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1 Introduction

Quantum computing has garnered considerable attention in recent years due to its po-

tential to break encryption (5), advance scientific computing (6), and perform molecular

simulation (7), among many other applications. Recent advancements in the field allowed

for developing multiple quantum computing platforms with high-fidelity one or two-qubit

gates (8). As of now, there are various ways to realize a qubit: superconducting qubits

(8), rare-earth solid-state qubits (9), photonic qubits (10), etc. While each platform of-

fers a unique advantage, superconducting qubits are arguably the most advanced and

well researched, demonstrating a high average thermal relaxation time of T̄1 = 49µs and

dephasing time of T̄2 = 95µs (10). While low-noise superconducting qubits and the

nonlinearity from the Josephson effect are crucial in developing quantum processors, op-

tical photons are a natural choice for quantum networks due to their low-propagation

noise in room-temperature environments (12). It is therefore crucial to develop coherent

microwave-to-optical transducers to connect superconducting qubits and high-Q cavities

with the aim of long-distance quantum information transfer (4).

There are multiple technologies to achieve the goal of quantum transduction. Most not-

ably, there are electro-optic, electro-mechanical as well as atomic-based ensemble ap-

proaches (i.e. trapped neutral atoms and rare-earth-ion-doped crystals (3)). The focus of

this project is on the former: utilizing the electro-optic effect in quantum transduction.

Specifically, we are considering a microwave-optical superconducting transduction cavity

with long coherence time (13). The cavity’s 3D architecture allows for a high quality

factor due to the smoothness and low resistance of the inner surface. When the cavity

is cryogenically cooled to milli-Kelvin temperature, it has ultra-low resistivity, resulting
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in a quality factor of Q = 1010 and hence, a photon lifetime of about 2 seconds (13; 14).

We aim to utilize a full quantum treatment of the electro-optic effect to study the bid-

irectional microwave-optical conversion in different parameter regimes of the decay rates

of the optical and microwave fields.

2 Quantum Transduction

Quantum transduction is the process of converting a quantum signal from one form of en-

ergy to another (3). This process has become an active area of research due to its potential

to advance the fields of quantum science and technology. The promise of advancement

emerges from the fact that transduction allows quantum information to be exchanged

between remote quantum systems that operate at different energy scales. Since each

quantum system has unique attributes that render it useful in performing specific tasks,

a quantum transducer would allow us to exploit each quantum system to our advant-

age and connect these systems by exchanging signals between them. Consequently, just

like bidirectional electrical and optical signal conversion is at the heart of global inter-

net, quantum transducers can be the cornerstone of quantum internet, where remotely

connected quantum systems can exchange information (4).

In this project, the focus is microwave-optical transduction, where the two modes are

about five orders of magnitude apart. This means that the two modes have different

frequencies, resulting in off-resonant interactions. In order for the two modes to interact,

they need to be coherently coupled through an intermediary system. To that end, a full

quantum treatment of the electro-optic coupling between the modes was developed by

Matsko (1; 2). In this work, Matsko treats the optical and microwave fields as quantum

degrees of freedom and studies their coupling through the electro-optic effect, where the
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two fields are considered to be modes in a cavity or resonator (1). His work provides the

main theoretical framework for this project.

3 Experimental Setup

To achieve the desired electro-optic conversion, the setup shown in Figure 1 is used.

Figure 1: Schematic of electro-optic Transducer (1)
.

In this setup, there is an LC circuit, where there is an inductor and a capacitor. The

microwave signal is coming through the transmission line, which is indicated by the ho-

rizontal blue rectangle on the top right corner of Figure 1. The LC circuit and the

transmission line combined make up the microwave resonator. Furthermore, there is an

optical cavity whose mirrors are represented by the vertical blue rectangles. Inside this

cavity, there is electro-optic modulator (EOM), which modulates the electrical signal to

an optical one. Again, one of the goals of this project is a full quantum treatment of
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the electro-optic effect, and hence the quantum creation and annihilation operators that

are shown in Figure 1. More specifically, A & Aout are the input and output optical field

annihilation operators, B & Bout are the input and output microwave field annihilation op-

erators, and A’ & B’ are the quantum Langevin noise operators coupled through parasitic

losses in the optical and microwave resonators, respectively.

As previously mentioned, the EOM modulates a given electrical signal into an optical one.

Hence, building a converter that changes a given signal from an electrical to an optical

one, we need a three-wave mixing process, which is shown in Figure 2. This non-linear

medium is located inside the EOM.

Figure 2: Diagram of the three-wave mixing process

As shown in Figure 2, there is a pump laser beam and an optical signal, and they are sent

through a nonlinear crystal (such as Potassium Titanyl Phosphate or Lithium Niobate),

where they both mix. This crystal exhibits electro-optic non-linearity, which means that,

when high-intensity electric field is applied to it, the refractive index of this nonlinear

crystal is modulated, i.e. the phase of the optical wave will be modulated too. As a

result, the pump frequency is depleted, and an optical signal is produced and amplified

along with a microwave signal. That way, we end up with the desired optical signal.
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4 Theoretical Background

To develop the Hamiltonian representing this system, we can start by the following single-

mode optical interaction Hamiltonian:

HI = −ℏ
τ
ϕa†a, (1)

where a and a† optical annihilation and creation operators, τ is the optical round-trip

time, and ϕ is the single-round-trip phase shift. Let ϕ = ωan3rl
cd

V , where n is the optical

refractive index inside the electro-optic medium, r is the electro-optic coefficient, l is the

length of the medium along the optical axis, d is the thickness, and V is the voltage across

the medium.

The interaction Hamiltonian then becomes

HI = −ℏ
τ

(
ωan

3rl

cd
V

)
a†a (2)

If the modulator is treated as a capacitor in a single-mode microwave resonator, voltage is

quantized according to this relation: V =
√

ℏωb

2C
(b+ b†), where b and b† are the microwave

annihilation and creation operators, respectively, ωb is the microwave resonant frequency,

and C is the capacitance of the microwave resonator.
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Plug Equation 3 into Equation 2, so the interaction Hamiltonian becomes

HI = −ℏ
τ

(
ωan

3rl

cd

)(√
ℏωb

2C
(b+ b†)

)
a†a = −ℏg(b+ b†)a†a, (3)

where g = ωan3rl
cτd

√
ℏωb

2C
.

The full Hamiltonian consists of the interaction Hamiltonian and two free terms for ωa

and ωb as follows

H = ℏωaa
†a+ ℏωbb

†b− ℏg(b+ b†)a†a (4)

We can only consider three optical modes if |∆ω − ωb| ≫ γa, where γa is the optical

linewidth. These three modes are represented by the center optical mode, red-detuned

mode, and blue-detuned mode, as shown in Figure 3.

Figure 3: Red-detuned optical pumping cools the microwave mode by transferring
energy from the microwave to the optical mode at ωa via parametric up-conversion.

Blue-detuned pumping causes nondegenerate parametric down-conversion to the optical
mode at ωa and the microwave mode (1).
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This approximation allows us to assume that high-order terms are not resonantly coupled

to the cavity, so the full Hamiltonian becomes

H = ℏωaa
†a+ℏ(ωa−∆ω)a†1a1+ℏ(ωa+∆ω)a†2a2+ℏωbb

†b−ℏg(b+b†)(a+a1+a2)
†(a+a1+a2)

(5)

5 Calculations and Results

5.1 R(0)
η as a function of G0

5.1.1 Deriving R(0)
η

Consider

dα−

dt
= (−iω0 − γ0/2− γa/2)α− −√

γaAin, (6)

which is the dynamic equation for the cavity field amplitude as time progresses. This

equation also takes into account the input from the fiber, which is coupled to the cavity.

Here, Ain is the magnitude of the field input from the fiber, γa is the loss due to the

coupling to the fiber, γ0 is the total loss in the cavity, and ω is the cavity resonant

frequency.

Next, if we Fourier transform equation 6, the left-hand side of the equation is represented

in the frequency domain as follows:
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− iωα− = (−iω0 − γ0/2− γa/2)α− −√
γaAin, (7)

where ω0 is the cavity resonant frequency and ω is the frequency of the input field.

Then, the solution to the steady state equation (equation 6) is given by

α− =

√
γaAin

(i(ω − ω0)− γa+γ0
2

)
(8)

In order to find the number of photons, we need to take the absolute value squared of α−

and divide by the energy of the photon of interest. This leads to equation 45 from (1),

which is given by

|α2
−| =

γapin

ℏωa(δ2 +
Γ2
a

4
)

(9)

Note that the γa in the denominator in equation 45 was replaced by Γa, which accounts

for the total loss inside the cavity. Also, δ2 = (ωpump − ωcavity)
2, which can range from 0

to Γa

2
. Note that Γa = γa + γ0.

Here, we assume zero detuning, and hence the cavity cooperativity parameter is given by

G0 =
4|gα|2

ΓaΓb

, (10)

where g is the electro-optic coupling coefficient, |α|2 is the number of photons in the

cavity, Γa is the total decay rates of the microwave mode, and Γb is the total decay rates

of the optical mode.
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Furthermore, at zero detuning, the electro-optic conversion efficiency is given by

R(0) =
4ηG0

(1 +G0)2
, (11)

where η is the intrinsic efficiency of the system and it is given by

η =
γaγb
ΓaΓb

(12)

5.1.2 Plotting G0 vs. R(0)
η

One possibility to explore is how the plot of G0 vs. 4G0

(1+G0)2
behaves when Γa = Γb. When

Γa = Γb = 108 Hz, then we have the following plot

Figure 4: Plot of G0 vs. R(0)
η

with Γa = Γb.

In this plot, the maximum value of R(0)
η

is 1, and it happens at G0 = 1. This implies that

11



achieving cavity cooperativity value of 1 maximizes the electro-optic conversion efficiency.

5.2 R(ω) as a function of ln(Γb

Γa
) and Ω

5.2.1 Deriving R(ω) as a function of ln(Γb

Γa
) and Ω

In this plot, the x-axis is ln(Γb

Γa
). The y-axis is the normalized detuning frequency, which

is given by

Ω =
2ω√
ΓaΓb

(13)

The third axis represents the electro-optic conversion efficiency, which is given by

R(ω) =
|gα|2γaγb

|(−iω − p+)(−iω − p−)|2
, (14)

where

P± = −Γa + Γb

4
±
√
(
Γa − Γb

4
)2 − |gα|2 (15)

are the poles of the transfer function.

Plug equation 15 into equation 14 to get

R(ω) =
|gα|2γaγb

|(−iω − (−Γa+Γb

4
+
√

(Γa−Γb

4
)2 − |gα|2))(−iω − (−Γa+Γb

4
−
√

(Γa−Γb

4
)2 − |gα|2))|2
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R(ω) =
|gα|2γaγb

|(−iω + Γa+Γb

4
−

√
(Γa−Γb

4
)2 − |gα|2)(−iω + Γa+Γb

4
+
√
(Γa−Γb

4
)2 − |gα|2)|2

Let A = −iω + Γa+Γb

4
, so we have

R(ω) =
|gα|2γaγb

|(A−
√

(Γa−Γb

4
)2 − |gα|2)(A+

√
(Γa−Γb

4
)2 − |gα|2)|2

R(ω) =
|gα|2γaγb

|A2 − (Γa−Γb

4
)2 + |gα|2|2

R(ω) =
|gα|2γaγb

|(−iω + Γa+Γb

4
)2 − (Γa−Γb

4
)2 + |gα|2|2

R(ω) =
|gα|2γaγb

| − ω2 − iωΓa

2
+ Γ2

a

16
− iωΓb

2
+ ΓaΓb

8
+

Γ2
b

16
− Γ2

a

16
+ ΓaΓb

8
− Γ2

b

16
+ |gα|2|2

R(ω) =
|gα|2γaγb

| − ω2 − iωΓa

2
− iωΓb

2
+ ΓaΓb

4
+ |gα|2|2

R(ω) =
|gα|2γaγb

| − i(ω
2
(Γa + Γb)) +

ΓaΓb

4
− ω2 + |gα|2|2

Let B = ΓaΓb

4
− ω2 + |gα|2 and C = ω

2
(Γa + Γb) then we have
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R(ω) =
|gα|2γaγb

| − iC +B|2

R(ω) =
|gα|2γaγb
C2 +B2

Plug the values of B and C back again to get

R(ω) =
|gα|2γaγb

(ω
2
(Γa + Γb))2 + (ΓaΓb

4
− ω2 + g2α2)2

(16)

The goal here is to write R(ω) as a function of ln(Γb

Γa
) and Ω. To that end, divide equation

16 by 1
Γ2
a

to get

R(ω)Γ2
a =

|gα|2γaγb
1
Γ2
a

(
(ω
2
(Γa + Γb))2 + (ΓaΓb

4
− ω2 + g2α2)2

)

R(ω)Γ2
a =

|gα|2γaγb
(ω
2
(Γa+Γb)

Γa
)2 + (ΓaΓb

4Γa
− ω2

Γa
+ g2α2

Γa
)2

R(ω)Γ2
a =

|gα|2γaγb
(ω
2
(1 + Γb

Γa
))2 + ( Γb

4Γa
− ω2

Γa
+ g2α2

Γa
)2
,

where Γa =
√

ΓaΓb
Γb
Γa

, so we get
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R(ω) =
|gα|2γaγb

Γ2
a

(
ω
2
(1 + Γb

Γa
))2 + ( Γb

4Γa
− ω2

Γa
+ g2α2

Γa
)2
)

R(ω) =
|gα|2γaγb(

ω
2
(1 + Γb

Γa
))2 + ( Γb

4Γa
− ω2

Γa
+ g2α2

Γa
)2
)
×
(

ΓaΓb
Γb
Γa

)
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5.2.2 Plotting R(ω) as a function of ln(Γb

Γa
) and Ω

Figure 5: Plot of R(ω) as a function of ln(Γb

Γa
) vs. Ω.

In this plot, the maximum electro-optic conversion efficiency of 1 is reached when Γa =

Γb at zero detuning frequency. This result agrees with Figure 3, where the maximum

conversion efficiency is achieved when Γa = Γb. As the difference between Γa and Γb

increases, the efficiency is equal to 1 as long as Ω = 0. However, as Ω increase or

decreases, the conversion efficiency drastically drops. Therefore, this plot suggests that

achieving a value of Ω = 0 is the most important component to maximize conversion

efficiency.

5.2.3 Conversion Efficiency when (Γa−Γb

4
)2 ≫ |gα|2

In the case where (Γa−Γb

4
)2 ≫ |gα|2, we get the following plot:
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Figure 6: Plot of the case when (Γa−Γb

4
)2 ≫ |gα|2.

In this plot, g = 100, γa = 107 Hz, γ′
a = 107 Hz, γb = 106 Hz, γ′

b = 107 Hz, so
(
Γa−Γb

4

)2
∽

1013 Hz. Additionally, α2 = 104, so |gα|2 ∽ 1012. We see in this case that the conversion

efficiency is considerably low compared to previous plots. However, the highest conversion

efficiency was achieved when ln
(
Γb

Γa

)
= 0, meaning that Γa = Γb.
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5.2.4 Conversion Efficiency when |gα|2 ≫ (Γa−Γb

4
)2

In the case where |gα|2 ≫ (Γa−Γb

4
)2, we get the following plot:

Figure 7: Plot of the case when |gα|2 ≫ (Γa−Γb

4
)2.

In this plot, g = 100, γa = 107 Hz, γ′
a = 107 Hz, γb = 106 Hz, γ′

b = 107 Hz, so
(
Γa−Γb

4

)2
∽

1013 Hz. Additionally, α2 = 1010, so |gα|2 ∽ 1024. We see in this case that the conversion

efficiency is no longer maximized when Ω = 0 (as is the case in Figure 6) because of the

splitting of the poles. Furthermore, the highest conversion efficiency values, which are

still quite low, happen everywhere regardless of the value of ln
(
Γb

Γa

)
.
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5.2.5 Pole Splitting

It seems like the number of photons in the cavity is one of the factors that determine

whether the poles will split. This behavior of pole splitting happens when |α|2 is about

109.15.

Figure 8: Splitting of Poles when the number of photons inside the cavity is 5× 109.5

and g = 100.

Another factor determining is g. When |α|2 = 109 and g = 100, there is no pole splitting.

However, if we keep |α|2 at 109 and make g = 120, then we observe the poles splitting.

The following plot shows the behavior when g = 170
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Figure 9: Splitting of Poles when the number of photons inside the cavity is 5× 109 and
g = 170.

5.2.6 Data Normalization:

In producing the third axis R(ω) of Figures 6 − 10, the data was normalized using the

following function:

d− dmin

dmax − dmin

, where d is a given data point, dmin is the minimum value of R(ω), and dmax is the

maximum value of R(ω). This function was used because the maximum electro-optic

conversion efficiency R(ω) was greater than 1 at times, which is physically unrealistic

because it defies the energy conservation principle. The function preserves the behavior

of the plots and ensures that the highest value of R(ω) does not exceed 1.
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6 Conclusion

Our work utilizes a full quantum treatment of the electro-optic effect, which helped us

study the parameter regime of decay rates. Specifically, we considered how these para-

meter regimes relate to figures of merit that indicate the cavity geometry (i.e., electro-optic

conversion efficiency and cavity cooperativity). Finding the optimal values of these figures

of merit is useful in improving the transduction behavior of the cavity. From this work,

there are a few conclusions to be made. First, maximum conversion efficiency happens at

G0 = 1. Since G0 depends on the cavity geometry, then knowing the optimal value of G0

could inform some aspects of the cavity design. Second, the poles of the transfer function

of the cavity split when |gα2| ≫ (Γa−Γb

4
)2. This is useful because when the poles split,

the maximum conversion efficiency does not happen when detuning (Ω) is zero. Finally,

we found that the maximum conversion efficiency happens when Γa = Γb. Currently, in

the lab, the limitation is in Γb because it is lower than Γa. Since we have seen that the

maximum conversion efficiency happens when Γa = Γb, we need to bridge the gap between

the two gammas.
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