
V 5	3.6576	(up) 0.021884

4. PRECOOLER DESIGN

4.1 General Structure and Layout

<u>4.1.1 Lattice.</u> The Precooler is a storage ring for antiprotons of energy between 200 MeV and 4.5 GeV. It must be capable of slow acceleration and deceleration for antiproton energies between 200 MeV and 8 GeV in order to be able to inject into the Main Ring at a suitable energy. The Precooler is to have large acceptances, $40\pi \times 10^{-6}$ m-rad in each transverse plane and a momentum spread $\Delta p/p$ of 4.5%. These acceptances are chosen to give flexibility for later development in injection and cooling methods.

The general size of the Precooler is determined by its relation to the Main Ring. A smaller Precooler would require that the Main Ring proton beam be split into smaller segments for targeting, which would in turn increase the momentum spread of the collected antiproton beam in the Precooler, making cooling more difficult (in fact impossible for a momentum spread much larger than 4%). Within the limits of feasibility, it is economical to keep the Precooler as small as possible. A radius of approximately 75m appears to be optimal and we choose R=75.4717m (exactly the Booster radius) in order to match rf frequencies exactly with the Main Ring. Long straight-section space is also required for injection, stochastic cooling, acceleration, deceleration, and extraction and is available at this radius.

Parameters of the lattice design that has evolved are given in Table 4-I.

TABLE 4-I PRECOOLER PARAMETERS

A. GENERAL

Peak Kinetic Energy Momentum Magnetic Rigidity Bending Field Bending Radius Average Radius Revolution Time: 8.0 GEV 4.5 GEV 200 MEV Superperiodicity Focusing Structure Normal Cell Structure Horizontal Betatron Tune Vertical Betatron Tune Transition Energy $\gamma_{\rm T}$ Natural Chromaticity: Horizontal Vertical

8.0 GeV 8.8889 GeV/c 296.5 kG-m 12.127 kG 24.449255 m 75.4717m 628.71 kHZ 622.72 kHZ 357.93 kHZ 2 Separated Function FODO 11.415 11.393 10.246 -18.35 -17.68

Number of	Dipoles	112
Length of	Dipoles	-
Effective	Length of Dipoles	1.3716 m
Sagitta		0.962 cm

Quadrupoles:

Туре	Number	Effect. Length	Strength B'/Bp(m ⁻²)
QF	24	2	•542162
QD	18	2	535217
1Q1	4	4 -	.325417
1Q2	4	4	352206
1Q3	· 4	4	•552459
QD1	4	4	371853
QF1	4	2	•518653
QD2	4	2	42353
QF2	4	2	.40420
QF9	4	4	. 308953
2Q1	4	4	359801
202	- 4	4	.361397
2Q3	4	24	406104

C. Drift Lengths (m)

0	•3048
00	.72963
000	4.08243
LL	10.00000
L11	1.96582
L1	1.1159
L2	2.67062
L3	.3048
01	•45
02	2.26083
03	1.80250
04	0.90833
05	0.217213
06	.817217

D. Lattice Structure

.

D1.	Cells:							
	.BB:	00	в	0	в	0		
•	.C : .C1: .C2: .C3: .C8: .DF9:	QD QD1 QD2 QD QD QF QD	•BB 000 •BB •BB 01 03 05	QF QF1 QF2 QF B B B B	QF QF1 QF2 QF 02 04 0	•BB •BB •BB 000 QF QD B	QD QD2 QD QD	QF9
	Ce	11 Leng	;th:			9.381	41 m	
D2.	Long Strai	ght Sec	tion:					
	With D	ispersi	.on					
	. S1	LL L1	1Q1 L2	1Q1 1Q3	0 1Q3	1Q2 L3	1Q2 QD 1	
	Withou	t Dispe	ersion					
	•S2	QF9 2Q2	L3 2Q2	2Q3 0	2Q3 2Q1	L2 LL	L11	
D3.	Arc Sector	•:						
	.Arc	.C1 .C	.C2 .C	.C3 .C	•C •C8	.DF9		
D4.	Quadrant S	Structur	re:					
	•Sph		.51	.Arc	. . S2			
D5. Superperiod:								
	•Sph	Reflec	et (.Spl	h)				

E. Lattice Functions

β _H (m)	β _V (m)	ŋ (m)
60.22	55.76	-2.74

2.74
1.3
0.6

Middle of long straight with dispersion (.S1)

9.9854 10.0512 -2.7426

Middle of long straight without dispersion (.S2)

10.3516 6.0185 0.00

The lattice is shown in Fig. 4-1 where the locations of functions are labelled. The orbit functions are graphed in Fig. 4-2. A normal cell is shown in Fig. 4-3. The long straight section insertions are shown in Figs. 4-4 through 4-7. The detailed SYNCH output is included as Appendix 2.

The lattice has 2-fold symmetry; it is symmetric about the center of each long straight section. In addition to the long straight-section insertions, there are missing magnets in the first, third, and eighth cells in each direction from the South and North straight sections.

4.1.2 Nomenclature. Locations and components in the Precooler are labelled by a four-place code. The meaning of each place is:

(i) Place 1: Quadrant label Each quadrant begins at the center of a long straight section and ends at the center of the next long straight section. Quadrant 1 begins at the center of the South (injection) straight section.

(ii) Place 2: Device Label

- B: bending magnet
- Q: quadrupole
- L: straight section
- S: sextupole
- T: trim magnet

(iii) Place 3: Period Label

a. In long straight sections, this label is S, W, N, or E.

b. In bending sections, this label is 1 through 9

b) Horizontal and vertical beam envelopes

.

for the cell number. Note that as one proceeds in the direction of beam, the period label increases from 1 to 9 in quadrant 1, decreases from 9 to 1 in quadrant 2, increases from 1 to 9 in quadrant 3, then decreases from 9 to 1 in quadrant 4. This reflects the symmetry of the lattice.

(iv) Place 4: Location Label

This label is sequential within a cell. Note that all radially focusing quads have even numbers and all radially defocusing quad have odd numbers. These labellings are shown in Figure 4-1.

4.2 Injection and Stacking

<u>4.2.1 Injection.</u> The 4.5-GeV injection transport line is shown in Fig. 4-4 and its parameters are given in Table 4-II. TABLE 4-II

PRECOOLER INJECTION

Kinetic Energy at Injection 4.5 GeV Momentum 5.3567 GeV/c Magnetic Rigidity 178.7 kG-m Emittance Injected (H and V) 20 π mm-mrad 1.0 % Momentum Spread Injected, Full DP/P Method Vertical Injection on a Full-Aperture Horizontal Orbit Bump Location of Horiz. Bump South Long Straight Location OV Vertical Inject. Middle of South Long Straight Orbit Separation at Septum . 6.5 Structure of Horiz. Bump: 2(QF1) K3 0 K2 2(QD1) 0 2(1Q3) L2 L1 2(1Q2) 0 2(1Q1) 0 K1 LL* S/2 -- Reflect Kickers: K1, K2, K3 6 ft Effective Length 600 G Strength Rise Time 150 nsec Horiz. Aperture, Full 9 in. Vertic. Aperture, Full 3 in. Septum Magnet: S Septum Thickness 10 mm Effective Length 12 ft 4 kG Strength Vertical Separation Between Beam Axes 50 in. Drift Elements: (See Table 4-I) 0 L1 L2 LL₽ 8.1712 m Quadrupoles: QF1 QD1 1Q1 1Q2 1Q3 (See Table 4-I) In order to leave space in the South straight section for transfer of beams between the Precooler and the Electron Accumulator, injection is vertical. The \overline{p} beam from the target is raised 112 in. to an elevation of 734 ft 8 in. It then is kicked downward to the Precooler elevation of 730 ft 6 in. In order to inject later p pulses from the target, it is necessary to have kickers K1 and

K2 move the injection closed orbit into the septum magnet S.

31

<u>4.2.2</u> Stacking. After each of the 13 bunches is injected, it is captured by the 53-MHz rf system, rotated in longitudinal phase space through one-fourth of a phase-oscillation period to reduce its momentum spread from 1% to 0.24\%, then moved to the stack and deposited. The loss of p in this process is less than 5%. The process is outlined step-by-step in Table 4-III.

Kinetic Energy	4.5 GeV
Momentum	5.3567 GeV/
Magnetic Rigidity	178.7
Precooler Ring Radius	75.4717
RF Frequency	52.31 MHz
Harmonic Number	84
Transition Energy Y _T	10.24624

Capture:

Bunch Area (95% of Beam)	· 0.15
Momentum Spread (Full Uniform Distr.)	1.0%
Bunch Length	21.0
RF Voltage at Capture	
(Stationary Bucket)	400
Phase-Oscillation Period	0.36

Bunch Rotation:

Time Period for Rotation

Bucket Reduction:

Final Voltage (Stationary Bucket) Bucket Half-Height Bucket Area Time to Drop Voltage to Final Value At the End of Rotation Phase Oscillation Period

Transformation to Moving Bucket:

RF Voltage for Moving Bucket RF Phase for Moving Bucket Moving Bucket Area Moving Bucket Half-Height, DP/P Phase Oscillation Period Time for Transformation

С

eV-sec cm

kV 7 msec

94 usec

19 kV

0.12% 0.154 eV-sec

8 µsec 1.68 msec

33.0 kV 173 deg 0.154 eV-sec 0.18% 1.29 msec 1.6 msec

Stacking With Moving Bucket:

Momentum Variation Swept Energy Variation Energy Gain Per Turn No. of Revolution During Stacking Time for Stacking Relative Frequency Swing Variation of RF Frequency	4.0 \$ 213 MeV 4 keV 53,000 85 msec 8.0.10 ⁻⁴ 500 Hz/msec
Transformation to Stationary Bucket:	
RF Voltage for Stationary Bucket RF Phase for Stationary Bucket Stationary Bucket Area Stationary Bucket Half-Height, DP/P Phase Oscillation Period Time for Transformation	19 kV 180 deg 0.154 eV-sec 0.12% 1.68 msec 1.6 msec
Adiabatic Debunching	
Final Voltage Time Required to Turn Off RF Final Beam Momentum Spread	0.0 V 1.5 msec 0.17%
Overall Stacking Parameters	
No. of Pulses Stacked/Main Ring Cycle No. of p's Per Pulse Final Momentum Spread Stacking Efficiency (Including Dilution During Bunch Rotation) Fraction of Overall Beam Loss	13 1.62.10 ⁶ 2.16% 0.88 5.0%
RF Cavities Requirement	ζ.
No. of Cavities Required (Voltage Programmed by Paraphasing) Frequency Tuning Range Total Length of System	2 10 ⁻³ 4.3 m

There will be surplus Main Ring rf cavities when the Tevatron is in operation and we will use two of these, with associated power amplifiers, bias supplies, modulators, and local controls, for the stacking rf system. They will be installed at the upstream end of the West long straight section, so the tunnel has been made wider to provide this access. Experience in the Main Ring has shown that access to the back of the cavities is useful. For purposes of space allocation, we show in Figs. 4-8 an outline drawing of the cavities.

34

4.3 Magnets

<u>4.3.1 Main Magnets.</u> The Precooler magnet design and plan for construction follow closely the successful magnets of the Electron Coolng Ring (which are to be absorbed into the Electron Accumulator). The same methods of bolted assembly and construction in the Fermilab magnet factory will be followed. The only difference will be that the dipole coil ends will be bent up at 90° to save space, rather than 45° as in the Electron Ring dipoles. Table 4-IV gives the parameters of the main dipoles and quadrupoles.

TABLE 4-IV MAIN MAGNET PARAMETERS

Dipoles

Number	112		
Length (effective)	1.3716m		
Length (steel)	1. 2903m		
Steel Weight	1270kg		
Copper Weight	175kg		
Gap Height	6.4cm		
Gap Width	18cm		
Good Field	$12.8 \times 6.0 \text{cm}^2$		
Width	48.7cm		
Height	28.9cm		
No Turns	40		
Peak Field	1.21T		
Peak Current	1540A		

Quadrupoles

52
0.610m
0.56m
16.6T/m
0.79T
9.55cm
920kg
110kg
44
1540A

Average Total Magnet Power in Normal Cycle 2.23 MV

The dipole assembly is shown in Fig. 4-9. The quadrupole assembly is shown in Fig. 4-10.

There are in addition special quadrupoles of different length and the same aperture or of larger aperture (bore=15cm) to accommodate large beam envelopes in straight sections. These are

designed to have lower field in order to keep poletip fields within reasonable limits.

Magnet support and alignment systems will follow the successful Electron Cooling Ring practice.

<u>4.3.2 Main Magnet Power Supply.</u> Eight power supplies will energize the antiproton Precooler ring. There will be two series-connected supplies per quadrant. These supplies will power 32 dipole and 19 quadrupole magnets. The resistance and inductance per quadrant is R=1.4045 Ω and L=0.466 H. Each power supply will hve 12-phase series bridge rectifiers and will be energized from the 480-V 3-phase grid.

The total of eight power supplies are númbered IA, IIA, IIIA, IVA, and IB, IIB, IIIB, and IVB. Each quadrant will contain one "A" and one "B" supply. A block diagram of the Precooler ring with its power supplies is shown in Fig. 4-11. We discuss below the supply use in various cycles.

- 1. <u>Cooling Cycle</u> During the cooling cycle, only the "A" supplies will be used. The "B" supplies will be bypassed.
 - 1.1 <u>112A (0.2 GeV) Flattop</u> (Bunch and transfer to ECR) The injection current level of 112A, (0.2 GeV) (8.2% of peak current), requires a voltage of 130 V, (8.9% of peak voltage), per quadrant. This level can be maintained by either charging the power-supply filter capacitors with current spikes or by bypassing most of the power supplies in the other quadrants. We could also operating half the power supplies as rectifiers and half as inverters.
 - 1.2 <u>112A (0.2 GeV) to 928 A(4.5 GeV)</u> (Begin new cycle) To raise the current from 112 A to 928 A in 0.5 sec requires a voltage jump from 130 V to 663 V and then an exponential voltage rise to 1458 V (928 A) per quadrant. The "A" supplies will operate under phase control following a B reference.
 - 1.3 <u>928 A (4.5 GeV)</u> Flattop (First Cooling) To maintain the 928 A current level the "A" supplies will be phased back to $\alpha = 50^{\circ}$.
 - 1.4 <u>928 A (4.5 GeV) to 555 A (2.4 GeV)</u> To go from 928 A to 555 A at a rate of 1139 A/s requires the voltage per quadrant to drop from 925 V ($\alpha = 50^{\circ}$) to 395 V ($\alpha = 74^{\circ}$) and then decrease exponentially to 82.5 V ($\alpha = 86^{\circ}$). The "A" supplies will operate under phase control from a B reference.

ŧ

- 1.5 555A (2.4 GeV) Flattop (Second Cooling)
 - When the current reaches 555 A the voltage per quadrant must jump from 82.5 V ($\alpha = 86^{\circ}$) to 600 V ($\alpha = 69^{\circ}$). For a better power factor, the supplies in two quadrants could operate as rectifiers while the other two supplies operate as inverters. One could also bypass the supplies in two quadrants and operate the remaining two supplies as rectifiers at a phase angle of $\alpha = 35^{\circ}$ providing 1200 V for two quadrants.
- 1.6 <u>555 A (2.4 GeV) to 246 V (1.3 GeV)</u> (Deceleration) The voltage across a quadrant of magnets must drop from 600 V to 82.5 V and then decrease exponentially to -185 V. If all four "A" supplies are on and operating at 600 V ($\alpha = 69^{\circ}$), the phase angle must increase to $\alpha = 86^{\circ}$ for 82.5 V, and then to $\alpha = 97^{\circ}$ for -185 V. If two supplies are bypassed, the remaining two supplies must operate at $\alpha = 83^{\circ}$ for 165 V, (2 x 82.5 V), and $\alpha = 105^{\circ}$ for -370 V, (2 x -165 V). The "A" suplies will operate under phase control for a B reference.
- 1.7 $\frac{274 \text{ A} (0.9 \text{ GeV}) \text{ Flattop}}{\text{When}}$ the current has decayed to 274 A, the four "A" power supplies are phased to operate with $\alpha = 76^{\circ}$ providing 345 V per quadrant. If only two supplies are operating, the phase angle of each supply would be $\alpha = 61^{\circ}$ for 690 V for two quadrants.
- 1.8 $\frac{274 \text{ A} (0.9 \text{ GeV}) \text{ to } 112 \text{ A} (0.2 \text{ GeV})}{\text{To decrease the current from } 274 \text{ A to } 112 \text{ A requires}}$ a voltage drop from 345 V, per quadrant, to -185 Vand then an exponentially decreasing voltage to -398V. With four "A" supplies operating, the phase angle of each supply must go from $\alpha = 76^{\circ}$ for 345 Vto $\alpha = 97^{\circ}$ for -185 V, and then to $\alpha = 106^{\circ}$ for -398V. If only two "A" supplies are operating, the phase angle of each supply must go from $\alpha = 61^{\circ}$ for 690 V per two quadrants to $\alpha = 105^{\circ}$ for -370 V per two quadrants, and then to $\alpha = 123^{\circ}$ for -796 V per two quadrants. The "A" supplies will operate under phase control from a B reference.
- 2. Once Every 10 Hours Acceleration to 8 GeV
 - 2.1 Injection Current of 112 A (0.2 GeV) (Raise field to injection level) Either the type "A" or the type "B" supplies can be used to obtain the injection current of 112 A. If the "B" supplies are used, they must be phased on to produce a voltage of 530 V per quadrant ($\alpha = 37^{\circ}$) and then exponentially increased to produce 663V (α

= 9°) per quadrant. The current rises from zero to 94 A in 82 ms at a rate of 1139 A/sec.

- 2.2 <u>112 A (0.2 GeV) Flattop</u> (Injection) When the current reaches 94 A, the "B" supplies are phased back to produce 130 V per quadrant ($\alpha = 78^{\circ}$). Alternatively the voltage for this level can be maintained, as described in 1.1 above.
- 2.3 <u>112 A (0.2 GeV) to 1540 A (8.0 GeV) Acceleration</u> For acceleration to 8 GeV, the four "A" and the four "B" supplies are required. The power-supply output voltage per quadrant must jump from 130 V to 663 V and then rise exponentially to 2130 V. The current will rise at a rate of 1139 A/sec. The "A" and "B" supplies will operate under phase control following a B reference signal.
- 2.5 <u>1540 A to 0 A</u> (Discharge of Magnets) By means of rectifier phase control, the output voltage of the power supplies is reduced, thereby forcing the current to zero at a rate determined by a B reference signal. Some of the 1.2 MJ stored in the magnets is returned to the power grid when the

power-supply voltages go negative.

3. Tune-up Cycles

The antiprotons will be collected at 4.5 GeV (928 A) for precooling and transferred to the Electron Cooling Ring at 0.2 GeV (112 A). After electron cooling and accumulation, the antiprotons will be transferred back to the Precooler at 0.2 GeV, preaccelerated to 8 GeV (1540 A), and injected into the Main Ring. It may be desirable to experiment at one or more of the above energy levels during tune-up.

<u>4.3.3 Correction Elements.</u> The very large size of the Precooler momentum acceptance (4.5%) means that sextupole chromaticity correction will be important (only at lower field, because \overline{p} beam accelerated to 8 GeV will have been cooled). Sextupoles will be located in the straight section downstream of each quadrupole. They will be powered in series with the main magnets and separately powered windings will be provided for adjustment.

The field lengths calculated to bring the chromaticities to zero are 20T/m at F locations and 35T/m at D locations. The two kinds of magnets will be built with one cross section, giving $B^{n}=187T/m^{2}$ and a poletip field of 0.3T for a pipe diameter of 4.5 in. The effective lengths are then 4.15 in. (F) and 7.37 in. (D).

Quadrupole corrections will be provided by trim windings on the regular quadrupoles. Separate horizontal and vertical trim dipole and spew quadrupoles will be located downstream of the sextupole elements. We assume:

	Low Field	High Field	
Dipole Error	10 ⁻³	5 x 10 ⁻⁴	
Dipole Tilt	1 mrad	0.3 mrad	
Position Error	5×10^{-4}	2.5×10^{-4}	
Quad Tilt	10 ⁻³	3×10^{-4}	

The trim dipole strength needed is approximately 2×10^{-3} T-m and the skew quad strength needed is 2×10^{-3} T. We are designing a package 10 cm long to contain these elements.

4.4 Vacuum System

Beam will not be stored in the Precooler for periods of many hours, as is the case in the Electron Accumulator, but for periods of seconds or minutes. One might store for a few hours in the simple initial low-luminosity scenarios briefly mentioned at the end of Chapter 2. We see from the calculated lifetimes collected in Table 4-V that even this possible use does not put any severe constraint on pressure.

TABLE 4-V GAS-SCATTERING MEAN LIFETIMES AT 10⁻⁸ TORR

	Multiple	Single	Nuclear	
	Scattering	Scattering	Scattering	
4.5 GeV	4 hrs	21 hrs	89 hrs	
200 MeV	2 min	11 min	154 hrs	

An average pressure below 10^{-8} Torr, achievable with a low-temperature bake, is adequate. Quite aside from this possible low-luminosity use, we desire a pressure in the 10^{-9} Torr range in our real scenarios in order that beam broadening from scattering be negligible compared with cooling. The vacuum system designed to achieve this pressure is described in Table 4-VI.

TABLE 4-VI VACUUM-SYSTEM PARAMETERS

Valves - each end of each long straight section	8
- each rf system location	2
Gauges - 2 per quadrant	8
Mass spectrometers - 2 per straight section	8
Roughing stations - each long straight section	4
- each rf system location	2
Pumps - one 60 1/sec per cell	36
- 8 per long straight section	32

Normal Cell

Chamber cross section Effective diameter Half-cell conductance Outgassing rate Total flux per pump Pump location Mean Pressure 5.6x12.5 cm² 8.9 cm 18.4 L/sec 3x10⁻¹² T-L/cm²-sec 16x10⁻⁹ T-L/sec between dipoles 10⁻⁹ T

4.5 Stochastic Cooling System

4.5.1 Stochastic Cooling Sequence

The momentum precooling system must reduce the initial momentum spread of the antiproton beam at the end of rf stacking $(\pm 1\%)$ in a coordinated manner with deceleration so that the momentum spread of the beam at 200 MeV is compatible with the electron-cooled accumulation process. There is an optimum relationship between energy, momentum spread, lattice characteristics, and hardware placement in the ring for rapid initial cooling. This relationship depends on the frequency spread of the Schottky signals at the highest usable harmonic. As cooling proceeds, the cooling rate decreases quickly as the frequency spread is reduced, so that practical reductions in momentum are 10 or less in a few seconds of cooling time. The cooling sequence to be used in the Precooler calls for cooling periods interspersed with deceleration to lower energies. This re-establishes the desired Schottky signal spread, permitting resumption of rapid cooling.

Table 4-VII gives a sequence of cooling and deceleration which, from the computer simulation shown in Fig. 4-12, produces a more than sufficient amount of cooling.

TABLE 4-VII

STOCHASTIC COOLING SEQUENCE

Cooling Steps:

STEP	•	#1	· # 2	#3	
Kinetic energy β	(GeV)	4.5 0.985 5.706	2.4 0.960	0.9 0.860	GeV
Υ η Revolution fre	q	0.020 622.72	0.065 606.78	0.225 543.74	kHz
Bandwith, MHZ	Low High	100 500	100 500	100 300	MHz MHz

Fig. 4-12 Stochastic Cooling Simulation

։ Հայ հատ հետուասերը է է համանած անձան տարը անգն է է է է է է է է։

Lower harmonic	160	164	180	
Upper harmonic	803	823	543	
Initial Ap/p, full	2.1	0.5	0.28	%
Final $\Delta p/p$, full	0.28	0.13	0.046	%
Cooling period	4.5	1.25	0.75	sec
RMS Schottky power	0.93	0.033		kW
RMS total power	3.62	0.97	0.04	kW
Overall amplifier gain	230	230	220	db
Total delay required	330	352	434	nsec

The inherent flexibility of the process could easily accommodate a fourth cooling step, should it be required, at the expense of having a slightly longer cooling cycle.

<u>4.5.2 Hardware.</u> Hardware for the precooling system is mostly conventional. Parameters are given in Table 4-VIII.

TABLE 4-VIII

STOCHASTIC COOLING EQUIPMENT

Mode	Momentum
Beam	Debunched
No. of Cooling Steps (See Table 9)) 3
Precooler Radius	75.4717 m
Transition Energy Ym	10.24624
No. of Cooling Devices	1
Pickup Long Straight Section	20. m
Kicker Long Straight Section	20. m
No. of Particles Cooled	2.1×10^{7}
Notch Filter	Circumference Length
	Shorted
No. of Tanks of Pickups/Kickers	6
No. of Pickups/Kickers Per Tank	32
Total No. of Pickups/Kickers	192
Impedance Per Pickup/Kicker	50 Ω
Length Per Pickup/Kicker	10 cm
Overall Transverse Dimension of Tanks	2 ft
No. of Premplifiers	6
No. of Major Amplification Stations	1
Amplifier Total Rated Power	10 kW
Amplifier Delay Time	60 nsec
Distance Between Pickups and Kickers	
Normalized to Circumference	0.5
Location of Pickup Station	West Long Straight
Location of Kicker Station	East Long Straight
Time Distance Between Pickups	
And Kickers in Straight Line	470 nsec

The same pickups, amplifiers, filter, and kicker system can be used for all cooling steps, although either separate notch filters (high-quality long transmission lines) or a tunable system are required because of the variation of β , and consequently of the revolution frequency, during deceleration. Similarly, the delay between pickups and kickers, and between groups of pickups, must also be adjusted. This can be accomplished by switching delay lines in the system during the rf deceleration steps.

An effort has been made to use realistic parameters in calculations of expected system performance, particularly for "sensitive" parameters such as effective pickup coupling impedance, kicker impedance, amplifier noise, and so forth. For example, the 30- Ω impedance that has been assumed for the pickup is close to an experimental value achieved with a crude prototype constructed for cooling studies on the Electron Cooling Ring, and is consistent with (in units of impedance/pickup length) values achieved in the CERN AA cooling system. Similarly, the effective preamplifier noise figure of 1.4 db assumed in the calculations is justified by the commercial availability of suitable preamplifiers with noise figures of less than 1 db (when cooled). A modest supporting R & D program will almost certainly yield specific designs that will meet or exceed the assumed performance requirements.

It should be noted that the use of a full-wavelength notch filter is planned. This technique permits rapid cooling without excessive amplifier power and constitutes a distinguishing feature of the precooling system.

The layout of stochastic cooling equipment in the East and West straight sections is shown in Figs. 4-7 and 4-5.

4.6 Deceleration and Rebunching

4.6.1 Deceleration. Deceleration and subsequent acceleration of antiprotons in the Precooler is to be done with three slightly modified PPA accelerating cavities capable of operating over frequency range of 5 to 9 MHz. The dimensions of one of these cavities are shown in Fig. 4-13. The locations of these cavities in the North straight section is shown in Fig. 4-6. Each cavity can develop about 28kV effective gap voltage, so a total voltage of 84kV will be available. The deceleration will be done in three stages, each separated by a debunching and cooling period so each stage can be done at a different harmonic number. Harmonic numbers are selected such that the required bucket areas and deceleration rates are provided within the voltage and frequency ranges of the rf system. Except for transition periods from stationary field conditions, each deceleration is to be done at a constant rate of change of momentum and guide field.

The first stage of deceleration, from 4.5 GeV to 2.4 GeV, will be done at h=9 and cover a frequency range of 5.60 to 5.46 MHz. The deceleration rate dp/dt will be 4 GeV/c-sec.

PHYSICAL DIMENSIONS

PRECOOLER DECELERATION / ACCELERATION CAVITY (5-9 MHz) (SUPPORTS NOT SHOWN)

After 4.5 sec of cooling at T=4.5 GeV, the momentum spread will be 0.28%. This results in a total energy spread $\Delta E=17.2$ MeV and a longitudinal emittance of 27.6 eV sec.

At 4.5 GeV, a 30 eV-sec stationary bucket area is established at h=9 by 11.6 kV. In this case, $T\phi = 6.38 \times 10^{-3}$ sec, so the adiabatic capture period may nominally be 25 msec. Then $Vsin\phi = 6.33 \times 10^3$ volts.

Based on these considerations, the tabulations given in Table 4-IX are developed for the deceleration stages.

DECELERATION PARAMETERS

First Stage

Kinetic energy range Cooling time (4.5 GeV) Cooled momentum spread Energy spread (total) Longitudinal emittance Total bucket area allocated Harmonic number Frequency range Deceleration rate c dp/dt V sin Θ s Stationary bucket voltage (4.5 GeV) Phase oscillation period (4.5 GeV) Bunching time allocated Deceleration time required Stationary bucket voltage (2.4 GeV) Phase oscillation period (2.4 GeV) Debunching time allocated

4.5 - 2.5 GeV 4.5 sec ±0.148 % 17.2 MeV 27.6 eV-sec 30 eV-sec 9 5.604 - 5.46 MHz 4 GeV/sec 6.33x10³ V 11.6 kV 6.4×10^{-3} sec 25x10⁻³ sec 0.54 sec 65.3 kV 1.1x10⁻³ sec 10×10^{-3} sec

T(GeV)	φs(deg)	Г	V(kV)	Freq(MHz)
4.5	0	0	11.6	5.604
4.4	12.3	0.213	29.7	5.601
4.0	10.4	0.181	34.9	5.59
3.5	8	0.139	45.5	5.56
3.0	6	0.104	60.8	5.52
2.5	4.3	0.075	84.4	5.47
2.4	0	0	65.3	5.46

Second Stage

K.E. range Cooling time Cooled momentum spread Energy spread (total) Longitudinal emittance Bucket area allocated (total) Harmonic number Frequency range Deceleration rate c dp/dt **V** sin Θ s Stationary bucket voltage (2.4 GeV) Phase oscillation period (2.4 GeV) Bunching time Deceleration time Stationary bucket voltage (800 MeV) Phase oscillation period (800 MeV)

2.5 - 1.0 GeV 1.5 sec ±0.064 % 4.22 MeV 6.94 eV-sec 7.5 eV-sec 10 6.067 - 5.322 MHz 4 GeV/sec 6.33x10³ V 4.54 kV 4.1x10⁻³ sec 20×10^{-3} sec 0.435 sec 35.3 kV 5x10⁻⁴ sec

Debunching time

2.5x10⁻³ sec

T(GeV)	φs(deg)	Г	V(kV)	Freq(MHz)
2.4	0	0	4.54	6.067
2.0	16.8	0.289	21.9	5.99
1.5	12.6	0.218	29.0	5.835
1.0	8	0.139	45.5	5.54
0.8	0	0	35.3	5.322

Third Stage

K.E. range	800 - 200 MeV
Cooling time	1 sec
Cooled momentum spread	±0.0237%
Energy spread (total)	584.1 KeV
Longitudinal emittance	1.09 eV-sec
Bucket area allocated (total)	1. 25 eV-sec
Harmonic number	14
Frequency range	7.45 - 5.01 MHz
Deceleration rate c dp/dt	2 GeV/sec
V sin Os	3.17x10 ³ V
Stationary bucket voltage (800 MeV)	1.37 kV
Phase oscillation period	2.25×10^{-3} sec
Bunching time	13×10^{-3} sec
Deceleration time	0.409 sec
Stationary bucket voltage (200 MeV)	5.0 kV
Phase oscillation period (200 MeV)	6.2x10 ⁻⁴ sec
Debunching time	3×10^{-3} sec

T(GeV)	φs(deg)	r	V(kV)	Freq(MHz)
0.8	0	0	1.37	7.45
0.7	22	0.3746	8.46	7.26
0.6	21	0.3584	8.84	7.01
0.4	17	0.2927	10.8	6.31
0.3	15.5	0.2670	11.86	5.78
0.2	0	0.	5.0	5.01

4.6.2 Bunching for Extraction. At the end of the deceleration cycle, the debunched beam must be re-bunched into a single bunch of length and momentum spread suitable for injection into the Electron Cooling Accumulator. A total bunch of 1 µsec will allow a kicker fall time in the electron ring of 200 n sec. We assume here a longitudinal emittance for the decelerated beam of 1.3 eV-sec. Such a beam, bunched at harmonic number one will have an energy spread of ± 827 kV and a momentum spread of ± 2.26 x 10^{-3} .

The bucket half-height required to match such a distribution is 1.55 MeV with ϕ =1.124 rad. An rf voltage of 7 kV at 357.9 kHz is required to create such a bucket. The phase oscillation period is 7.8 x 10⁻⁴ sec, so this bunching will require about 5 msec.

The 1-µsec bunch can be generated with slightly small rf voltage by first bunching the beam to $\Delta \phi^2 \pm \pi/2$, or 1.4 µsec, then suddenly jumping the voltage slightly to an unmatched bucket in which the beam distribution rotates into the vertical position with a width of 1 µsec, one quarter of a phase-oscillation period. The rf voltages necessary for these two steps are 2 kV and 4 kV. The initial phase-oscillation period is 3.7 msec, so 10 msec will be allowed for initial bunching. The final phase-oscillation period is 2.7 msec, so the quarter rotation will occur in about 670 µsec. Dimensions of the h=1 cavity are shown in Fig. 4-14 and its location was shown in Fig. 4-6.

4.7 Transfer to and from the Electron Accumulator

The lines used to transfer 200-MeV beam from the Precooler to the Electron Accumulator and the line used to transfer cooled beam back to the Precooler are symmetric with each other, as can be seen in the layout of Fig. 4-15. Elements and parameters of the line back to the Precooler are given in Table 4-X, which could become the other line with only relabelling of elements.

TABLE 4-X TRANSFER-LINE ELEMENTS FROM

ELECTRON ACCUMULATOR TO PRECOOLER

	element	length	strength (200 MeV)
electron	1B21	(m)	
cooling	1K21	1.5240m	-240 G
ring	1QD2	0.6767	-10.97 kG/m
	1QF1	0.6787	5.73 kG/m
	C-magnet	1.5240	1.33 kG
transfer	XQ1	0.6767	2.21 kG/m
line	XQ2	0.6767	-8.20 kG/m
· · ·	XQ3	0.6767	12.88 kG/m
	XQ4	0.6767	-7.96 kG/m
precooler	C-magnet	1.5240	1.76 kG
	1Q3	1.5240	9.80 kG/m
	QD 1	0.9905	-10.08 kG/m
	Kick	1.5967	88.8 G
	Kick	1.5967	88.8 G
•	QF1	- • •	-

PHYSICAL DIMENSIONS FIRST HARMONIC BUNCHING CAVITY FOR BOTH PRECOOLER & ELECTRON COOLING RING (SUPPORTS NOT SHOWN)

Fig. 4-14 h = 1 Cavity

Exact values for XQ1-XQ4 will change slightly due to detailed matching.

4.8 Acceleration in the Precooler

Single antiproton bunches with longitudinal emittance of approximately 0.075 eV-sec are to be accelerated from 204 MeV to 8 GeV in the Precooler at harmonic number 14. The acceleration system consists of three PPA rf cavities operating over the frequency range 5.01 to 8.802 MHz. This is the same system used for Precooler deceleration.

The stationary bucket necessary to match the bunch shape extracted from the Electron Ring requires 3.8 kV at 5.01 MHz. The acceleration rate will be 8 GeV per second and a bucket area of at least 0.09 eV-sec will be maintained during acceleration. The net accelerating voltage V Sin φ will be 12.7 kV per turn. The acceleration will require about 1 second.

At the beginning of acceleration, just above 204 MeV, a maximum voltage of 30 kV and a synchronous phase angle of 25 degrees are required. As acceleration progresses, the voltage and phase angle both change so that just below 8 GeV the required voltage becomes 13 kV and the synchronous phase angle 75 degrees.

At 8 GeV, a stationary bucket of sufficient size must be established so that the antiproton bunch length is shorter than the Main Ring bucket length (18.9 nsec) into which it is to be injected. If the voltage is raised to 15 kV, a 0.09 eV-sec bunch in equilibrium with the bucket will have a bunch length of 8 nsec, which can be matched easily by a stationary bucket in the Main Ring. The phase-oscillation period in this bucket will be 1.5 msec, so the stationary bucket can be established in 10 msec at the end of the acceleration cycle.

4.9 8-GeV Extraction and Transport

Extraction is carried out in a single-turn mode by a fast kicker and pulsed septum at the upstream end of the east straight section, followed by a non-achromatic horizontal translation to a line parallel to the beam center line in the east straight section and 1.0668 m from it. A FODO system located in three manholes leads to a left bend that puts the beam directly underneath the 4.5-GeV injection line. The beam is then translated up 1.9666 m by an achromatic system to join the other beam line. The system is designed to contain a beam of transverse emittance 2π mm-mrad in each plane and momentum spread 0.4%. A list of elements is given in Table 4-XI.

TABLE 4-XI ANTI-PROTON EXTRACTION FROM THE PRECOOLER

	Kicker #1	Kicker #2
Location Strength Rise Time	250 G	250 G
Aperture Effective Length	2m	2m

Method: Single-turn fast extraction, full-aperture kicker

Extraction occurs horizontally, to outside, at upstream end of East long straight section

Beam Emittances: $E_{H} = E_{V} = 7\pi \ 10^{-6} \text{mm-mrad}$ i

Momentum Spread: ± 0.1%

Magnet Sequence:

- 1. Translator
- 2. Long Straight Transport
- 3. Bend Left
- 4. Matching and Vertical Translation
- 5. Matching FODO
- 6. Matching and FODO Transport
- 7. Vertical Translation to Target
- 1. Translator

2QE3 D1 B1 D2 B2 D3 Q1 D4 Q2 D5 B3

Drifts	Length(m)
D1	0.25
D2	1.0
D3	3.5147
D4	1.5
D5	1.181

Dipoles	Effective Length(m)	Strength $(B/B\rho)(m^{-1})$
B1	1.00	0.033727
B2	1.1217	0.054172
B3	1.675	0.062523

Quadrupoles Effective L						e <u>Le</u>	Length(ft)				Gra	dien	<u>t</u> (B'/	'Βρ)(m ⁻²)
Q	Q1 2 Q2 2										-	0.52 0.46	96 97	
2.	Lor	ig St	rai	ght	Tran	spor	t							
D6	Q3	D2	Q4	D7	QF	D8	QD	D8	QI	F :	D8	QD	D9	
Dri	fts			Len	gth	<u>(m)</u>								
D6 D7 D8 D9 D2				14. 5.3 14. 10. 1.0	332 904 0757 2205 0							•		
Qua	drup	ole	3	Ef	fect	ive	Leng	th(f	<u>t)</u>		Gra	dien	t (B*/	'Βρ)(m ⁻²)
	Q3 Q4 QF QD					2 2 2 2	1					0 0 0	4231 ¹ 4295 1602 1602	ł
3.	Ber	nd La	eft											
Q5 Q7	0 0	B B	D B D B	0	Q6 Q8	0	в 0 в 0	B B	. 0 0	Q9	/2			-
Dri	ft				Dept	<u>h</u>								
0					0.5	m								
Ben	ding	£			Effe	ctiv	e De	pth				St	rength	<u>(B/Bp)</u>
в					1.37	16 m						0.	040929	9 m ⁻¹
Qua	druj	oole	<u>s</u>	Ef	fect	ive	Leng	th(f	't)		Str	engt	<u>h (B'</u>	/Βρ)(m ⁻²)
	Q5 Q6 Q7 Q8 Q9	/2				2 2 4 2 2) (-(().4216).3443).32715).2784).4303(5
4.	Mat	tchi	ng a	nd V	erti	cal	Tran	slat	ion					
Q9/ D13	2	D2 212	Q10 D13	D1 Q11	1 V D1	3 2 V	D12 3	Q11						
Dri	fts				Leng	ths(m)							

D11 D12 D13 D2	•6954m 5•9185 4•999 1•00	
Quadrupole	Effective Length(ft)	Strength $(B^*/B\rho)(m^{-2})$
Q9/2 Q10 Q11 Q12	2 4 2 2	0.43036 -0.4687 -0.54850 0.4423
Vertical Dipole	es Effective Length(m)	Strength $(B/B\rho)(m^{-1})$
. <u>v</u> 3 <u>v</u> 3	1.3716 1.3716	(up) 0.036928 (down) 0.036928
5. <u>Matching</u> F	000	
0 Q13 D14 Q	14 D4 QF/2	
Drift	Lengths(m)	
0 D14 D4	0.5 1.354 1.5	
Quadrupoles	Effective Length(ft)	Strength $(B^{*}/B\rho)(m^{-2})$
Q13 Q14 QF/2	2 2 1	-0.45869 0.34931 0.1602
6. Matching a	nd FODO Transport	
QF/2 D9 QD D9 QD D9 QF Q4 D6 Q3 D5	D9 QF D8 QD D7 (in the middle of \overline{V})	
Drifts	Lengths(m)	
D5 D6 D7 D8 D9	3.0 3.1962 1.6916 2.574 14.0757	
Quadrupoles	Effective Length(ft)	<pre>Strength(B'/Bp)(m⁻²)</pre>
QF/2 Q3 Q4	1 2 2	0.1602 -0.52436 0.34452

	QD QF					2 2			-0. 0.	1602 1602	
7.	Vert	ical	<u>l Tr</u>	ansl	atio	<u>n to</u>	Targ	et			
D1 Q1	∇ 1 D4	D2 Q2	Q7 D3	D3 Q1	Q2 D2	D4 V1	D1				
Dri	Lfts Length(m)										
ם ס ס ס	1 2 3 4				-0. 3.8 1.5 3.5	915 359 0					
Quad	drupc	oles		E	ffec	tive	Leng	th(ft)	Strength	(B/Bp)(m ⁻²)	•
	Q1 Q2						2 4		0.! -0.	5025 41262	
Ver	tical	L Di	pole	<u>s</u> E	ffec	tive	Leng	th(m)	Strength	(B/Bp)(m ⁻¹)	•
	<u>T</u>	71 71				1.8 1.8	3 3		(up) (down)	0.05726 0.05726	

•

51

5. Electron Cooling Accumulator

5.1 General Structure and Layout

<u>5.1.1 Lattice.</u> The design parameters of the Electron Cooling Accumulator have been chosen to allow efficient electron cooling to be carried out in a range between 200 and 450 MeV, and possibly as high as 1-GeV antiproton energy.

The overall design of this ring is very similar to that of the present Electron Cooling Ring and has essentially the same constraints. The intended mode of operation is to inject p's from the Precooler into the Accumulator, precool them with electron cooling and then momentum displace the injected beam into a stack, which will also be electron cooled. Thus the ring needs a straight section appropriate for injection and extraction and another one for cooling. For injection and extraction, it is desirable to have large horizontal dispersion and small beam sizes. The length of this straight section need not be too great. The cooling straight section, on the other hand, should be quite and have p-beam sizes matched to dispersion, long, zero electron-beam sizes, approximately 1 in. in radius. One would like to have as large a percentage of the circumference as possible filled with electron cooling, subject to several considerations. The expense and difficulty of the cooling system, as well as the nonlinear end effects of solenoid, toroids, and electron beam on the p's effectively limit the number of cooling systems to one, and the beam-size variation through the cooling region limits the length of that region. The desire for some superperiodicity produces at least a four-sided figure. The final design of this ring, then, is generally the same as the present cooling ring. It is a racetrack design having two long straight One long straight section will be used for electron sections. cooling; the two short straight sections will be used for injection and extraction and for such functions as a beam dump. The main difference between this new ring and the present one is in the overall circumference, the fraction of the ring used for cooling, and the maximum energy of the ring. The ring has a circumference of some 203 m, and will have 10 m of electron cooling, compared with 135 m and 5 m of cooling the present experiment. The structure and lattice parameters for this ring are listed in Table 5-I, and the lattice functions are plotted in Fig. 5-1. Horizontal and vertical aperture requirements are shown in Figs. 5-2 and 5-3.

The ring has been designed to use the same magnets as in the present Electron Cooling Ring, with new ones to be built to piece out the circumference. A total of 44 4-ft dipoles and 48 2-ft quadrupoles with sizes and apertures as in the present magnets are needed. At present, 24 dipoles and 32 quadrupoles exist. In addition, two 2-ft special quads with a good-field region of 30 cm are required for injection. The totals given here include six standard quadrupoles required for transfer to and from the

Fig. 5-1 Electron Accumulator Orbit Functions

TABLE 5-I ELECTRON COOLING RING ACCUMULATOR PARAMETERS

1. General

Energy Corresponding bend field Magnetic bend radius (ρ) Radius	200 MeV - 1.0 GeV 2.35 kG - 6.17 kG 9.17 m 32.35 m = 36/1113 MR radius
Revolution time	1197 - 775 nsec
Superperiodicy	
without electron beam	2
With electron beam	1
Focusing structure	Separated function
-	FODO normal cell
Nominal working point	v. 4.102
	v., 5.367
	Y 4.084
Natural chromaticity	ξ6.460
	ξ <mark>ν</mark> -6.096

2. Magnets

dipoles	44	
dipoles	48.00	in.
length of dipoles	51.52	in.
quadrupoles	44	
quadrupoles	24.00	in.
length of quadrupoles	26.64	in.
gradients at 1.0 GeV		
	dipoles dipoles length of dipoles quadrupoles quadrupoles length of quadrupoles gradients at 1.0 GeV	dipoles44dipoles48.00length of dipoles51.52quadrupoles44quadrupoles24.00length of quadrupoles26.64gradients at 1.0 GeV

QF	28.70 kG	m
QD	-26.47	
Q1	-37.89	
Q2	43.82	
Q3	-9.90	
Q9	22.69	
Q10	-28.84	
Q11	15.07	

3. Structure

A. Curved section

Elements in	curved section	Length
Dipole	(B)	4 ft
Quadrupole	(Q)	2 ft
Drift space	(0)	1 ft
Drift space	(00)	2 ft

Cell structure (QD) 0 (B) 0 (B) 00 (QF) 0 (B) 0 (B) 00 28 ft Cell length B. Short straight Drift space (SS) 6.90 ft Drift space (S1) 3.40 ft (S2) Drift space 6.56 ft Drift space (S3) 5.77 ft C. Long straight Drift space (LS)31.80 ft Drift space (L1)2.00 ft (L2) Drift space 2.62 ft Drift space (L3) 12.00 ft D. Dispersion suppressor Drift space (D1) 1.10 ft (D2) Drift space 6.90 ft E. Quadrant structure (Q) SS (Q11) S1 (Q10) S2 (B) 0 (Q9) 0 (B) 0 (B) 0 (B) 0 (B) 00 (QF) 0 (B) 0 (B) S3 (QD) 00 (QD) D1 (B) D2 (QF) D2 (B) D1 (QD) 0 (B) 0 (B) L3 (q3) L2 (Q2) L1 (Q1) LS F. Ring structure $Q(\bar{Q}) Q(\bar{Q})$ 203.2296 m Length of central orbit 666.76 ft 4. Aperture and Acceptance $a_{H} = \pm 89 \text{ mm}$ Nominal vacuum chamber aperture $a_V^n = \pm 25 \text{ mm}$ sagitta 21.8 mm $a_{H} = \pm 78 \text{ mm}$ available aperture Lattice functions Maxima <u>In dipole</u> <u>L.S.</u> <u>s.s.</u> β_{H}^{β} 48.23 m 19.50 m 12.93 m 10.37 m 19.44 13.25 10.11 11.48 \mathbf{n}_{H} 3.65 3.65 0.06 3.51

Acceptance (using beam size in dipoles)

av	1	±	25	mm	۸v	=	47	Π	mn	1-1	rad	
a _H	=	±	78	mm	A _H	=	40	π	m	a—1	irad	
					Δp/	'p])bea	m	=	±	0.259	5

Δp/p(beam-to-beam) 2.37%

(This is the acceptance for two beams as given with a separation of 10 mm at an injection kicker.)

5. Beam angles in electron cooling long straight section

 $θ_{11} = \sqrt{\epsilon/\pi\beta^*} LS
\qquad
θ_H = 1.76 mrad$ $θperp <math>\sqrt{\gamma} \Delta p/p
\qquad
θ_V = 2.17 mrad$

 Θ perp = 6 mrad - 10 mrad

Precooler ring.

Precooler ring. Finally, two 5-ft kickers with movable shutters and one 5-ft C-magnet are required for injection and extraction. These need to reach fields of 380 G and 2.4 kG, respectively, at an antiproton energy of 450 MeV.

<u>5.1.2 Layout.</u> The accumulator is located south of the Precooler, with the beam line in the South straight section of the Precooler separated from the beam line in the North straight section of the accumulator by 2 m. At this junction, they are in a common building (see Chapter 7).

The North short straight section is occupied by the components for transfer to and from the Precooler described in the previous section. The West straight section is occupied by electron cooling equipment. The first harmonic rf system is small enough that it can be located in a short straight section. Fig. 5-4 is a layout of the Accumulator ring.

5.2 Injection

Injection into the accumulator is a simple single-turn matter, with the 5-ft kicker and 5-ft C magnet described in section 5.1.1.

5.3 Magnets

The Accumulator magnets will be taken from the present Electron Cooling Ring. The 20 additional dipoles and 16 additional quadrupoles will be built from the existing lamination dies and coil forms. The present magnets have shown themselves to be very reliable (none have failed) and of excellent field quality. Measured fields are shown in Figs. 5-5 and 5-6.

5.4 Electron Cooling System

5.4.1 Equipment Description. The Electron Cooling System is basically similar to the one in present use. Its design parameters are given in Table 5-II, and Fig. 5-7 shows an over-all view.

Except for problems of reliability, the existing electron cooling system would be adequate for accumulation at 200 MeV. Our experience tells us that:

(i) a new solenoid design must be adopted to eliminate failures and cooling limitations in the existing units and,

.

TABLE 5-II ELECTRON COOLING SYSTEM DESIGN PARAMETERS

Beam Current (max)	10A
Cooling Length	12m
Overall Length	16m
Solenoid Guide Field (max)	2kG
Magnet Power Requirement (1.5kG)	120 kW
Collection Inefficiency	<10 ⁻³
Cathode Diameter	5cm
Beam Diameter (int. region)	5-10cm
High Voltage Supply Power (max)	
collector	3kW
gun	2.5kW
Gun Perveance	1.5 µperv
High-Voltage Insulation	SF6 (atmospheric)
High-Voltage Switching Range	0-10kV (@220kV)

(ii) the high-voltage terminals and columns at the gun and collector ends ought to be accessible for maintenance without breaking the high-vacuum system.

A new solenoid is needed in any case because the length is greater (12 m vs. 5 m for the existing one) and several designs have therefore been developed for constructing long, highly uniform solenoids. The second criterion is one reason for proposing that the cooling system be built with electron gun and collector totally immersed in the solenoid guide field. This allows removal of enough of the solenoid (by sliding off the ends) for direct inspection, baking of the high-voltage section, and modification or repair. The toroid and solenoid-to-beam pipe clearances are also to be made larger. Both gun and collector will be on the same side of the beam. A doglegged gun and collector (as in the existing system) cancels certain abevration of the \bar{p} lattice, which we believe will be managable with electron beams of less than 10A.

The upgrade from our existing equipment will include major improvement of the high-voltage supply. The basic supply is apparently adequate for reliable 220-kV operation. Most of the control and regulation circuitry needs replacement or rebuilding. The significant new capability that must be built into the supply is to switch rapidly (< 100 msec) between stack energy and injection-ejection energy. At 400 MeV (218 keV electron energy), this will be an 8.5 kV change, which will be supplied by a new programmable supply floating at cathode potential.

The other important motivation for building a new electron cooling system is to perform accumulation at higher energy than 200 MeV; for which the existing system is designed. With electron beams greater than 10A at $0.5A/cm^2$, one is near to having cooling times limited by longitudinal electron temperature due to space

charge (unless the space charge is exactly neutralized). If we take 10A as a resonable current limit, a 5% fraction of the Accumulator circumference (12 m) must contain electron cooling to achieve the desired cooling times at 400 MeV (see table 5-III).

TABLE 5-III ELECTRON COOLING SYSTEM PERFORMANCE PARAMETERS

Beam Current	1 0A
Fraction of Accum. Circumf. Cooled	5.9%
Transverse Electron Temperature	0.25eV
Longitudinal Electron Temp (max)	0.1eV
T, (200 MeV)	1.5 sec
T ₁ (400 MeV)	6.3 sec
T ₂ (200 MeV)	0.98 sec
T ₂ (400 MeV)	3.4 sec

It may be argued that even higher energy electron cooling is feasible with this 12 m interaction constraint. Keeping these possibilities open dictates much of the system design. A higher guide field is needed in proportion to electron momentum to maintain the same low transverse electron temperature. The solenoid in particular is to be designed for greater heat dissipation. A cathode totally immersed in magnetic field was chosen to give the lowest electron temperatures at higher voltages, as well as allowing smaller high-voltage terminals. These features allow transverse temperatures comparable to those obtained at 110 keV (200 MeV) in the existing device up to beam energies of 750 keV (1.4 GeV).

All supplies and signal lines come directly up into the surface service building. All heavy components will be serviced by lifting up. Two important features are dictated by this: The 90° toroidal bends (as contrasted to the CERN or Novosibirsk design of 45°); and the U configuration of gun/collector.

5.4.2 Electron Cooling and Accumulation Rates. The electron cooling system used for accumulation is assumed to be operating in an ideal manner (i.e., full theoretical damping rates). Cooling takes place in two essentially decouples (largely thanks to the highly nonlinear fall off of electron "friction" force with relative momentum), regions of longitudinal phase space, even though the cooling system is in a dispersion-free section. Sections 5.5 and 5.6 give more detail about the stacking and unstacking processes. Two distinct doses of electron cooling are applied for the stacking cycle.

First the fresh hot batches of p's are cooled for a time T_1 immediately upon their injection into the Accumulator. The exact value of T_1 depends critically on the phase-space area of the hot

beam, the exact manner of approach of the rf stacking bucket to the stack, and the relative height of the stacking bucket to the stack height. The cooling decrement necessary is from 2 to 4 (for 95% of a Gaussian in momentum). For one e-folding, values of T₁ are shown in Table 5-III. It is important to note that for an anticipated $40\pi \times 40\pi$ beam emmittance T₁ is dominated by the relative transverse p momenta.

The cooled fresh beam is then moved by rf (see section 5.5) 2% to the stack. It may be desirable to form the rf buckets while the T₁ cooling is in progress. The gun high voltage is then stepped by 8.5 kV (for 400 MeV \overline{p}) so that it arrives at the stack ahead of the moving bucket. (It requires 240 nsec to move 2%). If the stacking is entirely adiabadic (no dilution), then it is clear that the stack must be cooled by a factor 2 (for time T₂) after each stacking, for a factor 2 cooling during the T₁ step. Alternatively, the fresh beam could simply be parked continguously in momentum next to the stack, with the merging accomplished by electron cooling. Here again, the minimum cooling factor necessary is 2 during T₁ and 2 during T₂.

It is not necessary that the stack be maintained during accumulation in a highly condensed state (ultimately determined by equilibrium with inter-beam scattering). A stack momentum width of \pm 1.0 x 10⁻³ is sufficient and in fact optimal for the cycles described above. The final, ultimate degree of cooling need not be applied to the stack at all. This can be performed after accumulation, on each third of the stack at the ejection energy (see section 5.5.2). Keeping the stack relatively warm allows us to ignore interbeam-scattering effects; for instance, the stack will not appreciably blow up when it is left naked during the T₁ step.

Although an optimum stacking cycle requires about the same factor of momentum cooling of the fresh beam (T₁ step) and, subsequently, the stack (T₂ step), this does not mean thaat T₁ = T₂. The stack cooling step operates on already transversely cooled particles. Since the 40π transverse emittance dominates T₁, this is an important effect. For our conditions we expect T₂ will be one-half to one-third of T₁.

All expected cooling times for the stacking cycle outlined are shown in Table 5-III. Accumulation to \overline{p} energy up to 400 MeV is possible within an 11 sec cycle. We are developing an exact simulation of the cooling/stacking to predict the maximum accumulator enery allowed by this constraint.

5.5 RF Stacking and Unstacking

5.5.1 Injection and Stacking. Antiprotons are injected into the injection orbit of the Electron Accumulator with a kinetic energy of 204 MeV, and momenum spread $\pm 2.26 \times 10^{-3}$. The slightly bunched

beam is allowed to debunch and is immediately electron-cooled to a momentum spread of 10^{-3} . This results in a total energy spread of $E\beta^2\Delta p/p = 372$ keV. The rotation period is 1.19 x 10^{-6} sec, resulting in a longitudinal emittance of 0.44 eV-sec. The injected beam is then captured adiabatically in an h = 1, f = 841.36 kHz rf bucket with area 0.5 eV-sec. This results in a phase-oscillation period of 4.3 msec. Adiabatic capture shold be completed in about 25 msec.

The captured beam is decelerated 8.65 MeV to a stacking orbit at 195.35 MeV. This requires a frequency swing of 12.35 kHz. Deceleration will be done with a synchronous phase angle of 5.74 degrees, resulting in a moving-bucket area reduction of 0.82. Constant bucket area is maintained by raising the rf voltage to 427 volts. The accelerating voltage is 427 sin $\phi = 42.7$ volts per turn, or 35.9 MeV per second, so the stacking requires 0.24 seconds.

In order to minimize the effect of the moving rf bucket on the existing antiproton stack, the rf voltage can be reduced to a very small value well before the momentum reaches the stack momentum, but at momentum sufficiently close so that electron cooling can pull the released antiprotons into the stack.

5.5.2 RF Unstacking and Extraction Antiprotons are to be removed from the cooled stack for extraction by rf unstacking at harmonic-number one. If, for example, three final bunches of antiprotons are desired, a moving bucket with area slightly greater than one-third of the total stack area (longitudinal emittance) is created at the center of the stack and removed at a constant acceleration rate. If the cooled stack has a total momentum spread of 10⁻³, then the longitudinal emittance will be 0.433 eV-sec and the stack energy spread will bl be \pm 179.25 KeV. The synchronous phase angle is 19.27 degrees and the bucket requires application of 100 volts at 827.897 KHz (instantaneous frequency). The accelerating voltage V sin ϕ will be 33 volts per turn or 27.3 MeV/sec, so acceleration by the required 8.65 MeV will require 317 msec.

At approximately 18 msec, the moving bucket has moved 480 kV above the stack and the stack has become sufficiently smooth that it is possible to measure the charge that has been removed by the moving bucket by observing the image current induced in a ring current detector of sufficient bandwidth. This charge is compared with the desired value and the bucket area, which was intentionally slightly too large, can be reduced so that it carries only the intended charge. The charge which is removed from the bucket is sufficiently close to the stack momentum so that it is cooled back into the stack by the electron beam.

Subsequent unstacking buckets will be required to enclose different fractions of the remaining charge, the last one being just adiabatic capture of all of the remaining charge. After the unstacked charge fractions have been moved to the extraction orbit, it will be necessary to change the electron energy so that the unstacked fraction of the beam can be cooled before extraction. In order to achieve acceptable antiproton bunch lengths at 1 TeV, it necessary that the bunches have longitudinal emittances substantially less than 0.1 eV sec at the start of the several-stage acceleration process. Each extracted bunch will be cooled to an admittance of 0.06 eV-sec just prior to extraction.

After each bunch has been placed in the extraction orbit at 204 MeV, the rf voltage must be raised to a level such that the bunch length will match an rf bucket in the precoder at h=14, 5.01 MHz. Since the h = 14, buckets are 200 nsec long, a total bunch length of 180 nsec is adequate. A 0.06 eV-sec bunch 180 nsec long will have an energy half-height $\Delta E = 212 \text{ keV}$, matched to a bucket with half-height 907 keV. At h = 1, the required bucket is generated by raising the rf voltage to 3.4 kV. The phase-oscillation period in the final extraction bucket is 1.25 msec, so the adiabatic bunching should be accomplished in about 8 msec.

All rf voltages in the Electron Ring are to be generated by a single ferrite-loaded low-Q cavity capable of generating precisely controlled frequencies, phases, and voltages up to 5 kV at harmonic number one.

6. Colliding Scenario

6.1 General Plan. At present, the Fermilab accelerator operates at slightly greater than 2.5 x 10¹³ protons per pulse with about 1080 bunches (i.e. 1080 of the 1113 main ring buckets occupied). This results in an average proton number per bunch of about 2.5 x 10¹⁰. In order to achieve the required 10¹¹ protons per bunch, it is proposed that the protons in several groups of four adjacent bunches (quartets) be coalesced and re-captured in normal (h=1113) buckets before injection into the Tevatron. Injection into the Tevatron will be done at 150 GeV, so it is reasonable to do the bunch coalescence at fixed magnetic field at 150 GeV just before injection. It is preferable to do the bunch coalescing at relatively high energy rather than at injection energy (8 Gev) for several reasons: The beam size is smaller relative to the available aperture, the ratio of longitudinal emittance to available rf bucket area is favorable, and the necessity for accelerating heavily populated bunches through transition is eliminated. The advisability of avoiding transition crossing with dense bunches has also been noted in experiments of a similar nature at CERN.

Since it is possible to select which buckets will contain a significant number of protons by selectively expelling unwanted protons before acceleration, the required number of quartets can be established at the desired azimuthal locations before beginning the acceleration cycle. This procedure is absolutely necessary. In order to coalesce the adjacent bunches, it is necessary to reduce their momentum spread to the minimum possible value by lowering the rf amplitude to an extremely small value. If a large fraction of the buckets contain proton bunches, the resultant beam excitation of the high shunt-impedance accelerating cavities prevents lowering the voltage to the required value. Furthermore, it would be extremely difficult to remove the unwanted protons with sufficient precision at 150 GeV and if those protons were to remain in the accelerator, but not well contained in buckets, the injection process into the Tevatron would almost certainly quench the superconducting magnet.

<u>6.2 Coalescing Scenario.</u> The four step procedure for coalescing quartets is shown in Fig. 6-1. (The procedures described here are at 100 GeV instead of 150 GeV because we have well-established accelerator parameters at 100 GeV and the experiments are slightly less expensive in electric-power cost). Step I shows a series of h=1113 (53.102 MHz) buckets, four of which contain bunches of protons. The stationary bucket voltage is 1 MV, resulting in a bucket height of 144 MeV. It is assumed that each of the bunches has a longitudinal emittance of 0.3 eV-sec, consistent with recent measurements. These bunches, initially matched to a 1-MV bucket, will have a half-height of 46.7 MeV and a half width of 4 nsec, roughly as shown.

П

ш

and the second

Step II shows the 0.3 eV-sec bunches matched to an rf bucket that has been reduced in amplitude until the bucket area equals the bunch area. The bunch and bucket height are now 12.5 MeV. Shown also in part II is a dashed line representing a subharmonic bucket encompassing seven of the original buckets. Because the original harmonic number h=1113=(3)(7)(53), a 7th subharmonic bucket (h=159) will remain fixed in phase with respect to the original buckets. (Had the original harmonic number been a prime. this subharmonic operation would have been impossible). The subharmonic bucket shown has a height ∆E=66 MeV, requiring the application of 30 kV at 7.58 MHz. When the h=1113 voltage reduction is complete, the voltage creating that bucket is removed and the h=159 voltage is applied suddenly at full amplitude.

Step III shows the proton distribution within the subharmonic bucket after slightly more than one-quarter of one synchrotron period. This requires 2000 turns or 41.8 msec. The distributions with larger momentum deviation are those which started farthest from the bucket center and have consequently lagged slightly due to synchrotron tune spread. Computer simulations of this rotation have established 2000 turns to be an optimum period for establishing the narrowest charge distribution. Initially the charge in the h=159 bucket extends over 4/7 of the bucket length. (In $\Delta\phi$, ΔW coordinates, $\Delta\phi=4\pi/7$ radians). In a 66-MeV bucket, this distribution should reach a maximum energy deviation of 66 $\sin(\Delta \phi/2)=51.6$ MeV. Computer simulations have verified that this indeed happens and the distribution shown in part III is a good representation of the simulation. The rotated charge extends in energy over approximately 104 MeV and in time over about 19 nsec so the phase space area covered is about 2 eV-sec. At this time, the h=159 rf voltage is removed and h=1113 buckets are re-applied at an amplitude which matches as well as possible the rotated distribution. The dashed line in part III represents a 2 eV-sec h=1113 bucket, requiring the application of 340 kV. Because we have coalesced an even number of bunches in an odd-numbered subharmonic bucket, the center of the coalesced bunches have moved azimuthally π radians from the original position and the re-applied h=1113 bucket must be shifted in phase accordingly or the coalesced bunch will arrive at the unstable fixed point.

Part IV of Fig. 6-1 shows the coalesced bunch distribution after the h=1113 rf voltage has been raised to 1 MV. The total bunch width of a 2 eV-sec distribution matched to a 3.36 eV-sec bucket (1 MV) will be 11 nsec and the energy half-height will be 114 MeV. At 100 GeV, this amounts to a total $\Delta p/p$ of 0.12 percent, small with respect to the momentum aperture of the ring, about $\pm 0.5\%$.

A density dilution of about a factor of two has occurred in the process, so while the final energy half-height is 114 MeV as opposed to 47 MeV for the original bunches, the peak current, as indicated on a beam current detector, will have increased by only a factor of about 1.3. After acceleration to 1 TeV, this distribution is to be stored in buckets generated by about 1.2 MV. At 1 TeV the 1.2 MV bucket height will be 495 MeV and a 2 eV-sec bunch, matched to such a bucket, will have a total length of 5.7 nsec.

Computer simulations were done also for coalesence of five adjacent bunches in a seventh subharmonic bucket. In that case, all of the center three bunches and about half of each of the outer two bunches could be recaptured, so there is no advantage over coalescing four bunches.

7. Buildings and Structures

7.1 Below-Ground Structures

The existing Target Vault and \overline{p} Hall will be utilized with minor modifications. Summed over the injection and extraction lines, the Precooler, and the Accumulator, the total tunnel length in the project is approximately 3000 ft. Included in this total are several different kinds of tunnels and special sections, which are as follow:

(i) Regular tunnel. The Precooler and Accumulator quadrants are both an 8 ft by 8 ft cross-section tunnel, with the ring center line 2 ft from the larger-radius wall. The tunnels will be cast to follow the wanderings of the rings. A Precooler quadrant is shown in Fig. 7-1 and the entire Accumulator tunnel is shown in Fig. 7-2.

(ii) The long straight sections of the two rings will be housed in special structures designed for the functions in these straight sections.

(a) The South straight section of the Precooler, shown in Fig. 7-3, will have the largest span (18 ft) and the longest length (120 ft). The functions here are similar to those in the Main Ring Transfer Hall. Equipment layout in the south straight section was shown in Fig. 4-15. The tunnel is widened upstream for the junction with the 4.5-GeV injection line. Tunnel cross sections are also shown in Fig. 7-3.

(b) The North straight section contains the 5-9 MHz and the h=1 rf system at its upstream end. It contains the 200-MeV test beam injected into its downstream end. If a stochastic accumulator ring is built in the future, transfer between it and the Precooler will take place in this straight section. The structure surrounding it, also shown on Fig. 7-3, is only slightly enlarged from the regular tunnel because these functions require only moving space for component installation. The equipment is shown in Fig. 4-6.

(c) The East straight section contains stochastic kicker and associated power amplifiers and the 8-GeV extraction line. These components necessitate a tunnel widening, as is shown in Fig. 7-4. There is space between electronics racks for access to the ring and for addition cooling power. The equipment is shown in Fig. 4-7.

(d) The West straight section contains stochastic pickups (which have only small electronics associated with them) and the 53-MHz rf system, located at the upstream end, as shown in Fig. 4-5. The tunnel is widened at this end, as is also shown in Fig. 7-4, to give access to the rf cavities and associated electronics equipment and widened at the other end in case more rf is needed at some later time. (e) The west straight section of the Accumulator will contain the electron cooling equipment.

(f) The injection tunnel will be 6 ft by 8 ft in cross section, joining the Precooler as shown in Fig. 7-5. An access to the surface will be provided as shown. This beam line rises from the 726-ft 8 in. level of the injection line.

(g) The 8-GeV extraction line will join the injection line in a 50-ft stub shown in Fig. 7-5. The three manholes shown will contain focusing magnets for the FODO extraction line, as described in section 4-9.

7.2 Above-Ground Structures

Service buildings will be provided at each long straight section. The North, East, and West straight sections require only buildings of approximately 1440 ft² (gross) and personnel accesses down to the ring. The same is true of the East Accumulator straight section.

The South Precooler straight section will contain power supplies, assembly space, equipment and personnel access, and accelerator control facilities. A structure of 3000 ft^2 gross space is planned.

The West Accumulator straight section will contain power supplies and equipment for the electron cooling system and will require a structure of apporximately 2000 ft².

7.3 Utilities and Roads

Existing electric power and cooling water will be utilized and only short feeders are required. No gas service to the project is planned. The roads to be built are shown in the general site plan of Fig. 1-1.

8. Experimental Areas

Two interaction regions have been designed for experiments at the collider, one at BO and the other at DO.

8.1 BO Experimental Area

The experimental area at B0 will serve the detector to be built by the Colliding Detector Facility, a collaboration of Italian, Japanese and U.S. laboratories. The scale of the project is set by their proposed apparatus, in particular the Central Detector, whose transverse dimensions determine both the depth of the building and its overall width. The area is divided into 2 distinct regions, the Collision Hall, where the experiment is actually performed and the Assembly Area, where the entire apparatus will be constructed and serviced, and where the Central Detector will be stored during operation of the Tevatron fixed-target program. A bypass is provided around the outside of the collison hall for traffic servicing the Main Ring and the Tevatron. It should be noted that the engineering challenge posed by the weight of the detector and the earth pressure on the walls of this underground area is unique in the history of Fermilab. In general, the building is a concrete structure; the floor which carries the detector is a concrete mat about four feet thick. Plan and elevation views of the BO area are shown in Figs. 8-1 and 8-2.

The central volume of the Collision Hall which houses the Central Detector and a pair of forward-backward toroids is 50 ft long by 50 ft wide and at its deepest point 40 ft high, dimensions set directly by the detector and its requirements for in-place servicing. Extended forward-backward detectors sit in the volumes at either end of the collision area. Since these devices are smaller transversely than the Central Detector, these sections are 35 ft wide by 30 ft high and 25 ft long; their floor level is raised 5 ft from the central region.

The Assembly Area is separated from the Collision Hall by a 35 ft long tunnel whose tranverse size is the minimum needed for passage of the Central Detector. When the accelerator is operating, the tunnel is plugged at the Collision Hall end by a (retractable) 12 ft thick concrete wall. This thickness of radiation shielding is sufficient to allow people to work in the Assembly Area while the Tevatron is running for fixed-target physics.

The Assembly Area consists of three parts, an underground assembly area (at the same level as the Collision Hall), an above-ground construction area, and two floors of electronics, computer and control rooms for the detector on the side closest to the Collision Hall. The area is served by a 50-ton crane that runs the entire length of the building.

ACCUMLLATOR SING NEV NO DATE REVISION - **B**RAWN ----CHICASE APROVED BUSWITTED FERMI NATIONAL ACCELERATOR LABORATORY Fig. 7-2 Accumulator Tunnel F 4/21 ····· ALA

The size of the below-ground assembly area is set by the space needed to construct the Central Detector and to service the Detector while constructing Central theforward-backward detectors. As in the Collision Hall, there are two floor levels which differ by 5 ft. The Central Detector sits at the lower level on its own transporter; the forward-backward detectors will be assembled on the higher level and transported to the Collision Hall on a special transfer cart. The two bays at the entrance to the tunnel are at the lower elevation and can both accept either the transfer cart or the concrete shield wall. A labyrinth with a movable plug allows passage for people and light equipment between the Assembly Area and the Collision Hall.

The above-ground section of the assembly building will be used for offices and fabrication of the individual components of the detector. The experiment electronics and control rooms are placed as close to the Collision Hall as possible to reduce the time delays from cable lengths to a minimum.

8.2 DO Experimental Area

No specific detector has yet been proposed for the DO interaction region; a nominal detector of diameter 15 ft and length of 20 ft has been considered in the design. The experimental area provided consists of an underground hall 47 ft wide, 24 ft long and 20 ft high. Equipment is lowered to the hall with a 20-ton crane through a hatch with opening 29 ft wide and 20 ft long. The hall is designed to provide an assembly and work area, shielded from the Tevatron beam by 9 ft of high-density concrete. To run the experiment, this shielding is removed to cover the access hatch and the assembled detector is rolled into place. The DO experimental area is shown in Fig. 8-3.

Appendix A

Parameters

. .

PROTON-ANTIPROTON SOURCE FOR FERMILAB

APRIL, 30, 1981 02:00 P.M.

LIST OF TABLES

MAIN RING CYCLE TARGETRY PBAR-TRANSPORT TO PRECODLER PRECODLER INJECTION RF ROTATION AND STACKING PRECODLER PARAMETERS STOCHASTIC COOLING DECELERATION IN THE PRECODLER ELECTRON RING PARAMETERS TRANSFER OF PBARS TO MR

(COMPILED BY A. G. RUGGIERD)

MAIN RING CYCLE

EXTRACTION KINETIC ENERGY BETA GAMMA MOMENTUM (P) MAGNETIC RIGIDITY (B-RHD) BETATRON TUNES (H AND V) TRANSITION ENERGY (GAMMA-T) BETATRON EMITTANCE (EPS-H = EPS-V, 95% OF BEAM)RF FREQUENCY RF VOLTAGE HARMONIC NUMBER (H) INDIVIDUAL BUNCH AREA (95% OF BEAM) NO. OF PROTONS PER BUNCH BUNCH LENGTH (RMS) BUNCH MOMENTUM SPREAD (RMS) NO. OF EQUAL BATCHES ND. OF BUNCHES PER BATCH TOTAL NO. OF BUNCHES TOTAL NO. OF PROTONS MAJOR BEAM GAP (1) MINOR BEAM GAPS (12) REVOLUTION TIME MAIN RING CYCLE PERIOD FLAT-TOP LENGTH (80 GEV)

80 GEV 0.999933 86.264 80.933 GEV/C 2699. 6 KG-M 19.4 18.75 0.3 PI-MM-MRAD 53.1 MHZ 4.0 MV 1113 0.4 EV-SEC 2.7* 10EXP10 21 CM 3.7* 10EXP-4 13 75 975 2.6325* 10EXP 13 580 NSEC **185 NSEC** 20.96 MICRO-SEC 9.85 SEC 1.3 SEC

TARGETRY

TARGETRY MATERIAL LENGTH OF TARGET CROSS-SECTION RADIUS BETA* , PROTON (H AND V) ALPHA*, PROTON (H AND V) ETA*, PROTON (DISPERSION) ETA-PRIME*, PROTON SIGMA*, PROTON (RMS SPOT SIZE, H AND V) ND. OF P-BATCHES/ MR CYCLE TIME INTERVAL BETWEEN BATCHES MAIN RING CYCLE PERIOD NO. OF PROTONS PER BATCH PBAR-PRODUCTION MOMENTUM KINETIC ENERGY BETA GAMMA MAGNETIC RIGIDITY (B-RHO) MOMENTUM SPREAD ACCEPTED FULL DELTA P/P, (UNIFORM DISTRIBUTION) EMITTANCE ACCEPTED (H AND V) ANGLE ACCEPTED BETA*, ANTIPROTON, (H AND V) A*, ANTIPROTON SPOT RADIUS PP-PBAR INVARIANT CROSS-SECTION PP INELASTIC CROSS-SECTION PROTON ABSORPTION LENGTH ANTIPROTON ABSORPTION LENGTH YIELD, NO. OF PBAR/ NO. OF P (FROM TARGET ONLY) EFFECTIVE YIELD INCLUDING COLLECTION LI-LENS TOTAL NO. OF PBAR/MR CYCLE PBAR-BUNCH LENGTH (RMS) PBAR-BUNCH AREA (95% OF BEAM) PBAR-BEAM RF BUNCHING NO. OF PBAR-BUNCHES/BATCH GAP LENGTH (9 BUNCHES)

TUNGSTEN (W) 5 CM 1 MM 1.0 M 0.0 0.0 M 0.0 0.224 MM 13 100 MSEC 9.85 SEC 2.025* 10EXP 12 5.3567 GEV/C 4.5 GEV 0.985 5.795 178.7 KG-M 1.0 % 5.0 PI-MM-MRAD 25 MRAD 0.8 CM 0.2 MM 0.8 MB/GEV**2 33 MB 10.5 CM 6.0 CM 1.15* 10EXP-6 0.8* 10EXP-6 2.106* 10EXP 7 21 CM 0.15 EV-SEC 52.31 MHZ 75 188 NSEC

PBAR-TRANSPORT TO PRECOOLER

BEAM EMITTANCE (H AND V) 20 PI-MM-MRAD MOMENTUM SPREAD, DP/P (FULL) 4%

SEQUENCE OF MAGNET SECTORS:

1. VERTICAL TRANSLATION AFTER TARGET

D1 V1 D2 Q1 D3 Q2 D4 Q1 D4 Q2 D3 Q1 D2 V1* D1

2. MATCHING PLUS FODO TRANSPORT

D5	ØЗ	DУ	04	D7	QD	DS	QF	D9
GD	D9	QF	D9	QD	D9	QF/2		

3. MATCHING

QF/2	2 D4	Q14	D14	Q13	OS	¥6V	D15	Q15
D16	Q16	D17	Q17	Q17	D16	Q18	D18	

4. DISPERSION SUPPRESSOR

06 B 0 B 05 QD 04 B 03 QF 02 B 01 QD/2

5. TWO REGULAR CELLS

QD/2	D	В	D	B	00	0F/2	
QF/2	00	В	0	в	0	GD /5	
QD/2	D	В	0	в	00	QF/2	
QF/2	00	В	0	B	0	QD/2	

6. ONE CELL WITH TWO MISSING MAGNETS

QD/2 000 QF 0 B 0 B 00 QD/2

7. ONE AND ONE-HALF REGULAR CELL

QD/2 0	В	0	В	00	QF/2			
QF/2 0	В	0	В	00	QD2 0	В	0	В

8. LONG STRAIGHT MATCHING

D19 Q19 D20 Q20 D21 Q21 D22 Q22 D21 Q23 D22

9. VERTICAL TRANSLATION

V4 D23 Q24 D24 Q25 D25 Q26 D26 Q27 D27 Q28 D28 V5 D29

DR	IF	TS
----	----	----

LENGTHS (METERS)

D1	-0.915
D2	3.8359
D3	1.5
D4	3.5
D5	3.0
D6	3. 1962
D7	1.6916
DB	2. 574
D9	14.0757
D10	
D11	
D12	territ spec
D13	
DJ4	1.354
D15	12.719
D16	0.9144
D17	5.2461
D18	0.3048
D19	0.75
D20	5. 32814
D21	1.25
D22	3.00
D23	3. 5046
D24	0.75
D25	1.15113
D26	0.884
D27	0.60754
D28	2. 1712
D29	-1.8288
05	0.5
0	0. 3048
00	0. 72963
01	0.45
02	2. 2609
03	1.8025
04	0. 9083
05	0. 2172
06	0. 8172
nnn	4 09243

EFFECT. LENTGH

(METER)

(B'/B-RHO) /M**2

Q1	0.6096	0.5025
02	1.2172	-0.41262
QF/2	0. 3048	0. 1602
03	0.6076	-0. 52436
94	0. 6096	0. 34452
0D	0.6096	-0.1602
0F	0. 6096	0.1602
R13	0.6096	
Q14	0. 6096	-0 005059
015	0. 6096	-0.5
Q1A	0. 6096	0 4727
Q17	0 6096	-0 1642
019	0 6096	0. 2594
00	0.6076	-0 53522
	0.0070	0. JUJEE
	0. 6076	0. 04218
QF/2	0.3048	0. 54218
QD/2	0. 3048	-0. 53522
0F2	0.6096	0. 4042
QD2	0. 6096	-0. 42353
Q19	0. 6096	0. 47357
020	0. 6096	-0.799
Q21	1.2192	0.82195
022	1.2192	0. 62407
Q23	0. 6096	-0.849
Q24	0.6096	0.82608
025	1.2192	-0.80589
026	0. 6096	0. 78407
Q27	1.2192	-0.89608
Q28	0. 6096	0, 72807

VERTICAL		DIPOLES	EFFECT. LENGTH	S	TRENGTH
			(METERS)		(B/B-RHO) /M
	V1	·	1.83	UP	0. 05726
	V1:	ŧ-	1.83	DOWN	0. 05726
	V3:	ŧ	1.3716		
	V4		1.3716	DOWN	0. 058357
	V5		3. 6576	UP	0. 021884

HORIZ. DIPOLE	EFFECT. LENGTH	STRENGTH
	(METERS)	(B/B-RHO) /M
В	1. 3716	0. 0409

RF ROTATION AND STACKING

KINETIC ENERGY BETA GAMMA MOMENTUM, (P) MAGNETIC RIGIDITY (B-RHD) PRECODLER RING RADIUS (R) RF FREQUENCY (FA) HARMONIC NUMBER (H) TRANSITION ENERGY (GAMMA-TI)

CAPTURE:

PBAR-BUNH AREA (95% OF BEAM) MOMENTUM SPREAD FULL DELTA-P/P, (UNIFORM DISTR.) BUNCH LENGTH (RMS) RF VOLTAGE AT CAPTURE (STATIONARY BUCKET) PHASE OSCILLATION PERIOD

BUNCH ROTATION:

TIME PERIOD FOR ROTATION

BUCKET REDUCTION:

FINAL VOLTAGE (STATIONARY BUCKET) BUCKET HALF-HEIGHT, DELTA-P/P BUCKET AREA TIME TO DROP VOLTAGE TO FINAL VALUE AT THE END OF ROTATION PHASE OSCILLATION PERIOD

TRANSFORMATION TO MOVING BUCKET:

RF VOLTAGE FOR MOVING BUCKET RF PHASE FOR MOVING BUCKET MOVING BUCKET AREA MOVING BUCKET HALF-HEIGHT, DP/P PHASE OSCILLATION PERIOD TIME FOR TRANSFORMATION 4.5 GEV 0.985 5.796 5.3567 GEV/C 178.7 KG-M 75.4717 M 52.31 MHZ 84 10.24624

0.15 EV-SEC

1.0 % 21.0 CM

400 KV 0.367 MSEC

94 MICRO-SEC

19 KV

0.12 % 0.154 EV-SEC

8 MICRO-SEC 1.68 MSEC

33.0 KV 173 DEGREES 0.154 EV-SEC 0.18 % 1.29 MSEC 1.6 MSEC

STACKING WITH MOVING BUCKET:

MOMENTUM VARIATION SWEPT, DP/P ENERGY VARIATION ENERGY GAIN PER TURN NO. OF REVOLUTION DURING STACKING TIME FOR STACKING RF FREQUENCY SWING (DF/F) VARIATION OF RF FREQUENCY	4.0 % 213 MEV 4 KEV 53,000 85 MSEC 8.0* 10EXP-4 500 HZ/MSEC		
TRANSFORMATION TO STATIONARY BUCKET:			
RF VOLTAGE FOR STATIONARY BUCKET RF PHASE FOR STATIONARY BUCKET STATIONARY BUCKET AREA STATIONARY BUCKET HALF-HEIGHT, DP/P PHASE OSCILLATION PERIOD TIME FOR TRANSFORMATION	19 KV 180 DEGREES 0.154 EV-SEC 0.12 % 1.68 MSEC 1.6 MSEC		
ADIABATIC DEBUNCHING			
FINAL VOLTAGE TIME REQUIRED TO TURN OFF RF FINAL BEAM MOMENTUM SPREAD, DP/P (FULL)	0.0 V 1.5 MSEC 0.17 %		
OVERALL STACKING PARAMETERS			
ND. OF PULSES STACKED/ MAIN RING CYCLE ND. OF PBARS PER PULSE FINAL MOMENTUM SPREAD, DP/P (FULL) STACKING EFFICIENCY (INCLUDING	13 1.62* 10EXP 2.16 %		
DILUTION DURING BUNCH ROTATION)	0.88		

6

5.0 %

FRACTION OF OVERALL BEAM LOSS

RF CAVITIES REQUIREMENT

NO. OF CAVITIES REQUIRED (MR KIND)2VOLTAGE CAN BE PROGRAMMED BY PARAPHASING
MODEST FREQUENCY TUNING RANGE
TOTAL LENGTH OF SYSTEM4.3 M

A. GENERAL

TOP KINETIC ENERGY BETA GAMMA MOMENTUM (P) MAGNETIC RIGIDITY (B-RHD) BENDING FIELD (B) BENDING RADIUS (RHO) AVERAGE RADIUS (R) REVOLUTION TIME: 80 GEV 4.5 GEV 200 MEV SUPERPERIODICITY FOCUSSING STRUCTURE NORMAL CELL STRUCTURE HORIZONTAL BETATRON TUNE VERTICAL BETATRON TUNE TRANSITION ENERGY (GAMMA-T) NATURAL CHROMATICITY: HORIZONTAL VERTICAL

8.0 GEV 0.99448 9.5264 8.8889 GEV/C 296.5 KG-M 12.127 KG 24.449255 M 75.4717 628.71 KHZ 622.72 KHZ 357.93 KHZ 2 SEPARATED FUNCTION FODO 11.415 11.393 10.246 -18.35 -17.68

B. MAGNETS

NUMBER OF	DIPOLES		112
LENGTH OF	DIPOLES		-
EFFECTIVE	LENGTH OF	DIPOLES	1.3716 M
SAGITTA			0.962 CM

QUADRUPOLES:

TYPE		NUMBER	EFFECT. LENGTH	STRENGTH (B'/B-RHO)
QF		24	2 FT	.542162 M-2
QD		28	2	535217
101		4	1.3716 M	. 292781
102		4	1.143	380244
103		4	1. 524	. 455736
QD1		4	0. 9906	468417
QF1		4	0. 7874	. 403642
QD2	FT	4	2 FT	42353
QF2		4	2	. 40420
QF9		4	4	. 308953
201		4	4	359801
202		4	4	. 361397
203		4	4	406104

C. DRIFT LENGTHS

0	. 3048	M
00	. 72963	
000	4.08243	
LL	10.00000	
L11	1.96582	
L1	1.1159	
L2	2.67062	
L3	. 2667	
01	. 45	
02	2, 26083	
03	1.80250	
04	0. 90833	
05	0.217213	
05	. 817217	
LL*	9.9238	
L2*	2.55632	
000*	4.10783	
00*	. 64073	
L4	. 77763	
L5	. 9144	
LS	1.64192	

D. LATTICE STRUCTURE

D1. CELLS:

. BB . BB*	00 00*	B B	0 0	B B	0 0		
. C	QD	. BB	QF	QF	. BB	QD	
. C2	QD2	. BB	QF2	QF2	. BB . BB*	QD2 QD	
. C3	QD	. BB	QF	QF	000	QD	
. C8	QD	01	В	02	QF	*	
	QF	03	В	04	QD		
. DF9	QD	05	В	0	В	06	QF9

CELL LENGTH:

9.3841 M

D2. LONG STRAIGHT SECTION:

WITH DISPERSION . S1 L3 LL* 1Q1 101 102 102 L6 L1 L5 103 103 L3 QD1 WITHOUT DISPERSION Ľ2 203 L11 . S2 QF9 L3 203 202 202 201 201 0 LL

PRECODLER INJECTION

KINETIC ENERGY AT INJECTION MOMENTUM MAGNETIC RIGIDITY EMITTANCE INJECTED (H AND V) MOMENTUM SPREAD INJECTED, FULL DP/P METHOD LOCATION OF HORIZ. BUMP LOCATION OF VERTICAL INJECT. MI ORBIT SEPARATION AT SEPTUM STRUCTURE OF HORIZ. BUMP:	4.5 GEV 5.3567 GEV/C 178.7 KG-M 20 PI-MM-MRAD 1.0 % VERTICAL INJECTION ON A FULL APERTURE HORIZONTAL ORBIT BUMP SOUTH LONG STRAIGHT IDDLE OF SOUTH LONG STRAIGHT 6.5 CM
K4 O 2(QF2) O B O B OC O B O B OO* 2(QF1) O L* 2(QD1) L3 2(1Q3) L2 K2 L1 L3 2(1Q1) L5 K1 LL* 5/2	0 2(QD1) K3 2(1Q2)
KICKERS: K1 K2	КЗ К4
EFF.LENGTH2.001.8288STRENGTH0.350.35RISE TIME180180H.APERT.10.3.0V.APERT.2.54.0	1.5967150.477M0.350.35KG180180NSEC7.03.0IN3.01.5IN
SEPTUM MAGNET: S	
SEPTUM THICKNESS EFFECTIVE LENGTH (2*S/2) STRENGTH INJECTION ANGLE	10 MM 12 FT 4.0 KG 80 MRAD
VERTICAL SEPARATION BETWEEN BEAM AXIS	50 IN
DRIFT ELEMENTS:	
0 00 00* L3 LL* L* L2 L1 LS	SEE TABLE 7 4.095 M 2.206315 0.72752 1.1159 2.00
QUADRUPOLES:	
QF1 QD1 1Q1 1Q2 1Q3 QF2 QD2	SEE TABLE 7

.

•.

.

•

STOCHASTIC COOLING

MODE BEAM NO. OF COOLING STEPS (SEE TABLE 9) PRECOOLER RADIUS TRANSITION ENERGY (GAMMA-T) NO. OF COOLING DEVICES PICK-UP LONG STRAIGHT SECTION KICKER LONG STRAIGHT SECTION NO. OF PARTICLES COOLED NOTCH FILTER NO. OF TANKS OF PICK-UPS/KICKERS NO. OF PICK-UPS/KICKERS PER TANK TOTAL NO. OF PICK-UPS/KICKERS IMPEDANCE PER PICK-UP PER KICKER LENGTH PER PICK-UP/KICKER OVERALL TRANSVERSE DIMENSION OF TANKS NO. OF PREMPLIFIERS NO. OF MAJOR AMPLIFICATION STATIONS AMPLIFIER TOTAL RATED POWER PRE-AMP NOISE LEVEL DISTANCE BETWEEN PICK-UPS AND KICKERS NORMALIZED TO CIRCUMFERENCE LOCATION OF PICK-UP STATION LOCATION OF KICKER STATION TIME DISTANCE BETWEEN PICK-UPS AND KICKERS COLLECTION POINT IN STRAIGHT L INE

MOMENTUM DEBUNCHED З 75.4717 M 10.24624 1 20. M 20. M 2.0* 10EXP 7 CIRCUMFERENCE LENGTH SHORTED 8 32 256 30 OHM 80 OHM 5 CM 1 FT 6 1 10. KW 1.8 DB 0.4 WEST LONG STRAIGHT

470 NSEC

EAST LONG STRAIGHT

D3. ARC SECTOR:

. ARC . C1 . C2 . C3 . C . C . C . C . C8 . DF9

D4. QUADRANT STRUCTURE:

. SPH . S1 . ARC . S2

D5. SUPERPERIOD:

. SPH REFLECT (. SPH)

E. LATTIC E FUNCTIONS

	ВЕТА, Н	ΒΕΤΑ, Υ	ETA
MAXIMA REGULAR CELL:	60.22 M	56.80 M	-2.74 M
MAX	16.	16.	1.3
MIN	2.5	2.5	0.6
MIDDLE OF LONG	STRAIGHT "WITH"	DISPERSION (.S1)	
	9.9862	10.0506	-2.7427
MIDDLE OF LONG	STRAIGHT "WITHOU	T" DISPERSION (. S	32)
	10.3516	6.0182	0,00

COOLING STEPS:

			· · · · · · · · · · · · · · · · · · ·
STEP	#1	#2	#3
KINETIC ENERGY, GEV	4.5	2.4	0.9
BETA	0. 985	0. 959	0.860
GAMMA	5.796	3. 558	1.959
ETA	0. 021	0.070	0.251
REVOLUTION FREQ., KHZ	622.72	606, 28	543. 70
BANDWITH, MHZ LOW	100	100	100
HIGH	500	500	500
LOWER HARMONIC	160	164	183
UPPER HARMONIC	803	825	920
INITIAL DP/P, FULL (%)	2.0	0.494	0. 272
FINAL DP/P, FULL (%)	0. 288	0.133	0. 0464
COOLING TIME, SEC	4.5	1.25	0.75
OVERALL LOOP GAIN (DB)	236	230	220
POWER AT KICKERS (RMS) :			
AMPLIFIER NOISE (KW)	5.0	1.6	0. 08
SCHOTTKY SIGNALS (KW)	0.8	0.1	0.015
BEAM TRANSIT TIME FROM P.U.			
TO KICKERS (NSEC)	640	658	733

DECELERATION IN THE PRECODLER

SEQUENCE OF EVENTS	TIME	KINET. ENERGY	REF
INJECTION OF 1ST BATCH END OF RF STACKING FIRST STEP OF STOCH. COOL. FIRST STAGE OF DECELERAT SECOND STEP OF STOCH. COOL.	0.0 SEC 1.3 5.8 6.38 7.63	4.5 GEV 4.5 4.5 4.5-2.4 2.4	TAB. 5 6 8
SECOND STAGE OF DECELERAT. THIRD STEP OF STOCH. COOL.	8.105 8.855 8.32	2.4-0.9 2.4-0.9 0.9	8
BUNCHING PRIOR TRANSFER TO ELECTRON ACCUMULATOR	9. 397	0. 204	10
NUMBER OF PBAR'S DECELER TRANSITION ENERGY (GAMMA PRECOOLER AVERAGE RADIUS	RATED A-TI) S	2.0* 10EXP 10.246 75.4717 M	7

FIRST STAGE OF DECELERATION (4.5 - 2.4 GEV)

KINETIC ENERGIE	ES		4.5 - 2.4 GEV
BETA			0.985-0.959
GAMMA			5.796-3.558
MOMENTUM SPREAD), DP/P		
FULL, AFTER (COLING, 4.5 GEV		0 300 %
REVOLUTION PER	100. 4 5 GEV		1 & MTCDD_CCC
TOTAL REAM AREA			
	ר נ		24 EV-3EC
RF FREQUENCY;			5.604 MHZ
	2.4 GEV	0.0T	5.470 MHZ
STATIUNARY BUCK	EL, 4.5 GEV FUR	CAPTURE:	
VOLTA	4GE		11.6 KV
SINGL	E BUCKET AREA		3.33 EV-SEC
SINGL	E BUNCH AREA		2.66 EV-SEC
BUCKE	ET HEIGHT, FULL I)P/P	0.556 %
SYNC	ROTRON PERIOD		6.38 MSEC
ADIABATIC CAPTU	JRE + TRANSFORMAT	TION TO	
MOVING BUG	KET TIME PERIOD		30 MSEC
DECELERATION RA	TE		
TIME REQUIRED F	OR DECELERATION		0 54 SEC
DE DADAMETERS	IS KINETIC ENERG		0.04 020
KI PAKAILICKO	O. MINEIIO ENENO	71 \7\ 7	
KE	PHASE AND E		EDEQUENCY
r			FREQUENCY
4.5 GEV	O, O DEG	11.6 KEV	5 604 MH7
4.4	12.3	29.7	5 601
4 0	10.4	34 9	5 50
1. W	A. W. 1	w /	W. W/

45.5

60.8

84.4

65. 3

5.56

5. 52

5.47

5.46

8.0

6.0

4. 3

0.0

3.5

3.0

2.5

2.4

MOVING BUCKET AREA (SINGLE) STATIONARY BUCKET , 2.4 GEV: VOLTAGE PHASE ANGLE BUCKET AREA (SINGLE) BUCKET HEIGHT, FULL DP/P SYNCHROTRON PERIOD TRANSFORMATION TO STATIONARY BUCKET PLUS ADIABATIC DEBUNCHING TAKES TOTAL TIME FOR 1ST STAGE OF DECELERAT. FINAL MOMENTUM SPREAD, 2.4 GEV DEBUNCHED AND FULL, DP/P SECOND STAGE OF DECELERATION (2.4 - 0.9 GEV) KINETIC ENERGIES 2.4 - 0.9 GEV 0. 959-0. 860 BETA GAMMA 3.558 - 1.959MOMENTUM SPREAD, DP/P FULL, AFTER COOLING, 2.4 GEV 0.13 % REVOLUTION PERIOD, 2.4 GEV 1.65 MICRO-SEC TOTAL BEAM AREA 6.8 EV-SEC HARMONIC NUMBER 10 RF FREQUENCY, 2.4 GEV 6.067 MHZ 0.9 GEV 5.436 MHZ STATIONARY BUCKET, 2.4 GEV FOR CAPTURE: VOLTAGE 4.54 KV SINGLE BUCKET AREA 0.75 EV-SEC 0.12 % BUCKET HEIGHT, FULL DP/P SYNCHROTRON PERIOD 4.1 MSEC ADIABATIC CAPTURE + TRANSFORMATION TO MOVING BUCKET TIME PERIOD 30 MSEC DECELERATION RATE 4. 0 GEV/SEC TIME REQUIRED FOR DECELERATION 0.435 SEC UDI TAAT 2. 2 1 1 0 MOVING BUCKET AREA (SINGLE) STATIONARY BUCKET, 0.9 GEV: VOLTAGE PHASE ANGLE BUCKET HEIGHT, FULL DP/P SYNCHROTRON PERIOD TRANSFORMATION TO STATIONARY BUCKET

10 MSEC

FINAL MOMENTUM SPREAD, 0.9 GEV DEBUNCHED AND FULL, DP/P

PLUS ADIABATIC DEBUNCHING TAKES

TOTAL TIME FOR 2ND STAGE OF DECELERATION

3.33 EV-SEC

65.3 KEV 0.0 DEG 3.33 EV-SEC 0.73 % 1.14 MSEC

10 MSEC 0.58 SEC

0.578 %

RF PARAMETERS VS. KINETIC ENERGY (K.E.)

K. E.	PHASE ANGLE	VULIAGE	FREQUENCY
.4 GEV	O. O DEG	4.54 KV	6.067 MHZ
. 0	16.8	21.9	5.99
. 5	12.6	29.00	5.835
. 0	8.0	45.5	5.54
. 9	. 0. 0	35. 0	5. 437

0.75 EV-SEC 30. 2 KV O. O DEG 0.47 % 0.61 MSEC 0.475 SEC

0.28 %

THIRD STAGE OF DECELERATION (0.9 - 0.2 GEV)

KINETIC ENERGIES	0.9 - 0.204 GEV
BETA	0.860-0.570
GAMMA	1.959-1.217
MOMENTUM SPREAD, DP/P	· · · · · · · · · · · · · · · · · · ·
FULL, AFTER COOLING, 0.9 GEV	0.045 %
REVOLUTION PERIOD, 0.9 GEV	1.84 MICRO-SEC
TOTAL BEAM AREA	1.15 EV-SEC
HARMONIC NUMBER	14
RF FREQUENCY, 0.9 GEV	7. 61 MHZ
0.2 GEV	5.01 MHZ
STATIONARY BUCKET, 0.9 GEV FOR CAPTURE:	
VOLTAGE	1.17 KV
SINGLE BUCKET AREA	0.09 EV-SEC
BUCKET HEIGHT, FULL DP/P	0. 08 %
SYNCHROTRON PERIOD	2.6 MSEC
ADIABATIC CAPTURE + TRANSFORMATION TO	
MOVING BUCKET TIME PERIOD	45 MSEC
DECELERATION RATE	2.0 GEV/SEC
TIME REQUIRED FOR DECELERATION	0.41 SEC
RF PARAMETERS VS. KINETIC ENERGY (K.E.)	

.

K. E.	PHASE ANGLE	VOLTAGE	FREQUENCY
0.9 GEV	O. O DEG	1.15 KV	7.61 MHZ
0.6	21.	8.8	7.01
0.4	17.	10.8	6. 31
0.3	15.5	11.9	5.78
0.2	0. 0	5.0	5.01

MOVING BUCKET AREA (SINGLE)	0.09 EV-SEC
STATIONARY BUCKET, 200 MEV:	
VOLTAGE	5.0 KV
BUCKET AREA (SINGLE)	0.09 EV-SEC
BUCKET HEIGHT, FULL DP/P	0.19 %
SYNCHROTRON PERIOD	0. 61 MSEC
TRANSFORMATION TO STATIONARY BUCKET	
PLUS ADIABATIC DEBUNCHING TAKES	10 MSEC
TOTAL TIME FOR 3RD STAGE OF DECELERATION	0.465 SEC
FINAL TOTAL BEAM AREA AT 200 MEV	
AFTER DEBUNCHING	1.25 EV-SEC

ELECTRON RING PARAMETERS

.

A. GENERAL

KINETIC ENERGY	0.2-1.4 GEV
BENDING FIELD	2.35-7.79 KG
BENDING RADIUS (RHO)	9.17 M
AVERAGE RADIUS	32.35 M
REVOLUTION TIME	1197-740 NSEC
SUPERPERIODICITY:	
WITHOUT ELECTRON BEAM	2
WITH ELECTRON BEAM	1
FOCUSSING STRUCTURE	SEPARATED FUNCTION
NORMAL CELL STRUCTURE	FODO
NORMAL WORKING POINT:	
HORIZONTAL TUNE	4. 102
VERTICAL TUNE	5. 390
TRANSITION ENERGY (GAMMA-TI)	4. 089
NATURAL CHROMATICITY:	
HORIZONTAL	-7.410
VERTICAL	-6.407

B. MAGNETS

NUMBER OF	DIPOLES	4 4	
LENGTH OF	DIPOLES	48.00	IN
EFFECTIVE	LENGTH OF DIPOLES	51.52	IN
NUMBER OF	QUADRUPOLES	4 4	
LENGTH OF	QUADRUPOLES	24.00	IN
EFFECTIVE	LENGTH OF QUADRUPOLES	26.64	IN

QUADRUPOLE GRADIENTS AT 1.4 GEV:

QF	36.24 KG/M
QD -	-33. 43
Q1 -	-47.85
Q2	55.33
Q3	-12.50
Q9	28.65
Q10	-36.42
Q11	19.03

D. APERTURE AND ACCEPTANCE

NOMINAL VACCU	M CHAMBER APERTURE:	
	HORIZONTAL (HALF)	89 MM
	VERTICAL (HALF)	25 MM
SAGITTA		21.8 MM
AVAILABLE HOR	IZONTAL APERTURE (HALF)	78 MM

LATTICE FUNCTIONS

	MAXIMA	IN DIPOLE	L. S.	S. S.
вета н	48.23 M	19.50 M	12.93 M	10.37 M
BETA V	19.44	13.25	10.11	11.48
ETA	3.65	3.55	0.06	3.51

ACCEPTANCE (USING BEAM SIZE IN DIPOLES)

AV	I	2*25	MM	, ,	EPS	V	=	47 PI-MM-MRAD
AH	=	2*78	MM	,	EPS	Н	=	40 PI-MM-MRAD
					DP/P		=	0.5 % (FULL)

DP/P (RF STACKING) = 2.37 % (FULL)

(THIS IS THE ACCEPTANCE FOR TWO BEAMS AS GIVEN ABOVE WITH A SEPARATION OF 10 MM AT THE INJECTION SEPTUM).

FINAL BUNCHING AT 204 MEV .

TOTAL BEAM AREA HARMONIC NUMBER RF FREQUENCY STATIONARY BUCKET: VOLTAGE SYNCHROTRON PERIOD BUCKET AREA BUCKET HEIGHT, FULL DP/P TIME FOR ADIABATIC CAPTURE VOLTAGE JUMP BUCKET AREA BUCKET HEIGHT, FULL DP/P SYNCHROTRON PERIOD TIME TO RAISE VOLTAGE 90 DEG. BUNCH ROTATION FINAL MOMENTUM SPREAD, FULL DP/P FINAL BUNCH LENGTH, FULL

1.3 EV-SEC 1 360. 36 KHZ 2.0 KV 3.8 MSEC 3.0 EV-SEC 0.46 % 10 MSEC FROM 2.0 TO 3.85 4.14 EV-SEC 0.64 % 2.65 MSEC 10 MICRO-SEC 0.67 MSEC 0.45 % 1. O MICRO-SEC

TRANSFER OF PBARS TO MAIN RING

EXTRACTION METHOD: SINGLE TURN FAST FULL APERTURE EXTRACTION OCCURS HORIZONTALLY TO OUTSIDE, AT UPSTREAM END OF EAST LONG STRAIGHT SECTION TRANSPORT CHANNEL: KINETIC ENERGY 8.0 GEV

EMITTANCE (H AND V) 2.0 PI-MM-MRAD MOMENTUM SPREAD (+/-) 0.1 %

KICKERS:

	#1	#2
LOCATION		
FIELD	250 G	250 G
RISE TIME	1.5 MICRO-SEC	1.5 MICRO-SEC
APERTURE, H		
V		•
EFFECT. LENGTH	2.00 M	2.00 M

SEQUENCE OF MAGNET SECTORS:

1. TRANSLATOR

	203	S1	B1	52	B2	53	Q1	54	Q2	S5	вЗ
2.	LONG	STRA	IGHT	TRANS	PORT						
	D6 QD	Q3 57	52	Q4	S7	QF	58	QD	58	QF	S 8
з.	BEND	LEFT									
	Q5 Q7 Q9/2	OS OS	B B	05 05	os B	ପଧ ପ୍ରଟ	OS OS	B	OS OS	B B	0
4.	MATCH	HING	AND V	ERTIC	AL TR	ANSLA	TION				
	09/2	S2	Q10	S11	VЗ	S12	Q11	S13	Q12	S13	Q11

512 V3*

5. MATCHING FODD

OS Q13 D14 Q14 S4 QF/2

- 6. MATCHING PLUS FODO TRANSPORT QF/2 S19 QD S19 QF S19 QD S19 QF S18 QD S17 Q18 S16 Q17 S15 (IN THE MIDDLE OF V1*)
- 7. VERTICAL TRANSLATION TO TARGET

S21 V1* S22 Q15 S23 Q16 S24 Q15 S24 Q16 S23 Q15 S2 V1 S1

DRIFTS

LENGHTS

S1	0.25 METER				
52	1.0				
53	3.5147				
S4	1.5				
55	1.181				
56	14.332				
S7	5. 3904				
58	14. 0757				
59	10. 2205				
OS	0.5				
S10	-				
S11	0.6954				
S12	5. 9185				
513	4. 999				
514	1.354				
S15	3.0				
S16	3. 1962				
S17	1.6916				
518	2. 574				
519	14. 0757				
520					
521	- 0.915				
S22	3, 8359				
S23	1.5				
S24	3.5				

QUADRUPOLES	EFFECT. LENGTH	STRENGTH
-	(METER)	(B′/B-RHO) /M**2
Q1	0. 6096	0. 5296
Q2	0. 6096	-0.4697
QG	· H	0.42314
Q4	63	-0.4295
QF	92 [°]	0.1602
QD	11	-0.1602
Q5	12	0.4215
QG	11	-0.3443
Q7	1.2192	0.32715
Q 8	0.6096	0. 2784
Q9/2	FI	0. 43036
Q10	1.2192	-0.4687
Q11	0.6096	-0.5485
Q12	11	0.4423
Q13	12	-0.45869
Q14	88	0. 34931
QF/2	0. 3048	0.1602
Q17	0. 6096	-0. 52436
Q18	88	0. 34452
Q15	38	0. 5025
Q16	1.2192	-0.41262

HORIZ.	DIPOLES	EFFECT. LENGTH	STRENGTH
		(METER)	(B/B-RHO) /M
B	1	1.00	0. 033727
Ba	2	1. 1217	0. 054172
B	3	1.675	0. 062523
В		1.3716	0. 040929

VERT.	DIPOLES	EFFECT. LENGTH	STRENGTH
		(METER)	(B/B-RHO) /M
	/3	1.3716	UP 0. 036928
ų	/ 3*	1.3716	DOWN 0. 036928
۲	V1	1.83	UP 0.05726
	V1*	1.83	DOWN 0.05726

C. STRUCTURE

C1. CURVED SECTION

ELEMENTS IN CURVED SECTION

LE	NG	T	Н
----	----	---	---

DIPOLE		(B)
QUADRUP	OLE	(Q)
DRIFT S	PACE	(0)
DRIFT S	PACE	(00)

CELL STRUCTURE: (QD)O(B)O(B)OO (QF)O(B)O(B)OO

CELL LENGTH

C2. SHORT STRAIGHT

DRIFT	SPACE	(SS)	6.90	FT
11	11 -	(S1)	2.00	FT
11	11	(S2)	6.56	FT
**	11	(S3)	5.77	FT

C3. LONG STRAIGHT

DRIFT	SPACE	(LS)	3	1.80	FT
• •	IJ	(L1)		2.00	FT
81	н	(L2)		2.62	FT
11	33	(L3)	· 1	2.00	FT

C4. DISPERSION SUPPRESSOR

DRIFT	SPACE	(D1)	1.10 F	т
88	31	(D2)	6.90 F	т

C5. QUADRANT STRUCTURE (Q)

SS(Q11)S1(Q10)S2(B)O(Q7)O(B)O(B) S3(QD)O (B)O (B)OO(QF)O(B)O(B) OO(QD)D1(B)D2(QF)D2(B)D1(QD)O(B) O(B)L3(Q3)L2(Q2)L1(Q1)LS

C6. RING STRUCTURE

Q(REFLECT Q)Q(REFLECT Q)

LENTGH OF CENTRAL ORBIT

203. 2296 M 666. 76 FT

28 FT

4 FT 2 FT 1 FT 2 FT

.

Appendix B

Precooler Orbit Listing

									· ·			
	PC01	RUN		• • • • •			•					
	BRHO	-		17. 8	60115	5	· •					
	по	***		. 730	92453	3			1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1			
	вко			-, 25								
	RHO	=		24.4	47255	D			· · · ·			
	RHUT			1.		1		RHO	· · · ·			
	RHOK		*	пко		1		BRHO				
				1 77	1.4	•						
	10			1.97	0							
	L0	=	*		0 /							
	LQL	=		. 609	ບ 							
	LK	£77		1.59	5715			-				
	1.K2	**		LK		/		2.				
	XP	=		LK		*		RHOK				
	х	=		LK2		#		XP	·			
	MUX	-		. 265	33			· ·	•			
	NUV	-		245	77							
	1101			10								
	13 k	<u> </u>		10.					•			
	BX#	-		<i>ю</i> .				• .	•			
	BY*	E3 ·		<i>t</i> .		-		· · · ·				
	C GRA	DIEN	TS K=GR	ADIEN	T/BRH	0		:	• •			
	KF	12		. 539	479							
	KD	==		53	4781							
	K 1	100		. 272	30							
	KD .	12		38	038							
	111	-		455	90				• · · · · · · · · · · · · · · · · · · ·			
	k n i			- 46	045				· · ·			
	KOI			- 36	01000	4						
	.Ne1	-			05070	0	•		•			
	K22	:3		. 303	70003	-						
	K23	=	•	41	30585	J	•					
	KF1	17)		. 40	284							
	KF4	12		. 31	345		•	. .				
	KD2	::		4	2353		<i>.</i> .					
	KE2	1 24		. 40	420				· · · · ·			
	C GPF	CTAL	QUADRUPO	IFIF	NGTHS				• •			
				 60	58							
		_		57	15				·			
						· ·						
	LKS	5.7		. 70	r. r.a							
	LKDI			. 49	53							
	LKF1	8. 2		. 39	37			•	•			
	LK21	2 7		. 30	910							
	LK22	**	•	. 40	825							
	LK23	=		. 47	705				•			
	LKF2			. 33	035							
	C DR1	FT S	PACES									
	n 2011	, 1 U.		304	9							
	00	npt		7:09	43							
	00	NDE		A 09	247							
	000	DRF		-7.00	E-10				,.			
		DRT		10.	c.00							
	LII	DRF		1.70	002							
	L.1	DRF		1.11	59		•		•			
	L2	ากฉ		2.67	062							
	L3	DRF		. 266	7			•	•			
	LL #	DRF		9, 92	38							
	L2*	DRF		2, 55	632							
	000*	DHE		4, 10	703	•						
	000-	DDF		440	73				· · · · ·			
		nne		777	63	÷ 1						
·	L4 	NUL		. / / /	ала Л							
	L5	DRF		. 914	100				* · · · · · · · · · · · · · · · · · · ·			
	L6	DBL		1-64	172							
)1P	C	AGN -			-						
	B	MAG		LB		<u>,</u> 0,		1.	RHUT -			
.DF .DF*	BNL - BNI.	e.	ດນ ດກາ -	, BB BDD#	QF QF1		,					
---	--	---------	--	--	---	--------------	--	----------	-------	---------------------------------------	-------	-----
. DI-1	BNL		QD1	000*	OF1			,				
. FD1	BNL		QF 1	.BB*	OD2 -							
.FD	DML.		OF	. BB	QD				•			
, C	BNL		. DF	.FD								
. 01	111L 17MI		. DI-1	. PDI	052	052	ВD	on				
. 03	BML		QD	. 88	01=	QF	000	QD				
. CD	UNL		QD	DI	n	02	0F	QF-	03	в	D4	QD
. DF9	BML		QD	. B B9	of9		•					
. ARC	BML		. C1	. C2	. C3	. C	. C	. C	, C	. CB	. DF9	107
. 51	BML		LLF	101	101	LB	102	102	LI	L5	L6	103
52	RMI	-1	142	201	201	n	202	202	1.11	1.2	203	203
. 042	471 164	•	0	QF7		- · ·						
. SPH	BML		. 51	. ARC	. 52							
. MM	DML.		. CØ	QD	. BB 7			· · ·				
. 551	BNL	-1	. 51	. DF1	0F1 67	CC3K		•		•		
. 352 C	Brit			. DF 7	. ೧೯	•		•				
P NOF	MAL CE	LLS	•	`						•	· .	
DU	SUB											
QF	MAG		LQ		KF		1.					
α <i>ρ</i> ,	MAG		L(ł		KD		1.			,		
C	FIFIFI			·		•						
	1.143.		_	~		14 13						
	FITO		DO	G	Nr.	nμ		1	1 MUX		MUY	
CR	FITO REF		DC C	C.	KF.			1	IMUX		MUY	٠
CR QD2	FITQ REF NAQ		ม C L ด	L.	KD2	ΝIJ	1.	1	1MUX		MUY	•
CR QD2 QF2	FITO REF NAG NAG			c.	KD2 KF2	сл.	1. 1.	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R	FITO REF NAG MAG NNM REF		DO C LQ LQ . BD* CC3	с. GD2	KD2 KF2 . C2	. C3	1. 1.	1	1MUX		MUY	•
CR QD2 QF2 CC3 CC3R	FITQ REF MAQ MAQ MNM REF CYC		DC C LQ LQ . BD* CC3 . C	QD2	KD2 KF2 . C2	. C3	1. 1.	1	IMUX		MUY	•
CR QD2 QF2 CC3 CC3R	FITQ REF MAG MAG MNM REF CYC	· •	DD C LQ LQ . BD* CC3 . C	0D2	KD2 KF2 C2	. C3	1. 1.	1	1MUX		MUY	•
CR QD2 QF2 CC3 CC3R C P DIS	FITO REF MAG MAG MNM REF CYC	N SUPPR	DO C LQ LQ .BD* CCO .C	0D2	KD2 KF2 . C2	. C3	1.	1	1 MUX		MUY	•
CR QD2 QF2 CC3 CC3R C P DIE	FITO REF MAG MAG MNM REF CYC SPERSIO	N SUPPR	DO C LQ LQ .BD* CC3 .C ESSOR	0D2	KD2 KF2 . C2	. C3	1. 1.	1	1 MUX	: 	MUY	•
CR QD2 QF2 CC3 CC3R C P DIS NF A1 A2	FITO REF MAG MAG MNM REF CYC SPERSIO SUB	N SUPPR	DO C LQ LQ .BD* CCO .C ESSOR 27 20	GD2 763 04968	KD2 KF2 . C2	. C3	1. 1.	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R P DIS NF A1 A2 A3	FITO REF MAG MAG MNM REF CYC SPERSIO SUB = =	N SUPPR	DO C LQ LQ . BD* CCO . C ESSOR 27' . 200 47	GD2 763 84968 483	KD2 KF2 . C2	. C3	1.	1	1 MUX	· · · · · · · · · · · · · · · · · · ·	MUY	,
CR QD2 QF2 CC3 CC3R P DIS NF A1 A2 A3 D1	FITO REF MAG MAG MNM REF CYC SPERSIO SUB = = =	N SUPPR	DO C LQ LQ . BD* CC3 . C ESSOR 27 ⁴ . 200 47 . 729	GD2 763 84968 483 63	KF KD2 KF2 . C2	. C3	1. 1. A1	1	1MUX		MUY	
CR QD2 QF2 CC3 CC3R P DIS NF A1 A2 A3 D1 D4	FITO REF MAG MAG MNM REF CYC SPERSIO SUB = = =	N SUPPR	DO C LQ . BD* CCO . C ESSOR 27' . 200 47 . 729 . 729	GD2 763 84968 483 63	КР КР2 КР2 . С2 + +	. C3	1. 1. A1 A2	1	1MUX		MUY	
CR QD2 QF2 CC3 CC3R C P DIS NF A1 A2 A3 D1 D4 D5	FITO REF MAG MAG MNM REF CYC SPERSIO SUB = = =	N SUPPR	DO C LQ . DD* CCO . C ESSOR 27 . 200 47 . 729 . 729 . 729	GD2 763 04968 483 63 63	KF KD2 KF2 . C2 + +	. C3	1. 1. A1 A2 A3 A1	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R P DIS NF A1 A2 A3 D1 D4 D5 D2 D2	FITO REF MAG MAG MNM REF CYC SUB SUB = = = =	N SUPPR	DO C LQ .DD* CCO .C ESSOR 27 .20 47 .729 .729 .729 .729 .729 .729 .729	GD2 763 84968 483 63 63 12	KD2 KF2 . C2 + + +	. C3	1. 1. A1 A2 A3 A2 A3	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R P DI9 NF A1 A2 A3 D1 D4 D5 D2 D4 D5 D2 D4	FITO REF MAG MAG MNM REF CYC SUB SUB	N SUPPR	DO C LQ LQ . DD* CCO . C ESSOR 27 . 20 47 . 20 47 . 729 . 729 1. 78 1. 78 304	GD2 763 B4968 483 63 53 12 12 B	KF KD2 KF2 C2 +++	. C3	1. 1. A1 A2 A3 A1 A2 A3	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R P DIS NF A1 A2 A3 D1 D4 D5 D2 D3 D6 O1	FITO REF MAG MAG MNM REF CYC SUB SUB SUB SUB	N SUPPR	DO C LQ LQ CC3 . C ESSOR 27 . 200 47 . 729 . 729 . 729 1. 78 1. 78 1. 78 1. 304 D1	GD2 763 84968 483 63 63 63 63 63 63 63 63 63 63 63 63 63	KF KD2 KF2 C2 +++	. C3	1. 1. A1 A2 A3 A1 A2 A3	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R P DI9 NF A1 A2 D1 D4 D5 D2 D3 D4 D1 D2 D3 D4 D2 D3 D4 D2 D3 D4 D2 D3 D4 D2 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3	FITO REF MAG MAG MNM REF CYC SUB SUB SUB SUB SUB SUB SUB	N SUPPR	DO C LQ LQ CC3 . C ESSOR 27 . 20 . C 20 47 . 729 . 729 . 729 1. 98 1. 98 1. 98 1. 304 D1 D2	GD2 763 84968 483 63 63 63 63 63 63 63 63 63 63 63 63 63	KF KD2 KF2 . C2 ++++	. C3	1. 1. A1 A2 A1 A2 A3	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R P DI9 NF A1 A2 A3 D1 D4 D5 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D1 D2 D3 D4 D3 D4 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D3 D3 D4 D3 D3 D3 D3 D3 D3 D3 D3 D4 D3 D3 D3 D3 D4 D3 D3 D3 D3 D4 D3 D3 D3 D3 D3 D4 D3 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D4 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D4 D3 D3 D3 D3 D4 D3 D3 D3 D3 D4 D3 D3 D3 D3 D3 D3 D3 D3 D3 D3	FITO REF MAG MAG MNM REF CYC SUB = = = DRF DRF DRF DRF	N SUPPR	DO C LQ LQ CC3 . C ESSOR 27 . 200 47 . 729 . 729 . 729 . 729 . 729 . 729 1. 78 1. 98 1. 98 . 304 D1 D2 D3	QD2 763 84968 483 63 63 63 63 63 63 63 63 63 63 63 63 63	KF KD2 KF2 . C2 +++	. C3	1. 1. A1 A2 A3 A1 A2 A3	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R P DI9 P DI9 NF A1 A2 A3 D1 D4 D5 D2 D3 D4 D1 D2 D3 D4 D2 D3 D4 D2 D3 D4 D2 D3 D4 D3 D4 D3 D4 D3 D4 D3 D4 D3 D4 D3 D4 D5 D3 D4 D3 D4 D5 D3 D4 D4 D5 D3 D4 D5 D4 D4 D5 D4 D4 D5 D4 D4 D5 D4 D4 D5 D4 D4 D5 D4 D5 D4 D4 D5 D4 D5 D4 D4 D5 D4 D4 D5 D4 D5 D4 D4 D5 D5 D4 D5 D5 D4 D5 D5 D4 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5	FITO REF MAG MAG MNM REF CYC SUB SUB SUB SUB SUB SUB SUB SUB SUB	N SUPPR	DO C LQ LQ CC CC CC ESSOR 27 . 200 47 . 729 . 729 . 729 . 729 . 729 1. 78 1. 98 1. 98 1. 98 . 304 D1 D2 D3 D4 D5	QD2 763 84968 403 63 63 63 12 12 12 8	KF KD2 KF2 . C2 +++	. C3	1. 1. A1 A2 A3 A1 A2 A3	1	1 MUX			
CR QD2 QF2 CC3 CC3R P DIS P DIS NF A1 A2 A3 D1 D4 D5 D2 D3 D4 D1 D4 D5 D2 D3 D4 D5 D2 D3 D4 D5 D3 D4 D5 D3 D4 D5 D3 D4 D5 D3 D4 D5 D3 D4 D5 D5 D3 D4 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5	FITO REF MAG MAG MMM REF CYC SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB	N SUPPR	DO C LQ LQ CC CC CC ESSOR 27' . 200 47 . 729 . 729 . 729 . 729 1. 78 1. 78 1. 98 1. 98 1. 98 1. 98 1. 98 1. 90 1 D2 D3 D4 D5 D4	QD2 763 84968 483 63 63 63 12 12 12 8	KF2 KF2 . C2 +++	. C3	1. 1. A1 A2 A3 A1 A2 A3	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R C P DI9 NF A1 A2 A3 D1 D4 D5 D2 D3 D4 D5 D2 D3 D4 D5 D2 D3 D4 D5 D2 D3 D4 D5 D7 CC3R C TM	FITO REF MAG MAG MMM REF CYC SPERSIO SUB = = = DRF DRF DRF DRF DRF DRF DRF DRF	N SUPPR	DO C LQ LQ . BD* CCO . C ESSOR 27 . 200 47 . 729 . 729 . 729 . 729 . 729 1. 78 1. 98 1. 98 1. 98 1. 98 1. 98 . 304 D1 D2 D3 D4 D5 D4	GD2 763 84968 483 63 63 12 12 12 8 63	KF KD2 KF2 . C2 +++	. C3	1. 1. A1 A2 A3 A1 A2 A3	0 1	1MUX		MUY	
CR QD2 QF2 CC3 CC3R C P DI5 D4 D5 D2 D3 D4 D5 D2 D3 D4 D5 D2 D3 D4 D5 D2 D3 D4 D5 D2 D3 D4 D5 D4 D5 D4 D5 D4 D5 D4 D5 D5 D4 D5 D5 D4 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5	FITO REF MAG MMM REF CYC SPERSIO SUB = = = DRF DRF DRF DRF DRF DRF DRF DRF DRF DRF	N SUPPR	DO C LQ LQ . DD* CCO . C ESSOR 27 . 200 47 . 729 . 204 D1 D2 D3 D4 D5 D4 D5 D4 . 05 . MN	GD2 763 04968 483 63 63 63 63 63 63 63 63 63 63 63 63 63	KF KD2 KF2 . C2 + + + +	. C3	1. 1. 1. A1 A2 A3 A1 A2 A3	1	1MUX		MUY	
CR QD2 QF2 CC3 CC3R C DIE NF A1 D4 D5 D2 D4 D5 D2 D4 D5 D2 D4 D5 D4 D5 D4 D5 D4 D7 D4 D5 D4 D7 D4 D7 D7 D7 D7 D7 D7 D7 D7 D7 D7	FITO REF MAG MAG MNM REF CYC SPERSIO SUB = = = DRF DRF DRF DRF DRF DRF DRF DRF	N SUPPR	DO C LQ LQ . DD* CCO . C ESSOR 27 . 200 47 . 729 . 204 DJ DJ DJ DJ DJ DJ DJ DJ DJ DJ DJ DJ DJ	GD2 763 B4968 483 63 63 12 12 B C	KF KD2 KF2 . C2 + + + +	. C3	1. 1. A1 A2 A3 A1 A2 A3	1	1 MUX		MUY	
CR QD2 QF2 CC3 CC3R C DIS NF A1 D4 D5 D2 D3 D4 D5 D2 D4 D5 D2 D4 D5 D2 D4 D5 D4 D5 D4 D7 D4 D5 D4 D7 D5 D4 D5 D5 D5 D5 D5 D5 D5 D5 D5 D5	FITO REF MAG MAG MNM REF CYC SUB SUB SUB SUB SUB SUB SUB SUB SUB SUB	N SUPPR	DO C LQ LQ . DD* CCO . C ESSOR 27 . 200 47 . 729 . 729 . 729 1. 78 1. 78 1. 78 1. 78 1. 78 1. 304 DJ D2 D3 D4 D5 D4 D5 D4 D5 D4	GD2 763 B4968 483 63 63 12 12 B C	KF KD2 KF2 . C2 + + + + +	с3 . с3	1. 1. A1 A2 A3 A1 A2 A3	1 0 1	1 MUX		MUY	

SYNCH RUN PCB1

RHO BRHO

2. RHOK XP

***	BRHO	ta	11	17.8601155
***	BO		11	. 730824539
***	вко	ta	11	25
***	RHO	a .	11	24, 4492550
***	RUDT	12	11	1. /
***	RHOK	=	11	BKO Z
***	IR		11	1.3715
***		#	11	3048
***	1.01	12	11	6096
***	I K	æ	11	1.596715
***	1.82	-	11	
***	YP	=	11	
***	x	=	11	1 1 1 2 +
***	MUY		11	26633
***	MUV		11	26577
***	7101 71 M		11	10
***	D X #	-	11	6
***	D/*	-	11	6
	017	PADIENTS K=C		
***	1/17		//	510/70
***	1/17	-	17	- 594791
***	1/17	-	11	29280
***	N1 N1	·	11	- 78078
***	NG 14 2	-	11	A5590
.***	10	-		- 45070 - 46045
***	ND1		1	- 260202
***	Nel I	-		-, 38028700
***	NEE	-	11	. 30370003
***	Kej VEI	_		41303833
***	KP 1			21745
***	NF 9	=		. 31390
***	KD2	-		42303
***	Kr2			. 40420
	51	PECIAL QUADRUP		ENGINS
***	LKI			. 6628
***	LK2	=		. 3713
***	LK3			. /62
***	LKDI	#		, 4953
***	LKF1	Z	· //	. 3937
***	LK21	=	11	. 38710
***	LK22	-		. 40825
***	LK23	2	<i></i>	. 49705
***	LKFY		//	. 33085
	IU DI	(IFI SPACES	- ,,	2010
***	0			
***	00	DRF		. / 2763
***	uuu	DRF		4.08243
***	L.L.	DRI-		10.
****	11		11	1 + 1 50 +
***				1.1107
***	LR.		11	E. D/VOE
***	L.3	אע		. 2007 .
***	LL*			7. 7230
***	1.2*	DRF		2.0002
***	000#	DRF		4. 10/83
***	00#	DRF		. 64073
<u> </u>	LA	Dor.		
	h.,	D	1.	271912 1 22100
		1 1 1 1 1 2 2		3 4441 3 34 3

P STRAIG SRI SUI 101 MA 102 MA 103 MA 001 MA 001 MA 0FI MA	HT SECTION 3 3 3 3 3 3 3 3 4 5 4 5 4 5 4 5 4 5 4 5	ND. 1 LK1 LK2 LK3 LKD1 LKF1 . SS1 CR	WITH DISPERSI K1 1. K2 1. K3 1. KD1 1. KF1 1.	ON		
ENI BX2 = SOI	D _V 4 1	4. SR1 T1 X	18 7(11)00 -6	0. 0	01
C		BX BY K1 K2	K3 KD1 KF1	1 -1.	B* B* 1.	. 001 . 001 . 01
P STRAIG SR2 SU QF7 MA 203 MA 202 NA 202 NA 201 MA T2 TR	HT SECTION 3 3 3 3 3 3 5 5 4 5 4 5 6 6 6 6 7 7 7 7 8 7 8 7 8 7 8 7 8 7 8 7	ND. 2 LOL LOL LOL LOL . 552 C	WITHOUT DISPE KF9 1. K23 1. K22 1. K21 1.	RSION		•
. EN 50	D _V 4 1	SR2 T2 AX AY BX BY	0 29 29		0. 0.]]#]]#	. 0001 . 0001 . 01 . 01
C C BETATR CY FI	DN FUNCTIO C -2	K21 K22 NS THROUGH . SPH	K23 KF9 ONE QUADRANT,	1 -1. Starting at C	1. ENTER OF NO.	.01 1 STRAIGHT

.

.

жжж	רום	กษต		//	にれ		υ.		1.		RHOK		\$F .	
	L٨	TTICE I	DEFINITIC	N								•		
***	. вв	BML		11	00	в	0	B	0			•		
***	BBBs	DNL		11	O	BK	0	BK	Ö					
***	, BB#	BML		11	00*	в	0	B	0					
***	. BB 7	BML		11	05	В	D	B	06					
**	. DF	DNL		11	QD	, BB	QF				· · ·			
***	.DF*	BML		11	QD1	BHB*	QF1	•					•	
***	.DF1	BNL		11	QD1	000*	QF1							
***	.FD1	BML		11	QF1	. BB*	0D2		•					
***	. FD	BML		11	QF	. BD	QD					•		
***	. C	BML		11	. DF	.FD							•	
* * *	. C1	BML		11 -	. DF1	.FD1								
***	. C2	BML		11	QD2	. BB	0F2	QF2	. BB	QD				
***	. C3	BNL		11	QD	. BB	OF	QF	000	QD				
***	. C8	BML		11	QD	D1	в	02	QF	QF	03	B	04	QD
***	.DF9	BNL	•	11	QD	. BB 7	QF7							
***	ARC	BML		11	. C1	. C2	. C3	. C	. C	. C	. C	. CØ	, DF7	
***	. 51	BML		11	LL# '	101	101	L3	102	102	L1	L5	L6	103
*				11	103	L3	QD1							
***	. 52	BML	-1	11	LL	201	201	0	202	202	L11	L2	203	203
*				11	D	0F7			· ·					
***	. SPH	BML		11	. 51	. ARC	. 52		•		• .			
***	. MM	BML		11	. 68	QD	. BB7		,			•		
***	. 551	BML	-1	1,1	. 51	. DF1	GF1	CCOR				÷		
***	. 552	BML		11	. СВ	. DF9	. 52					-		

	POS	S(M)	NUX -	NUY	BETAX (M)	BETAY (M)	ETAX (M)	ETAY(M)	ETAS(M)	ΛΕΙΠΛΧ	ALPHAY	DETAX	DETAY
	0	0.0000	0. 00000	0 . 00000	9. 98616	10.05056	-2.74271	0. 00000	.0, 00000	0, 00000	0. 00000	. 00000	0.00000
	1 LL#	7.7238	. 12450	. 12399	19.84799	19, 84920	-2.74271	0. 00000	0. 00000	97376	98739	. 00000	0. 00000
	2 101	10.6096	. 13007	. 12708	18. 52435	24. 24133	-2.55603	0.00000	0. 00000	2.03441	-5. 70830	. 53815	0.00000
	3 101	11.2954	. 13700	. 13281	12.76701	36, 98583	-2.02140	0.00000	0.00000	5, 17173	-13. 72037	1.00305	0. 00000
	4 L3	11.5621	. 14073	. 13396	10. 16300	44.66923	-1.75389	0. 00000	0.00000	4. 59910	-15.08502	1.00305	0. 00000
•	5 102	12, 1336	. 15214	. 13562	6. 52372	56. 79947	-1.27874	o. 00000 ·	0.00000	2,03727	-5, 25590	. 67691	0 . 00000
	6 102	12.7051	. 16825	. 13721	5.11048	55, 71285	96406	0 . 00000	0. 00000	53712	7.07787	. 43571	0,00000
	7 L1	13.8210	. 20685	. 14092	4.22569	41,05851	47785	0.00000	0.00000	. 25577	6.05444	43571	0, 00000
	9 L5	14.7354	. 24269	, 14502	3.96874	30.75299	-, 07944	0.00000	0. 00000	. 02922	5, 21581	. 43571	0. 00000
	9 L6	16. 3773	, 30571	. 15677	4.56563	16.09752	. 63597	0. 00000	0. 00000	-, 38675	3. 70995	. 43571	· 0. 00000
•	10 103	17. 1393	. 33269	. 16504	4,08761	14, 62229	.87122	0. 00000	0.00000	. 75973	-1.60598	. 16808	0.00000
	11 103	17, 9013	. 37241	. 17212	2.12979	21, 90306	. 88097	0. 00000	0. 00000	1, 37336	-8.77714	14305	0. 00000
	12 L3	18, 1680	. 39632	. 17397	1.49119	26. 93821	. 84282	0.00000	0.00000	1.01555	-9.72736	14305	0. 00000
	13 QD1	18.6633	. 46677	. 17644	. 93153	33, 62608	. 81549	0. 00000	0 . 00000	10734	-3, 44819	.04796	0. 00000
	14 QD1	19.1586	. 54767	. 17876	1.15503	33, 15831	. 89124	0. 00000	0. 00000	62973	4. 35616	. 24453	0. 00000
	15 000*	23. 2665	. 68044	. 22040	25. 62542	7. 53544	1.89572	0. 00000	0. 00000	-5. 57472	1.88141	. 24453	0. 00000
1 - A	16 QF1	23, 6602	. 68265	. 22960	29. 38567	6.56816	1. 93200	0.00000	0.00000	-1,20750	. 62652	06121	0.00000
	17 0F1	24, 0539	. 68479	. 23727	28. 57248	6.50713	1.84803	0.00000	0 . 00000	3, 31175	46829	36313	0.00000
	18 00*	24.6946	. 68965	. 25423	24.50056	7.10415	1.61536	0.00000	0 . 00000	3, 04007	-, 58835.	36313	0.00000
	17 B	26.0662	. 69936	. 20132	16. 94351	9. 12548	1.15601	0.00000	. 07740	2. 45718	82480	30702	0. 00000
	7 /2 0	26 2710	70734	28649	15 47721	9 64539	1.06243	0.00000	. 07740	2. 34151	88072	30702	0. 00000
	, eU U	20.0/10	700.00	70457	9 94450	12 07420	68001	0.00000	12593	1.75731	-1.10545	25090	0. 00000
	51 p	27.7420	77570	31074	8 80404	13 06476	60354	0.00000	. 12573	1.63965	-1.16019	25090	0. 00000
		20.04/4	72104	31400	B 17060	13, 26272	53847	0.00000	. 12593	. 17:49	. 51928	17743	0. 00000
	23 GD2 24 GD2	28.6570	. 73700	. 31776	8. 21477	12. 44814	. 49467	0.00000	. 12593	-, 81732	, 2.11809	- 11076	0. 00000
		70 7044	75077	72879	9 20818	9.59194	41370	0. 00000	12573	74221	1.79651	11096	0.00000
	2000	27.0000	77150	35971	11 55965	5.4704B	30005	0.00000	. 14559	77(107	1,20362	05485	0.00000
	200	30.7362	77567	26071	12 14850	A 77834	28333	0.00000	. 14559	-1.02443	1.06718	05485	0.00000
	27 0	31,0030	70160	. 30020	15 29376	2 48253	24660	0.00000	16010	-1.25532	. 45842	. 00127	0. 00000
	28 8	JE. 4340	. / 7107	. 43070	14 07445	2 44498	24699	0.00000	16010	-1.30555	. 32072	. 00127	0.00000
	29 0	32.7374	. / 94/ 9	. 44770	10.07405	2.94170				11150	- 10447	- 02900	0 00000
	30 QF2	33.0442	. 79777	. 47005	16.27074	2. 37982	. 24275	0.00000	. 16010	- 07307 	- 54574	- 05817	0.00000
	31 QF2	33. 3490	. 80082	. 48782	15.27643	2, 57556	. 22942	0,00000	. 16010	2.04704	04074	- 05917	0.00000
	32 00	34.0786	, 80947	. 52012	11.81696	3,64019	18578	0,00000	. 16010		-1 50070	- 00204	0 00000
	33 B	35.4502	. 83403	. 57166	6.73112	7.07843	. 14569	0.00000	. 16907		-1. 30737	- 00206	0.00000
	34 D	35. 7550	. 84177	, 57807	5.85115	8. 09361	. 14506	0.00000	, 16907	1, 30000	-1./4166	-, 00200	
	35 D	37 1944	89462	59881	3, 02142	13.77433	. 18070	o . 00000	. 17786	, 69547	-2.39393	. 05405	0.00000
	33 0	37. 1200 37 A31A	91182	60215	2. 64307	15.27907	. 19718	0.00000	. 17796	, 54562	-2. 54287	. 05405	0.00000
	30 0	37. 4314	62068	60522	2.47919	16,07576	. 21971	0.00000	. 17786	. 00070	02748	. 08784	0.00000
	37 00	37.7364	95014	60829	2 64218	15.31147	. 25117	0.00000	. 17786	54427	2. 49329	. 12601	0.00000
	39 00	38. 7707	. 98763	. 61688	3. 69758	11. 92402	. 34311	0.00000	. 17786	70222	2. 14940	. 12601	0.00000
	40 P	40 1493	1 0:2074	64107	7, 09321	6. 88623	. 55431	0, 00000	. 20267	-1. 57476	1. 51775	. 18212	0.00000
		40, 1423 40 AA71	1 03714	64861	8,09876	6.00557	. 60982	o. ooooo	. 20267	-1.72427	1, 37153	, 18212	0.00000
	-47 U	A1 0107	1 05790	69982	13, 74832	3, 13275	. 89796	0. 00000	. 24462	-2, 37693	. 71968	. 23824	0.00000
	76 D 47 D	40 1025	1 06125	71641	15. 25500	2, 73705	. 97057	0.00000	. 24462	-2.54606	. 57199	. 23824	0.00000
	43 O 44 GF	42, 4283	1.05432	. 73491	15.04492	2, 56461	1.01824	0. 00000	. 24462	-, 00150	. 00991	.07322	0.00000
				76015	- 15. 05404	5 79454	1.01483	0,00000	. 24462	2, 54051	55015	- .0954 7	0. 00000
·	45 QF	42.7331	1.06740	, 70340	10.20000	15 10107	62504	0,00000	. 24462	. 54404	-2. 50060	09547	0. 00000
	46 000	46. 8155	1.17838	. 00200	5.04071 9 ABKD1	15 95440	61132	0,00000	. 24462	00087	00160	. 00496	0. 00000
	47 QD	47.1203	1,19/49	. 80373	2.40001 7 LEAA7	15 10000	62811	0.00000	. 24462	54680	2. 49771	. 10564	0. 00000
	49 GD	47.4251	1.21659	. 86704	5. 00003	10.10272							

	POS	5(M)	NUX	NUY	BETAX (M)	BETAY (M)	ETAX(M)	ETAY(M)	ETAS(M)	ΔΙ ΡΠΔΧ	ALPHAY	DETAX	DETAY
	50 B 51 O 52 B 53 O 54 QF	49.5263 49.8311 51.2027 51.5075 51.8123	1,27677 1,30337 1,32407 1,32742 1,33047	. 90226 . 90995 . 96241 . 97945 . 97844	7. 10783 8. 11641 13. 76743 15. 27667 16. 06598	6.76354 5.88785 3.05016 2.66707 2.50097	.88847 .93777 1.19798 1.26438 1.29852	0.00000 0.00000 0.00000 0.00000 0.00000	. 28097 . 28897 . 34854 . 34854 . 34854 . 34854	-1. 57642 -1. 72563 -2. 37761 -2. 54721 . 00123	1.51044 1.36256 .70307 .55374 .00039	. 16175 . 16175 . 21787 . 21787 . 21787 . 00521	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
	55 QF 56 OO 57 B 58 O 59 B	52.1171 52.8468 54.2184 54.5232 55.8948	1, 33356 1, 34221 1, 36677 1, 37450 1, 42735	1.01742 1.05456 1.09736 1.10373 1.12446	15, 27522 11, 81631 6, 73121 5, 85136 3, 02192	2.66660 3.73406 7.13624 8.13607 13.71513	1.26753 1.11599 .86971 .82351 .65416	0.00000 0.00000 0.00000 0.00000 0.00000	. 34854 . 34854 . 40387 . 40387 . 40387 . 44499	2, 54943 2, 19191 1, 51615 1, 36051 , 67545	55288 91014 -1. 56640 -1. 71391 -2. 34724	20770 20770 15159 15159 09547	0.00000 0.00000 0.00000 0.00000 0.00000
С О	60 0 61 0D 62 0D 63 00 64 B	56, 1996 56, 5044 56, 8092 57, 5388 58, 9104	1.44455 1.46370 1.48285 1.52034 1.56346	1. 12782 1. 13091 1. 13400 1. 14269 1. 16730	2.64358 2.47973 2.64278 3.69834 7.09413	15.19011 15.95982 15.17997 11.77654 6.73440	. 62506 . 61132 . 62811 . 70519 . 88347	0.00000 0.00000 0.00000 0.00000 0.00000	. 44499 . 44499 . 44499 . 44499 . 44499 . 48934	. 54501 . 00064 54440 70201 -1. 57477	-2. 49191 . 00860 2. 50742 2. 15716 1. 51315	09547 .00496 .10564 .10564 .16175	0.00000 0.00000 0.00000 0.00000 0.00000
0	65 D 66 B 67 D 58 QF 69 QF	57.2152 60.5868 60.8916 61.1764 61.5012	1,56786 1,57060 1,57375 1,57702 1,60010	1. 17502 1. 22788 1. 24509 1. 26427 1. 28345	8.07968 13.74714 15.25578 16.04560 15.25738	5.85736 3.02135 2.64036 2.47567 2.64090	, 93777 1, 19798 1, 26438 1, 29852 1, 26753	0.00000 0.00000 0.00000 0.00000 0.00000	. 48934 . 54871 . 54891 . 54891 . 54891	-1,72427 -2,37675 -2,54627 -,00135 2,54302	1.36427 .70015 .54981 00042 55074	. 16175 . 21787 . 21787 . 00521 20770	0.00000 0.00000 0.00000 0.00000 0.00000
ن ن	,70 00 71 B 72 0 73 B 74 0	62,2308 63,6024 63,9072 65,2788 65,5836	1.60873 1.63333 1.64106 1.67385 1.71101	1.32091 1.36392 1.37030 1.39103 1.39439	11,80597 6,73122 5,85301 3,02794 2,64791	3.70730 7.11872 8.12260 13.72873 15.21167	1,11599 .86971 .82351 .65416 .62506	0.00000 0.00000 0.00000 0.00000 0.00000	. 54891 . 60426 . 60426 . 64536 . 64536	2, 10454 1, 51577 1, 36402 , 67475 , 54550	91083 -1. 57244 -1. 72113 -2. 35973 -2. 50556	20770 15159 15159 09547 09547	0.00000 0.00000 0.00000 0.00000 0.00000
ت د	75 QD 76 QD 77 DO 78 B 79 D	65.8894 66.1932 66.9228 68.2944 68.5992	1.73011 1.74921 1.78659 1.82961 1.83600	1.39748 1.40056 1.40923 1.43372 1.43372	2,48645 2,65036 3,70835 7,10688 8,11273	15. 78872 15. 21336 11. 81510 6. 77525 5. 89741	. 61132 . 62811 . 70519 . 88847 . 93777	0.00000 0.00000 0.00000 0.00000 0.00000	. 64536 . 64536 . 64536 . 68971 . 68971	-, 00036 -, 54629 -, 90074 -1, 57535 -1, 72467	00143 2.50297 2.15455 1.51410 1.36598	.00496 .10564 .10564 .16175 .16175	0.00000 0.00000 0.00000 0.00000 0.00000
	80 B 81 D 82 QF 83 QF 84 DD	67.9708 70.2756 70.5804 70.8852 71.6149	1.85671 1.86006 1.85313 1.86620 1.87486	1.49380 1.51083 1.52982 1.54882 1.58600	13.76205 15.26833 16.05708 15.26664 11.80947	3.05184 2.56742 2.50003 2.56442 3.72824	1.19798 1.26438 1.29852 1.26753 1.11599	0.00000 0.00000 0.00000 0.00000 0.00000	.74928 .74928 .74928 .74928 .74928 .74928	-2, 37627 -2, 54560 , 00143 2, 54040 2, 54040 2, 17006	.70540 .55583 .00238 55059 90744	. 21787 . 21787 . 00521 20770 20770	0.00000 0.00000 0.00000 0.00000 0.00000
• • • •	85 B 86 C 87 B 88 C 89 QD	72,9865 73,2913 74,6629 74,9677 75,2725	1.87943 1.90717 1.96005 1.97725 1.97640	1.62888 1.63526 1.65603 1.65737 1.66247	6.72726 5.84797 3.02075 2.64284 2.47937	7. 12201 8. 11971 13. 68799 15. 16031 15. 92883	.86971 .82351 .65416 .62506 .61132	0.00000 0.00000 0.00000 0.00000 0.00000	. 80463 . 80463 . 84573 . 84573 . 84573	1,51770 1,36760 ,69474 ,54513 ,00007	-1, 56278 -1, 71032 -2, 34278 -2, 48749 , 00804	15159 15159 09547 09547 . 00496	0.00000 0.00000 0.00000 0.00000 0.00000
•	70 QD 71 00 72 B 73 0 74 B	75.5773 76.3069 77.6785 77.9833 79.3549	2.01556 2.05304 2.09615 2.10255 2.12327	1.66557 1.67429 1.67095 1.70668 1.75958	2. 64276 3. 69931 7. 09766 8. 10391 13. 75706	15. 15083 11. 75487 6. 72428 5. 84737 3. 02087	. 62811 . 70519 . 88847 . 93777 1. 19798	0.00000 0.00000 0.00000 0.00000 0.00000	.84573 .84573 .99008 .89008 .94965	-, 54497 -, 90108 -1, 57508 -1, 77547 -2, 37697	2.50199 2.15237 1.50954 1.36092 .69802	. 10564 . 10564 . 16175 . 16175 . 21787	0.00000 0.00000 0.00000 0.00000 0.00000
5	95 0 96 QF 97 98 00	79, 6597 79, 9645 269 80, 9989	2. 12662 2. 12969 . 13 2. 14141	1.77679 1.79596 1.2 1.85252	15.26464 16.05499 26 11.81295	2. 64107 2. 47751 139' 3. 71394	1.26438 1.27852 26 1.1599	0.00000 0.00000 C 00	.94965 .94965 949 84845	-2, 54706 -, 00145 2, 5	. 54796 00230 530:	. 21787 00521 207	0, 00000 0, 00000 0, 0

.

POS	S(M)	NUX	NUY	BETAX (M)	BETAY (M)	ETAX (M)	ETAY(M)	ETAS (M)	ΛΕΡΠΛΧ	ALPHAY	DETAX	DETAY
100 0	82.6753	2. 17370	1.90182	5.85619	8, 13885	. 82351	0. 00000	1,00500	1.36700	-1.72429	15159	0.00000
101 B	84.0469	2. 22647	1. 92251	3. 02890	13.75428	. 65416	0.00000	1.04610	. 67546	-2.36334	09547	0.00000
102 0	84, 3517	2, 24362	1.92586	2. 65035	15. 23945	. 62506	0.00000	1.04610	. 54616	-2. 50927	09547	0. 00000
103 GD	84.6565	2. 26272	1. 72894	2. 48552	16.01737	. 61132	0.00000	1.04610	. 00023	-, 00050	. 00496	0. 00000
104 QD	84.9613	2, 28182	1, 93202	2. 55005	15.24005	. 62811	0. 00000	1.04610	-, 54565	2. 50836	. 10564	0. 00000
105 01	85. 4113	2, 30636	1. 93709	3, 24031	13.07741	. 67565	0. 00000	1.04610	- 7660)	2, 29305	. 10564	0. 00000
106 B	86, 7829	2.35558	1.75078	6. 26083	7.65301	. 85893	0.00000	1.08880	-1.40700	1.65334	. 16175	0. 00000
107 02	87.0438	2. 39273	2.04223	15. 26297	2. 67413	1.22462	0.00000	1.08880	-2. 54446	. 55111	: 16175	0. 00000
108 GF	87. 3496	2. 37580	2.06116	16.05129	2, 50790	1.24280	0.00000	1.08890	00167	00296	04298	0. 00000
109 GF	87, 6534	2. 37897	2. 08008	15.26100	2.67786	1.19864	0. 00000	1.08880	2.54746	-, 55765	-, 24556	0. 00000
110 03	91,4559	2. 42051	2. 15251	7.67191	6, 27875	. 75603	0.00000	1.08880	1,66796	-1,44008	24556	0.00000
111 B	92, 8275	2. 46513	2. 17875	4, 03505	11, 12420	. 45786	0.00000	1.12250	. 77003	-2.08706	18944	0. 00000
112 04	93, 7358	2. 51001	2.18784	2.64132	15.31292	. 28579	0.00000	1.12250	. 54430	-2. 52438	18944	0. 00000
113 QD	94,0406	2. 52917	2.19290	2. 47829	16.09640	. 23470	0. 00000	1.12250	00057	~ . 00333	14716	0. 00000
114 GD	94. 3454	2. 54833	2. 19597	2. 64204	15.31685	. 19533	0.00000	1.12250	54557	2. 51837	-, 11223	0.00000
115 05	94 5424	2 56093	2 19831	2 90222	14 24543	17096	0, 00000	1.12250	65225	2,41424	11223	0. 00000
114 B	95 9342	2 61598	2 21821	5. 61357	8, 47008	. 05557	0.00000	1.12847	-1. 02006	1.77523	05611	0. 00000
117 0	96 2390	2. 62404	2, 22431	6. 46726	7, 45333	. 03846	0.00000	1.12849	-1. 17526	1.62619	05611	0. 00000
119 B	97.6106	2. 64752	2. 26527	11.43511	3. 89585	00000	0.00000	1.12921	-2, 14050	. 96340	00000	0. 00000
119 06	98.4278	2. 65936	2, 30518	15. 27493	2,65176	00000	0.00000	1.12921	-2. 54995	. 55894	00000	0.00000
170 059	99 0374	9 64534	2 34559	16 63920	2, 42427	00000	0, 00000	1, 12921	. 37032	-, 17160	00000	0. 00000
121 059	99 6470	2 67149	2 38196	14. 37666	3, 10295	00000	0.00000	1,12921	3, 17025	98401	. 00000	0. 00000
122 0	99 9518	2.67511	2.37618	12. 51548	3.75173	00000	0.00000	1.12721	2. 73597	-1, 17735	. 00000	0 . 00000
123 203	100 5614	2.68365	2.41865	10.85077	4,74143	00000	0.00000	1, 12921	06915	34810	00000	0.00000
124 203	101.1710	2. 67213	2. 43912	12. 70157	4. 52767	00000	0. 00000	1.12921	-3, 11(15	. 68092	00000	0. 00000
125 1 2	103 8416	2 71223	2.56298	35, 37746	3, 19632	00000	0. 00000	1.12921	-5. 37272	-, 18241	00000	0. 00000
124 1 11	105 8075	2.71904	2. 64338	59.76350	5, 16273	00000	0, 00000	1, 12921	-7.03230	81789	00000	0.00000
127 202	105 4171	2. 72062	2. 65979	60.21664	7, 10217	00000	0. 00000	1, 12921	6.00001	-2.50478	. 00000	0. 00000
128 202	107.0267	2. 72243	2. 67062	45. 69035	11,83207	00000	0. 00000	1.12921	16, 40026	-5. 59854	. 00000	0.00000
129 0	107.3315	2. 72362	2. 67420	36. 22539	15. 47891	00000	0. 00000	1. 12921	14, 62273	-6. 43173	. 00000	0. 00000
120 201	107 9411	2 72697	2 47938	24, 13221	21. 64973	00000	0. 00000	1.12921	6,073.53	-3. 20444	. 00000	0. 00000
131 201	108 5507	2 73149	2. 68367	20.01174	22. 63451	00000	0.00000	1, 12921	. 26604	1.66163	. 00000	0, 00000
132 11	118 5507	2. 85374	2. 94745	10.35156	6.01817	00000	0.00000	1.12921	. 00000	. 00000	. 00000	0.00000
133 REFL	237, 1013	5. 70748	5. 69489	9. 98616	10.05056	-2.74271	0.0000	2. 25842	-, 00000	. 00000	. 00000	0.00000
								**				
CIRCUMFERE	ENCE = 47	74. 2027 M		THETX = 6.	28318532 RAD	NUX =	= 11.4149	6 DNU	X/(DP/P)	-18.282	41	
RAI	DIUS = 7	75.4717 M	THETY (132) = 0.	00000000 RAD	NUY -	= 11.3897	9 DNU	IY/(DP/P)	= -17.873	67	
(DS/S)/(DF	P/P) = .C	095251		TCAM = (1	0 24624. 0.	00000						
•				197111 - 1 +	w,					((00) -	0 0000	0
MAXIMA	BETX (127) =	60.21664	BETY(5) = 56.7	7947 ET/ 7982 FT/	AX(1) = AX(118) =	-2.7427	יד ו-דעא ארו-ז 0((133) =	0.0000	0 . 0
MINIMA	DETX(13) =	. 73103			r y Ly Sig in the F F annual designed the second						
•							MAYTMIM		US-11	· UNU	SED	
***	FIN	0 0 //	CORE USE	SUMMARY	084051		9600 (1	MAX)	3787		5811	
			STORE	ALLENENT DE	UTHUE!		400 (N	AX)	152		248	
			THEF	VELENENT DE	атит і томоў			······				
	ڪ احد ڪر جب جب جي ڪر جب جب جب جب جب			******		***********			anar:sal.co	*********		*******
END OF SYNC	CH RUN PCB1	_	· · · · · · · · · · · · · · · · · · ·					. ·				

•

Appendix C

Accumulator Orbit Listing

				1 T	6 AI HTS	PRIL 81. HAS REAL	DE JOHN	ISON.	LENGTH	5-1NC1-	IDTNG	SAGTI	Τ										
** ** **	BRHO BZ BL	# # #		;		56.574 6.1683960 1.3097						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										p	
**	0	DRF		/	/	0 • 2266																	
** ** **	00 001 002		en Sore Si Si Si Si Si Si Si			D • 2154 D • 5314 D • 2577 2 • 0243																	
** ** ** **	NSS 0S1 0S2 0S3	DRF DRF DRF DRF				2.2637 0.9706 1.9218 1.6794			****		ingen van derste en	e na politika politika na politika da p			· · ·				a - Alan ayan yang katan dalam ada				
** ** ** **				1		9.6590 0.5425 0.7321 3.5794											: 				-		,
* * t * t *	GF GD G1	*	******	1	/ .	28.6961 -26.4708	. <u></u>	<u></u>		<u></u>		<u></u>	<u></u>						r				
** ** **	62 63 69 610	2 2 2		; ; ; ;		28.8425 22.6898 -9.8982 43.8154																	
** ** *	-G11 1821	MAG		1 /		=37.8895 BL D.08255	0.0.479		8 R H D 2 • 8	ВZ		\$						•		ç			
** * **	1831 1932	MAG		1 /		BL 0.08255 BL 0.08255	0.479		8RH0 2•8 8RH0 2•8	B Z B Z		\$,
** * **	-1841 1842	MAG		1 /	/	BL 0.08255 BL	0.479		BRHD 2 8 BRHD	8 Z 8 Z	<u></u>	s	- <u></u>	<u> </u>					<u></u>		* <u>, * , * , * , * , * , * , * , * , * ,</u>		
***** *	1851- 1852	MAG		1/		9L 0.08255	0.479		0 ŘHO 2 • 8 6 ŘHO	8 Z 8 Z		<u>s</u>											
* ** * *	1851	MAG				0.08255 BL 0.08255 BL	0.479		BRHO BRHO BRHO	BZ BZ	<u></u>	s 5		<u>11.11.11.11.11</u>		<u></u>				<u></u>	.		
* ;* *	-1 391- 1882	MAG		-1-/	/ /	0.08255 8L 0.08255 8L	0.479		2.8 8 RHO 2.8 8 RHO	BZ BZ		* *											-
*	10F1	MAG		<u> </u>	/	0.08255	0.479 G1	<u></u>	2.8 BRHD		<u> </u>						,					<u>.</u>	
; * ; * ; *	10F3 -1004 10F5	MAG MAG MAG		;		9L 9L	G3 GD GF		BRHO BRHO BRHO														
						•																	
,																					x		

								,	•						
₩ 20 2 10 ¥ 89 80 1	•••	 -			· · · · · · · · · · · · · · · · · · ·	••• •••	1			· · · · · · · · · · · · · · · · · · ·	,			مدند ، بر مدّنت برد و . بر ۱ ، ۲ بر ۲	
	X	9 7 7	•		·	Х	•			•		 ↓ ↓	ar – ⊥st ar sejte		
*** *** ***	1006 1977 1008 1009 10710 10011	MAG MAG MAG MAG MAG		//	00000 0000 000	60 6F 60 69 610 611	BRHO BRHO BRHO BRHO BRHO BRHO BRHO								
***	• R/4	B ML		11	N S S 1832 OP 1908 WL S	19F1 051 053 190 1852 00 0 188	1 QD2 US2 4 0 1841 1 QD6 001 1 OP 1882	1821 0 0P 1842 1861 002 0L3 1909	10F3 0 2 00 10F5 10F7 002 7 0L2 10F1	1831 0P 0 1851 1871 001 00L1 19011					•
***		PAGE		// 											
8	9,411 Mai ana ara ata 104 Mara														
			1 												
						•									
			ىرىن بىرىلىكى بىرىكى مەركى مىرى						1. 4. an 20 ⁴ 1 ⁴ 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						

.

*** RING	CYC	-2 // .R/4									
POS	S (M)	NUX NUY	BETAX(M)	BETAY(M)	ETAX(M)	ETAY(M)	ETAS(M)	ALPHAX	ALPHAY	DETAX	DETAY
0 1 N S S 2 1 0 F 1	0.0000 2.2637 2.9404	0.00000 0.00000	10.37395 10.86791	11.43059	3.50552 3.50552	0.00000	0.00000	0.00000	0.00000	.00000	0.00000
3 0 <u>51</u> 4 1002	3.9110-4.5877	•06272 •04921 •07829 •05459	7.18134	19.37269 19.11478	2.69308	0.00000		1.57514 1.23488 -1.30049	-2.63179 -3.19254 3.54354	61904 61904 27296	0.00000
5 US2 6 1821	6.5095	•10935 •07925 •12212 •11866	13.59736	8.11422	3.10278	0.00000	0.00000	-2.01660	2.18055	.27296	0.00000
8 1QF3 9 0	8.0458 8.7225 8.9491	•12392 •12932 •12902 •17371 •13085 •19009	20.65000 20.33300 18.98691	2.97130 2.20961 2.20057	3.54667 3.58987 3.45814	0.00000	.47376 .47376 .47376	-2.58740 3.02681 2.91356	1.12217 .07149 03159	41600 - 58131 - 58131	
10 1831 11 0P	10.2588	•14450 •27490 •14742 •28577	12.23247 11.28151	3.02077 3.29504	2.79274 2.69834	0.00000	•91860 •91860	2.26125	58866	43827 43827	0.00000
12 1032 13 053 14 1904	-13.4633 -13.4633 -14.1400	•1/1/5 •33431 •23515 •36819 •27521 •37760	6.51094 2.87790 2.75597	5.77298 10.94660 11.15177	2.21964 1.72384 1.70485	0.00000	$ \begin{array}{r} 1.26811 \\ -1.26811 \\ -1.26811 \\ 1.26811 \end{array} $	$ \begin{array}{r} 1.50130 \\ .66200 \\ 46914 \end{array} $	-1.18917 -1.89146 1.61024	- 29522 - 29522 - 23809	0.00000
15 0	14.3666	-28778 -38094 -34129 -40578	2.99131	10.43855	1.75980	0.00000	1.26811 1.54637	56946	1.53723	-23809 	0.00000
18 1842 19 00	17.2014 17.7328	• 34755 • 41101 • 37545 • 45380 • 38334 • 47789	5.74692 9.74513 11.80498	6.29392 3.86084 3.21580	2.24503 2.83586 3.11441	0.00000 0.00000 0.00000	1.54637 1.90753 1.90753	-1.24266 -1.82051 -2.05576	1.13321 .71049 .50337	38114 52418 52418	0.00000 0.00000 0.00000
20 1QF5 21 0	18.4095	• 39211 • 51188 • 39528 • 52185	11.82736	3.42336 3.82651	3.10080	0.00000	1.90753	2.02527	83348	56362	0.00000
23 DP 24 1852		•41977 •56240 •42517 •56705 •47100 •58833	6.06684 3.48221	7.05592 7.72189 12.50076	2.33077 2.24017 1.78456	0.00000 0.00000 0.00000	2.28464 2.28464 2.57026	$ \begin{array}{r} 1.36452 \\ -1.27160 \\ -70857 \end{array} $	-1.49645 -1.59534 -2.01849	42058 42058 427754	0.00000
25 00	22.0023	•49797 •59456 •23668 •60164	2.85094	14.76063	1.63708	-0.00000-	2.57026	.47935	-2.23419	27754	0.00000
28 1861 29 002	24.2464 26.2707	•59563 •62492 •63018 •69597	3.35247 6.26996 14.08773	13.36778 7.89329 2.78509	1.68010 2.07268 2.82631	0.00000	2.57026 2.83644 2.83644	79873 -1.43646 -2.42550	2.32979 1.81008 .71336	•22925 •37229 •37229	0.00000 0.00000 0.00000
30 10F7 31 0D2	26.9474	.63754 .73781 .67240 .81985	14.06556 6.17166	2.62948	2.74667	0.00000	2.83644 2.83644	2.45569	46589	60311 60311	0.00000
	30.5391 31.2158	-73285 -84876 -77238 -95758	2.87923	11.84460	•63194 •71338 •46862	0.00000	3.00284 	•/914/ •66267 ••46871	-1.85709 -1.96400- 1.77661	46006 46006 27621	0.00000
35 U -36-1881	31.4424	.78545 .86074 .83897 .88444	2.99175	11.05746	• 4 06 03	0.00000	3.00284	56897	1.69709	27621	8.00000
38 1882 39 DL3	34.2772	.87314 .93202 .90764 1.13914	9.74085 28.43385	3.79584 3.63267	•02972 •06507	0.00000	3.03958 3.04735 3.04735	-1.24180 -1.81932 -3.40306	1.25154 .78433 73875	13317 .00988 .00988	0.00000 0.00000 0.00000
40 1009 41 0L2	38.5333 39.2654	•91106 1•16558 •91386 1•18946	35.83717 48.23016	4.48629	•07447 •08771	0.00000	3.04735 3.04735	-7.82769 -9.10010	48882	.01808	0.00000
42 10F10 43 0L1 44 10011	39.9421 40.4846 41.1613	•91608 1•20613 •91854 1•21363 •92329 1•21962	43.36396 28.25358 20.14707	8.79731 15.08031 19.32980	•08414 •06877 •05942	0.00000	3.04735 3.04735 3.04735	15-42026 12-43297 74682	-4.99168 -6.58989 -96565	02833-	0.00000
45 WLS	50.8203 101.6406	1.02538 1.34184 2.05077 2.68368	12.93357	10.00261	.05942	0.00000	3.04735	00000	00000		0.00000
CTOCUMEEDEN	VCE - 20	3 3013 M		20210525 0.0		(1015					
(DS/S)/RBBI	95 = 20	899538 M THETY	(45) = 0 TGAM = (.00000000 RAD 4.08373, 0	NUX = NUY =	5.3673	6 DN	UY/(DP/P)	-6+095	57	
MAXIMA -	BETX(41) = 48.2301 147 = 2.7559	6 BETY! 7 BETY!	3) = 19.3 7) = 2.2	7269 ETA	X(7) = X(38) =	3.646	57 ETAY	46) =	0.00000	