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60Institut für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria

61Department of Physics and Astronomy, University of Hawaiı́ at Manoa, Watanabe 416, 2505 Correa Road, Honolulu

2



62University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Wien, Austria
63Scuola Normale Superiore, Pisa, Italy
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79Departamento de Fı́sica Teórica and IPARCOS, Facultad de Ciencias Fı́sicas, Universidad Complutense de Madrid, Plaza de las Ciencias 1,

28040 Madrid, Spain
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Abstract

We present the current Standard Model (SM) prediction for the muon anomalous magnetic moment, aµ, updating the
first White Paper (WP20) [1]. The pure QED and electroweak contributions have been further consolidated, while
hadronic contributions continue to be responsible for the bulk of the uncertainty of the SM prediction. Significant
progress has been achieved in the hadronic light-by-light scattering contribution using both the data-driven dispersive
approach as well as lattice-QCD calculations, leading to a reduction of the uncertainty by almost a factor of two.
The most important development since WP20 is the change in the estimate of the leading-order hadronic-vacuum-
polarization (LO HVP) contribution. A new measurement of the e+e− → π+π− cross section by CMD-3 has increased
the tensions among data-driven dispersive evaluations of the LO HVP contribution to a level that makes it impossible
to combine the results in a meaningful way. At the same time, the attainable precision of lattice-QCD calculations has
increased substantially and allows for a consolidated lattice-QCD average of the LO HVP contribution with a precision
of about 0.9%. Adopting the latter in this update has resulted in a major upward shift of the total SM prediction, which
now reads aSM

µ = 116 592 033(62)× 10−11 (530 ppb). When compared against the current experimental average based
on the E821 experiment and runs 1–3 of E989 at Fermilab, one finds aexp

µ − aSM
µ = 26(66) × 10−11, which implies

that there is no tension between the SM and experiment at the current level of precision. The final precision of E989
is expected to be around 140 ppb, which is the target of future efforts by the Theory Initiative. The resolution of the
tensions among data-driven dispersive evaluations of the LO HVP contribution will be a key element in this endeavor.
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Contribution Section Equation Value ×1011 References

Experiment (E989) Eq. (9.5) 116 592 059(22) Refs. [5–7, 9–12]

HVP LO (lattice) Sec. 3.6.1 Eq. (3.37) 7132(61) Refs. [13–29]
HVP LO (e+e−, τ) Sec. 2 Table 5 Estimates not provided at this point
HVP NLO (e+e−) Sec. 2.9 Eq. (2.47) −99.6(1.3) Refs. [30, 31]
HVP NNLO (e+e−) Sec. 2.9 Eq. (2.48) 12.4(1) Ref. [32]
HLbL (phenomenology) Sec. 5.10 Eq. (5.69) 103.3(8.8) Refs. [33–56]
HLbL NLO (phenomenology) Sec. 5.10 Eq. (5.70) 2.6(6) Ref. [57]
HLbL (lattice) Sec. 6.2.8 Eq. (6.34) 122.5(9.0) Refs. [58–62]
HLbL (phenomenology + lattice) Sec. 9 Eq. (9.2) 112.6(9.6) Refs. [33–56, 58–62]

QED Sec. 7.5 Eq. (7.27) 116 584 718.8(2) Refs. [63–69]
EW Sec. 8 Eq. (8.12) 154.4(4) Refs. [50, 70–72]
HVP LO (lattice) + HVP N(N)LO (e+e−) Sec. 9 Eq. (9.1) 7045(61) Refs. [13–32]
HLbL (phenomenology + lattice + NLO) Sec. 9 Eq. (9.3) 115.5(9.9) Refs. [33–62]
Total SM Value Sec. 9 Eq. (9.4) 116 592 033(62) Refs. [13–72]
Difference: ∆aµ ≡ aexp

µ − aSM
µ Sec. 9 Eq. (9.6) 26(66)

Table 1: Summary of the contributions to aSM
µ . The experimental number refers to the world average completely dominated by E989. The

subsequent block summarizes the pertinent hadronic contributions from Secs. 2, 3, 5, and 6 as well as the combination of data-driven and lattice-
QCD evaluations of HLbL scattering from Sec. 9. The second block summarizes the quantities entering our recommended SM value, in particular,
the total HVP contribution (using lattice QCD for LO and e+e− for higher-order iterations) and the total HLbL number. The construction of the
total HLbL contribution takes into account correlations among the terms at different orders, and the final rounding includes subleading digits at
intermediate stages.

0. Executive summary

The experimental program to study the muon’s anomalous magnetic moment, aµ ≡ (g − 2)µ/2, which started
over sixty years ago at CERN, continues to inspire theoretical efforts to obtain a Standard-Model (SM) prediction
with matching precision. In the SM, the dominant contributions to aµ are due to QED corrections, followed by
hadronic contributions (governed by QCD) and electroweak (EW) corrections. The CERN experiments provided tests
of the (α/π)2 [2] and (α/π)3 [3] QED contributions and sensitivity to the leading-order (LO) hadronic corrections [4].
The BNL E821 experiment [5] reached a precision of 540 parts-per-billion (ppb), yielding sensitivity also to EW
and higher-order hadronic contributions and intriguing tensions with the SM predictions available at that time. This
provided motivation to launch the Fermilab E989 experiment, which started taking data in 2017, and has obtained
measurements with increasing precision, from 460 ppb in 2021 [6] to 200 ppb in 2023 [7], all consistent with each
other as well as with E821. The Fermilab experiment is now preparing to announce their final measurement result,
which is expected to reach a precision of 140 ppb, and hence will enable, in principle, an exquisitely precise test of
the SM. Meanwhile, a new experiment that will employ a largely different experimental method is currently under
preparation at J-PARC [8], allowing an independent cross-check of these results.

On the SM side, the QED and EW corrections are at less than 5 ppb already well quantified, while the notoriously
difficult-to-calculate hadronic contributions are the dominant sources of theory error, rendering SM predictions of aµ
still considerably less precise than experiment. They, therefore, continue to be the main focus of the Muon g−2 Theory
Initiative. A lot has happened regarding these corrections since the publication of the first White Paper (WP20) [1].

The hadronic-vacuum-polarization (HVP) contribution was estimated in WP20 from e+e− hadronic cross-section
data in the dispersive, data-driven method, while lattice-QCD methods were not mature enough to yield reliable
results at the required precision. In the present review, we find that this situation is reversed. In the data-driven
method, some tensions in the dominant e+e− → π+π− channel were present in WP20 and were accounted for by
inflating uncertainties. New cross-section measurements of the same channel that became available after WP20 have
increased these tensions to a level that prevents forming any meaningful average for use in obtaining a precise and
reliable evaluation of the HVP contribution. Moreover, at present no scientific grounds have been identified that would
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allow one to disregard any of the data sets relevant for the HVP evaluation.
Resolving the tensions in the e+e− hadronic cross-section data will require new analyses and measurements as

well as an improved understanding of higher-order radiative corrections. Both are currently being pursued by several
experiments and theorists. Despite the present difficult situation, a data-driven estimate of HVP remains an important
goal of the Theory Initiative and an essential cornerstone on which to build future precise SM predictions. In this re-
gard, also the τ-based HVP determination, which relies on consistent data sets, is being reconsidered in view of recent
progress towards a model-independent evaluation of the required isospin-breaking corrections. While promising, this
is still work in progress: the current status of a τ-based HVP estimate is reviewed here, but is not yet included in the
overall evaluation.

On the other hand, thanks to dedicated efforts by the world-wide lattice field theory community, lattice-QCD cal-
culations of HVP have matured considerably. The present review is informed by more than a dozen new papers (since
WP20), which enable consolidated averages of (almost) all the components that are computed separately to construct
the total LO HVP contribution in lattice QCD. The result is a reliable determination of the LO HVP contribution at
0.9% precision that enters the SM prediction of aµ. The change from a data-driven to a lattice-based estimate for the
HVP contribution has resulted in a significant shift in the central value.

For the hadronic light-by-light (HLbL) contribution, significant progress since WP20 has been made in both the
dispersive method and lattice QCD. On the data-driven side, improved calculations of short-distance constraints and a
number of subleading contributions have become available, leading to a reduction of the uncertainty by about a factor
of two compared to WP20. At the same time, new lattice-QCD calculations have reached a similar level of precision.
The two averages, from phenomenology and lattice QCD, are combined into a final average with a precision below
10%.

Table 1 gives a summary of the contributions to the SM prediction, along with the locations in this White Paper
(WP25) where the results are discussed.
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1. Introduction

The anomalous magnetic moment of the muon aµ has been an enduring testbed of the SM and of its possible
extensions (generically defined as beyond the standard model, or BSM, physics). Both experiment and SM theory
provide superb precision beyond parts-per-million (ppm), allowing one to put constraints on BSM physics through
the comparison between the two. The Muon g − 2 Theory Initiative (TI) was started in 2017 with the goal of bringing
together the community of theorists and experimentalists working on this topic and of coordinating their efforts to
provide a single, consensus number for the theoretical estimate of aµ within the SM. The basis and the methodology
behind such a number would be detailed in an extensive review, a so-called White Paper. The first edition was
published in 2020 (WP20) [1]. Since then, new measurements have been announced by the Fermilab g−2 experiment,
the first result in 2021 [6] with a precision of 460 ppb, and the second result in 2023 [7] with 200 ppb. These new
measurements are consistent with, but more precise than, the ones of the BNL experiment, and provide the basis of
the current world average. The agreement of the two most precise experiments lends a high degree of reliability to
this world average. At present, the Fermilab E989 experiment is preparing to announce its final results with the full
set of all experimental data collected. Another experiment with a largely different experimental method is currently
under preparation at J-PARC [8], allowing an independent cross-check of these results.

For the physical interpretation of the muon g − 2 experimental measurement, it is crucial to have a reliable SM
prediction. Ideally, uncertainties on the SM prediction would be reduced to the same level as the experimental ones to
maximize the BSM sensitivity. In the SM, aµ is calculated from a perturbative expansion in the fine-structure constant
α. The most important contributions to this quantity arise from pure QED diagrams, but starting from order α2 also
hadronic contributions arise, in particular HVP and HLbL. Corrections due to EW bosons are small because of their
large mass. They have been calculated at next-to-leading order (NLO) and are relevant at the present level of precision.
The uncertainties are currently dominated by hadronic contributions due to the nonperturbative nature thereof, which
make the corresponding theoretical calculations highly nontrivial. The goal of this second edition of the White Paper
(WP25), as for the previous one, is to provide a detailed snapshot of the present situation and a new consensus SM
number, before the final Fermilab result is announced.

In recent years, the theoretical and experimental work aimed at reducing the uncertainties of the SM prediction
has been particularly intense and relied on higher-order calculations, dispersive methods, lattice QCD, effective field
theories, as well as new data inputs from experiments. For HLbL these efforts have indeed been successful and the
change from WP20 to the present review is that the uncertainty has been reduced by about a factor of two. Concerning
HVP the situation is more complicated as reflected by the fact that the present review does not present a number for
a data-driven estimate of this contribution, since not yet understood discrepancies among different experiments have
emerged. On the other hand, there has been significant progress in lattice-QCD calculations of this quantity, and the
consensus number for the HVP contribution presented in this review is based on them. The change from a data-driven
to a lattice estimate of this contribution also means that the central value has shifted, unfortunately, by more than the
uncertainty quoted in WP20.

Activities of the initiative are coordinated by a Steering Committee that consists of theorists, experimentalists, and
representatives from the Fermilab and J-PARC experiments. This committee also functions as the Advisory Commit-
tee for the workshops organized by the TI. Since the release of WP20, we organized four plenary workshops as well
as focused mini-workshops. The format of the recent plenary workshops follows the previous editions with plenary
sessions consisting of updates from g − 2 experiments, updates from HVP and HLbL evaluations from dispersive ap-
proaches as well as lattice QCD. The plenary workshop in 2021 was held virtually during the period of the pandemic
and was hosted by KEK [73]. After 2022, the three plenary workshops were held annually as in-person events in
Edinburgh [74], Bern [75], and Tsukuba [76], respectively. The focused mini-workshops, held virtually, were devoted
to high-precision calculations of HVP in lattice QCD [77], the CMD-3 result for e+e− → π+π− [78, 79], WP25 prepa-
rations prior to the Tsukuba workshop [80], and the HVP evaluation from hadronic τ decays [81]. At the next plenary
workshop, planned to take place in Paris [82], the TI will discuss the next steps after WP25 toward reducing the theory
errors to match the experimental precision.

The Steering Committee is chaired by Aida El-Khadra, supported by Christoph Lehner and Michel Davier as
co-chairs. Other committee members are1 Gilberto Colangelo, Martin Hoferichter, Laurent Lellouch, Tsutomu Mibe,

1Simon Eidelman, a founding member of the Theory Initiative, served on the Steering Committee until he passed away in June 2021.
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Lee Roberts, Thomas Teubner, and Hartmut Wittig. The Steering Committee’s roles are the long-term planning of
the Theory Initiative, the organization of the workshops, and the coordination of writing the White Paper and its
updates. This review (WP25) has kept the same structure as the previous one and is organized in four main chapters,
namely data-driven HVP, lattice HVP, analytic HLbL, and lattice HLbL, the writing of which was delegated to four
corresponding working groups (WGs). The coordinators of the working groups are:

• Data-driven HVP: Vincenzo Cirigliano, Achim Denig, Fedor Ignatov, Bogdan Malaescu

• Lattice HVP: Steven Gottlieb, Antonin Portelli

• Analytic HLbL: Hans Bijnens, Anton Rebhan

• Lattice HLbL: Luchang Jin, Harvey Meyer

In addition, sections on the QED and EW contributions are coordinated by Makiko Nio and Dominik Stöckinger,
respectively.

This paper was written under the following agreements within the initiative. All participants of the past workshops,
members of working groups, and their collaborators were invited to become co-authors of WP25. Essential input
papers that were accepted for publication by May 22, 2025 were fully considered and included in the averages, while
brief descriptions of unpublished papers available on arXiv before Apr 22, 2025 are also included.

The rest of the review is organized as follows: we first discuss the evaluations of data-driven HVP calculations in
Sec. 2 and lattice-QCD calculations in Sec. 3, followed by comparisons between them in Sec. 4. Then, we describe
evaluations of HLbL by using data-driven and analytic approaches in Sec. 5, and lattice QCD in Sec. 6. Lastly, QED
and EW contributions are given in Secs. 7 and 8, respectively. We summarize the conclusions and outlook for the
current SM prediction in Sec. 9.
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2. Data-driven calculations of HVP

R. Aliberti, G. Benton, D. Boito, M. Bruno, C. M. Carloni Calame, V. Cirigliano, G. Colangelo, L. Cotrozzi,
M. Cottini, M. Davier, A. Denig, V. Druzhinin, M. Golterman, A. Hoecker, M. Hoferichter, B.-L. Hoid, S. Holz,
F. Ignatov, A. Keshavarzi, B. Kubis, A. Kupich, S. Laporta, T. Leplumey, Q. Liu, I. Logashenko, G. López Castro,
A.-M. Lutz, B. Malaescu, K. Maltman, A. Miranda, S. E. Müller, A. Nesterenko, D. Nomura, M. Passera, S. Peris,
F. Piccinini, R. Pilato, L. Polat, P. Roig, J. Ruiz de Elvira, A. Signer, P. Stoffer, T. Teubner, G. Toledo, Y. Ulrich,
G. Venanzoni, A. Wright, E. Zaid, Z. Zhang

2.1. Introduction

The calculation of the LO HVP contribution in terms of hadronic cross sections proceeds via the master for-
mula [83–86]

aHVP, LO
µ =

(αmµ

3π

)2 ∫ ∞

sthr

ds
K̂(s)

s2 Rhad(s) , (2.1)

with muon mass mµ, fine-structure constant α = e2/(4π), and kernel function

K̂(s) =
3s
m2
µ

K(s) , x =
1 − βµ
1 + βµ

, βµ =

√
1 −

4m2
µ

s
,

K(s) =
x2

2
(2 − x2) +

(1 + x2)(1 + x)2

x2

(
log(1 + x) − x +

x2

2

)
+

1 + x
1 − x

x2 log x . (2.2)

Here, the hadronic R-ratio,

Rhad(s) =
3s

4πα2σ
[
e+e− → hadrons(+γ)

]
, (2.3)

is defined photon-inclusively, so that the integration starts at the threshold sthr = M2
π0 due to the e+e− → π0γ channel.

The challenge in evaluating aHVP, LO
µ at sub-percent level thus lies in the extraordinary precision requirements for the

measurement of e+e− → hadrons cross sections, especially, for the crucial e+e− → π+π− channel. In this section,
various aspects of this program are discussed, including reports from the e+e− experiments (Sec. 2.2), indirect cross-
section measurements via τ decays (Sec. 2.3), Monte-Carlo (MC) tools (Sec. 2.4), global data combinations (Sec. 2.5),
theory developments (Secs. 2.6 to 2.8), higher orders (Sec. 2.9), and the MUonE project (Sec. 2.10). A summary of
the current situation together with an outlook to future prospects is provided in Secs. 2.11 and 2.12.

Throughout, in addition to the total LO HVP contribution as defined in Eq. (2.1), also so-called Euclidean-window
observables will be considered. First introduced by RBC/UKQCD [13], weight functions in Euclidean time are in-
troduced that separate the entire integral into a short-distance (SD), intermediate (W), and long-distance (LD) com-
ponent, see Sec. 3.4 for the precise definitions. Importantly, as detailed in Sec. 4.1, these weight functions can be
translated into center-of-mass (CM) energy

√
s, to be inserted into Eq. (2.1), so that data-driven evaluations of the

same quantities become possible, a connection that is addressed in more detail in Sec. 4.

2.2. Status and perspectives of e+e− experiments

2.2.1. CMD-3
The CMD-3 [87, 88] and SND [89] experiments have been in operation at the electron–positron collider VEPP-

2000 [90, 91] since 2010. The collider provides an instantaneous luminosity of up to 1032cm−2s−1 at the maximum CM
energy

√
s = 2 GeV, a world record for single-bunch luminosity. Overall, more than 1 fb−1 of data has already been

collected by each experiment across the entire available CM energy range from 0.32 to 2.007 GeV. Today, VEPP-2000
is the only collider operating at these energies.

The new generation CMD-3 detector was designed and constructed with a major upgrade of all subsystems com-
pared to its predecessor CMD-2 experiment. In particular, a new drift chamber provided higher efficiency and more
than twice better momentum resolution, and a new liquid-xenon (LXe) calorimeter added multi-layer tracking capa-
bilities and shower profile measurement. The detector also has completely new up-to-date electronics and an elaborate
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Figure 1: Left: Published measurements of e+e− → hadrons cross sections by the CMD-3 experiment [93–106]. Right: Status of the e+e− → π+π−

cross-section measurement with different experiments contributing over the years [93, 94, 107–138].

trigger system. The main goals of experiments at VEPP-2000 include the high-precision measurement of cross sec-
tions of various modes of e+e− → hadrons at low energies. All major channels are under analysis with final states of
up to 7 pions, or two kaons and three pions [92]. Many results have already been published by CMD-3 as shown in
Fig. 1(left), where e+e− → KS KS π

+π− [104], KS K±π∓π+π− [103], and π+π− [93, 94] have appeared since WP20, and
many more channels are still being analyzed.

The most crucial channel for evaluation of aHVP, LO
µ is the simplest e+e− → π+π− production. The study of this

process has a long history since the first e+e− colliders, with numerous experiments that have contributed over the
years, as shown in Fig. 1(right). This enormous effort is still not sufficient; to match the expected precision of the g−2
experiments, this channel should be known with a precision better than 0.2%. The latest, and one of the most precise
measurements, was provided by the CMD-3 experiment [93, 94]. This new measurement was intensely scrutinized
and reviewed by the community within a specially organized series of seminars [139, 140], where a comprehensive
list of questions covering all aspects of the analysis was asked by a panel of experts nominated by the g−2 TI Steering
Committee. No pitfalls were found.

The e+e− → π+π− CMD-3 analysis is based on the largest ever data set of 34 × 106 selected π+π− events at
√

s < 1 GeV, which is an order of magnitude larger statistics compared to most of the previous measurements. The
large statistics were crucial to study various systematic effects in detail and to obtain a sharper view of possible
detector effects. It would be impossible to apply the analysis procedure, developed for the CMD-3 measurement, to
the data collected by the predecessor CMD-2 experiment, as many of the systematic effects would be hidden under
statistical fluctuations. The estimation of the possible systematic effects in the CMD-3 analysis is done in the most
conservative way, with the goal to achieve a high confidence in the final declared precision even at the expense of
possible increase in error.

One of the key features of the analysis, in contrast to other measurements, is the use of three independent sources
of information for measuring the number of detected π+π− events: using momentum distributions of two particles
measured in the tracking system, using detected energy depositions in the LXe calorimeter, or using the polar angular
distribution. All three methods are consistent within 0.2%.

Another important aspect of the performed analysis by CMD-3 was a comprehensive study of the detector accep-
tance systematic uncertainty due to the determination of the polar angle. As a by-product of this investigation, the
forward–backward charge asymmetry of π+π− was measured with an integrated statistical precision of about 0.025%.
A strong 1% deviation was observed from the prediction based on the conventional scalar QED (sQED) approach
used for the calculation of radiative corrections, as shown in Fig. 2(left), which was never noted before. The im-
proved generalized-vector-meson-dominance (GVMD) model was proposed in Ref. [141], which gives remarkable
agreement with the experimental data. This was later confirmed by a calculation in the dispersive formalism [142],
see Sec. 2.7.4. At first the dispersive approach prediction still displayed some visible deviation from the data, but a
subsequent identification of an incorrect treatment of endpoint singularities in the dispersive calculation integrals led
to an astonishing consistency with the experimental π+π− asymmetry and the GVMD prediction, see Refs. [142, 143]
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Figure 2: Left: The measured asymmetry in the π+π− process at CMD-3 in comparison with the prediction based on the conventional sQED
approach (red dotted line), the GVMD model [141] (blue line), and the dispersive calculation [142] (green dashed line). Right: The relative
differences between the pion form factors in the cases of the various θcut cut values. Different data taking seasons are shown by crosses (RHO2013)
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angle determination, either due to a Z-scale detector miscalibration (black dashed lines) or due to a constant shift in the reconstructed angle (red
dotted lines).

and Figs. 2 and 23. Independent beyond-sQED calculations within the GVMD and the dispersive formalism were
also performed in Ref. [143], and some of the cross-checks were facilitated by the RadioMonteCarLow 2 effort, see
Sec. 2.4. The observed limitation of the sQED approach also suggests to revisit the radiative corrections used in the
initial-state-radiation (ISR) measurements, where this can contribute to the C-even two-photon-exchange corrections
and consequently affect the experimental extraction of the pion vector form factor (VFF) FV

π , see Refs. [144, 145]. The
dispersive approach offers a more comprehensive description of the pion VFF, as it incorporates the correct analytic
properties by construction. However, the GVMD model can provide a much simpler framework for more compli-
cated calculations involving additional hard photons, and it also allows for iterative refinement of the VFF through the
inclusion of additional terms. Ideally, having both calculations available would be beneficial for cross-checks.

The dominant systematic contribution in the CMD-3 π+π− measurement comes from the fiducial-volume determi-
nation and was conservatively estimated as 0.5%/0.8% (RHO2018/2013) as shown in the summary systematic Table 2
of Ref. [94]. The achieved consistency at the permil level in the measured asymmetries of e+e−, π+π− processes
in CMD-3 together with overall stability of the result over different detector regions give a quite confident level of
control of this source of systematics. Such a cross-check with the extracted pion VFF within the different polar angle
selections is shown in Fig. 2(right). For comparison, dashed lines show how the experimental points should look like
in case of the presence of a 0.5% systematic effect from the fiducial volume in the measured cross section due to the
most natural scenarios, either by a miscalibrated Z-scale of the detector or by a constant bias of the reconstructed
polar angle for tracks of one of the charges. It is seen that the data is about 5 times more consistent than the declared
assigned systematics. It should also be noted that some other previous measurements, which showed the dependence
of results versus the detection polar angle, demonstrated variations an order of magnitude larger than those achieved
by CMD-3.

Another important test was the measurement of e+e− → µ+µ− cross section, predicted by QED. It was done for the
momentum-based analysis for

√
s < 0.7 GeV only, where the momentum resolution of the tracking system allowed to

separate muons from other particles. The observed average ratio of the measured cross section to the QED prediction
1.0017(16)(61) proves the consistency of most parts of the analysis procedure, including the separation procedure,
detector effects, evaluation of radiative corrections, etc.

Reaching improved precision requires support by MC tools. One of the drawbacks of the CMD-3 analysis was
that only one generator, MCGPJ, with the required precision was available for the e+e− → π+π− process. Since the
CMD-3 publication, the Pavia group presented a calculation of the π+π−(γ) hadronic channel at NLO matched to a
parton shower algorithm, with implementation in the new version of the BabaYaga@NLO MC event generator [143].
The values of integrated radiative corrections and the forward–backward charge asymmetry in π+π− were confirmed.
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The strong RadioMonteCarLow 2 community effort, going towards next-to-next-to-leading-order (NNLO) precision
and above, will help further clarify and strengthen the theoretical side of the experimental π+π−(γ) measurements, as
discussed in Sec. 2.4. This effort will be mandatory if there is a wish to reach permil-level experimental precision in
this channel. This aspect is even more critical for the ISR measurements right now, as the LO of the ISR processes
starts at NLO precision of MC tools for the energy-scan experiments.

The total systematic precision of the CMD-3 e+e− → π+π− measurement was conservatively estimated as 0.7%
in the central region near the ρ resonance. It is important to give a dedicated clarification regarding the treatment
of the provided experimental systematic uncertainties. Being dominated mainly by a single source, the CMD-3
publication provides only the total systematic error for each point and suggests using a single-source full systematic
covariance matrix accordingly, for simplicity of further external use. This yields an even more conservative evaluation
of the uncertainty of the aHVP, LO

µ integral compared to splitting over different statistically independent systematic
contributions. Such a prescription in the case of direct point-by-point integration conventionally assumes using 100%
correlated systematic uncertainty. However, strictly speaking, the exact energy dependence of the required systematic
corrections are unknown. Therefore, it is essential to consider the uncertainties of the uncertainty, as argued in
Sec. 2.3.6 of WP20. This is especially important given the reached advancements in statistical precision and the
entirely dominant systematic uncertainties of the latest CMD-3 measurement. A strict interpretation of the provided
systematic error values is that they accommodate an underlying systematic effect with possible internal correlations
up to 100%. Furthermore, these values allow for any energy-dependent functional form of the required systematic
correction, provided it remains within the specified systematic band. This prescription was commonly assumed by
experimentalists in most of the e+e− → hadrons measurements and for most of the separate systematics sources
(even when a correlation matrix was provided). Applications that exploit correlations between data and consider only
100% strict correlation from the first to the last energy point of different split systematic contributions can produce
a significant underestimate of the uncertainty on the quantity being evaluated. This, for example, applies to the all
analyticity-constrained fits described in Sec. 2.6, where using only “100% correlated systematic” of each separate
source strongly reduces the degrees of freedom of the fit and consequently shrinks the systematic part of errors from
that. Such an underestimation of the systematic error of the evaluated aHVP, LO

µ integrals may in some cases be greater
than a factor 1.5, as shown in Ref. [146] and noted in Sec. 2.6.1 for the CMD-3 data treatment case.

The published CMD-3 pion VFF result was based on the full data sample collected at energies below 1 GeV
before 2024 (62 pb−1) and on a small subset of data, about 24 pb−1, collected at energies above 1 GeV. The full data
sample above 1 GeV is under analysis. The preliminary results on the pion VFF were obtained for data collected in
2019-2021 (about 170 pb−1). The major data sample of 580 pb−1 was collected in 2022 and 2023; these data are yet
to be incorporated into the ongoing analysis. Data analysis at these CM energies differs from the one implemented in
Ref. [94]:

• The momentum resolution of the CMD-3 tracking system does not allow one to distinguish momenta of e,
µ, and π in e+e− → e+e−, µ+µ−, and π+π−, correspondingly. Thus, the final-state identification is based on
the analysis of energy deposition in the calorimeter. In order to cross-check the identification procedures, two
independent methods are being developed—one is based on data from the LXe calorimeter only (similar to the
method described in Ref. [94]) and another is based on the data from the full calorimeter and machine learning.
Muons and pions cannot be robustly distinguished by the CMD-3 calorimeter response, thus the number of
µ+µ− pairs is evaluated from the number of detected e+e−. The identification procedure based on the analysis
of angular distributions is statistically limited and is applied only as an overall cross-check, not point-by-point.

• At energies above 1 GeV, the cross section for the 2π final state drops, but it rises for many other hadronic final
states, most notably for K+K−. In order to keep background low, strict selection cuts are used, which introduces
larger efficiency corrections, which differ for e+e−, µ+µ−, and π+π−.

New data taking at energies below 1 GeV started in 2024 and is expected to continue through 2025 with the goal
to scan the whole CM energy range from 0.32 to 1 GeV and to collect 2–3 times more data compared to previous
scans. The CMD-3 result [94] is systematically limited. Nevertheless, the gain in statistics will be beneficial for the
pion VFF measurement as well, as it will open additional possibilities for the systematics studies. It should be noted
that a significant bulk of the data collected (and planned to be collected) in 2024/2025 is taken with the directions of
e+ and e− beams reversed; that allows one to cross-check various detector-specific efficiency corrections.
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Figure 3: Left: The e+e− → nn̄ cross section measured by SND [152–154]. The error bars and shaded boxes represent the statistical and systematic
uncertainties, respectively. Right: The e+e− → π+π− born cross section measured by SND. The red line is a fit curve.

The luminosity provided by VEPP-2000 at ρ(770) energies allows for statistical accuracy of (0.1–0.2)% for the
pion VFF. Such precision is required in order to match the accuracy of the aHVP, LO

µ evaluation in the dispersive
approach to the precision of the final FNAL result. Reduction of the systematic uncertainty to the same level requires
a significant upgrade of the CMD-3 detector. The key directions of the upgrade are: a new tracking system with
improved momentum resolution; the possibility for the precise and robust measurement of the polar angles of the
tracks and the position of the vertex along the beam axis; a dedicated system to study nuclear interactions of pions
with the material of the beam pipe and the tracking system. The upgrades are being designed. It is estimated that the
data taking with the upgraded detector can start around 2030. It should be mentioned that 0.1% precision for the pion
VFF also sets very high requirements for the theoretical models and corresponding MC codes used to evaluate the
radiative corrections.

The same data sets discussed here are used for the measurement of cross sections of many exclusive channels of
e+e− → hadrons beyond e+e− → π+π−. The second most important channel after 2π for the aHVP, LO

µ evaluation is
e+e− → π+π−π0. The first result for this channel was published as a by-product of the 2π measurement [94], based on
the small subset of π+π−π0 identified as a background to π+π−. A dedicated analysis of the full π+π−π0 data set is in
progress and is expected to be released in 2025.

2.2.2. SND
Since 2020 several hadronic cross sections were measured at the SND experiment at the VEPP-2000 e+e− col-

lider. A precise measurement of the e+e− → KS KL cross section was carried out in the vicinity of the ϕ meson res-
onance [147]. The systematic uncertainty in the measured cross section at the maximum of the ϕ resonance is 0.9%.
The e+e− → π+π−π0 cross section was measured in the energy range (1.075–1.975) GeV [148]. The SND result is
consistent with the previous BaBar measurement [149], but is more accurate. The SND data on the e+e− → K+K−π0

cross section below 2 GeV [150] are also in reasonable agreement with the BaBarmeasurement [151]. The e+e− → nn̄
process was studied in the energy range from threshold up to 2 GeV. The measured cross section [152–154] is pre-
sented in Fig. 3(left). New data on the processes with multiphoton final state e+e− → ηπ0γ [155], e+e− → ηηγ [156],
e+e− → ηγ [157], e+e− → η′γ [158] were obtained.

Currently, the SND collaboration works with π+π− and π+π−π0 channels in the 0.548 GeV <
√

s < 1 GeV and
0.548 GeV <

√
s < 1.1 GeV energy regions, respectively, using 69 pb−1 data. They have faced serious challenges

due to the fact that detector performance was very inconsistent during the 2017–2018 experiment. Despite these
problems, it is possible to perform high-precision measurements of the e+e− → π+π− cross section, using a modified
version of the reconstruction software. A new algorithm of e/π separation allows one to suppress e+e− → e+e−

background by a factor of 103 in the whole energy region, thus limiting the growth of the systematic error with
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decrease of
√

s. An improved reconstruction algorithm allows one to reduce the number of poorly reconstructed
tracks. Simulated e+e− → π+π− events now better describe experimental inefficiencies of the cosmic veto and energy-
deposition cut, after introduction of the light quenching effects in the plastic scintillator of the muon system and
NaI(Tl) of the electromagnetic (EM) calorimeter. The current number of the selected e+e− → π+π− events makes
the statistical uncertainty negligible compared to the systematic one. Due to the increased tensions between the
most precise measurements of the e+e− → π+π− cross section, a blinding procedure was introduced for the earlier
stages of the SND analysis. The efficiency of e+e− → π+π− was modified via multiplying it by 1 + a0 + a1 ×

(
√

s − 775 MeV), where a0 and a1 are randomly generated parameters, unknown to the researchers. The preliminary
results of the unblinded e+e− → π+π− cross-section measurement are shown in Fig. 3(right). Current estimates of the
systematic uncertainty are (0.6–0.8)% in the whole energy range, due to much higher statistics and improvements in
the simulation and reconstruction algorithms, compared to the 2020 SND analysis. Progress with the π+π−π0 channel
was delayed, since this analysis relies on the high-precision measurements of the integrated luminosity from the π+π−

analysis. Preliminary estimates of the systematic uncertainty of e+e− → π+π−π0 cross-section measurements show it
to be no greater then 1.4%.

2.2.3. KLOE
The KLOE experiment took data during 2001–2006, with a total integrated luminosity of 2.5 fb−1 at

√
s =

1.0194 GeV (the ϕ peak) and 250 pb−1 off-peak at
√

s = 1 GeV (in 2006). Peak luminosity was reached during
the 2005 run with a luminosity of 8.5 pb−1/day. KLOE has published three precise cross-section measurements of
σ(e+e− → π+π−γ(γ)): KLOE08 [130], KLOE10 [131], and KLOE12 [132], which have been used for the evalua-
tion of the 2π contribution to aHVP, LO

µ [1]. The KLOE08 and KLOE12 analyses were performed with a small-angle
(SA) selection where the photon is required to be within θγ < 15◦ or θγ > 165◦ (i.e., missing momentum) resulting
in 240 pb−1 (≃ 3.5 million ππγ events) of data taken in 2002. The KLOE10 analysis was performed on 232 pb−1

from 2006 (corresponding to 0.6 million events), after the photon polar angle is selected at large angle (LA), i.e.,
50◦ < θγ < 130◦. Further details of the analyses can be found in Refs. [1, 145, 159], and details on the agreement and
combination of the three results are found in Ref. [133].

In the KLOE08, KLOE10, and KLOE12 analyses, the MC generator Phokhara (version 5) was used, including
NLO ISR, final-state-radiation (FSR) corrections, and simultaneous emission of one ISR and one FSR photon [160,
161]. Phokhara was interfaced with the standard KLOE MC GEANFI to compute MC efficiencies as a function of
the reconstructed M2

ππ, and to compute the radiator function H used to relate the measured differential cross section for
e+e− → π+π−γ to the cross section σππ. In addition, Phokhara was used to correct for the shift between the measured
M2
ππ and the invariant mass of the intermediate photons for FSR events. The FSR treatment was done assuming

point-like pions (F×sQED, see Ref. [145] for definitions).
The KLOE12 analysis normalized the cross section using a µ+µ−γ cross-section measurement with the photon at

SA. The error quoted by the authors of Phokhara on the ISR part of the generator is 0.5%, this error cancels out in the
extraction of the pion VFF |FV

π |
2 from the π+π−γ/µ+µ−γ ratio. In the KLOE12 analysis, a global uncertainty of 0.2%

was estimated for the factorization approximation when subtracting FSR for muons, and for the correction due to the
FSR shift for pions. The effects of additional diagrams not present in Phokhara (v5) for muons was estimated to be
0.1% at most. The SA selection greatly suppresses events with only one hard photon from FSR and no ISR, as well as
a large part of events with one photon from ISR and one from FSR. For KLOE08, the uncertainty due to the treatment
of FSR events is estimated to be 0.3%. For KLOE10, the uncertainty on the treatment of FSR has been estimated to
be 0.5% due to the uncertainty of the pion VFF at

√
s = 1 GeV and 0.6% due to a comparison of FSR modeled with

SU(3) chiral perturbation theory (ChPT) [145, 162] with respect to the treatment used in Phokhara.
Within the RadioMonteCarLow 2 efforts [145], “tuned comparisons” (see Ref. [163] for the definition) between

Phokhara 10.02 (which has a full NLO matrix element for π+π−γ and µ+µ−γ final state) and other MC generators—
namely, AfkQed, BabaYaga@NLO, KKMC, and McMule, all described in Ref. [145]—were performed [145, 165],
in order to investigate radiative correction effects both due to missing NNLO contributions in Phokhara and also to
test the validity of the generator at NLO, as questioned in Ref. [166]. The following configurations have been studied:

• e+e− −→ µ+µ−γ(γ) before and after SA angular acceptance, considering both ISR and FSR emission;

2Differences between Phokhara5 (which was used by KLOE) and Phokhara10 have been investigated in Ref. [164].
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Figure 4: Cross section of e+e− → µ+µ−γ vs. the invariant mass of two muons, in the KLOE SA acceptance selection scenario, with ISR and FSR.
The results from Phokhara and McMule were compared to KKMC (black line), showing an agreement better than 0.5% for most of the spectrum.

• e+e− −→ π+π−γ(γ) before and after SA and LA angular acceptance for only ISR emission—due to limitations
of other MC generators used in this comparison [165]. In the case of LA acceptance, it was also possible to
compare AfkQed vs. Phokhara after the trackmass cut;3 this was not possible in the case of SA due to the
AfkQed limitations for the KLOE configuration.

In this study, the e+e− −→ π+π−γ and e+e− −→ µ+µ−γ cross sections as a function of the invariant mass of the two
pions and muons from Phokhara were compared with the predictions from other generators [145, 159]. Vacuum
polarization (VP) was switched off and detector effects (involving smearing of momenta) were not included.

The studies on muons showed good agreement with the SA acceptance between Phokhara, McMule, and KKMC,
with a difference below 0.5% between Phokhara and KKMC for most of the M2

µµ spectrum, as shown in Fig. 4. We
note, see Fig. 32 of Ref. [145], that this is not the case for the so-called “B-scenario” where differences between
generators (particularly KKMC and AfkQed) reach a few percent at Mµµ < 1 GeV. In the inclusive selection (i.e.,
without angular acceptance cuts), there are known differences for M2

µµ > 0.85 GeV2 between Phokhara and KKMC
[167], up to ≃ 1%, due to missing exponentiation in Phokhara, but with negligible effects on aHVP, LO

µ (in the pion
case)—which is dominated by the low-energy region.

The studies on pions showed excellent agreement between Phokhara and McMule in the inclusive and SA [165]
and LA acceptance selections, see Fig. 5(left). This is good confirmation of the correctness of the implementation of
full NLO matrix elements in Phokhara. The LA acceptance selection (KLOE10) was studied also after the trackmass
cut, see Fig. 5(right), which is sensitive to (N)NLO effects. With acceptance cuts only, an agreement below 0.5%
was found around the ρ peak (M2

ππ ≃ 0.6 GeV2) between Phokhara and AfkQed. With an additional cut on the
trackmass variable on top of acceptance cuts, the agreement at the ρ peak was found to be below 1%, as shown in
Fig. 5(right). The larger differences observed below 0.4 GeV2 are expected to originate from the different treatment
of radiative corrections. While the size of the differences is still within the systematic uncertainty of KLOE10 [131],
see Fig. 5(right), for the future analyses this difference is a further indication of the need for a NNLO MC generator,
on which work is in progress [145].

Preliminary results, which do not yet account for realistic detector effects, indicate the following:

• Phokhara shows excellent agreement with McMule for µµγ and ππγ. These results confirm the correct im-
plementation of NLO matrix elements in Phokhara and exclude possible issues associated with Phokhara as
questioned in scenario 1 of Ref. [166].

• For µµγ, the agreement between Phokhara and KKMC is mostly within ≤ 0.5% for ISR, ISR+FSR in both
inclusive and SA selections, before the trackmass selection is applied. Differences above 0.85 GeV2 (in m2

µµ),

3The trackmass is a kinematic variable defined in Ref. [130]. The tails in its distribution are mainly due to radiative corrections, therefore, it is
sensitive to (N)NLO effects.
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Figure 5: Left: Cross section of e+e− → π+π−γ vs. the invariant mass of two pions, in the KLOE LA acceptance selection scenario, with ISR only,
no trackmass cut is applied. The results from AfkQed and McMule are compared to Phokhara (blue line), showing an agreement better than 0.5%
at the ρ peak. Right: Cross section of e+e− → π+π−γ vs. the invariant mass of two pions, in the KLOE LA acceptance selection scenario, with
ISR only, with the trackmass cut applied. The results from AfkQed are compared to Phokhara (blue line), showing an agreement better than 1%
around the ρ peak (0.6 GeV2). The systematic uncertainty for KLOE10 LA analysis is shown as a function of the invariant mass of the two pions
(gray band).

reaching up to approximately 1% are due to missing exponentiation in Phokhara (and have negligible effects
on aHVP, LO

µ in the pion case). Work is currently in progress to estimate the effects of radiative corrections due to
the trackmass cut on muons, which can be sensitive to the presence of additional photon emission.

• For ππγ a comparison with AfkQed in the LA selection reveals differences below 0.5% when considering
acceptance cuts, and below 1% when including also the trackmass cut, at the ρ peak. These findings limit the
impact of NNLO effects on the LA analysis (KLOE10) as possible explanation for the discrepancy with BaBar
and CMD-3 experiments.

More studies are in progress, specifically: enlarging the statistics; including realistic detector effects (GEANFI);
including more refined hadron–photon models for FSR (beyond F×sQED) [145] and ISR NNLO radiative corrections;
and applying the trackmass selection for SA ππγ (KLOE08) and µµγ (KLOE12) analyses.

A new SA KLOE 2π analysis on 2004–2005 data, normalized to µµγ, has started with the aim of clarifying the
current tension with respect to other HVP evaluations. It is based on ≃ 25 million ππγ events, corresponding to 7
times the statistics of the KLOE published analyses, which have not yet been analyzed. The 2006 off-peak data will
also be used for additional cross-checks and systematic studies. This new analysis, called KLOE-nxt, will employ
new software tools and additional validation tests aiming to a precision of 0.4% on the 2π contribution to aHVP, LO

µ ,
representing a two-fold improvement in accuracy compared to the previous KLOE12 result [168]. It will also benefit
from the ongoing work towards a NNLO implementation of Phokhara [145]. KLOE-nxt will provide an important
cross-check of the published results and will be conducted in a blinded manner [169].

In addition, KLOE is analyzing the three-pion cross section using the radiative-return method with 1.7 fb−1 of data
collected at the ϕ meson mass [170].

2.2.4. BaBar
A number of hadronic processes have been studied by BaBar since WP20, including e+e− → 2(π+π−)π0π0 +

π0/η [171] and π+π−π0π0π0 + π0/η [172] in 2021, as well as K+K−π0π0π0, K0
S K±π∓π0π0, K0

S K±π∓π+π− [173] in
2022. In particular, the π+π−π0 cross section, which represents the second largest input of the HVP contribution
to aµ, was measured in 2021 [149] using 469 fb−1 of data collected by the experiment near the Υ(4S ) resonance,
with CM energies ranging from 0.62 to 3.5 GeV via the ISR method. The analysis requires all final-state particles
to be detected, namely two good-quality opposite-sign charged tracks and at least three photons, one being the ISR
candidate with a CM energy larger than 3 GeV while the remaining photons must form one or more π0 candidates with
invariant masses 0.1 < Mπ0 < 0.17 GeV. A kinematic fit is performed on selected events and provides a χ2 quality
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value used to reject background processes, estimated with MC simulation. The cross section is studied separately
below and above 1.1 GeV because of the detector resolution which significantly distorts the 3π mass spectrum in the
lower region. From threshold to 2.0 GeV, the measured HVP contribution of this channel is 45.86(14)(58) × 10−10,
with a systematic uncertainty of 1.3% near the ω and ϕ resonances, dominated by the detection efficiency, radiative
correction, and luminosity. This result improves the precision by a factor of about 2 compared to calculations based
on previous π+π−π0 analyses.

The last BaBar analysis to measure the π+π−(γ) cross section was published in 2009 and 2012 [137, 174] with
around half the BaBar statistics. To cancel out the ISR photon efficiency and the VP, the measured π+π−(γ) mass
spectrum is divided by the µ+µ−(γ) spectrum, equivalent to the ratio of each final state’s bare cross section. The
separation between pions and muons was based on particle identification (PID) which required both charged tracks
to have momenta larger than 1 GeV in order to make the muon identification more reliable. PID was found to be the
dominant source of systematic uncertainties on the aµ prediction, with a total relative systematic error of 0.5% for
energies from 0.5 to 1 GeV.

An upcoming BaBar analysis, intended to be published in 2025, aims at improving the precision on the HVP
contribution to aµ from π+π−(γ). For that purpose, the entirety of BaBar data will be studied, while PID require-
ments on the tracks will be removed. An angular fit is considered as a new method [175] to distinguish the main
signal (π+π−(γ), µ+µ−(γ)) and remaining background (K+K−(γ), e+e−(γ)) processes, based on the cosine of the angle
between the negative charge track and the ISR photon in the 2-track CM frame. To further differentiate the shapes
of the dipion and dimuon distributions, the track momentum selection required in the previous analysis is released,
increasing the statistics at the same time. Overall, this new study will result in an independent measurement of the
π+π−(γ) cross section.

A first step towards this objective was taken with a study of additional radiation in ISR processes, published in
2023 [176] and relying on all the data collected by BaBar. The intent was to evaluate how accurate the Phokhara and
AfkQed generators are in simulating data and to measure the relative proportions of additional radiations in µ+µ−(γ)
and π+π−(γ) processes with ISR, at “LO” (no additional photon), “NLO” (+1 real photon), and “NNLO” (+2 real
photons, simulated only by AfkQed). Tracks are assumed to have pion masses, while dipion and dimuon events
are identified according to tight PID selections. Kinematic fits are performed on events according to the different
configurations in which additional photons are emitted. In the case of “NLO” events, two fits are applied depending
on whether the single additional photon is detected in the EM calorimeter at a large angle (LA) from the beams,
between 0.35 and 2.4 radians, or it is emitted at a small angle (SA), assumed to be collinear with the beams. For
“NNLO” events, three fits are devised considering the two additional photons can both make large angles (2LA),
small angles (2SA), or one of each configuration (LA+SA).

Inputs to the fits are the measured energy and direction of the ISR photon, the momenta and angles of both charged
tracks, as well as the measured energy and angles of detected additional photons in the LA fit. Returned quantities
are χ2 values and fit kinematic variables. Events are classified depending on the smallest χ2, with the additional
requirement that fit energies are larger than 200 MeV either in the laboratory frame for LA photons or in the e+e− CM
frame for SA photons. Events below these thresholds are classified as “LO.”

The distinction between “NLO” LA radiations from ISR and FSR is performed by fitting the distribution of the
minimum angle between the additional photon and the charged tracks, using templates from AfkQed (FSR, no LA
ISR simulated) and Phokhara (ISR after subtraction of FSR). The separation is fixed at 20 degrees in both π+π−(γ)
and µ+µ−(γ) samples, with FSR peaking below 10 degrees and LA ISR forming a wide bump centered around 60
degrees. Distribution shapes of LA photon energy simulated by both generators are observed to be in good agreement
with data.

In contrast, an excess of “NLO” SA photons, all ISR, is observed in Phokhara samples compared to data, evolving
with a positive slope as a function of the additional photon’s energy in the CM frame as seen in Fig. 6. This excess
has been shown not to be due to the collinear assumption in the “NLO” SA fits with the help of an alternative zero-
constraint calculation that does not assume any collinearity. It is however affected by feed-through of “NNLO” 2SA
photons, originating from a same beam, into the “NLO” SA category. After correction, the slope disappears and
an almost constant excess of simulated events is observed with an overall data/MC ratio of 0.750(8) in µ+µ−(γ) and
0.763(19) in π+π−(γ).

Significant “NNLO” contributions are found at the above-mentioned photon energy thresholds, 3.47(38)% and
3.36(39)% of events in the muon and pion channels, respectively, more than 3% being due to two additional ISR
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Figure 6: Comparison of the fit energy E∗γSA
in the CM frame of the additional “NLO” SA photon, before and after “NNLO” correction, in the

µ+µ−(γ) (left) and π+π−(γ) (right) data and Phokhara samples.

photons. AfkQed shows overall good performance in describing the rates and energy distributions of data at “NNLO.”
A slightly high data/MC ratio of 1.061(15) for muons and 1.043(10) for pions is found up to the maximum generated
energy.

The consequences for past π+π−(γ) cross-section measurements vary depending on the experiment. The previous
BaBar result is unaffected as “NLO” and higher orders were already included in the analysis. The event acceptance
determined with Phokharamust be corrected by a factor 0.3(1)× 10−3, negligible compared to the total 0.5% system-
atic uncertainty. This independence from the treatment of additional radiation in Phokhara confirms the robustness
of the BaBar analysis with respect to radiative corrections. On the contrary, unaccounted shortcomings from this
generator could potentially affect the results of other experiments which apply more stringent “LO” selections and
rely on Phokhara for additional radiations.

2.2.5. BESIII
The BESIII Collaboration is committed to providing experimental inputs to the dispersive evaluation of HVP by

measuring the most relevant hadronic channels in electron–positron annihilation. The timelike pion VFF, and related
cross section, σ(e+e− → π+π−), which represents the most important contribution to aHVP, LO

µ , was measured in 2015 in
the ρ(770) region with a systematic accuracy of 0.9% [138]. The analysis makes use of a data sample of 2.9 fb−1 col-
lected at a CM energy of 3.77 GeV and the ISR technique is employed to access the relevant energy range. The event
selection requires the detection of the π+π− pair as well as the ISR photon in the fiducial volume of the apparatus. The
four-momenta of these particles are subject to a four-constraint kinematic fit (4C), which enforces energy-momentum
conservation under the assumption of the e+e− → π+π−γ final state. Conventional particle-identification methods are
applied to reject background contributions from Bhabha scattering events, while for the separation of signal events
from the QED process e+e− → µ+µ−γ a neural network method has been worked out. The latter is retained as control
sample for various cross-checks and for a QED test. The Phokhara [164] event generator (version 7) is employed
to determine selection efficiencies and corrections (e.g., VP, FSR), as well as to extract the radiator function at NLO.
A normalization is obtained by means of the integrated luminosity, which is determined by measuring large-angle
Bhabha events using the BabaYaga@NLO [177] event generator.

Recent observations of the BaBar collaboration [176] have identified a limitation of the Phokhara event generator
in the description of those NLO events in which two ISR photons are present (one at small angles, one at large angles).
Such a limitation can introduce a mismatch in the χ2 distribution of the 4C kinematic fit between the Phokhara
simulation and real data, thus leading to an incorrect evaluation of the event-selection efficiency. As claimed in
Ref. [166], the impact of this Phokhara limitation on the BESIII analysis might be as large as 3.2% in the case of the
first of the two scenarios discussed in the paper, while the published BESIII result will be unaffected in the second
scenario. The estimate of scenario 1, however, does not consider the effects of the photon efficiency calibration,
which is based on a 1C fit. It has indeed been demonstrated that selections based on a 1C kinematic fit are much less
affected by an imprecise description of NLO photons as these selections are more inclusive in NLO photon radiation.
Effectively, the photon efficiency calibration procedure therefore mitigates the possible Phokhara issues found by
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Figure 7: Comparison of the pion VFF selection efficiency, after a kinematic fit with four (left) and one constraints (right), as evaluated with
different MC generators.

the BaBar collaboration. A quantitative investigation has demonstrated that the impact on the BESIII pion VFF
measurement can be constrained to ≤ 1%. Such a result is also confirmed independently by detailed comparisons of
the selection efficiencies calculated using the Phokhara, AfkQed, and KKMC [178] event generators in the dimuon
control sample. Figure 7(left) shows the selection efficiencies for the three generators (upper plot) and the relative
difference with respect to Phokhara (lower plot) for realistic selection cuts including the 4C kinematic fit and the
photon efficiency calibration. Also in this case an agreement at the 1% level is observed among the three generators.
Figure 7(right) shows the same comparison for a selection in which the 1C kinematic fit is employed. Here, an even
better agreement between the three event generators can be observed, which is due to the much more inclusive nature
of the 1C kinematic fit. From these studies the scenario 1 of Ref. [166] with a big impact on the BESIII measurement
cannot be confirmed. The development of additional event generators suited for ISR measurements, as well as the
further development of those presently available, will be crucial for pinning down the actual uncertainty due to the
employed version of Phokhara.

An improved measurement of the pion VFF at BESIII is foreseen in the upcoming years and aims to achieve
O(0.5%) accuracy, taking advantage of the additional 17 fb−1 collected in the past years at the CM energy of 3.77 GeV,
increasing thereby the statistics by a factor of seven with respect to the 2015 result. The BESIII collaboration intends
to improve the accuracy in a staged approach with the first result to be expected in 2025. New analysis techniques
are presently being worked out, most importantly a selection without the explicit detection of the ISR photon. This is
possible by constraining the event kinematics to the production of a π+π− pair and one (undetected) photon in a 1C
kinematic fit. As mentioned above, this method is largely insensitive to the possible limitations of the Phokhara event
generator thanks to an increased acceptance of events with additional (soft) photons emitted. The updated analysis
strategy is applied to the 2.9 fb−1 at 3.77 GeV considered in the 2015 analysis and to a data set of 3.1 fb−1 at 4.18 GeV,
to produce an intermediate result with normalization to luminosity and a target precision of 0.7%. This measurement
represents an important cross-check of the published measurement in terms of both analysis strategy and background
contributions, thanks to the different CM energies of the analyzed data sets.

The ultimate precision of O(0.5%) will be achieved by analyzing the full 20 fb−1 data sample, which opens the
avenue to a normalization to e+e− → µ+µ−γ events with the additional advantage that the systematic uncertainties
related to the radiator function and the luminosity drop in such an approach. In the intermediate future, corresponding
high-precision analyses for the 3π, 4π, and K+K− channels are planned.

Recently, the BESIII Collaboration has published an inclusive R-value measurement in the energy region between
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! ISR boost confines particles into narrow cone 
" Very high detection efficiency

! Less reliant on description of hadronic MC
" ISR description in MC under control

! Single measurement down to threshold (does not need scan)
! Measurement fully inclusive for Final State Radiation (FSR) and 

higher order corrections of ISR
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Figure 8: Left: Result from the BESIII R-value measurement. Right: Preliminary selection efficiency for an inclusive measurement of R below
2 GeV with the ISR method.

2.2 and 3.7 GeV, based on the energy-scan technique, with unprecedented precision at most of the considered energy
points [179]. The analysis employs, as first in this kind of measurements, two independent event generators for simu-
lating the hadron production: a fully theoretical model based on the Lund model [180], called LUARLW [181], and the
hybrid generator [182], which makes use of the well-established Phokhara [164] and the data-driven ConExc [183]
event generators in combination with LUARLW used only for the remaining channels. The measured R-value shows
some tensions with perturbative-QCD (pQCD) predictions, reaching a significance of 2σ above 3 GeV, see Fig. 8(left).
The data sets analyzed in the published measurement represent a small fraction of the scan-data energy points collected
by BESIII between 1.8 and 4 GeV, thus, further results are to be expected in the near future.

The energy region below approximately 2 GeV is inaccessible for inclusive R-value measurements using the tradi-
tional energy-scan method at e+e− colliders. This is mostly due to the dominant production of two-prong final states,
e.g., π+π−(π0) or K+K−(π0), which can hardly be distinguished from the overwhelming QED background (mainly
Bhabha events). Currently, an alternative approach based on the ISR technique is under development at BESIII for
an inclusive R measurement below 2 GeV. It is based on the detection of the ISR photon in the central region of
the detector and the reconstruction of (at least) one charged particle. The emission of a hard ISR photon boosts the
hadronic system within the detector acceptance, such that the selection efficiency (>95%) is found to be significantly
higher than in traditional energy-scan measurements, see Fig. 8(right). As a consequence, the final result has a mini-
mal dependence on fully inclusive event generators (e.g., LUARLW), which is currently the largest contribution to the
systematic uncertainty in traditional measurements. Moreover, in large-angle radiative events, the background contri-
bution from Bhabha scattering significantly reduces and can be effectively suppressed by simple particle-identification
conditions. Preliminary studies suggest an accuracy of O(1%) to be in reach, which will imply a valuable input to
the dispersive evaluation of aHVP, LO

µ as this inclusive method is a novel and independent approach for determining the
HVP contribution.

2.2.6. Belle II
The e+e− → π+π−(γ) measurement at Belle II has adopted the same approach as the original BaBar analysis [137]

and will use a data set of 427 fb−1. ISR events are used to measure the cross section for e+e− → Xγ at the reduced
collision energy √

s′ = mX (X = π+π−, µ+µ−) , (2.4)

where s′ is given by

s′ = s
(
1 −

2E∗γ
√

s

)
, (2.5)

and E∗γ is the ISR photon energy in the CM frame. Muons and pions will be identified using the Belle-II particle-
identification (PID) detectors and the ratio of cross sections of the pion pair to the muon pair will be measured. NLO
QED effects and other backgrounds are validated or rejected using kinematic fits with multiple-photon hypotheses.
Control-sample-based efficiency corrections

(
ϵdata/ϵMC

)
X

related to different sources X are determined: trigger, PID,
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Trigger challenge at Belle II 
• Light hadron cross section measurement at BELLE was suffered from the trigger efficiency.

– The measurement for σ(e+e-→π+π-π0) was attempted, but could not be published.
[J. Crnkovic, PhD thesis, Illinois U. (2013)]

• Bhabha veto has been upgraded to avoid the inefficiency and uncertainty.
– BELLE-type : Only θ angle → Belle II type : θ and Φ angle. 
– Efficiency for energetic ISR > 99%
– Event loss due to 3D bhabha veto 
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FIG. 23. Observed eþe− → πþπ−π0 cross section as a function of energy compared with previous results. Each panel covers a
different energy ranges: (a) 0.76–0.82 GeV (ω resonance), (b) 1.00–1.04 GeV (ϕ resonance), (c) 1.05–2.00 GeV, and (d) 2.0–3.5 GeV
regions with a linear scale. A logarithic scale for (e) a threshold region (< 0.75 GeV) and (f) ω and ϕ region (0.7–1.05 GeV). Circles
with error bars are the Belle II results, squares are the BABAR results [35], triangles are the SND results [27,28,33], and diamonds are the
CMD-2 results [31,32].
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Figure 9: Left: L1 trigger efficiency for high-energy photons as a function of the ISR photon energy in the CM frame. Right: Observed e+e− →
π+π−π0 cross section as a function of energy compared with previous results at the ω resonance [185].

tracking, and fit χ2. Thus, the data efficiency ϵdata is estimated from the MC efficiency ϵMC as

εdata = εMC
(
εdata

εMC

)
trigger

(
εdata

εMC

)
PID

(
εdata

εMC

)
tracking

(
εdata

εMC

)
χ2

. (2.6)

To validate the analysis, the e+e− → µ+µ−(γ) cross section will be measured based on the luminosity derived from
other QED processes [184].

The ISR-trigger efficiency is determined using a sample of e+e− → µ+µ−(γ) events selected by an independent
track trigger. Figure 9(left) shows the trigger efficiency as a function of E∗γ in the barrel region of the EM calorimeter;
the efficiency is 99.9% for E∗γ > 2 GeV. The kinematic fits and background simulations were validated with a 1.8 fb−1

subsample of data. Regarding tracking efficiency, a data-driven method tested with signal MC was developed. Studies
of background, PID, and trigger are ongoing.

An e+e− → π+π−π0 measurement using 191 fb−1 Belle II data has been published recently [185], with the main
result shown in Fig. 9(right). The LO HVP contribution of this analysis to the muon magnetic anomaly is a3π

µ =

48.91(0.23)(1.07) × 10−10 in the (0.62–1.8) GeV energy range. This is 2.5σ larger than the current most precise
measurement from BaBar [149] and the global fit [186], see Sec. 2.6.2.

2.3. Tau data and isospin-breaking corrections
Since the hadronic weak charged current and the isovector component of the EM current belong to the same triplet

of the isospin group, semi-leptonic τ decays can provide independent input for the computation of HVP, as first pointed
out in Ref. [187]. In the limit of exact isospin symmetry, a simple kinematic factor relates the hadronic invariant mass
distributions in e+e− → h and in τ → ντh′, where h and h′ denote hadronic states related by an isospin rotation.
However, an analysis of HVP to sub-percent level requires an appropriate set of isospin-breaking (IB) corrections.
In what follows, we first briefly review the experimental data sets (Sec. 2.3.1), then discuss the theoretical status and
prospects for the IB corrections (Secs. 2.3.2 to 2.3.6), and finally present the current HVP evaluation based on τ data
(Sec. 2.3.6).

2.3.1. Use of hadronic data from τ decays
Several high-quality data sets for semi-leptonic τ decays into vector states were collected more than 20 years ago

at LEP and also at B factories, first by CLEOc, later by Belle and BaBar. The available experimental information was
very recently reconsidered [166], in view of the poor consistency among e+e− results. The spectral function in the
dominant τ decay mode τ− → π−π0ντ, defined as

vππ0 (s) =
m2
τ

6|Vud |
2

Bππ0

Be

dNππ0

Nππ0 ds
×

(1 − s
m2
τ

)2 (
1 +

2s
m2
τ

)−1

, (2.7)
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Figure 10: Measured values of the branching ratio for τ → ππ0(γ)ντ. Good consistency is observed among the different experiments. Figure
adapted from Ref. [194].

has been precisely measured by several experiments [188–192] under very different conditions at LEP and the B
factories. Here mτ is the τ lepton mass, |Vud | the CKM matrix element, Bππ0 and Be are the branching fractions of
τ− → π−π0ντ(γ) (FSR is implied) and of τ− → e−ν̄eντ, and dNππ0/Nππ0 ds is the normalized invariant mass spectrum
of the hadronic final state. The precision achieved in the experiments for the branching fractions (0.4%) and the
agreement between the different results, as seen in Fig. 10, provide a highly precise normalization of the spectral
functions, even superior to that obtained in e+e− data. There is also good agreement between the spectral function
results as shown in Ref. [189]. These measured spectral functions have been widely used (see, e.g., Ref. [193])
for a number of applications including in particular the evaluation of aHVP, LO

µ and ∆α(5)
had as originally proposed in

Ref. [187]. The evaluation of aHVP, LO
µ using the τ hadronic decay has been valuable in earlier years when the e+e−

data were not yet precise enough and in recent years given the large discrepancy among the most precise measurements
from BaBar [137, 174], CMD-3 [93, 94], and KLOE [130–133]. In order to achieve the required precision in the τ-
based evaluation of aHVP, LO

µ , IB corrections have to be understood and applied—a topic that we discuss in Secs. 2.3.2
to 2.3.6.

2.3.2. Theoretical input for the HVP analysis based on τ data: generalities
We focus on the dominant τ → ππντ(γ) channel and denote with s the ππ invariant mass squared. The photon-

inclusive differential decay spectrum dΓππ(γ)/ds can be used to evaluate aHVP, LO
µ [ππ] according to the following dis-

persive formula [194–196] (with threshold sthr = 4M2
π± )

aHVP, LO
µ [ππ, τ] =

1
4π3

∫ ∞

sthr

ds K(s)
[

Kσ(s)
KΓ(s)

dΓππ[γ]

ds

]
×

RIB(s)
S ππ

EW
, (2.8)

where K(s) is the QED kernel [83–86], see Eq. (2.2) for the explicit expression,

Kσ(s) =
πα2

3s
, KΓ(s) =

Γe|Vud |
2

2m2
τ

(
1 −

s
m2
τ

)2 (
1 +

2s
m2
τ

)
, (2.9)

and the IB corrections are encoded in the product of several s-dependent factors

RIB(s) =
FSR(s)
GEM(s)

β3
π+π− (s)

β3
π±π0 (s)

∣∣∣∣∣∣FV
π (s)

f+(s)

∣∣∣∣∣∣2 . (2.10)
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The physical origin and meaning of the various IB corrections can be summarized as follows:

• The factor S ππ
EW = S EW/S

sub,lept
EW [197] is the s-independent short-distance EM correction to the weak semi-

leptonic decay τ→ ππντ. The numerator

S EW = 1 +
2α
π

log
MZ

mτ
+ · · · (2.11)

encodes the universal leading logarithmic correction that affects all semi-leptonic decays [198–204] and is now
known to next-to-leading logarithmic (NLL) accuracy [203, 204]. The denominator

S sub, lept
EW = 1 +

α(mτ)
2π

(25
4
− π2

)
(2.12)

encodes the radiative corrections to the purely leptonic decay width

Γe ≡ Γ(τ→ eντν̄e) =
G2

Fm5
τ

192π3 ×

[
1 + O

(m2
e

m2
τ

)]
× S sub, lept

EW , (2.13)

and needs to be included because the measurements provide τ → ππντ normalized to the leptonic mode. This
is made explicit by expressing KΓ(s) in terms of Γe in Eq. (2.9).

• The GEM(s) factor [195, 196, 205, 206] includes the long-distance QED corrections to the τ− → π−π0ντ decay
with virtual- plus real-photon radiation. The FSR(s) factor, first introduced in RIB in Ref. [194], originates from
FSR corrections to the π+π− channel [207, 208]. Both FSR(s) and GEM(s) are so far computed at O(α) and
with the help of hadronic models as specified below. However, the scheme-dependent nonlogarithmic term in
GEM(s) is not currently known. In both cases, Eq. (2.10) implies a factorization assumption, separating long-
range radiative effects subsumed in FSR(s) and GEM(s) from radiative corrections to the matrix elements, see
Sec. 2.7.4 for the case of FV

π (s).

• The π±–π0 mass difference generates a mismatch in the phase-space factors resulting in the correction term
β3
π−π+ (s)/β3

π−π0 (s), with βPP′ (s) = 2pcms(s)/
√

s, where pCM is the magnitude of the pion momentum in the dipion
CM frame. This kinematic correction is large for s near threshold and carries negligible uncertainty.

• The last factor in Eq. (2.10) amounts to the ratio between the EM and the weak pion form factors FV
π (s) and

f+(s), respectively, with IB only due to quark mass difference and to radiatively induced hadronic mass differ-
ences. Currently, this is the correction that carries the largest uncertainty, in particular because it is difficult to
characterize in a model-independent way.

The shift in aµ caused by the IB corrections, denoted by ∆aHVP, LO
µ [ππ, τ], is obtained by replacing RIB(s)/S EW →

RIB(s)/S EW − 1 in Eq. (2.8).
We begin by discussing the impact of the s-independent short-distance corrections, which are not sensitive to

hadronic structure. We use S ππ
EW = 1.0233(3) [209], obtained by including the NLL correction from Ref. [204] and

estimating the uncertainty to be of the order of missing nonlogarithmic terms of O(ααs/π
2). The corresponding shift

to HVP induced by S ππ
EW is ∆aHVP, LO

µ [ππ, τ] = −12.16(15) × 10−10 [209], consistent with the result of Ref. [166].
The above results do not account for the uncertainty in S ππ

EW associated to the scheme dependence of the short-
distance Wilson coefficient at NLL. We discuss this in Sec. 2.3.6. Next, the phase-space correction generates the
shift ∆aHVP, LO

µ [ππ, τ] = −7.52 × 10−10, with negligible intrinsic uncertainty, but the result does depend on the input
for the spectral function, thus the small difference to Ref. [166].

In the remainder of this section, we discuss the status and prospects for computing the remaining hadron-structure-
dependent corrections in various approaches: first, we summarize the current results based on a combination of ChPT
and resonance hadronic models. This approach produces the corrections used to arrive at the current τ-based results
for the HVP contribution in Sec. 2.3.6. We then discuss ongoing efforts based on dispersive methods and lattice QCD.
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2.3.3. Chiral perturbation theory and phenomenological models
We summarize here the status of IB corrections obtained through a combination of ChPT, resonance chiral theory

(RχT), and resonance models for radiative corrections and for the pion VFF. This approach has been refined over the
years, starting from the early work found in Refs. [187, 194–197, 205, 210, 211]. The state-of-the-art results of this
approach have been recently presented in Refs. [166, 209]. While differing in some details, these two references reach
mutually consistent results, as shown below in Table 2. For the sake of simplicity, in this section we closely follow
the analysis of Ref. [209], pointing out differences from Ref. [166] as needed (a comparison with lattice-QCD results
in Euclidean-time windows, see Sec. 3.4, was reported in Ref. [212]).

The correction induced by the function GEM(s) is ∆aHVP, LO
µ [ππ, τ] = (−1.67)+0.60

−1.39 × 10−10 [209], which corre-
sponds to the reference value reported in Ref. [206] and is in good agreement with results obtained in Ref. [194]
using Refs. [196, 205]. This result updates the computation in Ref. [196], which used RχT [213, 214] and included
only those resonance operators that—upon integrating out the resonances—contribute to the O(p4) chiral low-energy
constants (LECs). The uncertainty of the updated result is estimated by assessing the spread of results obtained by
including a subset of resonance couplings that contribute to the chiral LECs at O(p6) [215, 216], precisely those cou-
plings that are determined by short-distance QCD constraints (ensuring an appropriate asymptotic behavior of suitable
two- and three-point Green functions). This analysis concerns entirely the effects of structure-dependent real-photon
emission (τ → ντππγ) and lacks the structure-dependent virtual-photon contribution. This missing piece, estimated
as in Ref. [217] based on the results for the one-meson modes [218, 219], is covered by the quoted uncertainty. Mea-
surements of the τ→ ππντγ spectrum would greatly help reduce the model dependence of the corrections induced by
GEM(s). The FSR(s) correction is based on sQED, producing a shift of ∆aHVP, LO

µ [ππ, τ] = 4.62(46) × 10−10, where
missing structure-dependent virtual- and real-photon corrections are assigned a 10% uncertainty [194, 209].

The remaining IB corrections enter the ratio of form factors in Eq. (2.10). The modifications affecting FV
π (s)/ f+(s)

can be split into the following sources:

• The ρ–ω and—to a much smaller extent—the ρ–ϕ mixing (leading to ∆aHVP, LO
µ [ππ, τ] = 2.87(8)×10−10 [209]).

• The Mπ±–Mπ0 difference, affecting the ρ±,0 widths. An analogous mass difference for the kaons is considered
in the Guerrero–Pich (GP) form factor [220] (and other chiral-based descriptions [221, 222]), but not in the
Gounaris–Sakurai (GS) [223] or Kühn–Santamarı́a (KS) [224] models (leading to ∆aHVP, LO

µ [ππ, τ] = 3.37 ×
10−10 [209]).

• The Mρ±–Mρ0 difference. For given ρ±,0 mass values, the dominant on-shell ρ±,0 → ππ widths are predictions
in GP and related parameterizations, once short-distance QCD constraints [213, 214] have been accounted for
(leading to ∆aHVP, LO

µ [ππ, τ] = 1.95+1.56
−1.55 × 10−10 [209]).

• The contributions to the ρ±–ρ0 width difference dominated by their ππ(γ) decay channels [211], where a 10%
error is assigned to structure-dependent uncertainties [194, 209, 211] (leading to ∆aHVP, LO

µ [ππ, τ] = −6.66(73)×
10−10 [209]). We note that the quoted references did not include IB in the ρππ coupling. The origin and possible
size of this correction is discussed in Sec. 2.3.6.

These corrections were evaluated using a number of different parameterizations in Ref. [209], taking inputs for
IB in the ρ masses and widths consistent with Ref. [194] and the PDG [225]. Based on analyticity tests, the dis-
persive form factor based on Ref. [226] is taken as the reference result. The central value is obtained from the
dispersive result in the case where it has a conformal polynomial of fourth degree (constrained to comply with
P-wave behavior) accounting for inelasticities. This yields ∆aHVP, LO

µ [ππ, τ] = 1.53+1.74
−1.73 × 10−10 for the form fac-

tor correction [209]. The sum of all IB corrections entering (2.8) gives ∆aHVP, LO
µ [ππ, τ] = (−15.20)+1.90

−2.27 × 10−10.
The associated systematic uncertainties are estimated from the differences among the various dispersive results,
and adding linearly a 2% uncertainty to account for the small difference with respect to the GS value, leading to
∆aHVP, LO

µ [ππ, τ] = (−15.20)+2.26
−2.63 × 10−10 [209].

Finally, we comment on ρ–γ mixing. First, we note that for a proper treatment of the ρ one just needs to correctly
describe the resonant behavior of pion form factors, either of the weak or the EM currents. Gauge invariance, leading
to the constraint FV

π (0) = 1, as is respected in any theoretically sound approach, ultimately settles the issue of a
possible ρ–γ mixing, since the ρ is never needed as an asymptotic state. This is explicit in a dispersive approach,
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since the ρ does not even enter as a degree of freedom, but also holds in any Lagrangian framework that couples
hadrons to external sources representing the currents (this is the case in ChPT, RχT, and any resonance model made
consistent with chiral symmetry). The ρ–γ mixing issue may arise in intermediate steps of calculations within a
given Lagrangian model. For example, in Ref. [227] the effect of such a mixing was studied within the hidden-local-
symmetry model. In QFT the mixing of two fields can be addressed through a field redefinition. Since physical results
should not depend on the field parameterization and given that the ρ meson is not an asymptotic state, performing
the field redefinition that diagonalizes the ρ–γ quadratic terms is a possible, but far from necessary choice. In most
approaches it turned out to be more convenient not to perform this diagonalization. However, if one performs the
redefinition, the re-defined “ρ” field couples to all charged particles, and the resulting ρee and ρµµ couplings should
be taken into account, given that they affect the leptonic QED cross section used to normalize σ(e+e− → π+π−). This
effect and its interplay with higher-order corrections was not discussed in Ref. [227]. Moreover, the large mixing
corrections at

√
s ≫ Mρ and the large slope at

√
s ≪ Mρ, leading to sizable numerical effects in Ref. [227], seem

to arise from the fact that the pion VFF adopted does not incorporate the basic short-distance asymptotic conditions
imposed by QCD (i.e., vanishing at high momentum transfer), a constraint whose relevance even at low energy has
been thoroughly discussed in Ref. [214].

2.3.4. The dispersive approach
To first order in IB the photon-inclusive differential decay rate for τ−(l1) → π−(q1)π0(q2)ντ(l2)[γ(k)] is given

by [195, 196]
dΓππ[γ]

ds
= S ππ

EW KΓ(s) β3
π±π0 (s)

∣∣∣ f+(s)
∣∣∣2 GEM(s) , (2.14)

where s = (q1 + q2)2 and f+(s) is the π−π0 form factor. GEM(s) the EM correction factor defined as:

GEM(s) =

∫ tmax(s)
tmin(s) dt D(s, t)

[
1 + 2 f loop

elm (s, t) + grad(s, t)
]∫ tmax(s)

tmin(s) dt D(s, t)
, (2.15)

with Mandelstam variable t = (l1 − q1)2, tmin,max(s) its lower, upper phase-space borders, and

D(s, t) =
m2
τ

2
(m2

τ − s) + 2M2
πM2

π0 − 2t(m2
τ − s + M2

π + M2
π0 ) + 2t2 . (2.16)

The functions f loop
elm (s, t) and grad(s, t) in Eq. (2.15) account for virtual and real corrections, respectively. While pre-

viously these functions were calculated in ChPT or RχT [195, 196, 206, 209], in this section we outline progress
in a dispersive approach [228]. First, the approximation of only taking into account intermediate hadronic states up
to two pions is justified phenomenologically: in the energy region and in the channel of interest inelastic effects are
known to be small. Radiative corrections to them are therefore considered to be negligible. In this approximation the
contribution to f loop

elm in the dispersive framework is depicted in Fig. 11(a), where the light-blue blobs denote the pion
VFF.

In analogous fashion to how radiative corrections to e+e− → π+π− are handled in a dispersive approach in
Ref. [142], a dispersive representation is used for the pion VFF in the unitarity diagram of Fig. 11(a),

FV
π (s) = 1 +

s
π

∫ ∞

4M2
π

ds′
Im FV

π (s′)
s′(s′ − s − iϵ)

=
1
π

∫ ∞

4M2
π

ds′
Im FV

π (s′)
s′ − s − iϵ

. (2.17)

In contrast to the approach in Ref. [142], an unsubtracted dispersion relation for the VFF (with an implicit sum rule
for the value at s = 0) is chosen to ensure that the resulting representation of the triangle diagram is manifestly UV
finite. However, IR singularities remain: these are handled through dimensional regularization and cancel with the
IR-divergent interference of real contributions in Fig. 11(b) and (c). In this approach the effects of the VFF inside the
loop integral are rigorously accounted for, an effect that was shown to be essential to describe the charge asymmetry
in e+e− → π+π− due to resonance enhancement of the IR-finite remainder [141, 142]. In previous model-based
approaches such effects have only been crudely approximated.
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Figure 11: Virtual (a) and real (b) + (c) contributions to the radiative corrections to τ− → π−π0ντ in the dispersive framework at first order in IB.
Light-blue blobs indicate the pion VFF. Diagram (c) includes bremsstrahlung off the charged pion, but the blue blob represents the general matrix
element [229]. A rescattering correction is shown in (d), where the light-red blob refers to the ππ scattering amplitude.

Since the use of an unsubtracted dispersion relation for the pion VFF introduces sensitivity to its high-energy
behavior, a matching procedure to the low-energy behavior calculable in ChPT is essential to mitigate this effect.
Taking the virtual corrections in ChPT including virtual photons and leptons [162, 230–233] at O(e2 p2) [195, 196],
denoted by f loop, ChPT

elm , the matched virtual contribution can be expressed as

f loop, match
elm (s, t) = f loop, VFF

elm (s, t) − f loop, VFF
elm (0, 0) + f loop, ChPT

elm (0, 0) , (2.18)

where f loop, VFF
elm (s, t) refers to the dispersive result based on the unsubtracted dispersion relation. While f loop, VFF

elm (s, t)
carries an IR divergence canceled by the interference of ISR and FSR, the term f loop, ChPT

elm (0, 0) covers the IR diver-
gences of the remaining contributions, e.g., self-energy corrections, which are canceled by real-photon emission of
either the initial or final state. The matching to ChPT in Eq. (2.18) entails several further advantages: first, the chiral
logarithms only partially captured by the low-energy limit of the dispersive calculation of Fig. 11(a) are fully restored.
Second, the chiral LECs define a convenient bridge to the short-distance amplitude, as their scale dependence needs
to cancel in physical observables. While previously only resonance estimates of their finite parts were available, the
matching to lattice-QCD calculation [234–236] and incorporation of RG corrections [202, 204] now presents the op-
portunity to define a consistent set of correction factors S EW and GEM(s), such that the scale dependence disappears
up to a given order in the perturbative expansion.

Work along these lines is ongoing and should provide improved results for the combination of S EW and GEM(s)
with controlled uncertainties. Corrections include higher intermediate states and ππ rescattering corrections as shown
in Fig. 11(d), which will also be addressed in a dispersive approach. For a complete estimate of IB corrections two
main classes of additional corrections need to be considered:

1. FSR in e+e− → π+π− and ρ–ω mixing: these corrections can be determined from dispersive analyses of e+e− →
π+π− and are therefore already under reasonable control [226, 237];

2. 2π matrix element in charged and neutral current: these corrections can be expressed as a ratio of form factors
| f+(s)/FV

π (s)|, where f+(s) refers to π−π0 system and FV
π (s) to the π+π− one.
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Figure 12: Left: Diagrams contributing to the ρ mass shift (adapted from Ref. [13]). The black dots represent the external isovector currents, and
only quark lines are drawn. The exchange of gluons between the two disconnected bubbles in implicitly assumed for the second diagram. Center:
Phenomenological interpretation of the two-point isoscalar–isovector correlator, namely Gγ

01, with 2- and 3-pion states coupled by an IB operator.
Right: An example of a mixed contribution where the photon is exchanged between the leptonic and hadronic sectors. The two horizontal external
lines represent the τ lepton, the upper line the neutrino, and the gray blob the hadronic system. The vertical curvy line denotes a final-state cut,
while the black dots represent the four-Fermi interaction vertices.

While frequently expressed in terms of ρ Breit–Wigner parameters and couplings, leading to model errors that are
difficult to control, from a dispersive perspective the second class of corrections should be interpreted as IB in the
respective QCD matrix elements. Accordingly, a better understanding of IB in the pion VFF is ultimately required,
including pion-mass-difference effects and radiative corrections. Work along these lines was started in Ref. [238] and
is in progress, see also Sec. 2.7.4.

2.3.5. Lattice-QCD approach
As discussed above, addressing IB effects in the π−π0 decay mode of the τ lepton from first principles is highly

desirable. In this context lattice QCD+QED simulations can provide useful information, as we briefly review below,
see also Sec. 3, in particular Sec. 3.7.1. The first difficulty that one encounters is in the exclusivity of the mode.
In fact, even in the isosymmetric limit of QCD, providing the two-pion contribution to the spectral density is a
challenging problem for a lattice calculation, due to the rotation to the Euclidean metric. The latter is by-passed in
the limited elastic region (below the four-pion threshold) via the finite-volume formalism, while it requires inverse
Laplace methods in the inelastic regime, methods that are currently being intensively developed in the community
(see, e.g., Refs. [239–244]). IB effects constitute another layer of difficulty, so for these reasons in Ref. [245] it was
first proposed to study the problem in a fully inclusive manner.

More specifically, the difference of the inclusive isovector spectral densities, charged and neutral, was examined.
Since their relation to Euclidean correlators proceeds via a Laplace transform, e.g., for the HVP contribution to aµ one
starts from

C(x0) =
∫

dω e−ωx0 ρ(ω2)ω2 , (2.19)

with ρ(ω2) trivially related to the experimental R-ratio, the corresponding difference of two-point Euclidean correla-
tors, denoted by GW

11 −Gγ
11, is examined in Sec. 3.7.1. Thanks to large cancellations it was shown that it is of purely

EM nature and only the diagrams in Fig. 12(left) contribute. As pointed out in Ref. [246], this difference could be
used as an intermediate quantity to address some open questions on the model dependence of some effects in RIB(s),
as defined in Eq. (2.10). In simple terms, starting from a model of the charged and neutral pion form factor, after a
Laplace transform, one could fit their (squared) difference to the lattice correlators to fix a few of their free parameters.
More specifically, despite receiving EM corrections originating also from four-pion states (due to the inclusive nature
of the Euclidean correlators considered), in analogy to the charged-neutral pion mass correction, the aforementioned
difference may be used to fix the shift of the ρ mass parameter induced by EM interactions. An attractive feature is
that being a property of the spectrum, this would not require the renormalization of the charged current.

While the latter does not constitute per se a conceptual obstacle for a lattice calculation, its matching from a
scheme suitable for lattice calculations to the typical schemes used to match the EFT without the weak bosons to
the SM, e.g., MS, is still missing. As a consequence this still prevents the usage of lattice data to fix other model-
dependent quantities such as the EM shift of the ρ decay width, a rather important effect as outlined in Table 2, which
should be prioritized.

Another interesting object is the two-point correlator involving the isoscalar and isovector neutral currents, denoted
as Gγ

01 in Sec. 3.7.1. From a phenomenological point of view, it contains the mixing between two- and three-pion states
and therefore information on the ρ–ω mixing parameters, as sketched in Fig. 12(center). While on the one hand this
could be used again to fix a few model-dependent parameters, its inclusive nature shows the difficulty in using it for
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Refs. [166, 194] Ref. [209] Refs. [237, 247] Our estimate

Phase space −7.88 −7.52 – −7.7(2)
S EW −12.21(15) −12.16(15) – −12.2(1.3)
GEM −1.92(90) −1.67+0.60

−1.39 – −2.0(1.4)
FSR 4.67(47) 4.62(46) 4.42(4) 4.5(3)
ρ–ω mixing 4.0(4) 2.87(8) 3.79(19) 3.9(3)

∆Mρ 0.20(+27
−19)(9) 1.95+1.56

−1.55 –
∆Γρ(∆Mπ) 4.09(0)(7) 3.37 –

FV
π

f+
(w/o ρ–ω) ∆Γρ(ππγ) −5.91(59)(48) −6.66(73) –

∆Γρ(gρππ) – – –
Total −1.62(65)(63) (−1.34)+1.72

−1.71 – −1.5(4.7)

Sum −14.9(1.9) (−15.20)+2.26
−2.63 – −15.0(5.1)

Table 2: Summary of the different classes of IB corrections contributing to ∆aHVP, LO
µ [ππ, τ] (in units of 10−10). For Refs. [166, 194], the second

errors due to the difference between the GS and KS models are added linearly to the quadratic sum of all other uncertainties. For Ref. [209], the
total uncertainty includes an estimate of the systematic uncertainty arising from using different dispersive parameterizations. An additional 2%
uncertainty is added linearly to account for the difference between the result based on the dispersive and the GS parameterizations. The entries in
the last column are discussed in the main text.

a direct estimate of the 2π IB effects alone, since in practice one would have to account and remove the IB effects of
the three-pion channel, and neglect the effects of even higher multiplicity channels.

The remaining term that could be ideally addressed in a lattice calculation is the GEM function. The current
strategy so far pursued in Ref. [245] consists of borrowing the available knowledge on GEM from ChPT [195, 196],
since a complete lattice calculation would require a study of the necessary triangle diagrams, see Fig. 12(right), from
Euclidean space-time, where problems with analytic continuation are present. Developments in this direction are
currently being pursued for simpler quantities, but progress is certainly to be expected as these methods become more
and more mature. From the short-distance perspective performing the entire calculation using the lattice regulator
would presumably simplify the renormalization pattern, leaving only the matching with S EW as the open question.

In summary, while an exclusive study of IB effects for the 2π channel remains a challenging problem for a lattice
calculation, an inclusive approach is currently being developed and intermediate quantities, such as the difference of
isovector charged and neutral correlators may turn out to be useful, in the short term, to constrain model-dependent
parameters.

2.3.6. Summary on isospin-breaking corrections and τ-based HVP result
In this section we summarize the theoretical IB corrections needed for a τ-based analysis of HVP, discuss the

robustness of the associated uncertainties, and provide recommended values. Table 2 compiles results for various IB
effects from recent state-of-the-art analyses, as discussed in previous subsections, and includes in the last column “our
estimate,” based on our assessment of the uncertainties.

Before discussing each line in Table 2, we observe that estimating uncertainties in this mostly nonperturbative
regime is not a simple exercise, due to the ensuing model-dependence of most results. The current main analy-
ses [166, 209] address this issue by assigning systematic uncertainties associated with the spread of results obtained
with different models. We will not repeat this exercise. Rather, we adopt this approach: (i) for most IB corrections,
we combine the results from Refs. [166, 194, 209, 237, 247]; (ii) where appropriate, we identify uncertainties not
included in current analyses and provide recommended numerical values for them.

• Phase space: The small differences reflect the use of different form-factor parameterizations. We adopt the
midpoint of the results shown in the second and third column of Table 2, assigning an uncertainty to cover the
full range. Also note that higher-order IB corrections could play a role here, depending on whether one uses the
spectra from τ decay or e+e− data.
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• Scheme dependence in S EW: As anticipated earlier, current analyses do not account for the O(α/π) scheme
dependence of the Wilson coefficient whose square gives the factor S EW. As is well known, to NLL, in general
the Wilson coefficients acquire a scheme dependence of O(α/π), to be absorbed by corresponding long-distance
matrix elements (GEM(s) in this case). As discussed in Ref. [204] in the context of β decays, the current result
S ππ

EW = 1.0233(3) is based on a particular definition of “scheme-independent” NLL Wilson coefficient [248] that
effectively factors out the scheme dependence of O(α) and assumes it to be reabsorbed in the LECs entering the
long-distance correction GEM(s). Since currently we have no control over the scheme dependence in GEM(s),
we should add this perturbative scheme-dependence uncertainty to S EW. Taking the ambiguity in the decay rate
to be α(mτ)/π ≃ 0.24% leads to S ππ

EW = 1.0233(3)(24), which entails an additional uncertainty of 1.3 × 10−10

in ∆aHVP, LO
µ [ππ, τ], adopted in Table 2. Note that if we had assumed an O(α/π) uncertainty at the level of the

Wilson coefficient, the impact on S EW would double, leading to an ambiguity in ∆aHVP, LO
µ [ππ, τ] of 2.5× 10−10.

• Structure-dependent virtual corrections in GEM: Combining the results from Refs. [166, 194] and Ref. [209]
leads to the GEM-induced correction ∆aHVP, LO

µ [ππ, τ] = −2.0(1.0) × 10−10. As discussed in Ref. [209], existing
results for GEM(s) do not include the effect of hadronic structure dependence in the virtual-photon corrections
to τ → ππντ—pions are treated as point-like objects. In Ref. [217] it was argued that the effect of the missing
structure-dependent loops can be estimated by analogy with the single-meson decay modes τ→ Pντ (P = π,K),
for which structure effects have been studied [218, 219]. There is, however, one class of diagrams that may lead
to a substantial difference between the corrections to τ→ πντ and τ→ ππντ. Before integrating out the W, these
take the form of box diagrams, in which two gauge bosons (γ and W) are exchanged between the lepton and pion
lines (after integrating out the W boson this reduces to the diagram in Fig. 11 (a)). In the case of τ → πντ, the
weak current involves just the pion decay constant, while in the case of τ → ππντ the weak ππ form factor ap-
pears and the box diagram involves the interplay of weak and EM form factors. In Refs. [141, 142] it was shown
that such diagrams are sensitive to structure-dependent corrections, as the remainder after the cancellation of IR
divergences can be strongly enhanced by the ρ resonance. In fact, the measurement of the forward–backward
asymmetry by CMD-3 [93, 94] showed that these effects were critical to explain the data, substantially increas-
ing the size of the asymmetry in the ρ peak, see Secs. 2.2.1 and 2.7.4. A similar effect could also be present in
the virtual corrections to the τ decay, whose size depends on the strength of the IR enhancement and the inter-
play with the kernel function in the aµ integral, as currently under investigation (see Sec. 2.3.4). Given the large
numerical impact observed in the e+e− case, it is prudent to assign to GEM an additional uncertainty, which is
currently hard to estimate. As a reference point, we assign to the structure-dependent virtual-photon corrections
a similar uncertainty as the one emerging from the structure-dependent real-photon corrections, leading to the
GEM-induced correction ∆aHVP, LO

µ [ππ, τ] = −2.0(1.0)real(1.0)virtual × 10−10 = −2.0(1.4) × 10−10.

• FSR effects in e+e− → π+π−: The results reported in Table 2 are quite consistent and the small differences are
likely due to the form-factor input. All calculations use sQED as theoretical input. The result of Ref. [247]
includes the estimate from Ref. [249] for the non-IR-enhanced contributions, which amounts to an effect of
≃ 0.2 × 10−10 in ∆aHVP, LO

µ [ππ, τ] and shows that in this case sQED indeed captures the dominant effect. We
take as our estimate the average of the sQED results and assign an uncertainty to cover the spread of central
values, which is large enough to cover possible effects beyond sQED [249]. This leads to ∆aHVP, LO

µ [ππ, τ] =
4.5(3) × 10−10.

• ρ–ω mixing: For this contribution the result of Ref. [209] differs considerably from the results of Ref. [166] and
Refs. [237, 247]. The source of this difference can be traced back to the phase of the ρ–ω mixing parameter,
which is ≃ 10◦ in the reference dispersive analysis of Ref. [209], while it is ≃ 4◦ in the other analyses. In
Ref. [237] this phase has been bound fairly robustly and therefore in our combination we give more weight to
the results from Refs. [166, 237, 247], leading to ∆aHVP, LO

µ [ππ, τ] = 3.9(3) × 10−10.4

• FV
π (s)/ f+(s) and impact of IB in the ρππ coupling: The ratio of form factors leads to a number of corrections

that largely compensate in the total, as shown in Table 2. The results of Refs. [166, 194] and Ref. [209] are

4Reference [209] obtains 3.87(8) for the ρ–ω mixing correction using the GS form factor parameterization. Again, the difference can be traced
back to the phase of the ρ–ω mixing parameter. Other (partially compensating) differences are found between dispersive and GS parameterizations
in Ref. [209], and they are accounted for by increasing the overall uncertainty, as discussed in the text.

32



fairly consistent. However, they both omit a potentially large source of IB in the width of the ρ resonance, as
discussed below. IB effects in the width of the ρ resonance are usually discussed in the context of resonance
models, assuming the form Γρ(s) ∝ g2

ρππ

√
s β3

ππ(s) (1 + δρππ) for the off-shell ρ → ππ width [194, 211]. Here,
δρππ encodes long-distance radiative corrections, including the effect of the ππγ decay channels. In this context
there are four effects that can generate the splitting ∆Γρ ≡ Γρ0 −Γρ+ : the coupling gρππ, the ρ mass, the kinematic
factor β3

ππ(s), and the radiative corrections δρππ. In the literature only the last three effects are discussed and it
is found [194, 211] that they partially cancel. Here we point out that the effect of gρ0π+π− , gρ±π∓π0 is of similar
size to the ones included, and therefore, absent a detailed analysis, its impact should be reflected in the total
uncertainty. In a purely phenomenological parameterization, one should adopt gρ0π+π− , gρ±π∓π0 . In the context
of Lagrangian models such as RχT, for example, this kind of IB can be induced by operators involving two EM
spurions, following common practice in ChPT [232] and resonance chiral Lagrangians [250]. The impact of
δg ≡ (gρ0π+π− − gρ+π−π0 )/gρ0π+π− on ∆Γρ can be estimated by observing that

∆Γρ ≃ 2Γρ δg ≃ 300 δg MeV . (2.20)

δg could range anywhere from δg ≃ α/π ≃ 0.23% to δg ≃ 1% (the typical size of form-factor-related IB
effects, e.g., FSR and ρ–ω mixing), corresponding to ∆Γρ ≃ 0.7 MeV and ∆Γρ ≃ 3 MeV, respectively. The
choice δg ≃ α/π is likely too aggressive, because a similar estimate would not capture the actual size of the
long-distance radiative corrections to Γ(ρ → ππ[γ]) (these induce a shift ∆Γρ = 1.8(2) MeV [194, 211]). On
the other hand, the choice δg ≃ 1% would lead to ∆Γρ ≃ 3 MeV, which exceeds the current PDG average
∆Γρ = 0.3(1.3) MeV [225].5 Taking this into account, we adopt as a compromise value |δg| ≤ 2α/π ≃ 0.46%,
which leads to |∆Γρ| ≤ 1.4 MeV, reflecting the current PDG uncertainty. Scaling the effect from the pion mass
difference ∆Γρ(∆Mπ) = 1.1 MeV from Refs. [166, 194, 209], this corresponds to an additional uncertainty of
≃ 4.7 × 10−10 in ∆aHVP, LO

µ [ππ, τ], motivating the corresponding entry in Table 2 for FV
π / f+ .

As an alternative to using theoretical predictions for IB in the ρ parameters, a data-driven approach using the
two-pion τ and e+e− spectral functions has very recently been proposed in Ref. [251]. Given the direct relevance
of this work for the topic discussed here, we briefly summarize it, also noting that there has not been enough
time for detailed scrutiny. This approach proposes to decouple the normalization of the measured spectral
function from its shape, the latter characterized mainly by the mass and width of the ρ resonance, with some
small residual contribution from higher resonances. For the correction to the dispersive integral from the pion
form factors Ref. [251] finds ∆aµ[ππ, τ](FV

π / f+) = +1.68(2.92)(1.39) × 10−10, where the first uncertainty is
dominated by the τ data and the second is due to the line-shape dependence. This data-based estimate agrees
with the previous results from two different groups as quoted in Table 2, −1.62(65)(63) × 10−10 [166, 194], and
−1.34(1.71)×10−10 [209], respectively at the 1.0 and 0.8σ level. It also agrees with the new theoretical estimate
in Table 2, −1.5(4.7) × 10−10. These figures emphasize the need for model-independent input for the ratio of
matrix elements FV

π (s)/ f+(s).

Putting all the corrections together, the individual analyses arrive at ∆aHVP, LO
µ [ππ, τ] = −14.9(1.9) × 10−10 [166,

194], ∆aHVP, LO
µ [ππ, τ] = (−15.20)+2.26

−2.63 × 10−10 [209], and ∆aHVP, LO
µ [ππ, τ] = −12.2(3.4) × 10−10 [251]. The latter

data-based determination is not used in the following because it appeared late in the WP25 schedule and it is not
published (at the time of writing). Altogether, based on the above discussion and Table 2, our current best estimate
for the IB corrections to be used in a τ-based evaluation of HVP is

∆aHVP, LO
µ [ππ, τ] = −15.0(5.1) × 10−10 (our estimate) . (2.21)

While the central value fully reflects the state-of-the-art published analyses, the uncertainty attempts to account for
sources of IB that are not yet fully addressed in the literature. Work to tackle the issues summarized above is on-
going and there are good prospects of integrating in the near future new information from the dispersive approach
(see Sec. 2.3.4), the lattice-QCD approach (see Sec. 2.3.5), and data-driven constraints (see Ref. [251]).

5Alternatively, Ref. [225] also quotes separate values Γρ0 = 147.4(8) MeV, Γρ+ = 149.1(8) MeV, and thus ∆Γρ = −1.7(1.1) MeV, suggesting
a somewhat larger uncertainty.
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Figure 13: Summary of evaluation of aHVP, LO
µ [ππ] from τ decays. The points refer to DHLMZ-23 [166], LMR-24 [209], and Eq. (2.22), respec-

tively. The inner error bar reflects the current experimental uncertainties, while the outer error represents the combination of experimental and
theoretical uncertainties.

In summary, there are two consistent evaluations of HVP based on τ data [166, 209], corresponding to the first
two columns in Table 2. They lead to aHVP, LO

µ [ππ, τ] = 517.3(1.9)stat(2.2)syst(1.9)th ×10−10 [166] and aHVP, LO
µ [ππ, τ] =

517.0(2.8)exp
(+2.3
−2.6

)
th × 10−10 [209]. Based on our conservative estimate of the IB uncertainties, larger than the ones

quoted in the individual analyses, we arrive at

aHVP, LO
µ [ππ, τ] = 517.2(2.8)exp(5.1)th × 10−10 (our estimate) , (2.22)

see Fig. 13 for a summary. Adding the offset 187.3(2.2) × 10−10 from WP20 for the remainder of the LO HVP
contribution, one arrives at a total LO HVP value of

aHVP, LO
µ [(ππ, τ) +WP20] = 704.5(6.2) × 10−10 . (2.23)

The above offset from WP20 is not updated in this work, we instead focus on the major tensions in the 2π channel.
However, we emphasize that relevant new information on the subleading channels has become available, e.g., new
measurements for e+e− → 3π [149, 185], e+e− → KS KL [147], and the inclusive R-ratio [179]. As described in
Secs. 2.2.6 and 2.6.2, tensions between the Belle-II 3π data and previous measurements are now visible, other tensions
are present in the K+K− channel and in the comparison of the BESIII inclusive R-ratio measurement with pQCD.
While the overall effect is minor compared to the tension seen in the 2π channel, these effects will need to be carefully
studied for a new, complete data-driven evaluation of aHVP, LO

µ , for which continued progress in the overall Rhad(s)
measurement program is essential.

2.4. Monte-Carlo generators and radiative corrections
The RadioMonteCarLow 2 community effort, which started in 2022 [144, 252–254], is dedicated to improving the

theoretical predictions for hadron and lepton production at low-energy e+e− colliders. In Phase I, whose results are
documented in Ref. [145], the focus was on 2 → 2 and 2 → 3 processes e+ e− → X+ X−(+γ) for

√
s = (1–10) GeV

with X ∈ {e, µ, π}. This concerns scan-based measurements (no hard photon required) and radiative return measure-
ments (hard photon required).

The long-term goal of the project is to preserve the well-established codes; to provide canonical versions of codes;
and to further develop and improve codes. An important aspect is the inclusion of new ideas and approaches. This
includes exploiting the technical progress since the last systematic review of low-energy MC tools in 2010 [163],
which is leading to new codes getting developed or extended to cover the processes of interest.

RadioMonteCarLow 2 is committed to open science and has released all codes, input data, and output together
with a report as part of a living review at

https://radiomontecarlow2.gitlab.io

Phase I was mostly a theoretical exercise in which seven codes (AfkQed, BabaYaga@NLO, KKMC, MCGPJ, Mc-
Mule, Phokhara, and Sherpa) were used in five scenarios inspired by former and current experiments. It should be
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stressed that the goal was not to prove any one code wrong or obtain a theory error for the prediction. The main
purpose was to ascertain the importance of various effects, exploiting the wide variation of approaches used in the
codes. As documented in the review, the differences among the results of the codes can be understood, giving valuable
information for further progress. Beyond Phase I, this community effort is expected to continue for many years yet
during which the living review will be continuously updated as new results become available.

2.4.1. Terminology
When discussing the features of the different codes and the effects they include it is important to use a systematic

terminology. An often used one is the fixed-order counting in αwhere LO, NLO, and NNLO refer (almost) universally
to the full contribution at α2, α3, and α4 for ee→ XX (or α3, α4, α5 for ee→ XXγ). This includes per definition both
real and virtual corrections as either would not be finite or physical on their own. Beyond fixed order, a MC might
utilize some form of approximations of soft and/or collinear effects—potentially resummed—to capture dominant
effects that are related to additional photon emission. However, it is important to stress that even if a given code can
generate configurations with two or more extra photons this does not mean it is NNLO exact. The proper use of the
term (N)NLO, indicating that all terms of a given order in α are taken into account, is encouraged.

Resummation of logarithms in the electron mass involve modeling the splitting ℓ → ℓγ, which can be done (semi-)
analytically using structure and fragmentation functions or fully numerically using a parton shower. This leads to a
good description of observables involving the lepton but does not model the transverse momentum p⊥ of electrons
and photons unless special care is taken. Soft logarithms can be resummed using the Yennie–Frautschi–Suura (YFS)
formalism [255], leaving an IR finite perturbative expansion. The calculation of these finite residuals allows for the
matching of the YFS resummation with higher-order corrections. This can achieved at the amplitude squared level
using the exclusive exponentiation (EEX) [256, 257] or directly at the amplitude level using coherent exponentiation
(CEEX) [178].

Ultimately the goal should always be to combine a fixed-order calculation with some form of approximate higher-
order corrections as both effects contribute at the percent level. The current state of the art is NNLO (NLO) or NLO
(LO) matched to resummation/additional approximate emission for 2→ 2 (2→ 3) scattering.

To further classify the QED aspects, initial-state corrections (ISC), final-state corrections (FSC), mixed corrections
(interferences between ISC and FSC), and VP corrections (VPC) are distinguished. This is done by assigning formally
different charges to the initial electron and outgoing muon or pion and all parts are gauge invariant and IR finite. The
reason for such a distinction is of a purely technical nature. It allows one to use adapted techniques for the various
parts. It is quantum mechanically invalid to interpret any photon as being emitted from either the initial or final state.
Hence, Ref. [145] refrains from using the term “ISR process” for e+ e− → X+ X− γ. Furthermore, it is stressed that a
factorized treatment of the corrections into ISC and FSC is always an approximation, the validity of which depends
strongly on process and observable.

Beyond the purely perturbative QED aspects, the nonperturbative nature of the hadronic states needs to be con-
sidered. First, this concerns the hadronic VPC. While there are different compilations available, in the RadioMon-
teCarLow 2 report all results were produced with the same HVP, based on Refs. [163, 258, 259]. However, there
were different implementations in that some codes resum the HVP corrections, others follow an approach closer to the
fixed-order approach. Second, final-state pions require a nonperturbative treatment. In principle the hadronic matrix
elements of ππ → nγ(∗) is well-defined. However, especially if some or all of the photons involved are hard, there is
not always sufficient information available for practical calculations.

n = 1 The matrix element reduces to the pion VFF FV
π (Q2) which is known sufficiently well. All results in the report

were produced with the same version of the VFF.

n = 2 The two-pion pole contribution (with two insertions of FV
π , either using GVMD or dispersively) can be an

acceptable approximation, which is called FsQED. On the other hand, a simple multiplication of the sQED
result with a form factor evaluated at some scale to ensure finiteness—a method referred to as F×sQED—is
known to fail in producing the correct asymmetries, see Secs. 2.2.1 and 2.7.4.

n = 3 This contribution is not yet systematically studied beyond F×sQED and will require an improved understand-
ing of the hadronic matrix element. Unfortunately, this contribution is especially important for the full NLO
corrections to ee→ ππγ.
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beyond n = 3 These matrix elements, or approximations of them, will be required for a full NNLO description of
ee→ ππγ. Needless to say, this is still some time away.

It should once again be stressed that despite these shortcomings it is possible to generate approximate higher-order
effects using resummation tools. However, these results are not NLO or even NNLO for ee → ππγ. It is vital that
investigations beyond F×sQED be carried out to estimate the impact of this approximation.

2.4.2. Monte-Carlo comparison
A major part of the RadioMonteCarLow 2 report for Phase I was the comparison of seven MC codes in five

scenarios to loosely approximate the experiments on which they are based: CMD, KLOE small-angle, KLOE large-
angle, BES, and a generic B factory. Designing these was a trade-off between complexity, computing requirements,
and realism. A major goal of Phase II is streamlining this process and improving the realism of these scenarios.

In the following, some broad conclusions from the comparison of different codes that were used as proxies for the
different effects and approximations will be discussed. However, the reader is strongly recommended to refer to the
review for a more detailed and nuanced discussion. Specifically, the spread of results for the different codes (“code
spread”) cannot be used as an estimate for the theory error.

Starting with 2 → 2 processes, for simple, well-behaved observables the code spread is as low as 0.2%. The
notion of “well-behaved” refers to the fact that the result is nonvanishing at LO for the 2 → 2 kinematics. Outside
this region, the spread gets significantly larger. This is not surprising, since the technical accuracy is reduced by one
order. In this region multiple emission becomes the main effect. In most cases that were studied, the resummation
methods were dominated by the emission of one extra photon. This is not to say that these effects are small; indeed
they can become substantial (several percent) depending on the specific observable under consideration.

The importance of the interference effects between ISC and FSC can be most plainly seen in asymmetries. This
is especially important since the ISC are conceptually the simplest and here improvements are expected first. Further,
unless special care is taken to match a resummation (completely or approximately) to an NLO-or-better fixed-order
result, these effects will not be captured. The treatment of the π+ π− final state for the 2→ 2 process is not too severe
an issue. FsQED and GVMD appear to be reasonable approximations.

Turning to 2→ 3 processes, the situation is more delicate. Most codes are either NLO without resummation or LO
with resummation, allowing one to estimate both the importance of fixed-order and multi-photon topologies. In the
case of ee→ µµγ, the fixed-order result is unambiguous and extensions to NNLO are underway, making it a valuable
testing ground for various approximations. The importance of supplementing a parton shower with p⊥-effects as is
done, e.g., in BabaYaga@NLO, both for capturing the correct shape and the correct cross section, is noted. Similarly,
the interference terms that are included in CEEX have proved to be very important and are capable of capturing most
of the NLO dynamics though the effect is less pronounced when only considering the shape of the distribution rather
than its absolute value. To achieve a precision below the percent level effects beyond NLO need to be incorporated,
though the exact details of course depend on scenario and cuts.

For ee → ππγ, often small FSC at LO were witnessed, (0.1–0.5)%, due to suppression from the VFF since this
leads to a larger Q2 in the form factor. However, this trend does not continue to NLO and large FSC at NLO around
1% were observed, even if FSC were negligible at LO. It is, therefore, important to realize that extrapolating to the
next uncomputed order is fraught with difficulty. Even at LO, there are notable exceptions such as the KLOE-like
large-angle scenario where the cuts prefer the photon closer to pion, leading to FSC effects of more than 10%.

The importance of FSC in ee → ππγ is a major issue, especially at NLO. This n = 2 case was not treated really
satisfactorily in any of the codes at the time of the comparison. If it is considered at all, it is done using F×sQED, the
validity of which has been questioned, at least in some cases. Especially worrying are topologies that involve real or
virtual corrections to the pion VFF. These are C-even, i.e., contributing to the total cross section rather than merely an
asymmetry, and at least partially FSC. Without a calculation beyond F×sQED for ee→ ππγ, it is difficult to estimate
how large this effect really is.

When it comes to resummation for ee → ππγ it is possible to use similar technology as for ee → µµγ. For soft
logarithms nothing changes because the soft limit is independent of the spin of the emitter, so YFS can be directly
used at LO, and can be extended to higher orders by the inclusion of the corresponding amplitudes (even if changes
to the code may be required). For collinear logarithms the π → πγ splitting function needs to be used instead. Both
methods inherently assume that the emitting pion is nearly on-shell as part of their constructions.
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Finally, many scenarios were seen in which VPC were small at NLO but not at NNLO, where their interplay with
the non-VPC corrections can be complicated. The size of the VPC depends strongly on the scenario but their careful
treatment is very important, especially where narrow resonances such as the J/ψ become relevant. This again shows
the danger of extrapolating to the next uncomputed order.

2.4.3. Next steps
So far, only the first phase of RadioMonteCarLow 2 has concluded, most of which was a review of the ex-

isting state-of-the-art. Actual improvements to the codes are expected to take place during Phase II (see, e.g.,
BabaYaga@NLO [143]). The RadioMonteCarLow 2 community strives to update their living review to reflect these
developments as they get released.

A major improvement will be the development of NNLO results for 2→ 3 where possible. Even for ee→ µµγ, a
full calculation without any approximation would be challenging. However, there are well-established procedures to
obtain sufficiently precise results in the near future. These tools could also be used for ee→ ππγ in F×sQED but it is
unclear how good an approximation this would be.

Another point that is of high priority for all the developers of MC tools is the inclusion of structure-dependent
corrections for pion production. In the case of ee → ππ, this was already done by a few codes (most recently in
BabaYaga@NLO [143] using GVMD or FsQED). For ee → ππγ, these effects were identified to be problematic as
they could enter the cross section rather than just asymmetries (cf. Figs. 14 and 15 of Ref. [145]). First investigatory
steps are being taken in cases where GVMD or FsQED are assumed to be reliable approximations. The development
of a full model of the n = 2 case is also underway.

The existing NLO calculations and future NNLO calculations will have to be matched with resummation tech-
niques, either based on parton shower or YFS. This will improve the reliability of the prediction and estimate of the
truncation error. Further, a strict NLO (NNLO) calculation for 2 → 3 processes will never generate events that have
more than four (five) photons. If such events turn out to be experimentally important, the exclusive generation of the
resummation techniques will be able to at least approximate these events.

Finally, only a few fairly simple scenarios have been considered and only for ee → ee, µµ, ππ(+γ). As a first step
it is planned to consider more complicated experimental scenarios by streamlining the production pipelines. It is also
planned to consider more types of hadronic final states with ee→ π+π−π0 as a first likely candidate. Phase II will also
hopefully see estimates of theory errors for some of the processes and scenarios under consideration.

2.5. New developments for the evaluation of HVP
2.5.1. The DHLMZ studies
Data combination and comparisons of mass spectra in the π+π− channel. The DHMZ studies employ since 2009 a
procedure for combining cross-section data with arbitrary point spacing or binning, redistributed in a fine common
binning using spline-based interpolations, as implemented in the HVPTools software [166, 194, 260–263]. For each
narrow final bin, a χ2 is minimized to get the average weights and locally test the level of agreement among the input
measurements. The average weights also account for the different bin sizes and point-spacing of measurements, in
order to compare their precisions on the same footing. This procedure has been validated through a closure test. It
features full and realistic (i.e., not too optimistic) treatment of uncertainties and correlations, between the measure-
ments (data points or bins) of a given experiment, between experiments and between different channels. It also fully
accounts for systematic tensions between experiments.

The DHMZ average is dominated by the most precise experiments (BaBar [137, 174], CMD-3 [94], KLOE [130–
132], SND20 [107], followed by CMD-2 [122–126], BESIII [138], and SND06 [127]), BaBar covering the full energy
range of interest. Taking the ratio between various measurements and this average, it is found that in the [0.5, 1] GeV
range the BaBar and SND20 data overlap rather well with the average, KLOE is systematically below it, while CMD-
3 is above [166]. These tensions, especially between KLOE and CMD-3, which provide the smallest and respectively
largest cross sections in the ρ region, are also reflected by the enhanced values of χ2/dof. For KLOE slopes are
observed when comparing the 2010 and 2012 data with the 2008 ones. These tensions were quantified through fits
and found to be at the (2.5–3)σ level. No significant slope is present between 2010 and 2012 data (see Ref. [1] and
references therein).

In order to further quantify these tensions, the integrals for individual experiments were computed and compared in
various restricted energy ranges. The significance of the difference between pairs of experiments is determined, taking
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Figure 14: Significance of the difference between pairs of the three most precise e+e− → π+π− cross section measure-
ments (BaBar [137, 174], CMD-3 [94], KLOE [130–133]) for narrow energy intervals of 50 MeV or less (left) and larger energy
intervals (right) indicated by the horizontal lines. Plots from Ref. [166].

into account the correlations of the uncertainties, see Fig. 14. The largest observed tensions are between CMD-3 and
KLOE, going beyond 5σ on the ρ peak [166]. The impact of these tensions on the comparison of the experimental
result to the SM expectation for aµ is displayed in the Fig. 5 from Ref. [166] (see more detailed discussion below).

The presence of these tensions among experimental measurements represents a clear indication of underestimated
uncertainties. This calls for a conservative uncertainty treatment in combination fits and in the determination of
the averaging weights, as implemented in the DHMZ approach [1, 263]. These systematic tensions go well beyond
the effects accounted through the local χ2/dof rescaling. This had already motivated the inclusion of the dominant
BaBar–KLOE systematic by DHMZ, since the studies reported in Ref. [263]. However, the tensions are larger now
and therefore require one to understand their actual source.

Impact of higher-order photon emissions: the implications of a unique “(N)NLO” BaBar study. As discussed in
Sec. 2.2.4, the higher-order photon emissions (i.e., in addition to the hard ISR photon), were studied in-situ with
BaBar data [176], for the first at NLO and NNLO, in the e+e− → µ+µ−γ and e+e− → π+π−γ channels. This allows
one to test the most frequently used MC generators, Phokhara and AfkQed. The “(N)NLO” order counting in data
and simulations is performed based on the number of additional photons in the final state, having the energy above
some given threshold.

It is found that the rate of “NLO” small-angle ISR in Phokhara is higher than in data, while the data/MC ratios for
large-angle photon emissions are consistent with unity [176]. An independent confirmation of the Phokhara problem
has been provided by the measurement of the π+π−π0 channel performed by the Belle-II Collaboration [185]. The
“NNLO” contributions are also clearly observed in data, while they are missing in Phokhara. At the same time,
AfkQed provides a reasonable description of the rate and energy distributions for “(N)NLO” data.

The discrepancies observed between BABAR and Phokhara in the energy distributions of additional ISR photons
reveal Phokhara shortcomings that cannot be fully interpreted due to the absence of complete NNLO MC generators.
A full range of scenarios with extremes labeled 1 and 2, has been considered according to presently unknown NNLO
calculations [166]. Scenario 1 questions the validity of Phokhara at the NLO level in addition to missing NNLO,
while in scenario 2 the discrepancy observed by BABAR would originate solely from missing NNLO. The realistic
situation is expected to lie between these two extremes. These findings have triggered further studies performed
by BESIII and KLOE. Tests of MC generators regarding the mumu/pipi mass distributions are now available (see
Secs. 2.2.3, 2.2.5, and 2.4) which confirm the validity of NLO Phokhara at the 1% level (where the uncertainties
of the other generators employed in the comparisons are relevant too). This is to be compared with a systematic
uncertainty of 0.5% for Phokhara as quoted in the KLOE/BESIII publications. However, similar comparisons should
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Figure 15: Relative difference between the ππ cross sections from BaBar (top left) [137, 174], CMD-3 (top right) [94], the IB-
corrected τ data (middle left) [189], and their average. The IB corrections and uncertainties employed here correspond to the ones
from Ref. [166]. Relative difference with respect to the same average for the measurements from KLOE [133] (middle right),
SND20 [107] (bottom left), and BESIII [138] (bottom right). Plots from Ref. [264].
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be done for the energy distribution of additional ISR photons, playing an important role in the event selection. For
the moment, the question of re-evaluating Phokhara-related systematic uncertainties for the published KLOE/BESIII
results has not yet been considered, particularly for KLOE, which has competitive precision. It is worth noting that
the sensitivity to these effects does depend on analysis strategy choices that are somewhat less critical for BESIII.
It is important to note that the BaBar measurements [137, 174] employ a loose selection, incorporating “NLO” and
higher-order radiation, minimizing hence the dependence on MC simulations.

A new perspective on aHVP, LO
µ . The aµ and central aW

µ calculations (see Secs. 3.4 and 4.1) were performed employing
the dispersive approach, based on the most precise measurements available in the π+π−(γ) channel (see pages 7, 8, 18,
and 19 in Ref. [264]), from BaBar [137, 174], CMD-3 [94], and KLOE [133], as well as from hadronic τ decays [189]
as discussed in Sec. 2.3.1, see the Fig. 5 from Ref. [166]. For KLOE, both the full available range (KLOEwide) and a
restricted range of (0.6–0.975) GeV (KLOEpeak) were considered. For the latter, the data are most precise and KLOE’s
weight in the combination is largest. These various aHVP, LO

µ integrals are completed with the combination of all the
available measurements in the ππ channel [166], in order to cover the full mass range of interest, as well as with
contributions from other hadronic channels (as evaluated in Ref. [1]), in view of the comparisons with the BMW
lattice QCD result [15] and with the experimental measurement [7].

The τ-based HVP contribution is close to the values provided by BaBar and CMD-3, see the Fig. 5 from Ref. [166].
Their combination is compatible with BMW for aµ, but a 2.9σ tension persists for aW

µ . Combining BaBar, CMD-
3, τ (and BMW), a difference of 2.5σ (2.8σ) is found with respect to the experiment. When including KLOE in
the dispersive calculation, the difference to the experiment becomes larger than 5σ. This situation concerning the
most precise experiments can be illustrated at the level of the cross sections by comparison with the average of
BaBar [137, 174], CMD-3 [94], and the IB-corrected τ data [189], showing their consistency, while KLOE [133]
disagrees, both in magnitude and shape, see Fig. 15.6 The SND20 [107] and BESIII [138] measurements show
also some tensions with this same average, although within somewhat larger uncertainties and hence less statistically
significant. To further investigate these problems, tests of MC generators must be performed for experiments which
rely on them to correct for missing higher-order contributions. These studies should focus on the rate and angular
distributions of additional photons, which impact the selection efficiency [166].

These findings provide additional insight into the longstanding deviation among the muon g− 2 measurement, the
SM prediction using the data-driven dispersive approach for calculation of HVP, and the comparison with lattice-QCD
calculations.

2.5.2. The KNTW studies
For the first edition of WP20 [1], KNT (now KNTW) provided their data-driven HVP compilation [30, 265].

Their data for the full hadronic cross section, see Fig. 16, result in the most precise evaluation of aHVP, LO
µ to date

of aHVP, LO
µ [KNT19] = 692.8(2.4) × 10−10, with overall good agreement observed when compared to other groups.

The results were used in the merging procedure between data-driven analyses, which determined the adopted con-
sistent value aHVP, LO

µ [WP20] = 693.1(4.0) × 10−10 in Ref. [1]. KNT have also provided the prediction for the
NLO HVP contribution, aHVP, NLO

µ [WP20] = −9.83(7) × 10−10, the data input for the NNLO HVP contribution,
aHVP, NNLO
µ [WP20] = 1.24(1) × 10−10 [32], predictions for the HVP contributions to the electron and tau g − 2 (both

at LO and NLO), for the running of the EM coupling, α(Q2), and for the hyperfine structure of muonium. Their pub-
licly available, open-access data compilation includes: 1) the full hadronic cross section ranging from the production
threshold to 1 TeV, complete with a full covariance matrix for all data, 2) cross-section data and covariance matrices
for all individual hadronic modes, and 3) a software package (knt vp) that produces α(Q2) for both spacelike and
timelike Q2.7 These data have been used by the wider particle physics community including in many studies related
to the muon g − 2, notably for predictions of window-based quantities.

The philosophy of the KNTW compilation is summarized by the main features: (i) Prioritize, wherever possible,
direct input from data without modeling, parametrization, or other constraints. (ii) Include all published data unless

6The average of BaBar, CMD-3, and the IB-corrected τ data is employed here just as a reference in the comparisons. It enables a clear
visualization of agreement/differences in terms of shape and normalization among various measurements, which would not be the case if, e.g., a
full combination were used instead.

7All data are available upon request by contacting the authors directly.
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µ .

they are known to be defective. (iii) Understand and minimize/avoid all possible bias that could be present in the
analysis. (iv) Incorporate full correlation information between different data points due to systematic uncertainties in
the combination to constrain the fits by using all available experimental data. (v) Evaluate and incorporate additional
theoretical systematic uncertainties arising from the analysis. (vi) Be fully open-access with regard to the sharing of
studies, results, and resulting combination data.

At the time of Ref. [1], the KNT data combination could accommodate tensions between the data sets, still achiev-
ing an acceptable fit quality. This was reflected in a global χ2/dof = 1.26 for the most important two-pion channel.
For the evaluation of the aµ integral, an energy-dependent chi-square inflation was used, which amounted to a 14%
error inflation for aπ

+π−

µ in the range 0.305 <
√

s < 1.937 GeV. This situation changed dramatically with the publi-
cation of the CMD-3 two-pion data [93, 94]. Despite sustained efforts by the community, coordinated by the Muon
g − 2 Theory and the RadioMonteCarLow 2 initiatives, see Secs. 2.2.1 and 2.4, no explanations for the discrepancy
have been found so far. With further dedicated efforts on the calculation of higher-order radiative corrections and their
implementation in MC generators, and new data analyses in the two-pion channel underway, the picture is not yet
settled. Therefore, the persistent strong tension with the previous data across the entire energy range in the dominant
π+π− channel means that the most precise data sets and their combination are highly inconsistent, and extra caution
should be taken before trying to proceed with the direct combination as before. KNTW have consequently refrained
from providing an updated compilation.

Instead, KNTW are taking the opportunity to fully scrutinize, overhaul, and modernize their analysis and data
combination procedure in preparation for crucial, new hadronic cross-section data expected in the future, particularly
for the π+π− channel, see Sec. 2.2. The aim is to improve all aspects of the data treatment, data combination, and
error estimation, and to provide a versatile and modern database and software tool for wider use. This is particularly
important given that current tensions in different evaluations of aHVP, LO

µ and in the e+e− → π+π− cross-section data
indicate either a discovery of new physics or a multi-method confirmation of the SM. Crucially, different analysis
choices in e+e− → hadrons data combinations by different groups can lead to different results and, in Ref. [1],
have been shown to differ at the level of the uncertainty on the combined cross section. It follows that future data-
driven determinations of aHVP, LO

µ must attempt to avoid analysis bias wherever possible, including any past or future
analysis choices on how to combine the available data. Consequently, implementing analysis blinding in data-driven
determinations of aHVP, LO

µ is paramount and critical before including new data whose impact on the resulting aHVP, LO
µ

will be influenced by such analysis choices. The first blinding scheme for data-driven evaluations of HVP has been
developed by KNTW and is in place as part of their new, ongoing KNTW analysis, see Fig. 17. The full blinding
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Figure 17: Values for aHVP, LO
µ for different hadronic channels from the original unblinded KNT19 analysis [30] (filled), and what the blinded

results of that analysis would have looked like prior to unblinding had the new KNTW blinding procedure [266] been employed (unfilled). For the
offsets of this specific example, the blinded results for π0γ and K0

S K0
L are randomly similar to their unblinded counterparts so both have been scaled

by ×5 to make the differences visible.

procedure is described in Ref. [266]. Unblinding will occur when the analysis is complete and at an appropriate time
with respect to the release of new or updated hadronic cross-section data.

2.6. Dispersive representations for exclusive channels
For the dominant exclusive channels in a data-based evaluation of HVP, the form of the required hadronic ma-

trix elements is sufficiently simple that strong constraints from general principles of QCD can be derived, including
analyticity, unitarity, crossing symmetry, and chiral low-energy theorems. In Ref. [1] such constraints were already
described for the 2π [226, 263, 267] and 3π [268] channels, here, we review the new developments in dispersive
representations in these cases, as well as new applications to π0γ and K̄K.

2.6.1. 2π
The central object that defines the 2π contribution to aµ is the pion VFF FV

π (s), related to the cross section via

σ(e+e− → π+π−)(s) =
πα2

3s
σ3
π(s)

∣∣∣FV
π (s)

∣∣∣2 , σπ(s) =

√
1 −

4M2
π

s
. (2.24)

To derive dispersive constraints, it is most useful to separate the contributions from different cuts according to

FV
π (s) = Ω1

1(s)Gω(s)GN
in(s) , (2.25)

where the Omnès factor Ω1
1(s) [270] accounts for 2π intermediate states, Gω(s) includes the IB 3π cut, and further

inelastic intermediate states such as 4π are expanded into a conformal polynomial GN
in(s) (with N − 1 degrees of

freedom). In the formalism from Ref. [226], the strength of Gω(s) is parameterized by the ρ–ω mixing parameter
ϵω, which can be interpreted as the residue at the ω pole, and apart from a tiny phase from the analytic continuation
into the complex plane has to be a real quantity. In Ref. [237], this formalism was extended to account for radiative
intermediate states mediating the ρ–ω transition, such as ρ→ π0γ → ω, which can produce a small but relevant phase
in ϵω. The improved parameterization of Gω(s) takes the form [237]

Gω(s) = 1 +
s
π

∫ ∞

9M2
π

ds′
Re ϵω

s′(s′ − s)
Im

 s′

(Mω −
i
2Γω)2 − s′


1 − 9M2

π

s′

1 − 9M2
π

M2
ω


4

+
s
π

∫ ∞

M2
π0

ds′
Im ϵω

s′(s′ − s)
Re

 s′

(Mω −
i
2Γω)2 − s′


1 −

M2
π0

s′

1 −
M2
π0

M2
ω


3

, (2.26)
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Figure 18: 2π contribution to aµ for
√

s ≤ 1 GeV, in the unconstrained dispersive representation from Refs. [237, 269] (upper panel) and imposing
the absence of zeros in the VFF [146] (lower panel). The data sets are SND06 [127, 128], CMD-2 [122, 123, 126], BaBar [137, 174], KLOE [130–
133], BESIII [138], SND20 [107], and CMD-3 [93, 94]. The combined fit includes all data sets apart from SND20 and CMD-3. Inner error
bars are derived from the experimental uncertainties, the outer ones include theory uncertainties from the dispersive representation. In the case
of the combined fit, the outmost gray error band includes, in addition, an estimate of the BaBar–KLOE tension as in Ref. [1]. Figure taken from
Ref. [146].

ensuring the absence of imaginary parts below the respective thresholds and their correct threshold behavior above.
Moreover, the size of the expected phase of ϵω could be estimated to δϵ = 3.5(1.0)◦, based on a narrow-width approx-
imation for the intermediate-state vector mesons in π0γ, ππγ, and ηγ. A fit to the different e+e− → π+π− data sets was
performed in Refs. [237, 269], leading to the picture in the upper panel of Fig. 18.8 As key result, it was found that all
but the SND20 data set could be described in a statistically satisfactory manner, which was therefore excluded from
the combined fit of experiments prior to CMD-3. Already in this unconstrained fit, the tension between CMD-3 and
the combination evaluates to 7.3σ (excluding the additional BaBar–KLOE tension represented by the outmost gray
band in Fig. 18).

The largest uncertainty in the dispersive representation of the VFF from Refs. [226, 237, 269] is a systematic
(theory) uncertainty related to variations with the order N of the conformal polynomial GN

in(s) describing the inelastic
effects. In Ref. [146], it was observed that these large variations coincide with the appearance of zeros in the VFF
fits for N ≥ 5. Although the assumption that the VFF is free of complex zeros is not proved, there are theoretical
arguments against the presence of such zeros [275]. In Refs. [276, 277], zeros have been excluded in a large region of
the complex s-plane. In Ref. [146] it was shown that imposing the absence of zeros as a constraint in the fit removes
the largest systematic uncertainty without a significant impact on the fit quality. The results of these constrained
fits are shown in the lower panel in Fig. 18. While qualitatively leading to similar results, the additional constraint
exacerbates the discrepancies between dispersive fits to different experiments. Notably, the discrepancy between the
fits to KLOE and CMD-3 reaches 8.9σ [146].

In case that the VFF has no zeros (or the position of zeros is known), its phase can be reconstructed disper-
sively from the modulus [275, 278, 279]. In Ref. [277], such a modulus dispersion relation was used to determine

8The figure shows the implementation from Ref. [146], which also involves improved error estimates for the P-wave elasticity parameter in
the solution of ππ Roy equations [271–274] and the truncation of the conformal expansion.
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Figure 19: Left: Phase δϵ of the ρ–ω mixing parameter, according to the dispersive representation Eq. (2.26). Right: Two-pion contribution to the
t > 2.8 fm Euclidean time window (Eq. (3.19), with t1 = 2.8 fm), obtained from low-energy fits of the VFF constrained to be free of zeros. Legends
as in Fig. 18, figures taken from Refs. [146, 269].

the phase of the VFF up to s = (2.5 GeV)2 from BaBar data, by parameterizing the data on the modulus with a
GS [223] function. This approach can also be combined with an Omnès representation for the elastic ππ rescattering
contribution, resulting in a hybrid representation that requires input for the modulus only above the inelastic thresh-
old [276, 280]. In Ref. [146], such a hybrid representation was fit to the different experiments at low energies and to
BaBar data [137, 174] above 1.4 GeV. The results are compatible with the unconstrained or constrained low-energy
Omnès fits, but lead to even smaller uncertainties, at the price of introducing a parameterization dependence for the
modulus above the inelastic threshold. While the representation of inelastic contributions in terms of a conformal
polynomial GN

in(s) in Eq. (2.25) is restricted to energies below ≃ 1 GeV, the hybrid representation has the advantage
that it can be used also above 1 GeV. An assessment of the parameterization dependence and a further reduction
of the uncertainties would be possible with more high-statistics data on the modulus of the VFF above the inelastic
threshold.

The dispersive representation of the VFF has the feature that it provides a global fit function: it thus allows one
to evaluate each experiment in the entire region below 1 GeV, not only in the range in which data were taken, and to
sharpen the tensions among the experiments by taking into account that the allowed form of the cross section is highly
constrained by analyticity and unitarity. Moreover, the fit parameters can be compared as well, implying interesting
correlations with other low-energy observables, in particular the pion charge radius, see Sec. 2.7.1. An example is
provided in Fig. 19(left), where δϵ is shown for the fits to the different experiments. Again, considerable spread
is observed among the experiments, but in a different order than for the cross section, comparing to Fig. 18, with
some experiments preferring phases much bigger than the narrow-width estimate δϵ = 3.5(1.0)◦. Another example is
given by Euclidean window quantities: as shown in Ref. [146], the dispersive constraints correlate the discrepancies
in the ρ-peak region with tensions even at very long Euclidean distance (corresponding to very low energies), see
Fig. 19(right) for the spread of results for the two-pion contribution below 1 GeV to the Euclidean window t > 2.8 fm.

In contrast to some other experiments, CMD-3 [93, 94] does not provide detailed information on the bin-to-bin
correlations of the systematic uncertainties, see Sec. 2.2.1. The fits of Refs. [146, 269] were performed assuming fully
correlated systematic uncertainties. Since this assumption might not apply to all systematic effects, Ref. [146] also
investigated a toy scenario of a de-correlation of the systematic uncertainties, ranging from fully correlated uncertain-
ties to only diagonal errors, which shows some shifts in the central fit values: in the considered de-correlation scenario
for CMD-3, the maximal shift of the central value for aππµ |≤1 GeV amounts to 1.8 times the fit uncertainty obtained with
fully correlated systematics, whereas for all other experiments, the shifts in the central values induced by neglecting
correlations remain within the fit uncertainties. Since no detailed information is available on the systematic correla-
tions, for a most conservative treatment of systematic errors the CMD-3 fit uncertainties should be somewhat enlarged.
Since the observed shifts for CMD-3 are towards larger values of aππµ |≤1 GeV, these studies indicate that reduced corre-
lations would lead to even larger differences between CMD-3 and the other experiments than the treatment with fully
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e+e− → π0γ e+e− → K̄K e+e− → 3π
Ref. [300] Ref. [45] Ref. [268] Ref. [186] PDG [306]

Mω [MeV] 782.584(28) – 782.631(28) 782.697(32) 782.53(13)
Γω [MeV] 8.65(6) – 8.71(6) 8.711(26) 8.74(13)
Mϕ [MeV] 1019.205(55) 1019.219(4) 1019.196(21) 1019.211(17) 1019.201(16)
Γϕ [MeV] 4.07(13) 4.207(8) 4.23(4) 4.270(13) 4.249(13)

Table 3: VP-subtracted resonance parameters of ω and ϕ from e+e− → 3π [186, 268], e+e− → π0γ [300], and e+e− → K̄K [45]. The last column
gives the PDG values [306], with VP removed using the corrections from Ref. [287]. Table from Ref. [186]. The values from Ref. [268] are
superseded by Ref. [186], illustrating the impact of the BaBar data [149]. At this level of precision, tensions among the different channels start to
emerge, most notably in Γϕ between e+e− → K̄K and e+e− → 3π.

correlated systematic uncertainties. In either case, these studies emphasize the need for improved information on the
correlation of systematic uncertainties, especially in cases such as CMD-3 in which both statistical and truncation
uncertainties in the conformal expansion are small.

2.6.2. 3π and π0γ

The e+e− → 3π cross section can be described in a dispersive approach by its underlying γ∗ → 3π decay amplitude
F (s, t, u; q2) defined as

⟨0| jµ(0)|π+(p+)π−(p−)π0(p0)⟩ = −ϵµναβpν+pα−pβ0F (s, t, u; q2) , (2.27)

where s, t, and u are Mandelstam variables and q2 is the photon virtuality. A dispersive representation of this amplitude
was constructed in Refs. [268, 281–285] in terms of a Khuri–Treiman equation [286], and was used to evaluate the
3π contribution to aµ. The new developments since then mainly concern IB effects, with ρ–ω mixing and radiative
corrections being incorporated into the dispersive representation in Ref. [186]. The first effect, ρ–ω mixing, can be
predicted by the coupled-channel formalism from Ref. [287], from which the correction factor

gπ(s) = 1 −
g2
ωγϵω

e2 Ππ(s) , (2.28)

depending on the 2π VP function Ππ(s), emerges. In particular, the ρ–ω-mixing parameter ϵω is introduced in a way
consistent with that of e+e− → 2π, see Eq. (2.26). The value of the mixing parameter obtained from the 3π global fit,
including the data sets of SND [288–291], CMD-2 [123, 292–294], and BaBar [149], is in agreement with ϵω extracted
from the 2π channel at the level of 1.9σ. An estimate of FSR was derived by focusing on IR-enhanced corrections,
and a correction factor η3π analogous to η2π in 2π channel was obtained for the first time, see Ref. [186] for details.
The total HVP contribution amounts to a3π

µ |≤1.8 GeV = 45.91(53) × 10−10, of which aρ–ω
µ [3π] = −2.68(70) × 10−10 and

aFSR
µ [3π] = 0.51(1) × 10−10 arise from IB.

The dispersive representation for F (s, t, u; q2) is constrained by the Wess–Zumino–Witten (WZW) anomaly for
3πγ [295, 296], which, in the chiral limit, predicts F (0, 0, 0; 0) = FWZW

3π = 1/(4π2F3
π) in terms of the pion decay

constant Fπ. Including quark-mass corrections [283, 297, 298], this constraint anchors the dispersive representation
directly at low energies and indirectly via a sum rule. In Ref. [299] an extended data fit was performed to test this
input, obtaining F3π/FWZW

3π = 1.028(53) and thus validating the anomaly constraint at the 5% level. In addition
to the global fit, also the recent Belle II data [185] were considered, see Sec. 2.2.6, observing tensions with the
dispersive constraints, the width parameters of ω and ϕ, and the chiral anomaly; the latter reflecting the tension in the
3π contribution to aµ.

Similarly, the π0γ channel is based on a dispersive representation of the singly-virtual π0 → γγ∗ transition form
factor. A once-subtracted representation was implemented as [300]

Fπ0γ∗γ∗ (q2, 0) = Fπγγ +
1

12π2

∫ ∞

4M2
π

ds′
q3
π(s′)(FV

π (s′))∗

s′3/2
×

{
f1(s′, q2) − f1(s′, 0) +

q2

s′ − q2 f1(s′, 0)
}
. (2.29)
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This process is closely related to the 3π channel since the γ∗ → 3π P-wave amplitude f1(s, q2) turns out to be a
building block of its unitarity relation. The resonance parameters were then fit to the existing data sets [301–305]
below 1.4 GeV. The final combined fit produced the HVP contribution to aµ from this lowest radiative channel,
aπ

0γ
µ

∣∣∣
≤1.35 GeV = 43.8(6) × 10−11. As a by-product, the resonance parameters of ω and ϕ can be compared to the deter-

minations from other channels, as shown in Table 3. In particular, good agreement of the ω mass was found between
3π and π0γ in the dispersive approach, evading unphysical phases that afflict previous conflicting determinations in
the same channel [303].

2.6.3. K̄K
In Ref. [45], a dispersive analysis of the charged- and neutral-kaon EM form factors was performed, based on

their lowest-lying singularities, and thus allowing one to correlate both time- and spacelike data. For this purpose, the
physical form factors are decomposed into isovector (v) and isoscalar (s) components according to

FK± (s) = F s
K(s) + Fv

K(s) , FK0 (s) = F s
K(s) − Fv

K(s) . (2.30)

The unitarity relation for the isovector part is, at low energies, entirely dominated by two-pion intermediate states,
resulting in [307]

Im Fv
K(s) =

s

4
√

2
σ3
π(s)

(
g1

1(s)
)∗FV

π (s) . (2.31)

Here, g1
1(s) denotes the ππ → K̄K P-wave amplitude known from corresponding Roy–Steiner analyses [308–310].

The isovector kaon form factor itself is calculated from Eq. (2.31) using an unsubtracted dispersion relation. Higher
intermediate states are modeled effectively by a ρ′-pole contribution, whose strength is adjusted to fulfill the normal-
ization sum rule Fv

K(0) = 1/2. The isoscalar part, on the other hand, is dominated by the narrow ω(782) and ϕ(1020)
resonances. While the ϕ dominates the e+e− → K̄K cross sections above threshold, and its spectral form needs to be
described carefully using energy-dependent widths [284], the ω lies in the unphysical region and can be constrained
only to some extent as a background effect, from spacelike data [311, 312], or using SU(3) symmetry. Once more, a
heavier, effective, ω′ pole is added to ensure the correct isoscalar normalization.

An interesting observation is that combined fits to the e+e− → K+K− [100, 288, 313, 314] and e+e− → KS KL [102,
123, 288] data sets suggest an IB difference in the ϕ residues at the level of 2.6(9)%. This is found despite the kaon
mass difference, universal FSR for the charged kaons, and the isovector background in the form factors being taken
into account. Mass and width of the ϕ come out consistently with determinations from the 3π and π0γ channels, cf.
Table 3. The combined HVP contributions in the ϕ-resonance region are found to be

aHVP
µ [K+K−,≤ 1.05 GeV] = 184.5(2.0) × 10−11 , aHVP

µ [KS KL,≤ 1.05 GeV] = 118.3(1.5) × 10−11 , (2.32)

while results based on individual data sets reflect the tensions between the data, in particular BaBar [314] and
CMD-3 [100] for the charged kaons; see Fig. 20 and Ref. [45].

The resulting spacelike form factors have also been used to determine the kaon-box contributions to HLbL, see
Sec. 5.5.2. Besides, radii for both neutral and charged kaons can be extracted, yielding

⟨r2⟩n = −0.060(4) fm2 , ⟨r2⟩c = 0.359(3) fm2 , (2.33)

which both present a significant gain in precision compared to the values cited by the PDG [225]. Finally, knowl-
edge of the form factors allows one to evaluate the elastic contributions to the EM mass shifts from the Cottingham
formula [315],

(
M2

K
)
EM =

α

8π

∫ ∞

0
ds

[
FK(−s)

]2
(
4W +

s
M2

K

(W − 1)
)
, W =

√
1 +

4M2
K

s
, (2.34)

which results in an estimate of the EM charged-to-neutral kaon mass difference (∆M2
K)EM = 2.12(18) × 10−3 GeV2

and allows one to disentangle EM from quark-mass-induced effects in ∆M2
K = M2

K± − M2
K0 . This separation serves as

important input to the discussion of IB in Sec. 2.7.3. In particular, the scheme implicitly defined by Eq. (2.34), and
the resulting mass decomposition in Eq. (2.37), agree well with the FLAG-recommended convention in lattice QCD,
see Sec. 3.2.
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Figure 20: Cross-section data and combined fits to all data sets for e+e− → K+K− (data from Refs. [100, 288, 313, 314], left) and e+e− → KS KL
(data from Refs. [102, 123, 288, 288], right), respectively. Both are shown focused on the ϕ peak region. Figure adapted from Ref. [45].

2.7. Applications of dispersive representations

2.7.1. Correlations with other observables
Having a dispersive representation for the 2π cross section allows one to study interesting correlations with

other low-energy observables, see, e.g., Ref. [316]. First, the resulting values of the P-wave ππ phase shift at
s0 = (0.8 GeV)2 and s1 = (1.15 GeV)2, which enter as fit parameters in Ω1

1(s) via the Roy-equation solution, can
be compared to partial-wave analyses [317, 318]. The result of the global VFF fit proves consistent with these partial-
wave solutions, but appreciably more precise, to the extent that the corresponding phase shift enters as input for
global analyses of ππ scattering [319]. Surprisingly, even for the fits to CMD-3 the change in these phase-shift values
is small [146, 269], essentially realizing scenario (2) from Ref. [316] in which all changes occur in the conformal
polynomial GN

in(s), see Sec. 2.6.1. This observation could potentially allow one to discriminate among the 2π data sets
using additional input from e+e− → 4π, πω data, and work in this direction is ongoing [320, 321].

Next, in addition to studying δϵ , the results for the ω pole parameters in VFF fits can be contrasted to determina-
tions from e+e− → 3π and e+e− → π0γ, see Sec. 2.6.2. While the sensitivity cannot compete with the 3π channel,
some deficit in Mω tends to remain, correlated with δϵ (in line with a similar observation in Ref. [137] in the context
of GS fits).

Finally, once the pion VFF is determined, the pion charge radius follows via the sum rule

⟨r2
π⟩ = 6

dFV
π (s)
ds

∣∣∣∣∣
s=0
=

6
π

∫ ∞

4M2
π

ds
Im FV

π (s)
s2 , (2.35)

defining another low-energy observable that could help discriminate among the 2π data sets in case lattice-QCD
calculations [322–325] at the required level of precision became available. For such a comparison, the improvements
in the evaluation of the inelastic contributions in Ref. [146] become critical, since, with the imaginary part entering
in Eq. (2.35) in principle up to arbitrarily high energies, ⟨r2

π⟩ displays an increased sensitivity to GN
in. In particular, the

hybrid representation of Ref. [146] leads to significantly smaller uncertainties in ⟨r2
π⟩ than the unconstrained Omnès

representation Eq. (2.25), see Fig. 21, but in all fits the hybrid representation relies on BaBar data above 1.4 GeV.
Therefore, the main results of Ref. [146] for the pion charge radius are based on the hybrid representation, fit to a
combination of all data sets apart from SND20 and CMD-3, as well as the constrained Omnès representation, fit to
CMD-3, leading to

⟨r2
π⟩|

comb = 0.4290(17) fm2 , ⟨r2
π⟩|

CMD-3 = 0.4367(24) fm2 . (2.36)

Apart from these low-energy correlations, connections also exist with Z-pole observables via the hadronic running of
the fine-structure constant, see Refs. [326–329] and Sec. 3.7.2.
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Figure 21: Values of the pion charge radius ⟨r2
π⟩ (in fm2) from the (unconstrained) Omnès representation Eq. (2.25) and from the hybrid represen-

tation of Ref. [146], fit to single experiments. Figure taken from Ref. [146], legend as in Fig. 18.

2.7.2. Chiral extrapolation
A dispersive representation of the 2π cross section further allows one to improve chiral extrapolations. That

is, the pion-mass dependence of Eq. (2.25), and thus the two-pion contribution to aµ, can be evaluated once chiral
extrapolations of the phase shift δ1

1(s) and the conformal polynomial are available. For the former, one may use the
inverse-amplitude method (IAM) [330, 331], relying on input for the chiral amplitudes up to two loops [332, 333] to be
able to assess the convergence by comparing NLO and NNLO results. For the conformal polynomial, the pion-mass
dependence can be estimated by matching to ChPT for the pion VFF, e.g., the charge radius, whose Mπ dependence
is also known up to two loops [334], allows one to include the first nontrivial term in the conformal expansion.
In particular, resonance saturation for the required two-loop low-energy constant rr

V1 is validated by lattice-QCD
calculations of ⟨r2

π⟩ at heavier-than-physical pion masses [323, 331].
A detailed analysis of the pion-mass dependence of the two-pion contribution along these lines was performed in

Ref. [331]. The results inform the chiral extrapolation (or interpolation) of lattice-QCD calculations, e.g., suggesting
the presence of an 1/M2

π term in empirical fits in the range Mπ ∈ [0.14, 0.25] GeV. Moreover, also the important IB
effect when performing iso-symmetric calculations at the mass of the neutral pion can be estimated, see Fig. 22 for
the projection of this correction onto the Euclidean window [t2,∞). As a cross-check, the same effect was evaluated
in Ref. [247] from a Roy-equation analysis, determining the ππ scattering lengths at the mass of the neutral pion from
two-loop ChPT [332, 333, 335], where the difference between left-hand side (LHS) and right-hand side (RHS) of the
Roy equations provides an estimate of the systematic uncertainty. Figure 22 shows that the different variants agree
very well especially in the long-distance tail, while uncertainties increase towards t2 = 1 fm. This result enters the
phenomenological estimate of IB corrections discussed in Sec. 2.7.3.

2.7.3. Isospin breaking
The detailed understanding of the dominant exclusive channels summarized in Sec. 2.6 presents an opportunity to

estimate a number of IB effects from phenomenology. First, the radiative channels π0γ, ηγ, and π0π0γ are naturally
booked as QED contributions O(e2). They are large compared to the naive expectation α

π
aHVP, LO
µ ≃ 1 × 10−10,

especially considering the energy suppression of the latter two channels. Their size can be explained by resonance
enhancement, due to V = ω, ρ, ϕ for the Pγ channels and a double enhancement due to ρ(1450) → ωπ0 → π0π0γ.
Next, FSR effects contribute to the 2π, 3π, and K+K− channels, and can again be extracted from dispersive fits to
data, as can the contribution due to ρ–ω mixing thanks to the improved representations discussed in Sec. 2.6.1 and
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Figure 22: Projection of the pion-mass-difference correction to the two-pion contribution ∆aHVP, LO
µ [ππ] onto the Euclidean window [t2,∞). The

curves refer to the IAM at NLO and NNLO as well as the LHS and RHS of the Roy-equation solution, respectively. Based on Refs. [247, 331].

Sec. 2.6.2. For the pion-mass correction when defining the isospin limit by the mass of the neutral pion the treatment
according to Sec. 2.7.2 applies. Finally, for the kaon channels one needs to further specify the isospin conventions,
for which Refs. [247, 337] suggest the decomposition

MK± =
(
494.58 − 3.05δ + 2.14e2

)
MeV , MK0 =

(
494.58 + 3.03δ

)
MeV , (2.37)

into O(e2) and O(δ), δ = mu−md, contributions, as motivated by the kaon self energies determined via the Cottingham
approach [45], see Sec. 2.6.3. Equation (2.37) agrees well with the FLAG prescription in lattice QCD, see Sec. 3.2.

The complete summary of all IB effects collected in Ref. [247] is reproduced in Table 4, separated into the
benchmark RBC/UKQCD SD, intermediate, and LD Euclidean windows as defined in Sec. 3.4, as well as O(e2) and
O(δ) contributions. For each channel and effect, the uncertainties are well defined and reasonably small, so that the
final uncertainties are dominated by potential IB corrections that cannot be fully quantified. The first of these concerns
the residue of the ϕ in the K̄K decay, since it is not clear with which channel the isospin limit should be identified.
Accordingly, the difference between the possible choices is added as an additional source of uncertainty.9 Finally,
higher multiplicity channels such as 4π may also involve IB contributions, but in those cases no strong enhancements
from resonances, threshold effects, or IR cancellations are expected, so that a generic 1% error is assigned in Table 4.

From the sum of exclusive channels one observes that individually large contributions tend to cancel in the sum,
leaving remarkably small overall corrections. Moreover, for the SD window a null effect is predicted, with a large
uncertainty dominated, as expected, by the 1% estimate of missing channels. In the intermediate window, such effects
still play an important role, while evidence for a nonvanishing effect is found largely driven by the radiative channels.
The most robust prediction concerns the LD window, in which case the contribution from higher-multiplicity channels
is very small and the dominant effects well under control. As illustrated in Fig. 22 for the case of the pion-mass
correction, the uncertainties will reduce further if the lower boundary t2 is increased. The complementarity to lattice-
QCD results is discussed in Sec. 3.6, especially for the LD window. Within uncertainties, the full O(δ) result given in
Table 4 agrees with the ChPT analysis of Ref. [338].

2.7.4. Radiative corrections
At the required level of precision, radiative corrections for the main π+π− channel are important and need to be

evaluated carefully. In particular, since the 2π final state is produced in an e+e− collision, one needs to remove all ef-
fects produced by photons emitted by the electron–positron pair before the collision, i.e., all ISR effects, see Ref. [145]

9A similar effect also occurs for the ω residue in the 3π channel, which could subsume IB effects, but in this case no phenomenological way to
estimate the potential impact is available. Assigning an additional 1% uncertainty for the 3π channel would amount to {0.03, 0.19, 0.25, 0.46}, for
SD, intermediate, LD, and total.
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SD W LD Full
O(e2) O(δ) O(e2) O(δ) O(e2) O(δ) O(e2) O(δ)

π0γ 0.16(0) – 1.52(2) – 2.70(4) – 4.38(6) –
ηγ 0.05(0) – 0.34(1) – 0.31(1) – 0.70(2) –

ω(→ π0γ)π0 0.15(0) – 0.54(1) – 0.19(0) – 0.88(2) –

FSR (2π) 0.12(0) – 1.17(1) – 3.13(3) – 4.42(4) –
FSR (3π) 0.03(0) – 0.20(0) – 0.28(1) – 0.51(1) –

FSR (K+K−) 0.07(0) – 0.39(2) – 0.29(2) – 0.75(4) –

ρ–ω mixing (2π) – 0.06(1) – 0.86(6) – 2.87(12) – 3.79(19)
ρ–ω mixing (3π) – −0.13(3) – −1.03(27) – −1.52(40) – −2.68(70)

Pion mass (2π) 0.04(8) – −0.09(56) – −7.62(63) – −7.67(94) –
Kaon mass (K+K−) −0.29(1) 0.44(2) −1.71(9) 2.63(14) −1.24(6) 1.91(10) −3.24(17) 4.98(26)
Kaon mass (K̄0K0) 0.00(0) −0.41(2) −0.01(0) −2.44(12) −0.01(0) −1.78(9) −0.02(0) −4.62(23)

Sum of channels 0.33(8) −0.04(4) 2.34(57) 0.02(33) −1.97(63) 1.48(44) 0.71(95) 1.47(80)
ϕ residue 0.00(8) 0.00(8) 0.00(47) 0.00(47) 0.00(36) 0.00(36) 0.00(90) 0.00(90)

Missing channels 0.00(49) 0.00(49) 0.00(55) 0.00(55) 0.00(12) 0.00(12) 0.00(1.16) 0.00(1.16)

Sum 0.33(51) −0.04(50) 2.34(92) 0.02(79) −1.97(74) 1.48(58) 0.71(1.75) 1.47(1.67)

Table 4: IB contributions to aHVP, LO
µ from the various radiative channels, FSR, ρ–ω mixing, and threshold effects, separated into O(e2) and O(δ)

contributions as well as the RBC/UKQCD SD, intermediate, and LD windows. ρ–ω mixing is booked as O(δ) following the LO RχT argument
from Ref. [336], see Ref. [237] for details. The penultimate panel reflects the uncertainties from the quadratic sum of the individual-channel errors,
the ambiguity in the ϕ residues, and a generic 1% error for the channels not explicitly included, while the last line gives the total quadratic sum.
Table adapted from Ref. [247], all entries in units of 10−10.

and Sec. 2.4 for the required MC framework. In this section, we address the application of dispersive techniques for
the calculation of radiative corrections, starting from FSR and interference effects. For both contributions, it is nec-
essary to perform calculations in QCD+QED and to rely on a perturbative expansion only for the latter. At leading
order in α, one needs hadronic matrix elements involving one, two, or three EM currents in the nonperturbative regime,
making model-independent calculations particularly challenging.

In principle, all experiments measuring e+e− → π+π− aim to determine the inclusive 2π(γ) final state, so that a
calculation of FSR effects would not be strictly necessary if a measurement with complete angular coverage were
possible. In practice, corrections are so far evaluated using sQED multiplied by the pion VFF (F×sQED in the
classification of Ref. [145]), leading to a universal correction factor η2π(s) that captures the leading, IR-enhanced
effects [339–342], see also Sec. 2.6.2. Removing this effect is not only important for the application of dispersive
techniques to the QCD matrix elements, see Sec. 2.6.1, but also allows one to estimate one class of isospin corrections
for τ decays, see Sec. 2.3.4. A first step towards a dispersive calculation of FSR corrections was performed in
Ref. [249], supporting the assumption that the IR-enhanced contributions are numerically dominant. Here, we discuss
the recent approach from Refs. [238, 343, 344]. Since only the two-pion final state is considered, the quantity of
interest becomes the VFF of the pion in QCD+QED, for which an expansion in α is employed:

FV
π,QED(s) = FV

π (s) + FV, α
π (s) + FV, α2

π (s) + . . . . (2.38)

The first term is the VFF in pure QCD, while the goal of the dispersive analysis is a complete calculation of the second
term, the correction at O(α), by reconstructing this matrix element from its unitarity cuts. For FV, α

π (s) there are three
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possible cuts that determine its discontinuity:

disc = + + , (2.39)

where the vertical dashed lines represent the unitarity cuts, the gray blob the hadronic matrix element, and when
cutting through it, in principle, all possible hadronic intermediate states have to be considered. However, since we are
interested only in the energy region around 1 GeV and below—for which inelastic contributions to FV

π (s) are known
to be small—the analysis can be restricted to two-pion intermediate states in a first step. This allows one to translate
this schematic representation into a sum of products of well-defined sub-amplitudes by replacing the cut hadronic
blob with a two-pion state. These contributions are integrated over a two- or three-body phase space, so that the
discontinuity becomes

disc FV, α
π (s)

2i
=

(2π)4

2

[∫
dΦ2FV

π (s)Tα∗
ππ (s, t) +

∫
dΦ2FV, α

π (s)T ∗ππ(s, t) +
∫

dΦ3FV, γ
π (s, t)T γ∗

ππ(s, {ti})
]
, (2.40)

where each term corresponds to a cut in Eq. (2.40). The first term is the product of the purely hadronic VFF with the
O(α) correction to the ππ scattering amplitude Tα

ππ(s, t). The second term is the product of FV, α
π (s) with the purely

hadronic ππ scattering amplitude. In the last term, FV, γ
π (s, t) and T γ

ππ(s, {ti}) are the transition amplitudes for the
processes γ∗ → π+π−γ and π+π− → π+π−γ, respectively, where the latter involves five external particles, introducing
a dependence on five Mandelstam variables (s and ti, i ∈ {1, 2, 3, 4}). The three-body phase-space integral of the last
term is due to the presence of an additional photon in the intermediate state, contrary to the two first terms.

If one is able to determine the discontinuity of FV, α
π (s) from this expression, a dispersive integral will allow one to

reconstruct the whole function. Among all the sub-amplitudes appearing on the RHS of Eq. (2.40), only the pion VFF
in pure QCD can be considered to be known, while all other amplitudes need to be determined. A striking feature
of this equation is that the initial amplitude FV, α

π (s) also appears as a sub-amplitude in the two-body phase-space
integral of the second term. Therefore, determining FV, α

π (s) not only requires additional input, such as Tα
ππ(s, t), but

also involves solving an implicit integral equation once all sub-amplitudes are known. The building blocks Tα
ππ(s, t),

FV, γ
π (s, t), and T γ

ππ(s, {ti}) can also be determined using a dispersive approach, following similar lines to those discussed
here. A preliminary account of this determination, along with a numerical estimate of these effects, is provided in
Ref. [238]. Based on these findings, no significant shifts with respect to the F×sQED treatment are expected. Ongoing
studies of these effects are addressing, in particular, the following important aspects:

1. Self-energy photonic corrections to the pions are responsible for the mass difference between the charged and
the neutral pions. These effects can be analyzed by solving Roy equations in the presence of a nonzero pion
mass difference, see Ref. [343].

2. An important step in the determination of FV, α
π (s) within a dispersive approach is represented by the matching to

the chiral representation of the same quantity (which is available in the literature [345, 346]). This matching is
a necessary step also for the sub-amplitudes occurring in the discontinuity of FV, α

π (s). While a global matching
was performed in Ref. [238], an improved treatment should consider the matching for the individual sub-
amplitudes, which also rigorously takes into account the chiral counting, see Ref. [344].

Finally, an important application of the study of FSR effects concerns the calculation of differences between the
VFF in the π+π− and π−π0 channels, presenting an avenue for a model-independent determination of this class of IB
corrections in the analysis of τ decays, see Sec. 2.3.6.

Beyond FSR corrections, dispersive techniques have been applied to the charge asymmetry in e+e− → π+π−.
Based on a GVMD model, it was observed in Ref. [141] that the F×sQED description is inadequate for this quantity,
see Sec. 2.2.1. In a dispersive approach, these findings can be put onto more solid grounds, by avoiding the systematic
uncertainties due to unphysical imaginary parts below the 2π threshold. Keeping the dominant 2π cuts (the FsQED
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Figure 23: Correction factors δ for the charge asymmetry in e+e− → π+π− as a function of
√

s for fixed z = cos(1) (left) and as a function of
z for fixed

√
s = 0.75 GeV (right), evaluated using a dispersive representation of the pion VFF [142]. The different lines refer to the point-like

result (black dashed: real, dot-dashed: virtual, solid: sum of real and virtual), the pole–pole (blue), pole–dispersive (red), and dispersive–dispersive
(green) contributions in the dispersive approach, and the GVMD model of Ref. [141] for comparison (orange). In all cases, the logarithmic term of
the IR divergence is subtracted in the conventions of Ref. [141]. Figure taken from Ref. [142].

approximation in the classification of Ref. [145]), the results shown in Fig. 23 were obtained in Ref. [142], demon-
strating that in this case the difference between GVMD and the dispersive calculation is astonishingly small. Both
calculations have already been implemented in MC generators [143]. In particular, the full dispersive calculation
involves subtle effects related to the treatment of an end-point divergence in the imaginary part, and collaboration
within the RadioMonteCarLow 2 project, see Secs. 2.2.1 and 2.4, was critical to establish the correct finite terms.

For energy-scan experiments, the charge asymmetry is C odd and therefore does not directly contribute to the 2π
cross section that enters the HVP integral. Accordingly, in this case the above studies mainly serve as a consistency
check for the CMD-3 data [93, 94]. However, as first pointed out in Ref. [144], for the ISR process a similar effect
is possible for the C-even cross section: this implies that resonance-enhanced corrections that are not captured by the
current F×sQED treatment [164] could affect such measurements, see Ref. [145] for a more detailed discussion of
these classes of diagrams. The calculation of these effects for ISR processes becomes significantly more challenging
due to the appearance of ππ → γγ∗γ∗ matrix elements (in addition to the well-studied pion Compton scattering
ππ → γ∗γ∗ [249, 347–351]), but work in this direction is ongoing and could be critical to help resolve the current
situation in the data-driven evaluation of the HVP contribution.

2.8. Data-driven results for comparisons to lattice QCD

With the advent of precise calculations of aHVP, LO
µ from lattice QCD, the quantitative comparison of data-driven

results with lattice-QCD-based counterparts is, obviously, necessary. A detailed comparison should go beyond simply
comparing results for aHVP, LO

µ itself since, in both the dispersive and lattice approaches, the full result is the sum of
components that are physical quantities in their own right. However, the very nature of the lattice approach, which is
quark based and inclusive, makes a comparison of intermediate physical quantities obtained from the lattice with data-
driven ones built up by summing experimental data for exclusive-mode hadronic cross sections not straightforward.
The lattice computation of aHVP, LO

µ , as reviewed in Sec. 3, is commonly split into a number of separately computed
components. The dominant contributions arise from the isospin-limit light- and strange-quark connected and discon-
nected diagrams, with the light-quark connected accounting for about 90% of aHVP, LO

µ and the sum of all strange- and
light-quark disconnected diagrams for about 6%. Additional, smaller, contributions from charm and bottom quarks
have also been computed. IB is accounted for by including corrections from EM (QED) and strong (SIB) origin, to
first order in an expansion in α and the up-down quark-mass difference δ = mu − md. In order to scrutinize potential
conflicts between the data-driven and lattice approaches to aHVP, LO

µ , it is highly desirable to obtain reliable data-driven
estimates for different components of the lattice-QCD result.

In a series of recent papers [352–356], it has been shown that it is possible to reliably determine, in an almost purely
data-driven manner, the light-quark connected (ud) and the sum of the full strange- and light-quark disconnected

52



(s+disc) contributions to aHVP, LO
µ . Subtracting from the latter an averaged lattice result for the strange-quark connected

contribution also gives access to an estimate of the total light- and strange-quark disconnected components. The
strategy starts from the isospin (SU(3)F) decomposition of the EM current into its I = 1 (flavor 3) and I = 0 (flavor
8) parts, and, from this, the decomposition of the EM VP into pure I = 1 (flavor 33), pure I = 0 (flavor 88), and
mixed-isospin (MI) (flavor 38) parts. It is well known that, in the isospin limit, the MI part vanishes, and the I = 1
part is purely light-quark connected (see, for example, Refs. [357, 358]). One has then

aHVP, LO
µ (ud) =

10
9

aI=1
µ , aHVP, LO

µ (s + disc) = aI=0
µ −

1
9

aI=1
µ . (2.41)

The main task to be accomplished is then the identification, with sufficient precision, of the I = 1 and I = 0 compo-
nents of the EM spectral function ρEM. Once a procedure is established to accomplish this goal, it is straightforward to
obtain the ud and s+disc parts of the total HVP contribution, or of any windowed quantity, including, in particular, the
three RBC/UKQCD windows [13], introduced in Sec. 3.4. The decomposition into I = 1/0 parts can be achieved on a
mode-by-mode basis in the exclusive-mode region of the Rhad(s) data, with this region giving the largest contribution
to aHVP, LO

µ . The smaller contributions from the inclusive region are obtained from pQCD supplemented with a con-
servative error estimate for potential residual quark-hadron duality violations. Finally, EM IB contributions have to
be subtracted from the data-based pure I = 1 and I = 0 components to obtain the isospin-limit results to be compared
with lattice-QCD determinations (as shown in Ref. [247] they are not large enough to explain discrepancies between
data-driven and lattice results). Below we outline how this is done in practice; see the original publications [352–
356] for further details. Data-driven estimates for the RBC/UKQCD window quantities were considered before in
Ref. [359], but not the breakdown in ud and s + disc parts.

In the exclusive-mode region of the Rhad(s) data, there are two classes of contributions. The first, which gives the
dominant contribution to the ud results, arises from modes with well-defined G-parity: modes with positive/negative
G-parity have isospin I = 1/0. We refer to these as “unambiguous modes.” The large contributions from nπ modes,
for example, fall into this category. The numerically most important π+π− mode, in particular, is I = 1, and therefore
linked directly with the ud contribution. The second class consists of contribution from modes without well-defined
isospin, referred to as “ambiguous modes.” These are of two types: those from modes for which external information
can be used to separate the isospin components and those for which no such information is available.

For ambiguous modes for which no external information is available, which turn out to give small contributions,
we rely on a maximally conservative separation, based on the observation that, in the isospin limit, due to the positivity
of the I = 0, 1 spectral functions, the I = 0 and I = 1 parts of a given mode contribution must lie between zero and the
full experimental I = 1 + 0 total. The I = 1 and I = 0 components thus lie in the range (50 ± 50)% of that total, with
I = 1 and 0 errors 100% anticorrelated. Fortunately, for the ambiguous modes that give large contributions, leading
to unacceptably large errors with this maximally conservative split, external information can be used to achieve a
sufficiently precise isospin separation. This is the case for the KK̄, KK̄π and π0/η + γ modes. In the case of the
KK̄ mode, BaBar’s results for the differential decay distribution of τ → K−K0ντ [360] provide a measurement of
the charged-current I = 1 vector spectral function. Using the conservation of the vector current, one then obtains an
estimate of the I = 1 KK̄ contribution to ρEM, and hence an estimate of the I = 1 contribution from this channel
to integrated quantities up to near the end-point of BaBar’s spectrum (s = 2.7556 GeV2). The decomposition of
the remaining small contribution from higher s is obtained via the maximally conservative separation treatment of
the integrated KK̄-mode Rhad(s) contribution from this region. This approach is crucial to achieving good control of
the KK̄ contributions, dramatically reducing the final uncertainty for the I = 1/0 components. A similar treatment
of the KK̄π contribution is possible thanks to BaBar’s Dalitz plot separation of I = 1/0 parts of the e+e− → KK̄π
cross sections [151]. Finally, for the radiative channels π/η + γ a reliable decomposition into pure I = 1/0 and MI
components is possible due to the strong dominance of the observed cross sections by intermediate vector-meson
contributions. A detailed description of this separation is given in App. B of Ref. [355].

The remaining ingredients for the data-driven determination of the ud and s + disc contributions to aHVP, LO
µ are:

(i) the treatment of the inclusive Rhad(s) data region, and (ii) the corrections for IB (both EM and SIB effects). In
the inclusive Rhad(s) region the type of separation that was outlined above cannot be performed and one has to turn
to pQCD, in which the I = 0/1 split is straightforward. The value of s at which the exclusive-mode region ends
and the inclusive region begins depends on the data compilation used [30, 262, 263, 265], but is always close to
s = (2 GeV)2. The pQCD spectral function for massless quarks is exactly known to α4

s [361] and Refs. [352–356] use
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these results supplemented with an estimate for the α5
s coefficient. Given, however, that recent experimental results

from BESIII [179] show some tension with pQCD below the charm threshold, Refs. [352–356] include a conservative
error estimate based on a model for potential residual duality violations, relying on previous work [362, 363]. The
pQCD contribution turns out to be small in all quantities of interest, except, as expected, the SD RBC/UKQCD
window.

To correct for EM and SIB effects, it is sufficient to define the isospin-symmetric world as that in which all pions
have mass Mπ0 . SIB effects, which to order md − mu are MI only, are then split into those associated with the 2π and
3π exclusive modes, where SIB effects are expected to be dominated by ρ–ω mixing, and those associated with the
remaining exclusive modes and perturbation theory above the inclusive threshold. For the 2π and 3π modes, rather
precise SIB results are available from Refs. [186, 237, 247], see also Sec. 2.7.3 and Table 4, based on dispersive rep-
resentations of the 2π and 3π channels, both for aHVP, LO

µ and the RBC/UKQCD window quantities. For the remaining
modes, Refs. [352–356] allow for an SIB-induced uncertainty equal to 1% of the total contribution. For the SD win-
dow, the only quantity for which the perturbative contribution is not very small, an additional 1% SIB uncertainty is
assigned to that contribution.

EM corrections are the only building blocks for which no complete data-driven estimates are available (see
Ref. [353] for a discussion). Therefore, inclusive lattice results for the EM contributions to aHVP, LO

µ and the interme-
diate window from Ref. [15] (with updates from Ref. [23]) were used to estimate these corrections, with conservative
estimates for the SD and LD windows for which such lattice results are not available. For all quantities considered,
these corrections are very small (the largest being the 0.4% for the LD window [356]), and therefore, although relying
on this small lattice-QCD input, the results of Refs. [352–356] are almost entirely data driven.

2.8.1. Light-quark connected contributions
The isospin-limit data-driven ud contribution aHVP, LO

µ (ud) to aHVP, LO
µ was first discussed in Ref. [353] and slightly

updated in Refs. [355, 356]. In this case, the required exclusive-mode aHVP, LO
µ contributions can be found in tables in

the publications of the two main Rhad(s) data compilations by DHMZ [262, 263] and KNT [30, 265]. Supplementing
this information with the external results required for the separation of ambiguous-mode contributions, the pQCD
contribution in the inclusive region, and estimates of IB corrections that partially rely on BMW results [15, 23], as
explained above, one obtains the following pre-CMD-3 results for aHVP, LO

µ (ud), based on either the DHMZ or the
KNT data compilation [353, 356]

aHVP, LO
µ (ud) = 638.9(4.1) × 10−10 (DHMZ based) ,

aHVP, LO
µ (ud) = 635.8(2.6) × 10−10 (KNT based) . (2.42)

These results are smaller than, and show an important tension with, the most precise pure lattice determinations of
the same quantity by the BMW [15], the RBC/UKQCD [25], the Mainz [26], and the Fermilab/HPQCD/MILC [29]
collaborations.

Access to the individual exclusive-mode spectra from the KNT data compilation allowed the authors of Refs. [352–
356] to obtain analogous results for the three RBC/UKQCD and other windows proposed in the literature [18, 364].
Results for the three RBC/UKQCD windows can be found in Ref. [356]. The pre-CMD-3, purely KNT-based versions
of these results are

aSD
µ (ud) = 46.96(48) × 10−10 ,

aW
µ (ud) = 199.0(1.1) × 10−10 ,

aLD
µ (ud) = 389.9(1.7) × 10−10 . (2.43)

An interesting exercise, performed to explore the potential impact of the new CMD-3 ππ data on the data-driven
determinations of the various isospin-limit quantities, was the replacement of the combined π+π− data of the KNT
compilation with CMD-3 data alone, in the region between 0.33 and 1.2 GeV covered by the CMD-3 data. Of course,
as this exercise ignores all other π+π− data in this region, these “CMD-3” results are purely exploratory. The results
of this exploration are shown in Fig. 38, together with recent lattice results for the same quantities.

In Ref. [355] also a KNT-based data-driven result for the 1.5 to 1.9 fm window “W2” of Ref. [18] was obtained.
The value, 93.75(36)×10−10, is again significantly lower than recent lattice values obtained in Refs. [18, 23, 365]. This
discrepancy also vanishes if one replaces the KNT ππ combination with CMD-3 results in the CMD-3 data region.
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2.8.2. Strange + light-quark disconnected contributions
The isospin-limit data-driven s+disc contribution aHVP, LO

µ (s+disc) to aHVP, LO
µ was first discussed in Ref. [352] and

again slightly updated in Refs. [355, 356]. The methodology employed is much the same as for the ud contribution,
with the exception of the very small EM corrections which can only be bounded based on the results of Ref. [15]. The
DHMZ and KNT data-compilation based results are [355, 356]

aHVP, LO
µ (s + disc) = 39.8(2.4) × 10−10 (DHMZ based) ,

aHVP, LO
µ (s + disc) = 40.7(1.7) × 10−10 (KNT based) . (2.44)

For the three RBC/UKQCD window quantities only results based on the KNT compilation have been obtained [355,
356]; they read [356]

aSD
µ (s + disc) = 9.21(36) × 10−10 ,

aW
µ (s + disc) = 26.98(84) × 10−10 ,

aLD
µ (s + disc) = 4.53(73) × 10−10 . (2.45)

Results for the SD and intermediate windows, as well as the s + disc part of the total HVP, are shown in Fig. 39,
together with recent lattice results for the same quantities. The only lattice determination of the s + disc contribution
to the LD window to date, by the Mainz collaboration [26], is aHVP, LO

µ (s + disc) = 1.3(2.4) × 10−10 and is compatible
with Eq. (2.45) within 1.3σ.

2.9. Higher-order iterations of HVP
At the required level of precision, also higher-order HVP iterations, including both NLO [366] and NNLO [32]

effects, need to be considered. While traditionally, in the timelike method, the contributions are expressed in terms
of the R-ratio via the corresponding kernel functions, also spacelike representations are possible, in which case the
integrands are related to the HVP function Π(Q2) and the Adler function D(Q2). Specifically, the relation between
the spacelike kernel KΠ(Q2) in terms of the timelike kernel KR(s) has independently been obtained in Refs. [367,
368] and the corresponding explicit expressions calculated at NLO [367, 368] and NNLO [368]. Additionally, the
complete set of six relations that mutually express all three kernels KΠ(Q2), KD(Q2), and KR(s) in terms of each other
has been obtained in Ref. [367], which also provides the results for KD(Q2) at NLO. These results are important
for calculations in lattice QCD, see Sec. 3, and the HVP measurement in MUonE, see Sec. 2.10, as in both cases
spacelike representations are needed. In particular, the time-momentum representation of the NLO spacelike kernel
was provided in Ref. [369].

Based on these developments, improved higher-order HVP calculations will become available in lattice QCD over
the next years, while for existing calculations [370] the precision is not yet competitive with the data-driven approach
despite the tensions among the e+e− measurements. To define a conservative estimate, we consider two evaluations
obtained in the context of Ref. [31]

aHVP, NLO
µ =

{
−9.83(4) × 10−10 KNT19 [30] ,
−10.08(6) × 10−10 KNT19/CMD-3 [31] , (2.46)

where the second variant corresponds to the compilation from Ref. [30] with the low-energy π+π− contribution re-
placed by the CMD-3 measurement [93, 94] where applicable, and assign the mean and spread as our value10

aHVP, NLO
µ = −9.96(13) × 10−10 . (2.47)

For the NNLO contribution, we continue to use [32]

aHVP, NNLO
µ = 1.24(1) × 10−10 , (2.48)

even though the uncertainty is likely somewhat underestimated. The impact of mixed leptonic and hadronic correc-
tions at NNLO was estimated as ≲ 0.1×10−10 in Ref. [371], while NNLO hadronic corrections due to virtual photons
emitted and reabsorbed by the HVP insertion were estimated to be of size O(10−12) [368].

10The same procedure for aHVP, LO
µ would produce an uncertainty of ±10.9 × 10−10, which roughly reflects the spread observed in Fig. 26, so

that the uncertainty assignment in Eq. (2.47) should reasonably cover all presently observed tensions in the e+e− data.
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Figure 24: Schematic view of the MUonE experimental apparatus (not to scale).

2.10. An alternative approach: MUonE

The MUonE experiment aims to provide an independent calculation of aHVP, LO
µ using an innovative method based

on the measurement of the hadronic contribution to the running of the EM coupling constant, ∆αhad(t), for negative
squared four-momentum transfers t [372]. The hadronic running will be extracted from the shape of the µ–e elastic
scattering differential cross section [373], which will be measured by colliding the 160 GeV muon beam available
at CERN’s M2 beam line with a thin low-Z target. The detector will be segmented into 40 identical stations, each
consisting of a target followed by a tracking system equipped with silicon strip sensors. The apparatus is completed by
an EM calorimeter and a muon ID system placed downstream of the tracking stations, to improve event selection, and
a spectrometer placed upstream to measure the beam momentum. A sketch of the experimental apparatus is shown in
Fig. 24.

The goal of MUonE is to determine aHVP, LO
µ with a ≃ 0.3% statistical accuracy and comparable systematics. This

poses several challenges not only on the experimental side [374, 375], but also requires a huge effort to determine
the higher-order radiative corrections to the µ–e scattering. The complete set of NLO electroweak, NNLO QED,
and hadronic corrections have been calculated in Refs. [376–387]. The first steps towards an N3LO computation
of the QED corrections were taken recently in Refs. [388–394], and atomic binding corrections to µ–e scattering
were recently studied in Refs. [395, 396]. The dominant NNLO QED and hadronic corrections are implemented in
two different independent MC codes, MESMER [381] and McMule [383]. While the former includes also the main
background processes [385, 386, 397], and is already integrated in the full detector simulations, the latter contains
the complete NNLO photonic calculation [387]. In addition to this, analytic expressions have been provided in
Refs. [367, 368] to compute also aHVP,NLO

µ and aHVP,NNLO
µ in the spacelike region, see Sec. 2.9, thus extending the

capability of MUonE to determine the HVP contribution to aµ to higher orders. Finally, a different method has been
proposed in Ref. [398] to determine aHVP, LO

µ from MUonE data in the spacelike region through the derivatives of
∆αhad(t) at zero momentum transfer. Possible fit functions for ∆αhad(t) are also discussed in Refs. [399, 400].

In the last few years, MUonE carried out a series of short beam tests at the M2 beam line with a first tracking station
instrumented with prototype 2S modules, silicon strip sensors foreseen for the CMS Phase-2 Upgrade [401]. This
allowed one to commission the system mechanics and the data acquisition chain in view of a longer test performed in
Summer 2023, whose goal was to demonstrate the ability to identify and reconstruct µ–e elastic events. The apparatus
consisted of two tracking stations equipped with prototype 2S modules, followed by a prototype calorimeter. Graphite
targets 2 or 3 cm thick were installed between the two tracking stations, in order to evaluate multiple scattering effects
and study background processes in different configurations. Tracker data are currently being analyzed to optimize
reconstruction algorithms, software alignment procedures and event selection. A sample of candidate elastic events
is shown in Fig. 25(left). The outgoing tracks are labeled according to the magnitude of their angles, denoted as θmax
and θmin, and a large fraction of background events is clearly visible at low θmin. Figure 25(right) shows instead the
effect of a preliminary event selection, including cuts on the total number of hits in the downstream station, on the
acoplanarity of the event and on the vertex position, which is capable of rejecting most of the background. Residual
background can be removed by cutting events with θmin ≤ 0.2 mrad. Further preliminary results on Test Run data
analysis can be found in Refs. [402–404].

The MUonE Collaboration has recently submitted a proposal to the CERN SPS Committee [402] to run four weeks
in 2025 with a small-scale version of the final apparatus, comprising three tracking stations, a calorimeter, a muon
filter, and the beam spectrometer, obtaining positive recommendations. The Phase-1 MUonE Run will occur in the
first half of 2025, allowing one to study signal and background under realistic conditions with a possible sensitivity
to ∆αhad(t). The 2025 data will also serve as a basis for a full-scale experiment proposal to be prepared during the
CERN Long Shutdown 3 (2027–2029), aimed at taking data after 2030.
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Figure 25: (θmax, θmin) distribution of elastic scattering candidates before (left) and after (right) the preliminary event selection described in the text.
The red dashed line represents the expected elasticity curve for a 160 GeV muon beam. Figure adapted from Ref. [402].

2.11. HVP dispersive evaluation: comparison of experimental inputs and methods

Figure 26 presents a summary of the dispersive theoretical predictions for aHVP, LO
µ [ππ], based on various mea-

surements of e+e− → π+π−, treated using either of the “CHKLS” (Sec. 2.6.1), “DHMZ” (Sec. 2.5.1), and “KNTW”
(Sec. 2.5.2) approaches. The various measurements cover the range from threshold up to 1.8 GeV according to the
percentages indicated in the figure.

Contributions from other channels and from the high mass region above 1.8 GeV are based on WP20. It is,
however, worth mentioning that significant progress has been made in these other channels since WP20 (see Sec. 2.2),
e.g., next by uncertainty amplitude, the contribution from the 3π process was improved by more than a factor of two.
However, tensions between the Belle II data and previous measurements are now visible. Other discrepancies are
observed in a few other channels as well—see the corresponding discussion in Sec. 2.3.6 in the context of Eq. (2.23)—
although their overall impact remains minor compared to the tension seen in the 2π channel. Continued progress in
the overall Rhad(s) measurement program is essential for a future complete data-driven evaluation of aHVP, LO

µ .
The most important feature of Fig. 26 concerns the strong tensions observed among the available 2π measure-

ments, regardless of the various methodologies employed for the data integration and extrapolation/completion to
the full mass range. The differences among the various methodologies are nevertheless also visible for the resulting
central values and uncertainties, the latter differing up to a factor of two in some cases. This comes from different
treatment of correlations for fits/weight derivation, strategies to complete the data sets, and usage of additional con-
straints. The increasing precision of data and the larger tensions among experiments highlight the importance of a
conservative treatment of experimental systematic uncertainties. The conventionally used practice to treat the pro-
vided experimental systematic errors, whose knowledge is inherently limited, is generally incomplete compared to
what was assumed by the measured e+e− data as discussed in Secs. 2.3.1–2.3.6 of WP20 and Secs. 2.2.1 and 2.6.1 of
WP25. In some cases, this leads to an underestimation of the evaluated integral errors due to assumptions made for
the correlations of systematic uncertainties or the energy-dependent amplitude of uncertainties.

The “CHKLS” [146, 226, 237, 269] points are obtained using a dispersive representation to implement constraints
from analyticity, unitarity, and crossing symmetry, so that the π+π− cross sections can be analyzed in a global fit (with
input for covariance matrices as provided by experiment), and thus the entire low-energy contribution can be evaluated
for each experiment individually. In the figure, the variant of the dispersive approach without imposing the absence
of zeros in the form factor is shown, see Sec. 2.6.1 for details, evaluated up to

√
s = 1 GeV, with the remainder taken

from WP20.
“DHMZ” perform a direct integration in the full range where a given measurement is available, complemented

with data combinations for the rest, while “KNTW” limit their use of individual π+π− data to the upper range of 1 GeV,
using data combinations for the remaining values. It is important to note that the latter combination-based integrals are
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Figure 26: Dispersive theoretical predictions for aHVP, LO
µ [ππ], based on various measurements of e+e− → π+π−, fit/interpolated and complemented

for the uncovered mass ranges (percentages of the integral covered by each measurement are shown), for the three approaches “CHKLS,” “DHMZ,”
and “KNTW” as detailed in the main text. The gray band indicates the result from WP20, including the error inflation due to the BaBar–KLOE
tension. The experiments above the dashed line entered the result for WP20, whilst those below are new measurements since then. The numerical
values shown are reproduced in Table 5.

by construction more precise than the integrals derived from one measurement alone (i.e., a measurement covering the
low- and/or high-mass range can be misleadingly “penalized” when comparing the uncertainties). A local χ2-based
uncertainty rescaling is performed when necessary, although there are relatively little tensions in the relevant mass
regions.

The “KNTW” numbers are solely based on the KNT19 combination [30, 265] and are, in particular, deliberately
not including the CMD-3 data (see Sec. 2.5.2 for further details). The combination is fully model-independent,
incorporates experimental correlation information in data fits for the full available energy range whilst simultaneously
avoiding procedural systematic biases (such as the d’Agostini bias in correlated χ2 fits [405, 406]), and determines
additional systematic uncertainties.

The “DHMZ” result employs a spline-based relatively-local averaging (minimization of χ2 with correlations),
with weight derivation accounting for different point-spacing/binning (see Sec. 2.5.1 for further details). All existing
data are used on the full mass ranges where combinations are employed. The combination procedure is also validated
through a closure test.

The “DHMZ” and “KNTW” direct integration methods yield similar values in most cases (differences not exceed-
ing much more than 1 unit), except for the BESIII integral, where some difference (of about 3 units) arises due to the
larger range on which the combined data are employed and the differences of methodologies discussed above and in
WP20. The “CHLKS” points show lower uncertainties in a few cases, since the additional theoretical constraints in
a global fit reduce the uncertainties in the resulting integral. This reduction is most effective in cases in which the
data are relatively scarce in some energy region—the extreme case concerning the ability to extrapolate in a robust
manner into regions in which no data were taken—and in which the systematic uncertainties, most prominently from
the truncation of the conformal expansion, are small. In the latter case, as for CMD-3, the limited knowledge of exact
correlations of the systematic uncertainties in experiment becomes more critical, suggesting to somewhat enlarge the
fit uncertainties, see Secs. 2.2.1 and 2.6.1.
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Experiment Percentage covered

e+e− CHKLS DHMZ KNTW

SND06 93.8% 508.2(7.3) 505.3(6.7) 506.2(6.8)
CMD-2 88.6% 506.2(5.0) 508.1(3.9) 508.4(3.7)
BaBar 99.9% 512.2(3.7) 514.1(3.8) 514.4(3.8)
KLOE 97.2% 501.3(2.6) 504.5(5.2) 504.5(5.1)
BESIII 72.8% 500.8(5.2) 505.9(3.7) 502.6(3.8)
SND20 80.3% 505.5(5.9) 509.6(3.6) 508.3(4.2)
CMD-3 98.9% 524.1(1.3) 525.9(4.2) 526.0(4.1)

τ DHLMZ-23+LMR-24+WP25

Belle+CLEO+ALEPH+OPAL 100% 517.2(5.8)

Table 5: aHVP, LO
µ [ππ, e+e−] up to 1.8 GeV (in units of 10−10) for the different e+e− → π+π− experiments, using the “CHKLS,” “DHMZ,” and

“KNTW” approaches as detailed in the main text and illustrated in Fig. 26, where the second column indicates the percentage of the integral
covered by each experiment. Depending on the method, a given experiment is either complemented by an average of others outside the covered
mass range (DHMZ and KNTW) or extrapolated from the range in which data are taken (CHKLS), and also the treatment of the region above
1 GeV differs, as explained in the main text. We emphasize that these numbers are meant to illustrate the spread among the different experiments
and analysis methods, and since the discrepancies are currently not understood, we do not attempt to derive a global aHVP, LO

µ number based on
e+e− data. For comparison, the table also includes our estimate for aHVP, LO

µ [ππ, τ] from Eq. (2.22). To obtain the corresponding ranges for aSM
µ

shown in Fig. 27, first the offset 187.3(2.2)× 10−10 from WP20 is added to arrive at aHVP, LO
µ (see main text). All other contributions are taken from

WP25.

2.12. Summary and outlook
The unsatisfactory situation regarding the knowledge of the cross section for the process e+e− → π+π−, which

is known to contribute more than 70% to the total HVP dispersion integral, presents a significant limitation to the
data-driven evaluation of the HVP contribution and, consequently, to the SM prediction of the anomalous magnetic
moment of the muon. This is illustrated in Fig. 27. Since WP20, the introduction of the new CMD-3 measurement,
which has a systematic uncertainty of 0.7%, has changed the landscape of hadronic cross-section measurements.
The CMD-3 result provides a significantly higher value for the HVP contribution compared to older evaluations.
Previously, for WP20, an averaging procedure with inflated uncertainties was adopted to accommodate the two most
precise measurements from KLOE and BaBar, which exhibited already some discrepancies. However, this approach
is no longer appropriate given the current situation with the new CMD-3 data. Due to the significant spread of
experimental results, with relative differences exceeding the claimed systematic uncertainties by substantial factors,
it has been decided not to perform a new average for the two-pion channel and, consequently, the HVP contribution
within WP25. Clarifying the current situation is of utmost importance, and the following developments from the
recent past and the near future will be essential for achieving progress:

• The detailed understanding and control of radiative corrections in experimental analyses have become a focal
point of research in recent years. The availability of high-precision event generators, along with a well-defined
understanding of their uncertainties, is fundamentally important for the field of hadronic cross-section measure-
ments, as well as for the QED normalization processes utilized by experiments. All ISR experiments (BaBar
BESIII, KLOE) use the NLO Phokhara event generator, which simulates hadronic and muonic events with one
high-energy ISR (or FSR) photon representing the LO configuration. The dependence on Phokhara, however,
strongly depends on the event analysis. The BaBar collaboration has conducted a detailed study on the fraction
of (N)NLO photons and identified significant limitations of Phokhara in simulating these higher-order correc-
tions [176]. They also found that the BaBar measurement, due to its highly inclusive selection of (N)NNLO
photons, remains unaffected. A subsequent publication by the DHMZ group [166] explored the potential im-
pact of these shortcomings on existing ISR publications for the process e+e− → π+π−(γ). Fast simulation by
the DHMZ group suggested that the KLOE and BESIII measurements may have significantly underestimated
the uncertainties attributed to radiative corrections. This latter claim holds especially for scenario 1 of the two
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Figure 27: Summary of current data-driven evaluations of HVP, propagated to aSM
µ (the yellow band indicates aexp

µ , the gray band the WP20 SM
prediction based on the e+e− data sets above the dashed line and the remainder from WP20, in particular, the WP20 HLbL value; the data point
labeled WP20∗ indicates the shift upon using WP25 input for the other contributions besides LO HVP). The τ point corresponds to WP25 in Fig. 13,
with the third, outmost error including the additional uncertainties beyond the 2π channel (the remainder of HVP is taken from WP20, the other
contributions from WP25). The other points use input from the various e+e− → π+π− experiments according to Fig. 26 (again with HVP remainder
from WP20 and the other contributions from WP25), where for each experiment the central values are obtained as simple average of the three
combination methods, the inner ranges as simple average of the uncertainties obtained in each method, and the outer ranges reflect the maximal
range covered by all methods (the percentages indicate how much of the 2π contribution to the HVP integral is covered by each measurement). We
emphasize that these ranges are merely meant to illustrate the current spread, they cannot be interpreted as uncertainties with a proper statistical
meaning. The numerical values follow from Tables 1 and 5.

scenarios considered in Ref. [166]. Further analysis by BESIII indicated that the large effect predicted for the
BESIII measurement did not account for specific corrections implemented in the BESIII analysis [407]. More-
over, both KLOE and BESIII demonstrated agreement at the 1% level for the mass spectra for various event
generators, which differ in their simulation of higher-order corrections [165, 407]. As a result of these studies,
it was concluded that scenario 1 in Ref. [166] seems unlikely, and the shortcomings of Phokhara most likely
do not explain the seen differences between different measurements.

• The RadioMonteCarLow 2 initiative is committed to improving the theoretical predictions for hadron and lepton
production at low-energy e+e− colliders by bringing the available MC generators to NNLO+ precision. In the
first phase, a review of the existing state-of-the-art available generators has been concluded [145]. The compar-
ison was performed by using approximated experimental selections as benchmarks. The study will continue by
incorporating additional important selection variables. Moreover, Ref. [145] presents a detailed discussion of
the different classes of higher-order radiative corrections for both direct-scan and ISR processes, identifying a
critical class of virtual ISR corrections that, due to resonance enhancement, could contribute to the cross section
at the relevant level (as first pointed out in Ref. [144]). A similar effect in the C-odd asymmetry in direct-scan
experiments was observed by CMD-3, demonstrating that such structure-dependent radiative corrections can
indeed far exceed estimates in a form-factor-times-sQED prescription [141, 142]. Actual improvements to
the codes are expected to take place during the next Phase II. To ultimately investigate the accuracy of event
generators, high-quality codes with different approaches in simulating the radiative corrections are needed for
cross-checks (both for energy scan and ISR experiments). The ongoing extension of the BabaYaga@NLO,
Phokhara, McMule, and additional codes are important steps in that context.

• Fortunately, new precision measurements of the process e+e− → π+π−(γ) are being prepared with significant
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effort by several experimental collaborations. The CMD-3 and SND experiments will continue their campaigns
to analyze the energy scans conducted at the VEPP-2000 collider, while the BaBar, BESIII, and KLOE experi-
ments will produce updated results using the ISR technique. For this purpose, considerably larger data sets will
be utilized, and the event analyses will be designed to address possible limitations arising from event generators.
In the case of BaBar a new analysis strategy based on angular fits will be employed. The Belle-II collaboration
has already presented a preliminary precision ISR analysis for the 3π channel [185] and will soon contribute to
the leading two-pion channel as well.

• Theory developments since WP20 include the derivation and improvement of unitarity and analyticity con-
straints for the 2π, 3π, π0γ, and K̄K channels, with applications to chiral extrapolations, the determination of
IB contributions, and structure-dependent radiative corrections. In addition, methods were developed to extract
quark-flavor-specific results from the data. These efforts provide consistency checks on the data sets, establish
correlations with other (low-energy) observables, and facilitate detailed comparisons to lattice-QCD calcula-
tions of HVP. Examples include the observed tensions with the dispersive constraints in the case of SND20
(2π)—while all other 2π measurements pass the consistency check—and Belle II (3π); spread in the phase of
the ρ–ω mixing parameter and the charge radius among the 2π experiments; predictions for IB in the long-
distance tail of the QED correction due to the pion mass difference (as well as other IB effects); the derivation
of theoretically robust amplitudes for structure-dependent radiative corrections; and the determination of data-
driven comparison values for light-quark-connected and strange + disconnected Euclidean windows.

• The phenomenological analysis groups have made significant progress since the release of WP20. The DHMZ
group has conducted detailed investigations to quantify the tensions among the various data sets, while the
KNTW group has implemented the first fully blind data-driven HVP analysis and is in the process of scrutiniz-
ing, improving, and modernizing their data combination procedure. All these efforts over different groups are
expected to lead to improved averaging procedures in the near future when the new data sets become available.

• The hadronic τ decay τ→ ππντ provides an alternative path to the dominant two-pion contribution to HVP. The
data sets from the LEP experiments, CLEO, and Belle are consistent and provide a competitive uncertainty, with
excellent prospects for further precision improvements with Belle-II measurements. The current uncertainty
in the τ-based determination of HVP is dominated by challenging IB corrections. The two analyses by the
DHLMZ and LMR groups have been combined to obtain the WP25 estimate: while the central value fully
reflects the published results, the uncertainty has been reassessed to account for sources of IB that are not yet
fully addressed in the literature. Work to tackle structure-dependent radiative corrections and IB effects in the
ratio of EM and weak form factors is ongoing and new information is expected in the near future from dispersive
methods, lattice-QCD, and data-driven constraints.

As an outlook, it can be stated that the coming years will bring a series of new experimental results for the dominant
hadronic channels used to evaluate the HVP contribution to the anomalous magnetic moment of the muon. Both the
BESIII and BaBar collaborations anticipate presenting new results for the dominant e+e− → π+π−(γ) channel already
in 2025. The increased sensitivity to the treatment of higher-order radiative corrections in the experimental analyses,
along with the development of new event generators to support these analyses, marks a significant improvement and
is expected to help clarify the current situation. Furthermore, upcoming new measurements of hadronic τ decays
with unprecedented statistics will be performed at Belle II and will also be crucial to further improve the precision
of the SM prediction of aµ. In the more distant future, the MUonE experiment aims to provide an independent and
inclusive approach to determining the HVP contribution by measuring the spacelike running of HVP. Additionally,
new analyses and highly complementary analysis techniques will be developed, such as BESIII’s attempt to measure
the inclusive hadronic cross section at low energies via ISR.
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3. Lattice-QCD calculations of HVP

T. Blum, M. Bruno, M. Cè, D. Clarke, M. Della Morte, C. DeTar, A. X. El-Khadra, R. Frezzotti, G. Gagliardi,
A. Gérardin, D. Giusti, S. Gottlieb, V. Gülpers, S. Kuberski, S. Lahert, C. Lehner, L. Lellouch, M. K. Marinković,
H. Meyer, E. Neil, J. Parrino, A. Portelli, J. Sitison, J. T. Tsang, R. Van de Water, G. Wang, H. Wittig

3.1. Introduction
This section reviews lattice calculations of the HVP contributions to the muon g−2. We start with an introduction

summarizing standard definitions and the outcome of WP20. We adopt a Euclidean metric, which is the appropriate
setup for lattice formulations. The position-space HVP tensor is given by the QCD and QED expectation value

Cµν(x) = ⟨ jµ(x) jν(0)⟩ , (3.1)

where jµ is the quark EM current

jµ(x) =
N f∑
f=1

Q f q̄ f (x)γµq f (x) , (3.2)

where, for a flavor f , q f is the quark field and Q f is the electric charge in units of the elementary charge. The
current above is conserved in continuous space-time, and its implementation on a discrete space-time might differ in
lattice-QCD calculations. The momentum-space HVP tensor is then given by the Fourier transform

Πµν(Q) =
∫

d4x Cµν(x) e−iQ·x . (3.3)

The tensor above is known to be transverse as a consequence of gauge invariance and Ward–Takahashi identities, and
can be described through a single form factor Π(Q2):

Πµν(Q) = (QµQν − δµνQ2)Π(Q2) . (3.4)

The function Π(Q2) is known to be UV divergent, and is conventionally regularized by using the subtracted function
Π̂(Q2) = 4π2[Π(Q2) − Π(0)], which fixes the residue of the photon propagator to one. Finally, with the definitions
above, the LO HVP contribution to the muon g − 2 is given by

aHVP, LO
µ =

(
α

π

)2 ∫ ∞

0
dQ2 f (Q2)Π̂(Q2) , (3.5)

where the kernel function f (s) is defined by

f (s) =
r
[
Z(r)

]3

m2
µ

1 − rZ(r)

1 + r
[
Z(r)

]2 , with Z(r) = −
r −
√

r2 + 4r
2r

and r =
s

m2
µ

. (3.6)

Equation (3.5) gives the spacelike analog of the timelike master formula Eq. (2.1), see also Sec. 4.1. In practice, it
has become more standard in lattice calculations to evaluate the integral above on the time variable, for zero spatial
momentum, as summarized below in Sec. 3.3. Furthermore, we define the LO HVP contribution, denoted by aHVP, LO

µ

in Eq. (3.5), in terms of the current–current correlator Cµν restricted to one-photon-irreducible contributions.
We conclude this introduction by reviewing the status of lattice-QCD calculations of the LO HVP contribution

to the anomalous magnetic moment of the muon at the time of WP20. Further details can be found in WP20 and
references therein. Additionally, the definitions of the various components of aHVP, LO

µ are summarized in the next
section. In WP20, six groups quoted complete results for the total LO HVP and were included in a world lattice aver-
age. Notice, however, that the disconnected contribution was computed on the lattice by only three groups, and some
groups used phenomenological inputs in order to estimate the strong and QED isospin-breaking (IB) contributions.
There was a relatively large spread among lattice results, but all calculations were in agreement, at the 1.5σ level. The
final estimate was

aHVP, LO
µ (WP20) = 711.6(18.4) × 10−10 , (3.7)
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with an uncertainty of 2.6%. As a consequence, the lattice world average was consistent with both the dispersive
data-driven estimate and the “no new physics” scenario. The uncertainty was a factor of 4.5 larger than that of the
data-driven estimate, and the lattice average was not included in the final SM value for aHVP, LO

µ . We also note that the
BMW-20 [15] lattice calculation, which reported a precision of 0.8%, was posted on arXiv after the WP20 deadline
and published in April 2021. Consequently, it was not included in the WP20 lattice world average of Eq. (3.7).

Since none of the results retained in WP20 for the lattice HVP average of Eq. (3.7) included complete nonper-
turbative calculations of all components, it was decided to perform averages on individual contributions. In a second
step, the errors of the individual contributions were added conservatively, assuming 100% correlation on the uncer-
tainties, leading to the final result given by Eq. (3.7). The total uncertainty was dominated by the isospin-symmetric
connected light-quark contribution, followed by strong IB (SIB) and QED corrections and the quark disconnected
contribution. For the dominant light-quark contribution itself, the total error was dominated by the uncertainties as-
sociated with finite-volume (FV) corrections, statistics, and the continuum extrapolation. The uncertainties on the
charm and strange quark contributions were already at or below the permil level relative to aHVP, LO

µ .
In order to achieve the permil-level precision needed to match the final Fermilab precision, the community identi-

fied a number of challenges early on. Within this section, we present in detail the progress made on them since WP20.
Briefly, the main challenges and the progress made to address them so far are:

• FV corrections are significant, even on 6 fm lattices, and are among the largest contributions to the total er-
ror quoted in Eq. (3.7). They can be estimated using EFTs or EFT-inspired models, including NNLO ChPT
[408–411], the Chiral Model [412], the Meyer–Lellouch–Lüscher (MLL) formalism with a Gounaris–Sakurai
parameterization of the timelike pion form factor (MLLGS) [223, 413–415], and the Hansen and Patella for-
malism [416, 417]. However, there are now several direct FV studies also at the physical point [15, 25, 26] that
guide these extrapolations and provide well-quantified control over the associated uncertainties.

• The lattice scale uncertainty is amplified in aHVP, LO
µ by close to a factor of two [415], due to its dependence on

the muon mass, and, hence must itself be determined with permil-level precision. This is part of the program of
every lattice collaboration engaged in an effort to compute HVP at permil-level precision.

• A permil determination of aHVP, LO
µ requires the full inclusion of IB effects even for quark-disconnected con-

tributions. In principle, these effects also enter the determination of the lattice spacing. In WP20 only partial
calculations of these effects were available, while now results for almost all IB effects are available from several
groups [13, 15, 26, 28, 418], except for a small fraction associated with sea–sea and sea–valence QED correc-
tions, for which only one calculation exists [15]. The long-distance (LD) QED contributions, which amount to
about 0.3% of the total HVP, are, however, still a challenge.

• Many of these systematics (e.g., cutoff effects) are discretization dependent, so it is imperative to have results
from different lattice actions. The results presented in this review employ gauge field ensembles generated
independently by several lattice groups with improved gauge actions and a variety of different fermion actions,
including Wilson-Clover, twisted-mass Wilson, Domain Wall, HISQ, and stout-smeared staggered fermion ac-
tions.

The rest of this section is organized as follows: Section 3.2 details the standardized lattice breakdown of aHVP, LO
µ into

the isospin-symmetric flavor components and IB corrections. Section 3.3 is devoted to the discussion of some special
features in the analysis of lattice calculations of HVP that are common to all calculations (e.g., blinding). Section 3.4
describes the calculation of time windows, which allow sharper and more detailed comparisons between lattice QCD
calculations. Section 3.5 discusses the isospin-symmetric flavor contributions to the full Euclidean-time integration
region. In Sec. 3.6, the results from the different collaborations are combined in order to produce a final estimate. The
rest of the section describes the IB correction to the data from τ decays and the hadronic contribution to the running
of α. Those are presented in Sec. 3.7. Finally, possible cross-checks resulting from the use of alternative approaches
such as the covariant coordinate-space representation are introduced in Sec. 3.8.
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3.2. Breakdown of the total HVP contribution to aHVP, LO
µ into its various contributions

IB corrections to aHVP, LO
µ due to the mass difference between up and down quarks, as well as EM effects, are

expected to be an O(1%) correction relative to the total aHVP, LO
µ . Therefore, it is desirable to write

aHVP, LO
µ = aHVP, LO

µ (iso) + δaHVP, LO
µ , (3.8)

where aHVP, LO
µ (iso) denotes the isospin-symmetric component and δaHVP, LO

µ the first-order IB corrections, which are
sufficient in the present context. However, the separation above is not prescription independent. Indeed, since all
quarks interact strongly and electromagnetically, any experimental input used to renormalize QCD and QED will only
define the sum of the two terms above. Defining the individual terms requires additional conditions which define what
physics is kept constant while taking α to zero. This issue was discussed in the most recent FLAG review (cf. Sec. 3 in
Ref. [419]), where a prescription referred to as the Edinburgh Consensus was agreed upon after consultation with the
community. This scheme is the recommended prescription for future calculations. However, most calculations in the
present review were initiated before the Edinburgh Consensus was agreed upon, and we will use a slightly modified
prescription. We define isospin-symmetric QCD (isoQCD) to be the α = 0 theory where quark masses are tuned to
reproduce the following complete set of inputs

Mπ+ = 135.0 MeV , MK0 = MK+ = 494.6 MeV , MD+s = 1967 MeV , and w0 = 0.17236 fm , (3.9)

where w0 is the Wilson flow scale introduced in Ref. [420]. We call this prescription the WP25 scheme. The only
difference between the WP25 scheme and the Edinburgh Consensus is the use of w0 to set the QCD scale instead of
the pion decay constant. Recent results estimated that this change does not generate significant deviations within the
current level of uncertainty (cf. comparison in Sec. 3.4.4), although the matching between the two prescriptions will
require more scrutiny in the future. Additionally, the variables used in the prescription above can be changed to other
hadronic inputs while keeping the scheme fixed, although this change will generate an additional matching uncertainty
in actual numerical calculations. Another set of variables introduced originally by the BMW collaboration [15] are the
connected meson masses Mqq, where for a quark flavor q, Mqq is the mass of the pseudoscalar meson q̄q considering
only quark-connected contributions. These masses, although purely theoretical, are well-defined quantities that can
be matched to the physical inputs above. The scheme employed in BMW-20 [15] resulted in isoQCD defined by

Muu = Mdd = MPDG
π0 , Mss = 689.89(49) MeV , MD+s = 1967 MeV , and w0 = 0.17236(70) fm , (3.10)

where MPDG
π0 = 134.9768(5) MeV is the current world average of the π0 mass experimental measurements [225]. It

was shown in BMW/DMZ-24 [23] that Eq. (3.10) matches Eq. (3.9) up to uncertainties small enough to be discarded
in the context of the present review. Because of this, Eq. (3.9), or Eq. (3.10) with discarded uncertainties, may be
referred to in the literature as BMW-20 or BMW scheme. In summary, we consider that it is well motivated to average
results produced with either prescription, and that propagation of matching uncertainties is unnecessary at the current
level of precision.

Furthermore, it is convenient to decompose aHVP, LO
µ (iso) into quark-disconnected and single-flavor quark con-

nected contributions:

aHVP, LO
µ (iso) = aHVP, LO

µ (ud) + aHVP, LO
µ (s) + aHVP, LO

µ (c) + aHVP, LO
µ (b) + aHVP, LO

µ (disc) . (3.11)

For a quark flavor q, aHVP, LO
µ (q) in the equation above is obtained from Eq. (3.5) by considering only the quark-

connected contribution for flavor q in the current–current correlator Cµν, and aHVP, LO
µ (disc) is the sum for all flavors

of the remaining quark-disconnected contributions. We now discuss standard methodologies to predict the quantities
defined in this introduction from lattice simulations.

3.3. Methodology

Here, we briefly discuss some of the methodology that is common to the lattice-HVP calculations presented in
more detail below.
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• Time-momentum representation (TMR): The TMR has become the standard method for estimating the LO HVP
contribution using lattice methods [421]. In this approach, Eq. (3.5) is re-written

aHVP, LO
µ =

(
α

π

)2 ∫ ∞

0
dx0 C(x0) f̃ (x0) , (3.12)

with the zero-momentum time correlator

C(x0) = −
1
3

3∑
k=1

∫
d3x Ckk(x0, x) , (3.13)

and the kernel function

f̃ (x0) = 8π2
∫ ∞

0

dω
ω

f (ω2)
[
ω2x2

0 − 4 sin2
(
ωx0

2

)]
. (3.14)

In the equations above, Cµν and f are defined in Sec. 3.1. The function f̃ can be expressed in terms of a modified
Bessel function of the second kind and Meijer’s G function [415] as

f̃ (x0) =
2π2

m2
µ

[
−2 + 8γE +

4
t̂2 + t̂2 −

8
t̂

K1(2t̂) + 8 log t̂ +G2,1
1,3

( 3
2

0, 1, 1
2

∣∣∣∣∣∣ t̂2
)]
, (3.15)

where t̂ = mµx0. The nonperturbative input computed on the lattice is the time correlator C. Other approaches,
based on a direct evaluation of the HVP tensor, Πµν(Q), or on the method of time moments introduced in
Ref. [422] have been superseded by the TMR.

• Error treatment in HVP calculations: Lattice-QCD calculations yield ab initio theoretical predictions that are
systematically improvable. Since lattice QCD is a MC method, statistical analysis is a crucial part of producing
physical results. In addition to statistical errors from the MC process, systematic errors can enter in a variety of
forms, for example, through truncating the functional form that guides continuum limit extrapolations of lattice
data obtained at finite sets of lattice spacings. While the details may vary from group to group, all lattice analy-
ses described below include estimates of systematic errors based on studies of variations of the functional forms
of the underlying EFT expansions, e.g., consideration of various functional forms for continuum extrapolation,
that allow the assessment of systematic errors associated with the respective extrapolation (or interpolation).
More detailed discussions of specific types of systematic errors, for which the dominant uncertainties may be
different for different windows, will be provided in context below.

• Blinding: Most of the HVP results presented below, including (for example) all three calculations discussed for
the dominant LD light-quark connected contribution [25, 26, 29], are based on blinded analyses. Blinding has
been used widely in lattice QCD for many years, to prevent the introduction of bias in calculations of quantities
whose values are known either from experiment or from previous calculations. To conduct a blind analysis, a
small but unknown blinding factor is introduced into the analysis, modifying the final HVP result. Different
lattice groups introduce the blinding in different places, but most commonly the blinding is applied as part of
the analysis code, which has the advantage that different blinding factors can be easily applied for different
windows. As the precision of lattice calculations improves, the importance of blinding will only increase, and
we encourage all groups to adopt blind analyses going forward.

• Treatment of correlations using FLAG procedure: Except where explicitly noted otherwise, to combine results
from different lattice calculations, we adopt the procedure used by the FLAG group for averaging [419]. Central
values in this procedure amount to uncorrelated weighted averages of individual central values, with statistical
and systematic errors added in quadrature. Error bars for averages are constructed using a procedure by which
100% correlation can be assumed between specific contributions to individual error estimates, as described in
Eqs. (7)–(10) of the reference. In cases where the overall χ2 per degree of freedom implied by the average over
individual results is poor (i.e., χ2/dof > 1), a rescaling to increase the error bars by

√
χ2/dof is performed to

compensate.
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In some cases, results for certain quantities from lattice groups have been superseded by updated calculations.
Such superseded results are shown in tables and figures below, but are excluded from averages. Depending on
the quantity considered, different sources of uncertainty are taken to conservatively be 100% correlated. This
may include statistical uncertainties in cases where the two calculations share the same gauge configurations,
or systematic uncertainties for shared FV correction schemes, valence quark discretization, or other sources of
error as described below.

3.4. Window contributions
Dividing the Euclidean time integral into different ranges has proved to be a very valuable tool in comparing

the results of various collaborations and also for comparison with calculations of HVP based on dispersion relations
(where time ranges correspond to energy ranges). After defining the three windows most commonly used, we consider
details of the results for each window.

3.4.1. Definitions
Breaking the time integral Eq. (3.12) into three components allows for a better separation of the different sources

of uncertainty [13]. The window contributions are defined by

aHVP, LO
µ = aSD

µ + aW
µ + aLD

µ , (3.16)

aSD
µ =

(
α

π

)2 ∫ ∞

0
dx0 C(x0) f̃ (x0)[1 − Θ(x0, t0,∆)] , (3.17)

aW
µ =

(
α

π

)2 ∫ ∞

0
dx0 C(x0) f̃ (x0)[Θ(x0, t0,∆) − Θ(x0, t1,∆)] , (3.18)

aLD
µ =

(
α

π

)2 ∫ ∞

0
dx0 C(x0) f̃ (x0)Θ(x0, t1,∆) , (3.19)

where

Θ(t, t′,∆) =
1
2
+

1
2

tanh
(

t − t′

∆

)
, (3.20)

defines the window as a smooth function in Euclidean time. The width parameter ∆, in particular, smooths out the
window on both sides of the interval. The community advocated the use of the widely studied choice ∆ = 0.15 fm,
t0 = 0.4 fm, and t1 = 1.0 fm [13] as benchmark parameters. Each window can then be treated independently and
extrapolated to the continuum and infinite-volume limits. With this choice, the intermediate window (W) aW

µ is less
sensitive to discretization effects than the short-distance (SD) window aSD

µ . It is also designed to be less sensitive to
LD effects than the long-distance window aLD

µ and hence much less affected by the signal-to-noise problems at large
x0.

Finally, it is understood that all the window quantities can be decomposed as per Eqs. (3.8) and (3.11), using the
same definitions and conventions as in the case of aHVP, LO

µ . We now turn to results for each of the windows.

3.4.2. Short-distance window
We begin by reviewing the SD window observable, denoted as aSD

µ and defined in Eq. (3.17). As in the case of the
total LO HVP correction, also in the SD window region the most important hadronic contribution is the one due to the
light u- and d-quark-connected contractions, aSD

µ (ud), representing ≃ 70% of aSD
µ (iso), while the strange- and charm-

quark-connected terms, aSD
µ (s) and aSD

µ (c), constitute ≃ 13% and ≃ 17% of the total SD contribution, respectively.
In Table 6 and Fig. 28, we collect results for the flavor-specific contributions, namely, aSD

µ (ud), aSD
µ (s), and aSD

µ (c), as
well as for the subleading correction aSD

µ (disc) reported by the various lattice QCD groups.
The calculations in BMW/DMZ-24 [23], Fermilab/HPQCD/MILC-24 [28], and ETM-22/24 [20, 27] were per-

formed on N f = 2 + 1 + 1 ensembles. Those in Mainz/CLS-24 [22] and SL-24 [24] are based on N f = 2 + 1
ensembles. The former allow SD matching to the full SM at renormalization scales equal to mb, up to 1/m2

b cor-
rections, while that scale is mc and corrections are of order 1/m2

c for calculations based on N f = 2 + 1 ensembles.
The Mainz/CLS-24 [22] determination of aSD

µ , however, includes the leading correction due to the quenching of sea-
charm quarks, estimating it to be at the level of 0.02 × 10−10 based on perturbation theory [424]. The RBC/UKQCD
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Collaboration N f aSD
µ (ud) aSD

µ (s) aSD
µ (c) aSD

µ (disc)

ETM-24 [27] 2+1+1 – 9.063(16)(22) 11.61(07)(11) –
FNAL/HPQCD/MILC-24 [28] 2+1+1 48.139(11)(91) 9.111(03)(16) 11.46(00)(17) −0.0019(04)(26)
BMW/DMZ-24 [23] 2+1+1 47.84(04)(15) 9.04(03)(06) 11.68(15)(21) −0.0007(019)(102)
RBC/UKQCD-23 [21] 2+1(+1) 48.51(43)(53) – – –
ETM-22 [20] 2+1+1 48.24(03)(20) 9.074(14)(62)∗ 11.61(09)(25)∗ −0.006(5)
χQCD-22 [17] 2+1(+1) 48.58(07)(1.2) 9.18(01)(25) – –
ETM-21 [423] 2+1+1 48.21(56)(57)∗ – – –

SL-24 [24] 2+1/0 47.62(32)(60) – – –
Mainz/CLS-24 [22] 2+1 47.84(04)(24) 9.072(10)(58) 11.53(13)(26) 0.0013(25)(41)

Table 6: Compilation of lattice results for flavor-specific contributions to aSD
µ , in units of 10−10. The N f = 2 + 1 Mainz/CLS calculation includes

charm contributions from first principles in the valence sector, but not in the sea. Values marked with an asterisk are older results superseded by
more recent determinations by the same collaboration. When results are displayed with two errors, the first is the statistical uncertainty and the
second the systematic one. With only one quoted error, the statistical and systematic uncertainties are combined.

calculation (RBC/UKQCD-23 [21]) addresses that subleading systematic effect from first principles, by generating
gauge ensembles with dynamical charm quarks matched to those with N f = 2 + 1 sea quarks, and finds it to be small
compared to the quoted uncertainties. The gauge- and fermion-action dependence of the SD window is studied by
the χQCD group (χQCD-22 [17]) using the overlap valence fermion action on ensembles with either the domain-wall
fermion (and the Iwasaki gauge action) N f = 2 + 1-flavor sea from the RBC/UKQCD collaboration or the highly-
improved-staggered-quark (with the Symanzik gauge action) N f = 2 + 1 + 1-flavor sea from the MILC collaboration.
Further details of the lattice formulations adopted for the QCD action by the various groups can be found in the
corresponding references indicated in Table 6.

The SD window observable can be obtained very precisely in lattice-QCD calculations as far as statistical errors are
concerned, not being affected by the signal-to-noise problems present at large Euclidean time distances. FV effects,
which typically represent a source of uncertainty relevant for the calculation of aLD

µ , play hardly any role in aSD
µ .

Quantitatively, direct lattice evaluations, estimates based on ChPT and data-driven determinations point to sub-permil
FV corrections for L ≃ 6 fm and physical mud [23]. As observed in Refs. [21, 22, 28] the dependence of aSD

µ on quark
masses is mild as well. Also, the sensitivity to the lattice scale is found to be subdominant [20, 22]. On the contrary,
the SD window suffers from large discretization effects, associated to the behavior of the lattice vector correlator at
small-time distances, which are expected to be logarithmically enhanced with respect to the naive a2 scaling typical
of O(a)-improved calculations (compared to the usual case with on-shell observables), as discussed in Refs. [20, 425–
427]. Even though this may present a significant challenge, the comparison among the results obtained with different
lattice regularizations provides the opportunity to test the robustness of the continuum-limit extrapolation.

The QCD action and the vector correlator employed in the calculations listed in Table 6 are O(a)-improved and
all groups use data with at least three lattice spacings (or two lattice spacings and two or more lattice regularizations
of the observable of interest) to control the extrapolation to the continuum limit. Furthermore, different strategies
are adopted to reduce the impact of (O(a2 log a)) lattice artifacts from very short Euclidean distances: in Refs. [20–
23, 27], tree-level perturbative cutoff effects on lattice correlators are subtracted from the nonperturbative data; the use
of a suitably subtracted SD time-momentum-representation kernel function together with perturbative computations
at very high momenta has been devised by the Mainz group [22]; SL scrutinize the continuum limit of the SD window
using purely lattice QCD methods, without perturbative input, via a combination of a quenched (N f = 0) continuum
extrapolation with a separate one of the dynamical sea-quark corrections [24]; while the Fermilab/HPQCD/MILC
collaboration adopts a highly-improved vector-current discretization [28]. In the case of the staggered formulations
adopted in Refs. [23, 28], additional lattice artifacts that generate the taste splittings among the pions are heavily
suppressed in the SD window region and found to be negligible at the level of precision reached. The quality of the
extrapolations to the continuum limit is shown in Fig. 29 through the examples of the computations of aSD

µ (ud) by
BMW/DMZ-24, who use the largest number (seven) of lattice spacings, and of aSD

µ (c) by ETM-24, who quote the
smallest relative uncertainty for that flavor-specific contribution (1.2%).
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Figure 28: Comparisons of lattice results for flavor-specific contributions to aSD
µ . Upper-Left: Light-quark-connected contribution

aSD
µ (ud). Upper-Right: Strange-quark-connected contribution aSD

µ (s). Lower-Left: Charm-quark-connected contribution aSD
µ (c).

Lower-Right: Quark-disconnected contribution aSD
µ (disc). We show in gray the results that have been superseded by new deter-

minations. Since the BMW/DMZ-24 results have not yet been published, they are excluded from the averages as denoted by the
unfilled symbols. The plotting symbol indicates the number of sea quarks in the gauge ensembles employed in the underlying
calculation. Circles correspond to “N f = 2 + 1 + 1” ensembles with up, down, strange, and charm quarks in the sea, while squares
denote “N f = 2 + 1” in which charm quarks are omitted in the sea. The inner error bars, when displayed, represent the statistical
uncertainties, while the outer error bars show the total uncertainties given by adding the statistical and systematic errors in quadra-
ture. The lattice averages of Table 7 are displayed here as light blue bands at the level of one standard deviation. See Table 6 for
further details.

All results presented in Table 6 are extrapolated to the continuum and infinite-volume limits and interpolated
or extrapolated to the physical point. The quoted errors in all lattice results include statistical and systematic un-
certainties, where the latter estimates effects from scale setting, input parameters, continuum extrapolation (which
represents the main source of uncertainty in the case of aSD

µ ), infinite-volume extrapolation, and chiral interpola-
tions/extrapolations. Typically, these systematic errors are estimated by varying the chiral, continuum, or FV fit
functions, including adding higher-order terms in the corresponding EFT expansions, or varying which lattice data are
included, among other things. Overall, agreement is observed among the various (seven), currently available and more
recent determinations of the ud-quark connected contribution, shown in the upper-left panel of Fig. 28, with the most
pronounced differences occurring between the calculations in Mainz/CLS-24 [22] and BMW/DMZ-24 [23] on the one
hand and those in ETM-22 [20] and Fermilab/HPQCD/MILC-24 [28] on the other, at most at the level of about 1.7σ.
As far as the s-quark connected contribution is concerned, except for a 1.5σ tension between the ETM-24 [27] and
Fermilab/HPQCD/MILC-24 [28] determinations, the five most up-to-date results, listed in Table 6 and collected in the
upper-right panel of Fig. 28, exhibit good compatibility. The four results for aSD

µ (c) and for aSD
µ (disc) (lower-left and

-right panels of Fig. 28, respectively) from Refs. [20, 22, 23, 27, 28] are nicely consistent. For the b-quark connected
contribution the ETM, Mainz, and Fermilab/HPQCD/MILC groups provide the following estimates: 0.32×10−10 [20]
(based on perturbation theory); 0.29(03) × 10−10 [22] (given by a combination of phenomenological/perturbative es-
timates [428–431], and a nonrelativistic-QCD-based lattice calculation [432]); and 0.296(15) × 10−10 [28] (from the
direct lattice determination in Ref. [433] and pQCD inputs), respectively. Finally, the challenging nonperturbative
calculation of the subleading IB contributions δaSD

µ has been performed by only two collaborations so far. The Mainz
group performs an explicit calculation of the IB corrections to the connected light- and strange-quark contributions
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Pseudoscalar fit range 0.002 < 0.01 %
Physical value of Mss < 0.001 < 0.01 %
w0 scale setting 0.010 0.02 %
Tree-level corrections & q̂ 0.103 0.22 %
Lattice spacing cuts 0.077 0.16 %
Order of fit polynomials 0.085 0.18 %

Table 4: Light connected window observable alight
µ,00�04. In the first row continuum extrapolations as

a function of a2 are shown, the points stand for data with and without tree-level correction and with
two di↵erent kernel functions, denoted by q and q̂. In the left figure in the second row the probability
distribution function including both statistical and systematic variations is shown with red color. The
median is given by the blue vertical line, the 1-sigma/2-sigma error band defined from the 16%/2% and
84%/98% percentiles is shown with green/yellow color. In the right figure in the second row a comparison
with other lattice results in the literature is shown. The references are given in the text. If available,
the statistical error is given as an inner error-bar. The table in the third row shows the total, statistical
and systematic errors, and also displays an error budget. All results correspond to the reference box-size,
Lref = 6.272 fm, except in the comparison plot, where infinite-volume values are given.
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FIG. 4. Continuum extrapolation of the short distance contribution to aHVP
µ for the strange (left panel) and charm (right

panel). For each panel, we show the OS lattice regularization as blue circles, the TM regularization in red triangles, the grey
lines represent the various fits, the AIC average of the continuum values is plotted as a green cross and on the left we show the
histogram of the continuum values weighted according to the AIC.
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FIG. 5. Continuum values of the short distance contribution to aHVP,SD
µ computed as a function of tmin for the strange (left

panel) and charm (right panel). The blue point is computed with the first branch of our analysis, i.e. setting tmin = 0 while the
black points are computed with the second branch, i.e. keeping tmin fixed in physical units and adding the contribution in the
region [0, tmin] that we have computed at NNLO in continuum perturbation theory by using the RHAD [35] software package.

A. The short-distance window contributions aHVP,SD
µ (s) and aHVP,SD

µ (c)

The SD window contribution is obtained by inserting the kernel ⇥SD(t) of Eq. (8) in the sum of Eq. (13). As for the full
contribution, we take the tcut 7! 1 limit of our results performing a plateaux-analysis of the partial sums as functions
of tcut. Then we subtract from our results the tree-level O(a2) cuto↵ e↵ects calculated in lattice perturbation theory
(the details of the tree-level calculation can be found in Appendix E of Ref. [22]). We first discuss the first branch
of our analysis, i.e. taking first tmin = 0. The continuum limit and the uncertainty estimate are addressed using the
same strategy used in the full contribution. In Fig. 4 we show the continuum extrapolations and the resulting values
are

aHVP,SD
µ (s) = 9.063 (16)stat (22)cont (1)FSE ⇥ 10�10 = 9.063(27) ⇥ 10�10 , (20)

aHVP,SD
µ (c) = 11.61 (7)stat (11)cont (0)FSE ⇥ 10�10 = 11.61(14) ⇥ 10�10 . (21)

a2 [fm2]

aSD μ
(c)

×1
010
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Figure 29: Quality of the extrapolations to the continuum limit for the light- and charm-quark connected contributions to aSD
µ

performed in BMW/DMZ-24 (left panel) and ETM-24 (right panel), respectively. BMW/DMZ-24 uses data at seven lattice spacings
and four variants of the observable of interest, while ETM-24 adopts two different valence-quark regularizations at four lattice
spacings. Tree-level perturbative cutoff effects on lattice correlators are subtracted from the nonperturbative data in order to reduce
the impact of dangerous O(a2 log a) artifacts. Plots are adapted from Refs. [23] and [27].

due to unequal up- and down-quark masses (SIB) and electric charges [434, 435], while the QED correction to the
charm-quark contribution is estimated in perturbation theory. IB effects in the lattice scale and in the quark sea, as well
as quark-disconnected contributions in the calculation of the relevant correlation functions are neglected. The total
quoted correction is 0.095(95)×10−10 [22]. The Fermilab/HPQCD/MILC collaboration computes from first principles
the LO SIB corrections for both the connected- and disconnected-quark contractions. QED corrections are estimated
in perturbation theory. Higher-order contributions, including QED corrections to disconnected diagrams are neglected.
The resulting −0.0049(35) × 10−10 SIB connected, 0.015(12) × 10−10 SIB disconnected and 0.028(28) × 10−10 [28]
QED perturbative estimates yield a total SIB+QED contribution equal to 0.038(31) × 10−10.

To average the lattice results for aSD
µ (ud), aSD

µ (s), aSD
µ (c), and aSD

µ (disc) given in Table 6, we use the strategy of the
FLAG group described in Ref. [419]. Any result that has been updated or superseded by a more recent determination
by the same lattice group is excluded from the average. In Table 6 superseded results are marked with an asterisk.
In addition, the results from BMW/DMZ-24 are not yet published, hence are also excluded from the following aver-
age. We treat the statistical and systematic errors in χQCD-22 [17] and RBC/UKQCD-23 [21], χQCD-22 [17] and
Fermilab/HPQCD/MILC-24 [28], as well as in RBC/UKQCD-23 [21] and SL-24 [24] as 100% correlated since these
calculations are based on overlapping MILC and/or RBC/UKQCD gauge configurations, (partially) on the same for-
mulation of the QCD action, on common ensembles for the evaluation of systematic errors (such as FV corrections)
and/or on common scale uncertainty. All the other determinations are treated as uncorrelated. Since sea-charm-quark
effects on aSD

µ are found to be below the permil level (see the above estimate in QCD perturbation theory [22]), we
can combine N f = 2 + 1 and N f = 2 + 1 + 1 results in Table 6. Note that b-quark effects are even more subleading
and, therefore, can be neglected here. For the valence-bottom-quark-connected contribution, aSD

µ (b), we consider the
uncertainties of the estimates mentioned above as 100% correlated, since the methods used by different teams to get
them are similar. We provide an estimate for the SIB+QED IB corrections, δaSD

µ , by combining the two previously
described results given in Mainz/CLS-24 [22] and Fermilab/HPQCD/MILC-24 [28] (see Fig. 30). Since both deter-
minations come from first-generation calculations of some of those effects, we choose the conservative approach of
averaging Mainz/CLS-24 and Fermilab/HPQCD/MILC-24 under the assumption that the uncertainties of the two cal-
culations are 100% correlated. IB effects in the lattice scale and in the quark sea, as well as quark-disconnected QED
contributions neglected in those calculations are expected to be small and, thus, covered by the quoted conservative
error. The averages carry a χ2/dof < 1 in all cases.

Our averages for the individual flavor contributions to aSD
µ , in the isospin limit and for the leading SIB and QED

corrections, are summarized in Table 7. It should be stressed that the separation into isospin-symmetric flavor terms
(mu = md and α = 0) and IB corrections is scheme dependent, while the sum of those contributions is unambiguous.
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Figure 30: Comparison of the available lattice results for the SIB+QED IB corrections to the SD window observable, δaSD
µ , displayed

along with the corresponding average given in Table 7. Error ticks and plotting symbols and colors have the same meaning as
in Fig. 28.

aSD
µ (ud) aSD

µ (s) aSD
µ (c) aSD

µ (b) aSD
µ (disc) δaSD

µ

48.123(83) 9.096(15) 11.55(10) 0.30(02) −0.0020(21) 0.04(04)

Table 7: Summary results for the individual flavor contributions to aSD
µ (iso) (in the isospin limit, mu = md and α = 0) and for the SIB and QED

corrections, in units of 10−10.

We refer the reader to the various references given in Table 6 for details on the schemes adopted by the lattice groups.
Here it is sufficient to note that ambiguities related to the different prescriptions used to define isoQCD with respect to
the full QCD+QED theory are negligible for the SD window at the current permil precision level, as can be inferred
from the very modest impact of variations in the lattice-scale setting [20, 29] and quark-mass tuning [21, 22, 28] on
aSD
µ .

The contributions in Table 7 can now be combined to obtain average lattice numbers for the SD window contri-
bution to LO HVP in the isospin limit, aSD

µ (iso). Adding to this result the SIB and QED corrections yields the LO
HVP correction aSD

µ , which can be compared with the phenomenological determinations of aSD
µ (see also Figs. 38

and 39 below). A final choice has to be made on how to combine uncertainties in adding up the individual flavor and
SIB+QED contributions. The uncertainty associated with the determination of the overall scale is 100% correlated
among these contributions in a same calculation. Also, in a calculation of the various contributions performed on the
same set of ensembles, statistical errors will be correlated. Thus, we choose the conservative approach of adding the
errors of the individual contributions linearly in our final results. This procedure leads the following world average
for the isospin-symmetric SD window contribution to the total LO HVP correction:

aSD
µ (iso) = 69.06(22) × 10−10 . (3.21)

Adding to this result the average SIB+QED correction, we obtain the following lattice world average for the total SD,
LO HVP contribution to the muon (g − 2):

aSD
µ = 69.10(26) × 10−10 , (3.22)

where we include subleading digits at intermediate stages before rounding to the digits shown. This result, which is
roughly 10% of the total LO HVP contribution, has a relative uncertainty of about 0.4%, and it is compatible with the
estimate 68.4(5) × 10−10 from R-ratio data given in Ref. [359] in the pre-CMD-3 scenario. The absence of significant
tensions in comparing lattice and R-data-driven results for aSD

µ is consistent with what is found for the HVP Π(Q2) at
large Euclidean momentum Q2, as well as with the constraints from EW precision tests of the SM.

Another way of getting an average value for aSD
µ , though with a less conservative error, is to use directly the re-

sults quoted by a few groups, specifically 69.26(25) × 10−10 by the ETM collaboration [20, 27], 68.85(45) × 10−10 by
Mainz [22], 69.05(21) × 10−10 by Fermilab/HPQCD/MILC [28]. The average à la FLAG of those independent deter-
minations, treating the errors as uncorrelated across calculations, amounts to 69.10(15) × 10−10 which, remarkably, is
in excellent agreement with our final value given in Eq. (3.22).
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3.4.3. Intermediate window
The standard intermediate window observable aW

µ contributing to the LO HVP term of aµ is defined in Sec. 3.4.1,
Eq. (3.18). Over the past few years the intermediate window has played an important role, since it allows for a
high-precision comparison between SM predictions and experimental data for the e+e− annihilation cross section into
hadrons in the CM energy range around 1 GeV. Indeed, from the perspective of lattice QCD, the computation of the
intermediate window is significantly less challenging than that of the full HVP contribution. The LD tail of the vector
correlator is exponentially suppressed by the integration kernel of aW

µ , thereby mitigating both the signal-to-noise
ratio issues that affect the correlator at large times and the large finite-size effects associated with two-pion states.
Moreover, unlike the SD window, aW

µ does not suffer from large cutoff effects. Altogether these features enable very
precise lattice calculations of aW

µ .
We first review results for aW

µ that are given in isoQCD. Since tiny differences in the scheme defining isoQCD
are present in the results obtained by the various groups we adopt the WP25 scheme as a reference scheme prior to
building averages (see details below). Then we consider determinations of aW

µ in QCD+QED as quoted by individual
groups or coming from our average in the WP25-scheme isoQCD and from available estimates of IB effects (see
Table 9).

We begin by separately discussing the connected light, strange, and charm quark contributions to aW
µ in isospin-

symmetric lattice QCD, denoted as aW
µ (ud), aW

µ (s), and aW
µ (c), respectively. For the connected ud-quark term, aW

µ (ud),
which is by far the numerically dominant contribution to aW

µ , we consider here all the lattice results obtained us-
ing data with at least one ensemble at the physical pion mass point, three lattice spacings (or two lattice spacings
and two or more lattice regularizations of the observable), and MπL ≥ 3. This criterion is relaxed for the sub-
dominant contributions, where results based on two lattice spacings are also included. Since the deadline for in-
clusion in WP20, several lattice results have appeared: LM-20 [16], BMW-20 [15], ABGP-22 [18], Mainz/CLS-
22 [19], χQCD-22 [17], ETM-22 [20], RBC/UKQCD-23 [21], Fermilab/HPQCD/MILC-23 [365], BMW/DMZ-
24 [23], and Fermilab/HPQCD/MILC-24 [28]. Concerning the lattice formulation adopted, LM-20, ABGP-22,
Fermilab/HPQCD/MILC-23, and Fermilab/HPQCD/MILC-24 employ the HISQ staggered fermion discretization,
BMW/DMZ-24 (BMW-20) use a staggered quark action with stout smearing (4stout), RBC/UKQCD use domain-
wall fermions, ETM-22 use Wilson-Clover twisted-mass fermions, χQCD-22 use overlap valence fermions on both
domain-wall and HISQ sea, and Mainz/CLS-22 use O(a)-improved Wilson fermions. These determinations of the
light-connected term, aW

µ (ud) are collected in Table 8, and graphically shown in the upper-left panel of Fig. 31. Within
the quoted (statistical plus systematic) errors a striking agreement is observed among all of them. The somewhat older
and since superseded result from RBC/UKQCD-18 [13] is also included in the table for completeness.

For the s- and c-quark connected contributions, aW
µ (s) and aW

µ (c), new results have recently been presented by
χQCD-22 (s-quark only), Mainz/CLS-22, ETM-22, BMW/DMZ-24, and Fermilab/HPQCD/MILC-24, with an ad-
ditional update from the ETM collaboration (ETM-24 [27]). All currently available data for these contributions to
the intermediate window are compiled in Table 8 and displayed in the upper-right and lower-left panels of Fig. 31.
Overall, good agreement is observed among the various determinations of the s-quark connected contribution, with
the Mainz/CLS-22 result lying slightly above the other ones. For the c-quark connected contribution, a somewhat
larger spread is evident, with the most pronounced differences occurring between Fermilab/HPQCD/MILC-24 and
RBC/UKQCD-18, and between Fermilab/HPQCD/MILC-24 and ETM-24, each at the level of about (2.6–2.7)σ.

Turning to the quark-disconnected contribution to aW
µ in isoQCD, which we denote as aW

µ (disc), six lattice results
are available: RBC/UKQCD-18 [13], BMW-20 [15], Mainz/CLS-22 [19], ETM-22 [20], BMW/DMZ-24 [23], and
Fermilab/HPQCD/MILC-24 [28]. These are listed in Table 8 and shown in the lower-right panel of Fig. 31. The
disconnected term gives only a tiny contribution to the total aW

µ , of the order of 0.05%, which is similar in size to the
uncertainty on the dominant light-connected term. A moderate compatibility is observed overall among the different
lattice results: the largest discrepancy, about 2.5σ, arises between the new BMW/DMZ-24 result and Mainz/CLS-22.
We note that the BMW/DMZ-24 result is 20% larger in magnitude than BMW-20 (which had a relative uncertainty of
about 7%).

In order to average the lattice results for aW
µ (ud), aW

µ (s), aW
µ (c), aW

µ (disc), we follow the procedure established
by the FLAG group [419]. We exclude from the average any result that has been superseded by a more recent
determination by the same collaboration, with the only exception of the BMW/DMZ-24 results, which have not
yet been published. Consequently in our averages we use the BMW-20 determinations, supplementing them, when
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N f aW
µ (ud) aW

µ (s) aW
µ (c) aW

µ (disc)

FNAL/HPQCD/MILC-24 [28] 2+1+1 207.40(15)(39) 27.32(2)(5) 2.717(0)(42) −0.85(6)(19)
ETM-24 [27] 2+1+1 – 27.16(15)(20) 2.920(43)(48) –
BMW/DMZ-24 [23] 2+1+1 206.57(25)(60)# 27.08(9)(9)# 2.94(11)(17)# −1.084(22)(49)#

FNAL/HPQCD/MILC-23 [365] 2+1+1 206.6(1.0)∗ – – –
RBC/UKQCD-23 [21] 2+1 206.36(44)(43) – – –
ETM-22 [20] 2+1+1 206.5(7)(1.1) 27.28(13)(15)∗ 2.90(3)(12)∗ −0.78(21)(0)
χQCD-22 [17] 2+1(+1) 206.7(1.5)(1.0) 26.8(1)(3) – –
Mainz/CLS-22 [19] 2+1 207.0(8)(1.2) 27.68(18)(22) 2.89(3)(13) −0.81(4)(8)
ABGP-22 [18] 2+1+1 206.75(81)(2.10) – – –
BMW-20 [15] 2+1+1 207.3(4)(1.3) 27.175(28)(13) 2.70(1)(10) −0.907(35)(54)
LM-20 [16] 2+1+1 205.97(79)(90) 27.06(8)(21) – –
RBC/UKQCD-18 [13] 2+1 202.9(1.4)(0.3)∗ 27.0(2)(1) 3.0(0)(1) −1.0(1)(0)

Average 206.97(41) 27.274(62) 2.805(55) −0.893(44)

Table 8: Single-flavor and disconnected contributions to aW
µ in isoQCD, in units of 10−10. In many cases, the results of the various groups

correspond to slightly different definitions of isoQCD. To account for the impact of this ambiguity (even if small), we have added, prior to
averaging, an additional systematic error to the published results, as described in the text. Values marked with an asterisk have been superseded by
more recent results by the same collaboration and are hence excluded from the average that is given in the last row. Since the BMW/DMZ-24 results,
which are indicated with an hash in the table, have not yet been published, we use the values quoted in the BMW-20 paper for the averages. For
the specific contributions aW

µ (s) and aW
µ (c), however, the BMW/DMZ-24 analysis reports substantially larger systematic uncertainties. To remain

conservative, in our averages we keep the BMW-20 central values while replacing their systematic errors with those quoted by BMW/DMZ-24 and
adding the absolute difference between the BMW-20 and BMW/DMZ-24 determinations as an additional systematic uncertainty. This procedure
yields aW

µ (s) = 27.175(28)(90)(95)[134] and aW
µ (c) = 2.70(1)(17)(24)[29], where the error in square brackets is the total error.

necessary, as specified in the caption of Table 8, with an additional systematic uncertainty. In Fig. 31, superseded
results appear in gray, while in Table 8 they are indicated by an asterisk. The final central values are determined
via an uncorrelated weighted average of the results, as described in Eqs. (3)–(6) of Ref. [419]. To estimate the final
uncertainties, we apply the method summarized in Eqs. (7)–(10) of Ref. [419], which takes into account correlations
among the various results. As a conservative choice, in averaging we assume a 100% correlation in the statistical
errors for groups that fully or partially share gauge configurations, and a 100% correlation in the systematic errors for
groups using the same discretization in the valence sector.

As anticipated, the average values for aW
µ partial and total results in isoQCD are given in the reference WP25

scheme (see Sec. 3.2). Besides the BMW-20 and BMW/DMZ-24 results, the one of RBC/UKQCD-23 on aW
µ (ud),

and the ones by Fermilab/HPQCD/MILC-24, the other intermediate-window results are given by the various authors
in slightly different schemes: we do not alter their central values and errors in the tables and plots of this subsection,
but in order to account for this systematic effect, prior to and only for the sake of averaging, we add in quadrature
to the results not in the WP25 scheme a 0.2% systematic uncertainty for aW

µ (ud), aW
µ (c), aW

µ (disc), and a 0.3% sys-
tematic uncertainty for aW

µ (s). In almost all cases, this leads to a very small increase of the total errors and thus to a
correspondingly slight decrease of the weight of these results in the average.

The value of the systematic uncertainty added in quadrature to the results not in the WP25 scheme can be justified
as follows. Among the four renormalization inputs (for scale, ud-, s-, c-quark mass) that specify an isoQCD scheme,
all lattice groups employ Mπ ≃ 135.0 MeV to fix the ud-quark mass and MDs ≃ 1968.4 MeV or a similar closely
related input (e.g., mc/ms ≃ 11.8) to fix the c-quark mass (which moreover has a tiny impact on the total aW

µ ). One
is thus only left with the ambiguities coming from use of different inputs as compared to the WP25 scheme about the
scale and the s-quark mass.

The scale input in the WP25 scheme, which originally in the BMW-20 results is given by w0 ≃ 0.1724(7) fm
(updated to 0.1725(5) fm by BMW/DMZ-24), is commonly replaced by MΩ ≃ 1672.5 MeV (used, e.g., by
RBC/UKQCD-23 and Fermilab/HPQCD/MILC-24) or by the FLAG value of the pion decay constant fπ = 130.5 MeV
(used, e.g., by ETM-22/24, Mainz/CLS-22, and Fermilab/HPQCD/MILC-24). From RBC/UKQCD-23 we know that
using the WP25 or the MΩ scale input leads to ≲ 0.05% central value shift in aW

µ (ud). From the FLAG24 review [419]
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Figure 31: Compilation of lattice results for the partial flavor contributions to aW
µ . Upper-Left: ud-quark connected, aW

µ (ud). Upper-
Right: s-quark connected, aW

µ (s). Lower-Left: c-quark connected, aW
µ (c). Lower-Right: quark disconnected, aW

µ (disc). Error ticks
and plotting symbols and colors have the same meaning as in Fig. 28. For the BMW-20 results for aW

µ (s) and aW
µ (c), both the

original published values and those including the additional systematic uncertainty explained in the caption of Table 8 are shown
in gray and black, respectively. The light blue band in each panel corresponds to the average ±1σ obtained using the procedure
described in the text.

one learns that using fπ as scale input leads to values of w0 that are within 0.5% of the WP25 value. This can be seen
in Table 77 of Ref. [419] by comparing the results for w0 from ETM-21 [436], MILC-15 [437], HPQCD13A [438],
and CLS-21 [439] (the last one inferred by comparing the value of

√
t0 to that of ETM-21). Using the estimate

d log aW
µ (ud)/d log a ≃ 0.4 (see, e.g., ETM-22, Eq. (A.20)) implies a systematic uncertainty on aW

µ (ud) not larger than
0.2%. Using analogous arguments and information on the spectral density of the current–current correlator in each
flavor channel, a similar relative uncertainty due to the w0-scale ambiguity is estimated or expected for aW

µ (s) and
aW
µ (disc), and a substantially smaller one for aW

µ (c).
The systematic error we add to non-WP25 scheme results for aW

µ (s) is 0.3% because it amounts to the sum in
quadrature of 0.2% arising from the scale ambiguity and another 0.2% due to the difference in s-quark mass input
for isoQCD as compared to the WP25 one. Indeed, from an unpublished analysis of ETM-24 data at four lattice
spacings and physical pion mass we infer that the WP25 scheme input, which is the fictitious strange-strange quark-
connected meson mass Mss = 689.9 MeV, leads to a value of the kaon mass MK which is 0.7 MeV larger than
MK(FLAG) = 494.6 MeV (used, e.g., by several lattice groups) and only 0.4 MeV smaller than MK(RBC/UKQCD) =
495.7 MeV. Combining the fact that the MK input spread compared to WP25 is about 0.2% with the estimate of
d log aW

µ (s)/d log M2
K = −0.41(6), which is provided by Mainz/CLS-22 (see Eq. (B.26) of Ref. [19]) and fully con-

firmed by ETM-24 unpublished data, we estimate a systematic uncertainty of less than 0.2% on aW
µ (s) due to ambiguity

in the s-quark input for isoQCD.
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N f aW
µ (iso) aW

µ δaW
µ

FNAL/HPQCD/MILC-24 [28] 2+1+1 236.60(16)(47) 236.45(17)(83) −0.15(59)
BMW/DMZ-24 [23] 2+1+1 235.51(29)(63)# 235.94(29)(63)# [15]
RBC/UKQCD-23/18 [13, 21] 2+1 235.36(49)(46) 235.56(65)(50) 0.2(4)
ETM-22 [20] 2+1+1 235.90(74)(1.12) 236.30(74)(1.12) [15]
Mainz/CLS-22 [19] 2+1 236.60(79)(1.13) 237.30(79)(1.22) 0.70(47)
BMW-20 [15] 2+1+1 236.3(4)(1.3) 236.7(4)(1.3) 0.43(08)

Average 236.18(36) 236.26(47) 0.42(07)

Table 9: Results for aW
µ , in units of 10−10. We quote in different columns: the number of active quark flavors; the isoQCD values discussed in

this subsection (see Eq. (3.23) and related text), aW
µ (iso), with the average in last line given in the WP25 scheme (see text about how we treat the

ETM-22 and Mainz/CLS-22 results that are quoted in a slightly different scheme); the QCD+QED values based on the papers cited in each line,
aW
µ , with their average given in last line; the IB contribution, δaW

µ , with respect to isoQCD in the WP25 scheme (see text for details), and its average
in the last line. As in the case of the single-flavor and disconnected contributions, since the BMW/DMZ-24 results have not yet been published
(they are indicated with a hash in the table), we use the values quoted in the BMW-20 paper for the averages.

The averages of the single-flavor and disconnected contributions obtained in this way are provided in the last row
of Table 8 and illustrated by the colored vertical bands in Fig. 31. In the case of aW

µ (c), the reduced χ2 of the fit is
approximately 3 and, due to the lower level of compatibility among the lattice results in this case, we inflate the final
uncertainty by a factor of

√
χ2/dof.11

We now turn to the results for aW
µ (iso) in isoQCD. There are five groups who provided (or provided sufficient

evidence to infer) results on aW
µ (iso): Fermilab/HPQCD/MILC, BMW, RBC/UKQCD, ETM, and Mainz. The re-

sults are summarized in Table 9 and shown in the left panel of Fig. 32. For BMW/DMZ-24, we sum the single-
flavor and disconnected contributions, combining their errors in quadrature. Instead, ETM-22, Mainz/CLS-22, and
Fermilab/HPQCD/MILC-24 directly quote the value of aW

µ (iso). For RBC/UKQCD-23/18, we begin with the value
of aW

µ (ud) quoted in the WP25 scheme [21] and then add the s- and c-quark connected contributions, as well as the
disconnected contribution given in Ref. [13]. Because these three contributions are not originally provided in the
WP25 isoQCD scheme, we assign systematic errors of 0.3%, 0.2%, and 0.2%, respectively, before summation. The
resulting RBC/UKQCD value and error are then treated as if given in the WP25 scheme. As for BMW-20, we subtract
an IB correction δaW

µ = 0.43(8) × 10−10 from the total aW
µ computed in QCD+QED.

In analogy to the procedure above, the average of results for aW
µ (iso) is also given in the WP25 isoQCD scheme. In

order to account for the slightly different definitions of the isoQCD entering the results by ETM and Mainz in Table 9,
we add, prior to averaging, a systematic uncertainty of 0.2% (i.e., the same systematic error we attributed previously
on aW

µ (ud)) to all results not quoted in the WP25 isoQCD scheme. The average, performed according to the FLAG
procedure just as for the partial single-flavor and disconnected contributions, yields12

aW
µ (iso) = 236.18(36) × 10−10 , (3.23)

with an uncertainty of about 0.15%.
An alternative procedure to obtain aW

µ (iso) is to sum the (average of) single-flavor and disconnected contributions
listed in the last row of Table 8. Noting that the quark-connected correlators for different flavors and the quark-
disconnected correlators all have very different statistical fluctuations, reflecting the completely different physics of
the corresponding intermediate-state channels, we expect their statistical correlations to be tiny already within the
results of a single group and further diluted by the average leading to last line of Table 8, and hence safely negligible.
For this reason we proceed by adding the uncertainty of these contributions in quadrature to obtain

aW
µ (iso, single-flav-sum) = 236.16(42) × 10−10 . (3.24)

11For aW
µ (s), the reduced χ2 of the fit is slightly larger than one (about 1.3), too, and we inflated the final error by a factor

√
χ2/dof.

12As in the case of the single-flavor and disconnected contributions, since the BMW/DMZ-24 results have not yet been published, we base our
averages on the BMW-20 determinations (see also the caption of Table 9).
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Figure 32: Compilation of lattice results for the total aW
µ in isospin-symmetric QCD (left), QCD+QED (center), and the available

independently estimated IB corrections (right). Error ticks and plotting symbols and colors have the same meaning as in Fig. 28.
The light blue band in each panel denotes the average ±1σ using the procedure described in the text.

This result is in excellent agreement with that of Eq. (3.23). If one were to treat the individual flavor contributions as
fully correlated one would obtain a result with a 36% larger uncertainty, namely

aW
µ (iso, single-flav-sum-correlated) = 236.16(57) × 10−10 . (3.25)

For the reasons outlined above, we consider this latter value to be overly conservative and advocate the value given in
Eq. (3.24) as our central result for the isospin-symmetric window contribution aW

µ (iso) in the WP25 scheme.
To provide a QCD+QED result with a conservative error for aW

µ we add the average of IB effects δaW
µ to the result

Eq. (3.24) obtaining the value

aW
µ = 236.58(43) × 10−10 . (3.26)

The estimates of the IB effect δaW
µ with respect to isoQCD in the WP25 scheme are given for each group in the last

column of Table 9. For the cases where the value of δaW
µ is not taken from the BMW-20 paper, we proceed as follows:

for Fermilab/HPQCD/MILC-24 and RBC/UKQCD-23/18 we obtain it by combining the published information on the
correlated difference in aW

µ (iso) between the used scheme and the WP25 scheme with the requirement that the sum
aW
µ (iso) + δaW

µ be scheme independent; for Mainz/CLS-22 we keep the published central value of δaW
µ in the scheme

of choice, assuming that the scheme dependence is accounted for in the estimated systematic error.
Another way of obtaining a final result for aW

µ is to use directly the results quoted in QCD+QED by a few groups,
see the corresponding column of Table 9. An average à la FLAG leads to aW

µ = 236.26(47) × 10−10, which is
reassuringly in very good agreement with the value in Eq. (3.26).

Finally, we stress that the result of Eq. (3.26) is potentially of high relevance for the experimental collaborations
measuring e+e− → hadrons and for precision tests of the SM. Indeed, the quantity aW

µ can be accessed experimentally
and lattice QCD+QED provides for it a pure SM prediction with an accuracy of about 0.18%.

3.4.4. Long-distance window
A precise estimation of the LD contribution is crucial for achieving high precision in aHVP, LO

µ , as it dominates
both the central value and the uncertainty in lattice-QCD calculations. The latter arises primarily from the exponen-
tial signal-to-noise problem, which results in larger statistical uncertainties compared to aSD

µ and aW
µ . Additionally,

significant FV effects pose challenges for conventionally sized lattices with MπL ≤ 5 at the physical value of the pion
mass. Moreover, when the staggered fermion formulation is used to simulate quark fields, substantial taste-breaking
effects introduce deviations from the continuum theory, further complicating the continuum extrapolation.

Four groups have performed dedicated computations of contributions to the LD window aLD
µ . RBC/UKQCD-

24 [25], Mainz/CLS-24 [26], and Fermilab/HPQCD/MILC-24 [29] have all evaluated the dominant light-quark con-
nected contribution to aLD

µ . In addition, Mainz/CLS-24 provide results for the remaining flavor contributions, yielding
a complete determination of the LD window in isoQCD. The ETM collaboration has computed the subleading strange-
and charm-connected contribution to aLD

µ in ETM-24 [27].
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N f WP25 Own scheme (MΩ) Own scheme ( fπ)

FNAL/HPQCD/MILC-24 [29] 2+1+1 401.3(2.3)(3.1) 400.2(2.3)(3.7) 396.6(2.2)(3.3)
Mainz/CLS-24 [26] 2+1 411.4(4.8)(6.0) – 420.8(4.1)(3.5)
RBC/UKQCD-24 [25] 2+1 411.4(4.3)(2.4) 413.6(6.0)(2.9) –

Table 10: Results for the light-connected contribution aLD
µ (ud) in units of 10−10, obtained by three groups using different schemes for isoQCD. The

third column lists results computed in the WP25 scheme. The remaining two columns show results in each collaboration’s own scheme labeled by
the quantity used for scale setting (see main text for details). We note that (except for WP25) schemes with the same scale setting used by different
collaborations do not match exactly. Uncertainties are given in parentheses, where the first denotes statistical errors and the second systematic
errors.

The RBC/UKQCD collaboration employs simulations with 2 + 1 flavors of domain-wall fermions at three lattice
spacings, down to 0.073 fm. Three ensembles at physical quark masses are complemented by six simulations with
heavier-than-physical pion masses. A spectral reconstruction of the vector correlation function from two-pion states
is used to reduce statistical noise in the LD regime. The Mainz calculation is based on 2+ 1 flavors of O(a)-improved
Wilson fermions at six lattice spacings, with the finest reaching 0.039 fm. The analysis includes 34 gauge ensembles
with pion masses ranging from 420 MeV down to 132 MeV, including three ensembles with physical quark masses.
Low-mode averaging is supplemented by a spectral reconstruction on selected ensembles to compute the vector cor-
relation function. Fermilab/HPQCD/MILC use four ensembles with 2 + 1 + 1 flavors of highly improved staggered
quarks, all at physical quark masses. The finest ensemble corresponds to a lattice spacing of 0.06 fm. Low-mode
averaging is used for the vector correlation function, and EFT-based taste-breaking corrections are applied along-
side finite-size corrections to mitigate cutoff effects specific to the staggered formulation. The ETM collaboration
computes s- and c-quark connected correlation functions on six physical-mass ensembles with 2 + 1 + 1 flavors of
twisted-mass fermions at four lattice spacings, with the finest being 0.049 fm.

Currently, no lattice calculation exists for IB effects in the pure LD regime, restricting the averaging of results to
the isospin-symmetric case. Given the enhanced scale dependence of aLD

µ compared to aSD
µ and aW

µ , and the fact that
IB corrections primarily affect large Euclidean distances, a significant dependence on the scheme used for isoQCD
cannot be excluded at present. To mitigate this and enable meaningful comparisons and averaging of lattice-QCD
results, groups computing the light-connected contribution to aLD

µ have performed their analyses in multiple schemes.
RBC/UKQCD-24 quote results in the RBC/UKQCD-18 scheme [13] as well as in the WP25 scheme, both of them

using the Ω baryon mass MΩ to set the scale. Mainz/CLS-24 provide results in a scheme defined in Ref. [19], which
employs a combination of the pion and kaon decay constants, fπ and fK , to set the scale, as well as in the WP25
scheme. Similarly, Fermilab/HPQCD/MILC-24 quote results in two schemes that differ only in the scale-setting
quantity, either MΩ or fπ, and also in the WP25 scheme. ETM-24 employ the scheme of the Edinburgh consensus
based on fπ to set the scale.

While the values provided by the collaborations in the WP25 scheme are expected to match within the quoted
uncertainties, the degree to which the collaboration-specific MΩ- and fπ-based schemes differ has not yet been sys-
tematically studied. We recognize that the spread of the fπ-based schemes between Fermilab/HPQCD/MILC-24 and
Mainz/CLS-24 is significant and needs to be scrutinized in future work. To account for this effect in WP25, we
consider additional averages in the WP25 scheme with Fermilab/HPQCD/MILC-24 and Mainz/CLS-24 excluded, re-
spectively. We then take half of the difference of the central value of those two averages as an additional uncertainty
that is added in quadrature, following the approach adopted in WP20 for the BaBar–KLOE tension of the data-driven
HVP evaluation. As a result, an average of the three results for the light-quark connected contribution can be robustly
performed in the WP25 scheme. The results across all schemes are summarized in Table 10 and shown in Fig. 33 for
the common WP25 scheme.

While all three results are statistically independent, they adopt similar approaches to correct for finite-size effects.
RBC/UKQCD-24 apply the method developed by Hansen and Patella [416, 417]. Mainz/CLS-24 employ the same
method for short Euclidean distances, complemented at larger distances by the Meyer–Lellouch–Lüscher (MLL) for-
malism, which uses a Gounaris–Sakurai parameterization of the timelike pion form factor [223, 413, 414].13 Both

13A recent study finds that the MLL formalism is valid at all Euclidean distances and reproduces the result of Hansen–Patella by including
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Figure 33: Compilation of lattice results for aLD
µ (ud) as listed in Table 10. The light blue band corresponds to the average given in

Eq. (3.27). Error ticks and plotting symbols and colors have the same meaning as in Fig. 28.

studies explicitly validate these corrections through measurements in multiple volumes with identical Lagrangian pa-
rameters. Fermilab/HPQCD/MILC-24, on the other hand, perform a model average over three different approaches to
account for FV effects, including the MLL method. RBC/UKQCD-24, Mainz/CLS-24, and Fermilab/HPQCD/MILC-
24 estimate the uncertainty for the light-connected contribution aLD

µ (ud) arising from FV corrections to be 0.8, 1.7,
and 1.4 units of 10−10, respectively. To ensure a conservative assessment, we adopt these values as a correlated
contribution to the systematic uncertainty across all three results.

When averaging according to the FLAG procedure, we apply a slight
√
χ2/dof rescaling of 1.6 to account for the

fact that the result from Fermilab/HPQCD/MILC-24 is significantly smaller than the other two. The p-value of the
average is 0.2. The outcome of the partly correlated average, combined with the additional systematic uncertainty of
3.1 × 10−10, is

aLD
µ (ud) = 406.0(4.9) × 10−10 , (3.27)

where the contribution of the uncertainty of w0 that is part of the scheme definition is not included. This uncertainty
originates from the determination of the physical value of the gradient flow scale w0 = 0.17236(70) fm, based on MΩ
in Ref. [15]. The average is displayed as a blue band alongside the three inputs in Fig. 33.

To compute the full LD window observable, the averaged result for the isovector contribution can be combined
with the Mainz/CLS-24 determination of the isoscalar contribution within the WP25 scheme. The strange-connected
contribution is included in the isoscalar part. Its determination in Mainz/CLS-24 is slightly larger than, but statistically
compatible with, the result from ETM-24, where the two employed schemes are similar but not identical. The charm-
connected contribution, computed in Mainz/CLS-24 and ETM-24, is numerically negligible at the current level of
precision and has not been obtained in the WP25 scheme in either work. We note that this procedure uses the LD
disconnected and strange contributions from only Mainz/CLS-24.

By adding the averaged isovector contribution, aLD
µ (I1) = 9

10 aLD
µ (ud), to the isoscalar contribution, aLD

µ (I0) =
42.5(1.8)stat(1.5)syst [26], one obtains

aLD
µ (iso) = 407.9(5.0) × 10−10 , (3.28)

for the LD window observable in isoQCD within the WP25 scheme, again without scale uncertainty.

3.5. Flavor decomposition
In this section, we summarize the results for flavor specific contributions to aHVP, LO

µ . Following the breakdown
in Eq. (3.11), we consider the light-, strange-, and charm-quark connected contributions, followed by a discussion of
the disconnected contribution. These results are obtained by considering the individual flavor contributions over the
entire integration range. In principle, this corresponds to performing the integral of Eq. (3.12). However, in practice,

sufficiently high-energy two-pion states [440].
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N f aHVP, LO
µ (ud) aHVP, LO

µ (s) aHVP, LO
µ (c) aHVP, LO

µ (disc)

FNAL/HPQCD/MILC-24 [29] 2+1+1 655.2(2.3)(3.9) – – –
ETM-24 [27] 2+1+1 – 53.57(41)(48) 14.56(10)(9) –
Mainz/CLS-24 [26] 2+1 675.7(4.1)(3.7) 54.5(3)(3) 14.4(2)(2) −16.1(1.2)(1.2)
RBC/UKQCD-24 [25] 2+1 668.7(6.1)(2.9) – – –
ABGP-22 [18] 2+1+1 646 (11.4)(7.8) – – –
HPQCD-20 [441] 2+1+1 – – 14.606(47) –
LM-20 [16] 2+1+1 657(26)(12) 52.83(22)(65) – –
BMW-20 [15] 2+1+1 652.4(2.0)(5.3) 53.393(89)(68) 14.6(0)(1) −15.4(1.2)(1.4)
ETM-18/19 [442, 443] 2+1+1 629.1(13.7) 53.1(1.6)(2.0)∗ 14.75(42)(37)∗ –
Mainz/CLS-19 [444] 2+1 674(12)(5)∗ 54.5(2.4)(0.6)∗ 14.66(45)(6)∗ −23.2(2.2)(4.5)∗

ABGP-19 [410] 2+1+1 659(22)∗ – – –
FNAL/HPQCD/MILC-19 [445] 2+1+1 637.8(8.8)∗ – – –
PACS-19 [446] 2+1 673(9)(11) 52.1(2)(5) 11.7(0.2)(1.6) –
RBC/UKQCD-18 [13] 2+1 649.7(14.2)(4.9)∗ 53.2(4)(3) 14.3(0)(7) −11.2(3.3)(2.3)
BMW-17 [447] 2+1+1 647.6(7.5)(17.7)∗ 53.73(4)(49)∗ 14.74(4)(16)∗ −12.8(1.1)(1.6)∗

Mainz/CLS-17 [415] 2 588.2(31.7)(16.6)∗ 51.1(1.7)(0.4)∗ 14.3(2)(1)∗ –
HPQCD-16 [412] 2+1+1 599.0(6.0)(11.0)∗ – – 0(9)(−)
HPQCD-14 [422] 2+1(+1) – 53.41(0)(59) 14.42(0)(39)∗ –

Table 11: Single-flavor and disconnected contributions to aHVP, LO
µ , see also Fig. 34, in units of 10−10. All results are given in the isospin-symmetric

scheme of the individual groups, information on these schemes can be found in the associated references. Results which have been superseded by
new calculations by the same collaboration are denoted with an asterisk.

the results are now more commonly obtained from summing the contributions to the three windows as in Eq. (3.16).
This summed approach leverages the fact that each window contribution has a tailored analysis, resulting in a more
robust determination, once inter-window correlations are taken into account [25, 26, 29]. Final averages are given in
the WP25 isospin-symmetric scheme of Eq. (3.9). Where possible, results in figures are also presented in this scheme.

For the dominant light-quark connected component aHVP, LO
µ (ud), which accounts for ≃ 88% of the total HVP

contribution, there have been six new results since the release of WP20: BMW-20 [15], LM-20 [16], ABGP-22 [18],
RBC/UKQCD-24 [25], Mainz/CLS-24 [26], and Fermilab/HPQCD/MILC-24 [29]. The first three are obtained from
an analysis of the full integral, whereas the latter three come from summing the windows. These six new results are
collected in the third column of Table 11, along with previous determinations that were included in WP20. All these
new results (aside from LM-20) are updates on previous determinations, which we denote with an asterisk in the table.
As discussed in Sec. 3.4.4, a central component of these newer calculations (aside from LM-20) is the use of exact
low-modes of the Dirac operator, which is the primary reason for the dramatic improvement in statistical precision
over older determinations. The four most precise determinations are all also available in the WP25 isospin-symmetric
scheme, which we collect in Table 12.

For the strange and charm connected components, which are ≃ 7% and ≃ 2% of the total HVP contribution,
respectively, there are four new determinations of aHVP, LO

µ (s), from BMW-20 [15], LM-20 [16], Mainz/CLS-24 [26],
and ETM-24 [27], and four new determinations of aHVP, LO

µ (c), from BMW-20 [15], HPQCD-20 [16], Mainz/CLS-
24 [26], and ETM-24 [27], since WP20. These are given in the fourth and fifth columns of Table 11. Again, aside from
LM-20, these supersede previous determinations from the same groups. Finally, for the disconnected contribution
aHVP, LO
µ (disc), given in the last column of Table 11, there have been two new results, BMW-20 [15] and Mainz/CLS-

24 [26], both updates on previous determinations.
The results for each contribution are compared in Fig. 34, where we show superseded results with a gray marker.

We stress here, as in Sec. 3.4.4, that these determinations, in particular aHVP, LO
µ (ud) and aHVP, LO

µ (s), are sensitive to
how one defines the isospin-symmetric pure QCD scheme. Hence, when comparing results directly one should be
aware of the particular scheme definitions, which are described in the caption and references of Tables 11 and 12.

We perform the world averages for each of the flavor contributions using two independent approaches. The first
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N f aHVP, LO
µ (ud) aHVP, LO

µ (s) aHVP, LO
µ (c) aHVP, LO

µ (disc)

FNAL/HPQCD/MILC-24 [29] 2+1+1 656.9(2.3)(3.2) – – –
Mainz/CLS-24 [26] 2+1 666.2(4.9)(6.1) 53.56(21)(33) – −16.3(1.7)(1.7)
RBC/UKQCD-24 [25] 2+1 666.2(4.3)(2.5) – – –
BMW-20 [15] 2+1+1 652.4(2.0)(5.3) 53.393(89)(68) 14.6(0)(1) −15.4(1.2)(1.4)

Table 12: Single-flavor and disconnected results of Table 11 in the WP25 isospin-symmetric scheme, see Eq. (3.9), in units of 10−10. The BMW-20
results are duplicated for clarity.

aHVP, LO
µ (ud) aHVP, LO

µ (s) aHVP, LO
µ (c) aHVP, LO

µ (disc) aHVP, LO
µ (iso)

Avg. A 659.5(4.7) 53.37(11) 14.576(68) −15.7(1.5) 712.0(4.9)
Avg. B 661.1(5.0) 53.18(28) 14.37(11) −16.4(2.3) 712.5(5.4)

Table 13: Results for the individual flavor contributions to aHVP, LO
µ (in the isospin-symmetric scheme of Eq. (3.9) in units of 10−10). Also given is

the total isospin-symmetric contribution to aHVP, LO
µ , which includes the aHVP, LO

µ (b) contribution from Table 7. The first row (Avg. A) corresponds
to directly averaging over the results of Tables 11 and 12 using the FLAG procedure. The second row (Avg. B) corresponds to combining the
window averages of Secs. 3.4.2 to 3.4.4.

approach makes direct use of the results in Tables 11 and 12. For this, we follow the FLAG averaging procedure
discussed at the end of Sec. 3.3. In particular, results that have been superseded are not included, as well as results
based on less than three lattice spacings for dominant contributions and less than two for subdominant ones. Before
performing the averages, the results that are not in the preferred isospin-symmetric scheme of Eq. (3.9) must be
adjusted. To do this we follow the strategy laid out in Sec. 3.4.3.

For aHVP, LO
µ (ud), the results from Fermilab/HPQCD/MILC-24 [29], RBC/UKQCD-24 [25], and BMW-20 [15] are

available in the preferred scheme, which relies on MΩ to determine w0 in fm. The result from Mainz/CLS-24 [26] is
not; however, the corresponding determination of aLD

µ (ud) is available in the WP25 scheme, which can be combined
with the relatively scale-insensitive short- and intermediate-distance contributions. All these WP25 determinations
are given in Table 12. The remaining results, ABGP-22 [18], LM-20 [16], ETM-18/19 [442, 443], and PACS-19
[446], all have significantly larger uncertainties and use fπ directly to set the scale or to determine w0 in fm. Hence,
for this average, we include only the four sub-percent results in the WP25 scheme. We account for correlations due
to the shared approaches to correct for FV effects in the same fashion as in Sec. 3.4.4. In addition, we correlate the
systematic uncertainty due to taste-breaking effects from BMW-20 and Fermilab/MILC/HPQCD-24, corresponding
to 3.7 and 0.9 in units of 10−10, respectively. The additional uncertainty of 3.1× 10−10 from the spread of the fπ-based
LD window results in Sec. 3.4.4 is also applied to aHVP, LO

µ (ud) here.
For aHVP, LO

µ (s), there are only two14 results available in the WP25 scheme (see Table 12), hence, following
Sec. 3.4.3, for results not in this scheme we include an additional 0.9% and 0.2% systematic uncertainty (in quadra-
ture) due to scale setting input and the spread in input values for MK . These relative uncertainties are estimated using
the derivatives d log aHVP, LO

µ (s)/d log w0 ≃ 1.8 and d log aHVP, LO
µ (s)/d log M2

K ≃ 0.6 (Eq. (B.29) of Ref. [19]). As
the charm contribution is dominated by aSD

µ (c) and aW
µ (c) we assign just the 0.2% systematic uncertainty obtained

in Sec. 3.4.3.15 Finally, for the disconnected contribution, there are only two qualifying results obtained from a lat-
tice calculation with more than one lattice spacing, BMW-20 [15] and Mainz/CLS-24 [26]. The BMW-20 result is
already in the preferred scheme, whereas the Mainz/CLS-24 result can be obtained by the same procedure as de-
scribed above for aHVP, LO

µ (ud). This first set of flavor averages (Avg. A), as well as the corresponding result for
aHVP, LO
µ (iso) = aHVP, LO

µ (ud) + aHVP, LO
µ (s) + aHVP, LO

µ (c) + aHVP, LO
µ (b) + aHVP, LO

µ (disc), is collected in the first row of

14The Mainz/CLS-24 aHVP, LO
µ (s) result in the WP25 scheme is constructed in the same fashion as described for the aHVP, LO

µ (ud) result, with an
additional 0.3% relative uncertainty applied to the aW

µ (s) component. This additional 0.3% uncertainty is estimated in Sec. 3.4.3.
15For aHVP, LO

µ (c) results obtained using MJ/ψ as opposed to MDS as in Eq. (3.9), namely HPQCD-20, we include a 0.5% systematic uncertainty,
estimated similarly as described for aHVP, LO

µ (s).

79



525 550 575 600 625 650 675

1010 aHVP,LO
µ (ud)

FNAL/HPQCD/MILC-24
Mainz/CLS-24
RBC/UKQCD-24
ABGP-22
LM-20
BMW-20
ETM-18/19
Mainz/CLS-19
ABGP-19
FNAL/HPQCD/MILC-19
PACS-19
RBC/UKQCD-18
BMW-17
Mainz/CLS-17
HPQCD-16

47 48 49 50 51 52 53 54 55 56 57

1010 aHVP,LO
µ (s)

ETM-24

Mainz/CLS-24

LM-20

BMW-20

ETM-18/19

Mainz/CLS-19

PACS-19

RBC/UKQCD-18

BMW-17

Mainz/CLS-17

HPQCD-14

9 10 11 12 13 14 15

1010 aHVP,LO
µ (c)

ETM-24

Mainz/CLS-24

HPQCD-20

BMW-20

ETM-18/19

Mainz/CLS-19

PACS-19

RBC/UKQCD-18

BMW-17

Mainz/CLS-17

HPQCD-14

−35 −30 −25 −20 −15 −10

1010 aHVP,LO
µ (disc)

Mainz/CLS-24

BMW-20

Mainz/CLS-19

RBC/UKQCD-18

BMW-17

Figure 34: Compilation of lattice results for the flavor contributions to aHVP, LO
µ . Upper-Left: light-quark connected aHVP, LO

µ (ud).
Upper-Right: strange-quark connected aHVP, LO

µ (s). Lower-Left: charm-quark connected aHVP, LO
µ (disc). Lower-Right: quark dis-

connected aHVP, LO
µ (disc). Where possible, we display results in the WP25 isospin-symmetric scheme (Eq. (3.9)), corresponding to

the results in Table 12. The light blue bands correspond to “Avg. A” in the first row of Table 13. Results not included in the average
are denoted by unfilled symbols. Error ticks and plotting symbols and colors have the same meaning as in Fig. 28 except for the
additional “N f = 2” denotation, given by diamonds, in which cases charm and strange quarks are omitted in the sea.

Table 13. We note here that the aHVP, LO
µ (s) average is largely dominated by the BMW-20 result, with a weight of 0.84.

This is due to it being one of only two results already in the WP25 scheme, and already having smaller errors than all
other determinations.

The second approach for obtaining world averages is to make use of the windowed averages obtained in Secs. 3.4.2
to 3.4.4. For the short- and intermediate-distance windows, the separate flavor averages are all performed in the
WP25 scheme. For the LD window, the light-quark contribution aLD

µ (ud) of Eq. (3.27) is also obtained in the WP25
scheme. Due to the sensitivity of aLD

µ (s) to the choice of scale-setting and strange-quark mass input, we take the sole
determination in the WP25 scheme from Mainz/CLS-24 [26] as our window-“average” for this quantity.16 The LD
charm contribution, aLD

µ (c), is almost negligible since it contributes less than 0.1% to the charm total. In addition,
the sensitivity of aLD

µ (c) to the choice of scale setting is suppressed by the large value of the ratio mc/mµ. To obtain

16The other determination of this quantity from ETM-24 [27] uses fπ to set the scale as opposed to w0 via MΩ as in the WP25 scheme Eq. (3.9).
The shift in aLD

µ (s) from the two scale-setting choices can be estimated using the two results for aLD
µ (s) in Ref. [26](Table 3 and Eq. (A.9)), giving

∆aLD
µ (s) ≃ 0.92 × 10−10. Including this shift as an additional source of uncertainty on the result of Ref. [27] dramatically inflates the overall error

and renders a FLAG average of the two results pointless.
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aLD
µ (c), we perform a FLAG average of the two determinations of this quantity from Mainz/CLS-24 [26] and ETM-

24 [27]. For the LD disconnected contribution aLD
µ (disc), we take the only available determination of this quantity

from Mainz/CLS-24 [26].
With all these results in hand, the sum in Eq. (3.16) can be performed for each flavor. Given the conservative

choices made to account for correlations between groups in Secs. 3.4.2 and 3.4.3, we perform an uncorrelated sum
of the windows to obtain the window-summed averaged values for aHVP, LO

µ (s) and aHVP, LO
µ (c). For aHVP, LO

µ (ud) and
aHVP, LO
µ (disc), a systematic uncertainty that is common to all determinations of these quantities in the W and LD

windows concerns the EFT-based approaches to correcting for FV effects. To account for this, we assume 100%
correlation of FV uncertainty between the intermediate and LD windows. To obtain a correlation coefficient that
corresponds to this assumption, we examine results from the three groups that have both aW

µ (ud) and aLD
µ (ud) determi-

nations [19, 21, 25, 26, 28, 29]. In particular, we compute the following correlation coefficient ρ = σFV
W σFV

LD/(σWσLD),
where σFV is the uncertainty due to FV, for each case. A weighted average of ρ = 0.1 is obtained using the weights
from the FLAG average in Eq. (3.27). This value is used for aHVP, LO

µ (disc) as well. The final window-summed av-
eraged results (Avg. B) are given in the second row of Table 13. We note here that the Avg. B determination of
aHVP, LO
µ (iso) neglects the nontrivial anti-correlations between the Mainz/CLS-24 results for aLD

µ (ud) and aLD
µ (disc),

which arise when obtaining these flavor contributions from linear combinations of aLD
µ (I0) and aLD

µ (I1) as in Ref. [26].
Therefore, the uncertainty on this determination of aHVP, LO

µ (iso) is less well estimated than that of Eq. (3.29) discussed
in Sec. 3.6.

We observe that all values from this second average are broadly consistent with the averages from the first ap-
proach. The central value of aHVP, LO

µ (ud) from Avg. A is slightly lower than Avg. B and its uncertainty is smaller.
This is due to the LD contribution from BMW-20 playing a part in the first average but not in the second. For the
same reason, the uncertainty in aHVP, LO

µ (disc) is significantly smaller in the first average.
Comparing the two averages further, we note that every flavor-specific average that enters Avg. A is based on three

or more inputs, while Avg. B takes as inputs for aLD
µ (s) and aLD

µ (disc) a result from a single lattice group. However,
Avg. A excludes some of the most recent results for the aSD

µ and aW
µ contributions, particularly for the (ud) and (c)

flavor contributions. We can consider a variation to Averages A and B, where (almost) all recent results are included
and where all contributions are based on two or more inputs, by combining aHVP, LO

µ (s) and aHVP, LO
µ (disc) from Avg. A

with aHVP, LO
µ (ud) and aHVP, LO

µ (c) from Avg. B. This yields the value aHVP, LO
µ (iso) = 713.5(5.2), which is virtually

identical to Avg. B and to the average in Eq. (3.29) in Sec. 3.6.1. Other variations yield similar results.

3.6. Total HVP
In this section, we present our averages for the total HVP contribution to aµ computed in lattice QCD. When

combined with QED, EW, and the remaining hadronic contributions (also computed using lattice methods), these
averages yield purely theoretical SM predictions for aµ. We emphasize that most of the values from individual groups
that comprise our averages have used blinding procedures, and we use the FLAG averaging procedure throughout.

Since the pioneering works of Blum [448] and Aubin and Blum [449], and the seminal paper of ETM in 2011 [450]
in two-flavor QCD, many lattice calculations of aHVP, LO

µ have been performed [13, 15, 18, 21, 23, 25, 26, 412, 415,
442–444, 446, 447, 451, 452]. In addition to these, there are now many works giving the individual windows and other
contributions as discussed in the previous two sections [16, 17, 19, 20, 22, 24, 27–29]. Hence, to obtain a final lattice
prediction for aHVP, LO

µ , there are a number of ways to combine the lattice results from the various groups. These differ
in the contributions to aHVP, LO

µ that are averaged before being combined. Since groups do not necessarily compute all
contributions, it matters in which order they are averaged and added up. Here we consider four different combinations:

1. Total aHVP, LO
µ from a combination of the averages of all available lattice results for the SD, W, and LD windows

in the isospin-symmetric limit plus the average of the total IB corrections: The advantage of this approach
is that there are many results for some flavor components of the isospin-symmetric windows (see Table 8).
This is particularly true for the ud contribution to the intermediate-distance window for which there are eleven
results and, more generally, for all flavor contributions to that window. While this large number of computations
allows a particularly robust estimate of the corresponding systematic errors, this intermediate-distance window
contributes only about 35% to the total. There is also a fair number of computations of the SD window (see
Table 6). For the LD window, which contributes 55%, the situation is less favorable. There are only three
results [25, 26, 29], of which only the one from the Mainz group [26] includes all flavor and IB contributions,
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as shown in Table 10. More generally, the situation for the IB corrections to all windows is quite spotty. In
addition, this averaging approach requires a common definition of the isoQCD limit for each of the windows
and flavor contributions. Indeed, for the most important ud LD window, Mainz [26], RBC/UKQCD-[25], and
Fermilab/HPQCD/MILC [29] have gone the extra mile to convert their results to the common WP25 scheme.
We note that the shift required for results that are not available in the WP25 scheme includes an additional
uncertainty, as discussed in Secs. 3.4 and 3.5.

2. Total aHVP, LO
µ as a combination of lattice results for isospin-symmetric aHVP, LO

µ (iso), obtained via flavor decom-
position, with an average of the total IB correction: Here aHVP, LO

µ (iso) is obtained by summing the results of
determinations of individual flavor contributions to that quantity. Section 3.5 considers two ways of obtaining
those flavor contributions. In the first (approach 2A), the flavor components of aHVP, LO

µ (iso) are obtained from
averages of the corresponding results by the different collaborations. That procedure may appear to be a rear-
rangement of approach 3 described below. However, for approach 3 there are only three computations of the
total isospin-symmetric contribution to aHVP, LO

µ , while there are many more of the various flavor components of
aHVP, LO
µ (iso) (see Table 11). The second way (approach 2B) of obtaining the flavor components of aHVP, LO

µ (iso)
is by summing the averages of the individual flavor contributions to the SD, W, and LD windows. As explained
in Sec. 3.5, this procedure, which uses the same inputs as approach 1, described above, and hence is very closely
related to it, yields a slightly less-well quantified uncertainty.

From the two determinations of aHVP, LO
µ (iso) obtained in Sec. 3.5, two values of aHVP, LO

µ are obtained by adding
the average SIB and QED contributions to that quantity obtained in Sec. 3.6.1.

3. Total aHVP, LO
µ as a combination of an average of lattice results for isospin-symmetric aHVP, LO

µ (iso) and for the
corresponding IB corrections: This is similar to the first combination described in the preceding paragraph
except that the isospin-symmetric average is taken over the totals from each group without averaging flavor-
specific contributions as an intermediate step. Thus, one of the drawbacks compared to approach 2A is that
there are fewer computations of the total isospin-symmetric contribution to aHVP, LO

µ than there are of some
individual flavor-specific contributions. However, there are no more computations of the ud contribution to the
isospin-symmetric LD window [25, 26, 29], which overwhelms the uncertainty on aHVP, LO

µ , than of the total
isospin-symmetric contribution [13, 15, 25, 26]. Indeed, here the full isospin-symmetric result from BMW-
20 [15] re-enters the average. Thus, the uncertainties in this averaging approach will not necessarily be larger
than in approach 1. It is worth noting that the groups who have computed the total isospin-symmetric value are
the same as those who have computed the complete aHVP, LO

µ , so that the overlap in input between this approach
and approach 4 (below) is significant.

4. Averaging lattice results for total aHVP, LO
µ : The advantage of this approach is that all ambiguity surrounding

different conventions used in the separation into strictly QCD results and QED and strong IB corrections is
absent. Each collaboration can choose its preferred decomposition scheme or way of fixing the scale and
tuning quark masses. The result obtained corresponds to the same quantity: aHVP, LO

µ is a well-defined physical
observable. This makes averaging results straightforward. The downside is that very few collaborations have
computed all necessary contributions. The BMW [15] and Mainz [26] collaborations have done so. It is possible
to obtain such a result from the RBC/UKQCD collaboration publications [13, 21, 25]. We note the latter two
employed blinded analyses, at least for part of their calculation.

In addition to the advantages and disadvantages of the averaging methods discussed above, other features can
play an important role in the final uncertainties. In particular, because we perform the canonical PDG rescaling of
uncertainties by

√
χ2/dof in averages of results with slight tensions, for which χ2/dof > 1, the order in which different

contributions are averaged and combined may significantly impact the final uncertainty. Such effects will be found
below.

3.6.1. Result for aHVP, LO
µ from the sum of averaged windows

Here we simply rely on Sec. 3.4, which provides the following averages for the SD, W, and LD windows in the
isospin-symmetric limit: aSD

µ (iso) = 69.06(22) × 10−10, aW
µ (iso) = 236.16(42) × 10−10, and aLD

µ (iso) = 407.9(5.0).
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Collaboration δaHVP, LO
µ δaHVP, LO

µ (WP25)|corr References

Mainz/CLS-24 −4.1(4.4) 5.2(4.4) [26]
BMW-20 −0.2(1.3) −0.2(1.4) [15]
ETM-19 7.1(2.6) −3.7(4.3) [14]

RBC/UKQCD-18 9.5(10.4) 6.9(10.4) [13]

Table 14: IB contributions to aHVP, LO
µ in units of 10−10. The values in the second column are as published (in the collaboration’s scheme), while

the third is given in the WP25 scheme. They also include corrections for possibly omitted contributions but not the estimate, 2 × 10−10, of the
common uncertainty associated with the assumptions made about the LD behavior of the IB-correction correlators. As described in the main text,
the latter is added linearly to the average IB contribution.

These results are to be understood as given in the WP25 scheme for the isospin limit. Adding the contributions
together without any correlations, we obtain the following result for aHVP, LO

µ in the WP25 isospin limit:

aHVP, LO
µ (iso)

∣∣∣∣lat

Avg. 1
= 713.1(5.0) × 10−10 . (3.29)

To that result, we have to add QED and SIB effects. We average the results of BMW-20 [15], RBC/UKQCD-18
[13], ETM-19 [14], and Mainz/CLS-24 [26]. We must first account for the following modifications to those effects
and also consider that the IB corrections computed by Mainz/CLS-24, ETM-19, and RBC/UKQCD-18 are not given
in the WP25 scheme.

To begin with, it should be noted that many of the correlation functions that enter the computation of those effects
are very noisy at distances above t ≃ 2 fm, with details depending on the specific effect considered or on the approach
used. Thus, all collaborations make assumptions about the behavior of those correlators at long distances. At such
separations, the QED corrections are dominated by the π±–π0 mass difference. There are also small contributions from
ππγ and π0γ states as well as from ρ–ω mixing. For Euclidean times t ≥ 2.8 fm, those effects integrate to −2.0(1) ×
10−10 according to the phenomenological evaluation of Ref. [247].17 That time range approximately corresponds to
the region above which the QED and SIB correlators are set to zero in Ref. [15]. More generally, it is important to
account for the uncertainties associated with the assumptions made by the various collaborations. To do so we will
add the absolute value of this phenomenological estimate to the uncertainty on the average of the determinations,
without shifting the central value. Since that correction is only an estimate, we choose to add it linearly. It should be
noted that this effect is not relevant for the hybrid BMW/DMZ-24 result [23] discussed in Sec. 4.2, because in that
calculation e+e− and τ spectral functions are used to compute the contribution for aHVP, LO

µ for t ≥ 2.8 fm.
In Ref. [23] a small mistake in the sea–sea QED contribution to aHVP, LO

µ (ud) of BMW-20 was found, as described
in Sec. 7.3 of that reference. The corresponding correction and its uncertainty are tiny compared to the total 5.5×10−10

uncertainty quoted for aHVP, LO
µ in Ref. [15]. Once propagated in a correlated manner to the total QED contribution,

its net effect is to reduce the central value of the BMW-20 result for that contribution by 0.64 × 10−10. It would also
reduce its squared uncertainty by 0.45 × 10−21. However, because BMW/DMZ-24 is not yet published, we add to the
uncertainty the absolute value of the central-value shift in quadrature. Taking all of those changes into account, the
sum of the total QED and SIB corrections for BMW-20 that we use here is −0.2(1.5) × 10−10.

Turning to RBC/UKQCD-18, the total QED and SIB correction given in Ref. [13] is 9.5(10.4) × 10−10 in their
isospin-decomposition scheme. Many QED and SIB corrections are computed, except for the quark-disconnected SIB
one and for a number of quark-disconnected and all sea QED ones. BMW [15] calculated these to be −4.67(54)(69)×
10−10 for the former and −0.40(80) × 10−10 for the latter (including the small correction and the error increase men-
tioned above). The quark-disconnected SIB result is also consistent with an estimate from partially quenched ChPT
of −6.9(3.5)×10−10 [16]. We note that the suppression of the disconnected SIB is not as pronounced as in the isospin-
symmetric case. This can be understood from partially quenched ChPT [16], where the cancellation of two-pion

17The breakdown of the different sources of IB is provided in Table 4, in particular, the dependence of the dominant LD effect due to the
pion mass difference (∆π) on the cut in Euclidean time t2 is shown in Fig. 22. The full estimate for t2 = 2.8 fm roughly decomposes as −2.0 ≃
−2.5∆π + 0.1π0γ + 0.3FSR (2π) + 0.1ρ–ω.
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Figure 35: Total IB (left) and isospin-symmetric (right) contributions to aHVP, LO
µ . On the left both corrected (blue, filled symbols)

and uncorrected (purple, unfilled symbols) results, as described in the text, are shown. The blue band corresponds to the average
of the corrected values in the WP25 scheme. On the right results are shown in original (purple, unfilled symbols) and WP25
schemes (blue, filled symbols). The light blue band is the average in the WP25 scheme. Plotting symbols have the same meaning
as in Fig. 28.

connected and disconnected SIB contributions is manifest at LO. The partially quenched ChPT argument, together
with the significant cancellation of quark-connected and quark-disconnected SIB contributions calculated on the lat-
tice [15, 453], stresses the importance of quark-disconnected SIB for future computations of aHVP, LO

µ . In Ref. [13],
an error of 1.1 × 10−10 is ascribed for the neglect of the SIB correction and of 0.3 × 10−10 for the QED ones. While
the combination of these errors may appear quite generous, it does not cover the corresponding large shift in central
value. Thus, we add to RBC/UKQCD’s result the shift −5.1(1.2)× 10−10 as well as the difference between the central
values of the ud contribution in the WP25 and RBC/UKQCD-18 schemes, i.e., 2.5 × 10−10 [25]. Finally, we arrive at
δaHVP, LO

µ (RBC/UKQCD-18) = 6.9(10.4) × 10−10.
We include in the average the ETM-19 calculation of IB corrections [14], where quark connected SIB and QED

contributions are computed for light, strange, and charm quarks in a quenched QED setup. ETM-19 includes an
extra uncertainty of 1.2 × 10−10 for the missing disconnected SIB and QED contributions, as well as the sea QED
contributions. According to the BMW-20-based determination discussed above, these neglected corrections amount
to −5.6(1.2) × 10−10 and are not covered by ETM-19’s extra uncertainty. Thus, after removing that uncertainty, we
add to ETM-19’s result, 7.1(2.6) × 10−10, the determination of the neglected contribution and combine uncertainties
in quadrature. While Refs. [23, 454] provide sufficient evidence that the differences between the Gasser–Rusetsky–
Scimemi (GRS) [455] and WP25 schemes are negligible as far as the hadronic inputs to extract quark masses are
concerned, ETM-19’s GRS scheme is implemented employing the pion decay constant to set the scale. To account
for the scheme mismatch, we use the Fermilab/HPQCD/MILC-24 [29] computation of the correlated difference of
the isospin-symmetric total HVP [28, 29] between a scheme based on fπ, close to the ETM one, and the one used for
our averages. This difference amounts to −5.2(3.3) × 10−10, which we also add to the ETM-19 estimate, combining
uncertainties in quadrature. All the above corrections yield δaHVP, LO

µ (ETM-19) = −3.7(4.4) × 10−10.
For Mainz/CLS-24, we get the total QED plus SIB correction in their scheme directly from Ref. [26]. It is

−4.1(4.4)×10−10. Most QED and SIB corrections were computed, except for a number of quark-disconnected and sea
QED ones, which were either taken into account using scalar QED [26, 453] or included via an additional systematic
error estimate. It is worth noting that Mainz does not account for the renormalization of the lattice spacing due to
QED effects. This effect is believed to be negligible compared to their quoted total error. We must now convert
this result to the WP25 scheme. We do the latter by adding the difference between the central values of the LD
window in the WP25 and Mainz/CLS-24 schemes, i.e., 9.3 × 10−10 [26]. Thus, in the WP25 scheme we obtain
δaHVP, LO

µ (Mainz/CLS-24) = 5.2(4.4) × 10−10.
Before averaging we have to account for correlations between BMW-20, ETM-19, and RBC/UKQCD-18 which

arise through the corrections applied to the latter two for missing QED and SIB contributions. The uncertainty
associated with the SIB contribution is 0.9 × 10−10 for BMW-20 and 1.1 × 10−10 for RBC/UKQCD-18. For the sea
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Contribution (ud) (s) (c) (disc) (iso) Total

aSD
µ [BMW-20→BMW/DMZ-24] 48.063(73) 9.094(14) 11.57(10) −0.0020(21) 69.02(20) 69.06(24)

aW
µ [BMW-20→BMW/DMZ-24] 206.89(37) 27.261(68) 2.810(56) −0.995(59) 235.97(38) 236.39(39)

aHVP, LO
µ

∣∣∣lat

Avg. 1
[BMW-20→BMW/DMZ-24] – – – – 712.9(5.0) 713.0(6.1)

aHVP, LO
µ

∣∣∣lat

Avg. 2B
[BMW-20→BMW/DMZ-24] 661.0(5.0) 53.16(28) 14.39(11) −16.5(2.3) 712.3(5.4) 712.4(6.4)

Table 15: Values corresponding to the world averages in Tables 7, 8, and 13 and Eqs. (3.21), (3.22), (3.25), (3.26), (3.29), (3.31), and (3.32) with
the inclusion of the as-of-yet-unpublished BMW/DMZ-24 [23] results.

QED corrections, the value is 0.8 × 10−10 for the two results. For ETM-19 the uncertainty is 1.2 × 10−10 for both. We
can now average the total QED plus SIB correction from Mainz/CLS-24, BMW-20, ETM-19, and RBC 18. These are
summarized in Table 14 and shown in the left panel of Fig. 35. We find 0.1(1.4) × 10−10 with a χ2/dof = 2.6/3. As
discussed above, to account for the uncertainties associated with assumptions made concerning the LD behavior of
lattice IB-correction correlators, we add a 2.0 × 10−10 uncertainty linearly to that average. Thus, we obtain

δaHVP, LO
µ

∣∣∣∣lat

Avg.
= 0.1(3.4) × 10−10 . (3.30)

Adding these IB corrections to the isospin-symmetric results of Eq. (3.29), we obtain:

aHVP, LO
µ

∣∣∣∣lat

Avg. 1
= 713.2(6.1) × 10−10 . (3.31)

In addition to the IB estimates averaged here, we refer to an independent estimate of the SIB for the SD and W
contributions recently provided by Fermilab/HPQCD/MILC-24 [28] and their ongoing calculation of the QED ef-
fects [456]. Alternative formulations beyond QEDL [457] and QED∞ [13, 458, 459] implemented in the estimates
discussed in detail here, include a novel IR-improved QED action QEDr [460, 461], simulating at nonzero photon
mass mγ and taking the limit mγ → 0 [462–464], and a local, gauge invariant formulation with C⋆ boundary condi-
tions [465], which has recently been used to compute HVP in an unphysical setup [466].

3.6.2. Result for aHVP, LO
µ from the sum of the individual flavor components of aHVP, LO

µ (iso) and the average isospin-
breaking corrections

Here we rely on the results of Sec. 3.5 for the determination of aHVP, LO
µ (iso), in the WP25 scheme, from averages

of its individual flavor components. These are obtained in two ways. In the first, the flavor components of aHVP, LO
µ (iso)

are obtained from averages of the corresponding results by the different collaborations. The results that enter these
averages are collected in Table 11 and plotted in Fig. 34. Their averages are summarized in the first row of Table 13.
In that same row is given the result aHVP, LO

µ (iso) = 712.0(4.9) × 10−10, obtained by combining those averages.
The second way of obtaining the flavor components of aHVP, LO

µ (iso) is by summing averages of the individual
flavor contributions to the SD, W, and LD windows computed in Secs. 3.4.2 to 3.4.4. This procedure may appear
to be merely a rearrangement of that of approach 1 above, where aHVP, LO

µ (iso) is obtained by first summing the
flavor contributions window-by-window and then adding the three windows together. They are clearly closely related.
However, there are some differences. These arise from taking as only result for aLD

µ (s) the one from Ref. [26], from
including a very small charm contribution to aLD

µ obtained by averaging the results of Mainz/CLS-24 [26] and ETM-
24 [27], and from considering the disconnected contribution to aLD

µ (iso) instead of the iso-singlet one. Nevertheless,
because those differences are small, it is not surprising that the resulting value for aHVP, LO

µ (iso) given in the third row
of Table 13, 712.5(5.4)× 10−10, is close to the result in Eq. (3.29). We note that the central values of the two averages
are very close to each other.

Now we combine each of these determinations of aHVP, LO
µ (iso) from averages of its individual flavor components

with the average of the IB corrections computed in Sec. 3.6.1 and given in Eq. (3.30). Using the first determination
we obtain

aHVP, LO
µ

∣∣∣∣lat

Avg. 2A
= 712.1(6.0) × 10−10 , (3.32)
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Collaboration aHVP, LO
µ (iso) aHVP, LO

µ (iso, WP25) References

BMW-20 – 707.4 (5.5) [15]
Mainz/CLS-24 728.6 (5.6) 719.3(5.6) [19, 22, 26]

RBC/UKQCD-24 725.0 (7.9) 722.5 (6.5) [13, 21, 25]

Table 16: Total isospin-symmetric contribution to aHVP, LO
µ in units of 10−10 in the collaboration’s original isospin-decomposition scheme (second

column) and in the WP25 scheme (third column).

Collaboration aHVP, LO
µ aHVP, LO

µ |corr References

BMW-20 707.5 (5.5) 707.2 (5.5) [15]
Mainz/CLS-24 724.5 (7.1) − [19, 22, 26]

RBC/UKQCD-24 734.5 (13.0) 729.4 (13.0) [13, 21, 25]

Table 17: Total HVP contribution to aµ in units of 10−10. The values in the second column are as published, while the third includes corrections
for omitted contributions as described in the text, except for Ref. [26] that is left unchanged. Not included is the estimate, 2×10−10, of the common
uncertainty associated with the assumptions made about the LD behavior of the IB-correction correlators. As described in Sec. 3.6.1, the latter is
added linearly to the average of corrected results.

and for the second,

aHVP, LO
µ

∣∣∣∣lat

Avg. 2B
= 712.6(6.4) × 10−10 . (3.33)

These two results are virtually identical to aHVP, LO
µ

∣∣∣lat
Avg. 1, which is also true of the alternate average considered in

Sec. 3.5.
As noted in Secs. 3.4 and 3.5, because Ref. [23] is, at the time of the writing of WP25, not yet published, the

BMW/DMZ-24 results obtained therein are not included in any of the averages reported there, and hence also not
included in the averages of this section and Sec. 3.6.1. For completeness, we list in Table 15 values for the averages
from Secs. 3.4, 3.5, and 3.6.1 as well as this section that include the corresponding BMW/DMZ-24 results. In particu-
lar, Table 15 lists BMW/DMZ-24-inclusive averages for the aSD

µ and aW
µ observables of Tables 7 and 8 and Eqs. (3.21),

(3.22), (3.25), and (3.26) and the aHVP, LO
µ results of Table 13 and Eqs. (3.29), (3.31), and (3.32). The corresponding

BMW-20 [15] results are then excluded as inputs as they are then superseded by BMW/DMZ-24.

3.6.3. Result for aHVP, LO
µ from the sum of the averages for the isospin-symmetric total and isospin-breaking contribu-

tions
Table 16 lists the results for the total isospin-symmetric contribution to aHVP, LO

µ that we consider here. These
are also shown in the right panel of Fig. 35. These are from the BMW, Mainz, and RBC/UKQCD collaborations
whose results enter the average of approach 4 and whose calculations are discussed in more detail in Sec. 3.6.4. We
perform a weighted average of those values in the WP25 scheme, while accounting for the correlations among the FV
corrections in the Mainz/CLS-24 and RBC/UKQCD-24 computations. We obtain

aHVP, LO
µ (iso)

∣∣∣∣lat

Avg. 3
= 715.7(4.7) × 10−10 , (3.34)

with χ2/dof = 3.8/2, so the quoted error has been enlarged by a factor of 1.4. Taking the IB correction from Eq. (3.30)
computed for Avg. 1, we arrive at

aHVP, LO
µ

∣∣∣∣lat

Avg. 3
= 715.8(5.8) × 10−10 , (3.35)

which is slightly larger, but consistent, with the averages in the previous two subsections.

3.6.4. Averaging lattice results for total aHVP, LO
µ

Here we focus on the computations that include all flavor contributions and at least the dominant QED and SIB
corrections (for details about the less recent ones see Sec. 3.5 and Ref. [1]). We also require that the precision
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Figure 36: LO HVP contribution to aµ. Results shown are published (purple, unfilled symbols) and with corrections (blue, filled
symbols) as explained in the text. The vertical band displays the weighted average of the corrected results as given in Eq. (3.36)
(note that the Mainz/CLS-24 result has not been corrected). Plotting symbols have the same meaning as in Fig. 28.

of the isoQCD contribution be around one percent. This makes them suitable for a comparison with data-driven
determinations of aHVP, LO

µ and, as input to the SM prediction, with the measurement of aµ [5–7]. We now discuss the
three calculations that satisfy those criteria and that we use to obtain our final lattice average of aHVP, LO

µ . These are
presented in Table 17 and shown in Fig. 36.

The BMW collaboration was the first to reach the precision goal in 2020, quoting a 0.8% total uncertainty [15].
The 31 gauge ensembles used are obtained with N f = 2 + 1 + 1 flavors of stout-smeared staggered fermions, quark
masses closely bracketing their physical values, and six lattice spacings. The calculation includes all LO QED and
SIB corrections. FV corrections are determined via dedicated simulations on L = 11 fm lattices. In addition to the
modifications to the QED and SIB corrections computed in BMW-20 and discussed in Sec. 3.6.1, the subtraction of
the very small one-photon-reducible contribution, 0.321(11) × 10−10, performed in BMW-20 was not required and
thus should be removed.

Recently, Mainz reported results for the LD window [26], which they combined with earlier results for the SD [22]
and intermediate [19] windows to give a final prediction for aHVP, LO

µ . They quote a prediction for aHVP, LO
µ with a to-

tal relative error of 1.0%. Their results are obtained from 34 ensembles with N f = 2 + 1 flavors of O(a)-improved
fermions, four of which have near-physical light quark masses. Their simulations provide them with six lattice spac-
ings. QED and SIB corrections are explained in Sec. 3.6.1.

The third collaboration, whose work alone can provide a determination of aHVP, LO
µ , is RBC/UKQCD. They were

the first collaboration to present a determination of the connected ud contribution to the LD window in the isospin-
symmetric limit [25]. By combining that result with an earlier determination of the connected ud contribution to the
SD and intermediate windows [21], they obtain a prediction for that contribution to the full aHVP, LO

µ [25], denoted
here aHVP, LO

µ (ud). In turn, that prediction can be combined with RBC/UKQCD’s 2018 computation of the quark-
disconnected, strange, charm, QED, and SIB contributions [13] to obtain a result for aHVP, LO

µ . In that process, the QED
and SIB corrections of RBC/UKQCD-18 must be supplemented by missing contributions, as discussed in Sec. 3.6.1.
Their prediction for aHVP, LO

µ (ud) is based on ten N f = 2 + 1 domain-wall fermion ensembles at three lattice spacings,
of which four are generated with masses of light quarks around their physical values [21, 25]. Their results for
the strange-quark connected contribution are obtained from two ensembles with different lattice spacings [13] and,
for the charm, eight ensembles with three spacings. Both determinations involve two ensembles with physical pion
masses. For the light- and strange-quark disconnected contributions [358], as well as for QED and SIB corrections,
one ensemble with the larger lattice spacing and physical masses is used.

These three results are given in Table 17 and shown in Fig. 36, with and without the applied correction factors
discussed in Sec. 3.6.1. We are now almost ready to combine the corrected results of BMW-20, Mainz/CLS-24,
and RBC/UKQCD-24. First, we must discuss the correlations among them. Mainz/CLS-24 and RBC/UKQCD-24
employ very similar models for FV corrections. By far the largest contribution to those corrections concerns the
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Avg. ID aHVP, LO
µ

∣∣∣lat

Avg. ID

1 713.2(6.1) Eq. (3.31)
2A 712.1(6.0) Eq. (3.32)
2B 712.6(6.4) Eq. (3.33)
3 715.8(5.8) Eq. (3.35)
4 715.3(8.6) Eq. (3.36)

Table 18: Summary of lattice weighted averages for aHVP, LO
µ in units of 10−10 ; “1” from the sum of averages of the isospin-symmetric SD, inter-

mediate, and LD windows from Secs. 3.4.2 to 3.4.4 plus our average of IB corrections; “2A” using averages of flavor components of aHVP, LO
µ (iso)

obtained in Sec. 3.5 plus that same IB correction average; “2B” using a flavor decomposition of the windows implemented in Sec. 3.5 plus the same
IB correction; “3” from our average of the total aHVP, LO

µ (iso) values plus the IB correction average; and “4” is our average of total aHVP, LO
µ values.

I = 1 contribution to the LD window. The way in which the models are used differs in the two calculations, but
both their physical-mass simulations are performed on L ≃ 6 fm lattices. Thus, we fully correlate the uncertainties
on the collaborations’ estimates of FV corrections for the LD window, i.e., 1.5 × 10−10 for Mainz and 0.8 × 10−10 for
RBC/UKQCD. Correlations arising from IB corrections between BMW-20 and RBC/UKQCD-24 are also included,
see Sec. 3.6.1.

Putting all of those ingredients together, we obtain the average 715.3(6.6) × 10−10 for aHVP, LO
µ . This average

carries a χ2/dof = 5.0/2, leading to a rescaling of its error by 1.6. While this rescaling factor is not excessively
large, it applies to the total uncertainty on aHVP, LO

µ , instead of being applied to only the sub-components that are in
tension, as in the three other combination procedures described above. Since the uncertainty on the total aHVP, LO

µ is
obviously larger than those on its sub-components, a similar rescaling factor has a larger impact, in absolute terms,
on the final uncertainty of this particular combination of results than on the others. For example, the current average
makes use of the same set of results as approach 3, except for the addition of ETM-19 [418] in the determination
of δaHVP, LO

µ

∣∣∣lat
Avg. in Eq. (3.30). The lesser precision here comes from the fact that the tensions between different

lattice inputs, which are strongest between respective isospin-symmetric results, also induce a rescaling of the large
uncertainties associated with IB corrections, while they only induce a rescaling of the uncertainty on the isospin-
symmetric averages in approach 3. This is an example that shows that the order in which averages are combined can
have a significant impact on the final uncertainty.

Now, the uncertainty on the above average does not take into account the 2.0 × 10−10 uncertainty associated with
the assumptions made on the LD behavior of the IB-correction correlators discussed in Sec. 3.6.1. Following that
discussion, we add this uncertainty linearly to the one of the average, leading to:

aHVP, LO
µ

∣∣∣lat
Avg. 4 = 715.3(8.6) × 10−10 . (3.36)

This result also carries a significantly larger uncertainty than those of the first two approaches, described in Secs. 3.6.1
and 3.6.2, which is due to the fact they include many more lattice inputs.

3.6.5. Summary of lattice world averages for aHVP, LO
µ

Table 18 collects the main results of this “Total HVP” section, and they are also shown in Fig. 37. While a few of
the lattice inputs enter all five averages, the overlap among the inputs used in the different approaches varies somewhat.
Averages 1 and 2B use the exact same lattice inputs, while the overlap among the inputs used in Avgs. 1, 2B, and
2A is considerable. Similarly, Avgs. 3 and 4 are based on almost the same lattice inputs. We note that the small
tensions observed among results from different collaborations for some components of aHVP, LO

µ contribute differently
depending on the order in which they are combined. Nevertheless, these different averages and combinations are
remarkably similar, well within quoted uncertainties, demonstrating the general consistency of the lattice results.

We note that Avgs. 1 and 2B include all of the most recent lattice inputs and thus information about aHVP, LO
µ ,

where the windowed sum of Avg. 1 yields a slightly more reliable uncertainty estimate. Average 2A, obtained from
a flavor decomposition, includes some different inputs that yield better consolidation for some sub-components, see
Sec. 3.5. We also note that Sec. 3.5 discusses an alternate average that mixes the inputs in Avgs. 2A and 2B to yield a
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Figure 37: Weighted averages of the total HVP contribution to aµ for the various averaging procedures described in the text, see Ta-
ble 18 for more details. The final quoted value for aHVP, LO

µ is denoted by the black, filled circle; results for the other averaging
procedures are shown as blue, unfilled symbols.

virtually identical result to Avg. 1. Incidentally, the Avg. 1 central value and error are close to being medians for the
five results listed in Table 18. In summary, we take aHVP, LO

µ

∣∣∣lat
Avg. 1 as our final result for the WP25 consolidated lattice

HVP average. Hence, quoting Eq. (3.31), we obtain

aHVP, LO
µ

∣∣∣∣lat

WP25
= 713.2(6.1) × 10−10 , (3.37)

which has a precision of 0.9%. This result is a testimony to the significant progress accomplished by lattice computa-
tions of aHVP, LO

µ since WP20 [1].

3.7. Other observables

3.7.1. Isospin-breaking corrections for τ data
Dispersive determinations of aHVP, LO

µ based on τ data, specifically on vector-mediated decays of the τ lepton into
final hadronic states, have been proposed long ago [187]. In the limit of exact isospin symmetry the underlying charged
spectral density agrees with the corresponding neutral one, obtained from e+e− data, but given the high-precision target
of aHVP, LO

µ , accurate experimental determinations of the differential rates together with a precise control of IB effects
are necessary. These aspects are discussed, from a phenomenological point of view, in Sec. 2.3 with a specific focus
on the dominant 2π channel. In this problem, lattice QCD+QED simulations can play an important role in providing
solid first-principle results as proposed in Ref. [245], where the difference of the (fully) inclusive spectral densities in
the charged and neutral channels has been first examined, see also Sec. 2.3.5.

Contrary to the calculation of IB effects for HVP, the presence of electric charge in initial and final states severely
complicates the problem. Setting aside the technicalities on the definition of QED on a torus, an important challenge
arising here is in the IR divergences. By studying the contributions to the decay rate, rather than the individual
Feynman diagrams, it is possible to isolate three classes of IR safe contributions, as reported in Ref. [467], amounting
to factorized initial- and final-state effects, and mixed nonfactorizable contributions (where a photon is exchanged
between the lepton and the hadronic system). For the first, thanks to the perturbative nature of QED, pure analytic
control is achieved [195, 196], see also Sec. 2.3, and progress in defining a factorized correction has been recently
reported [468].

The focus of Ref. [245] was instead on the final-state effects, with the intent to study them in a fully inclusive
manner by re-using QED and SIB correlation functions, already generated for the study of IB effects of the (Euclidean
lattice) HVP contribution. By splitting the ud EM current jµ into its two isospin components, jI

k (with I = 0, 1 and
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I3 = 0), we introduce the Euclidean-time correlators GII′ (x0) involving two isospin-projected currents [245]

Gγ
II′ (x0) ≡ −

1
3

3∑
k=1

∫
d3x ⟨ jI

k(x0, x) jI′
k (0)⟩ , (3.38)

such that the two-point function used for the leading lattice HVP calculation obeys the relation

C(x0) ≡ Gγ
00(x0) + 2Gγ

01(x0) +Gγ
11(x0) . (3.39)

In the isospin limit, Gγ
01(x0) vanishes and Gγ

11(x0) reduces to the so-called Wick-connected diagram. A Laplace
transform relates the latter to the isovector spectral density, which is dominated at low-energies by the two-pion
channel. The same spectral density appears in hadronic decays of the τ lepton and the corresponding Euclidean
correlator is given by

GW
11(x0) ≡ −

1
3

3∑
k=1

∫
d3x ⟨0| j1,+k (x0, x) j1,−k (0) |0⟩ , (3.40)

with j1,+k the (Euclidean) charged ud vector current. By turning on QED and SIB effects, both Gγ
01 and the difference

GW
11 − Gγ

11 acquire a nonzero value. The correlator GW
11, being charged, is evidently gauge dependent, and requires

an appropriate scale- and scheme-dependent renormalization. It is therefore defined only as an intermediate quantity,
which may nevertheless be used to extract some model-dependent parameters, such as the ρ mass shift induced by
EM interactions, where details of the operators do not matter. While eventually a model-independent calculation of
the matrix elements is required, at present the phenomenological estimate is informed by IB in the ρ parameters, see
Sec. 2.3.6.

At present, a possible strategy to calculate the IB corrections required for a τ-based inclusive determination of
the HVP contribution to (g − 2)µ has been reported in several talks [467, 468]. Some additional developments are,
however, still required. One is the need to define the matching between a renormalization scheme suitable for a lattice
calculation of GW

11 and the W-regularization or MS schemes used to determine the SD matching with the SM. The
mixed terms where the photon is exchanged between the τ and the hadronic system constitute an additional problem:
the strategy advocated so far in Ref. [467] consists of using the available knowledge on the LD effects of these terms
from ChPT [195, 196], which is, however, limited to the two-pion intermediate channel. To make further progress one
should consider matching these terms to the other phenomenological descriptions of the LD effects (including their
scheme dependence) discussed in Sec. 2.3. The restriction to the two-pion channel generates an additional systematic
error if one is interested in a fully inclusive approach, and eventually one should consider the complete calculation of
these mixed nonfactorizable effects from lattice QCD+QED simulations, possibly solving the corresponding inverse
problem.

In conclusion, while further work is still required to properly address all systematic errors of a τ-based predic-
tion of aHVP, LO

µ using lattice QCD+QED inputs, it is nevertheless worth remarking that several of these systematic
effects are expected to be mitigated in the intermediate window contribution aW

µ , where high-multiplicity channels are
suppressed, a quantity that should likely be the target of a first lattice QCD+QED prediction from τ data.

3.7.2. Running of the fine-structure constant
The dependence of the QED coupling α on the interaction energy can be parameterized in the on-shell scheme

as α(q2) = α/[1 − ∆α(q2)], where the q2 = 0 value α = 1/137.035999 . . . is the precisely-measured fine-structure
constant. The uncertainty in the running ∆α is dominated by the hadronic contribution ∆αhad. For spacelike momenta,
q2 = −Q2 < 0, it is proportional to the subtracted HVP function defined in Sec. 3.1, i.e.,

∆αhad(−Q2) =
α

π
Π̂(Q2), with Π̂(Q2) = 4π2[Π(Q2) − Π(0)] . (3.41)

Thus, ∆αhad(−Q2) is intimately related to the HVP contribution aHVP, LO
µ and can be computed from first principles on

the lattice. First, we discuss results at a spacelike Q2 of a few GeV2. These constitute yet another set of quantities
that are directly accessible by lattice computations and data-driven methods alike (see also Secs. 2.7.1 and 4) and can
be used as an alternative to aHVP

µ and the window observables to compare independent determinations. In particular,
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if Rhad(s) is split in three intervals of
√

s below 600 MeV, above 900 MeV and between, the relative weight of the
three contributions is similar in ∆αhad(−1 GeV2) and aW

µ [19]. Following pioneering works by ETM [469] and Mainz
[470], the BMW collaboration provided values for ∆αhad(−Q2) at Q2 = 1.0, 2.0, . . . , 5.0 GeV2 in the supplementary
material of Ref. [447], albeit not including the FV corrections. The first complete lattice calculation of the five-flavor
∆α(5)

had(−Q2) including contributions up to the bottom quark and all known systematic effects is given in Ref. [15] at
Q2 = 1 GeV, ∆α(5)

had(−1 GeV2) = 0.003784(22), and in terms of the difference with Q2 = 10 GeV, ∆α(5)
had(−10 GeV2) −

∆α(5)
had(−1 GeV2) = 0.004867(32). In Ref. [471] Mainz published their dedicated study of the hadronic contribution to

the running of α up to a scale of 7 GeV2. The result at Q2 = 1 GeV2 is 0.003864(32), larger than the corresponding
BMW result. These results can be directly compared with the data-driven estimates of Refs. [263, 265, 472], which
are in agreement among themselves. For instance, using the data from Ref. [265] one obtains 0.003682(14) at Q2 =

1 GeV2. One concludes that lattice results are in significant tension with data-driven estimates obtained prior to
CMD-3’s publication of their data in the π+π− channel, even if only the lower BMW result is considered. This persists
at larger values of Q2: Ref. [471] obtains ∆α(5)

had(−5 GeV2) = 0.00716(9), that is 3.5% larger and in a 2.6σ tension with
the data-driven result of 0.006915(33) [265]. In general, the discrepancy observed in Refs. [15, 447, 471] between the
lattice results and the data-driven estimates is consistent with the scenario suggested by the lattice aW

µ results.
In terms of phenomenological impact, the most relevant quantity is the running contribution to the Z pole,

∆αhad(M2
Z), which is an input to global EW fits. Current lattice simulations cannot access spacelike Q2 much larger

than a few GeV2, beyond which cutoff effects are not under control. A solution is writing the running to the Z pole
using the so-called Euclidean split technique (also known as Adler function approach) [473, 474] as the sum of three
terms

∆α(5)
had(M2

Z) = ∆α(5)
had(−Q2

0) + [∆α(5)
had(−M2

Z) − ∆α(5)
had(−Q2

0)] + [∆α(5)
had(M2

Z) − ∆α(5)
had(−M2

Z)] , (3.42)

where the first term on the RHS at an intermediate spacelike scale Q2
0 of the order of a few GeV2 has been computed

on the lattice. The second term on the RHS of Eq. (3.42) can either be estimated with data-driven methods, or, if
one is after a result independent of R-ratio data, it can be obtained by integrating the Adler function D(Q2) that, for
sufficiently large Q2, is calculable in pQCD plus minor nonperturbative corrections [473, 475–477]. The third term on
the RHS of Eq. (3.42), which provides the link between the spacelike and timelike regions at MZ , has been computed
in pQCD and has a negligible error compared to the other two terms [472].

In Ref. [478] the Euclidean split technique is applied combining the lattice results of Ref. [447] with the pQCD
running at Q2

0 = 4 GeV2, obtaining ∆α(5)
had(M2

Z) = 0.02766(10). This fit prior results in a small pull of 1.3σ (or 1.1σ
in a conservative scenario), leading the authors of Ref. [478] to conclude that there is no inconsistency between this
lattice evaluation and the EW fit. In Ref. [471], the result of the combination of the lattice calculation with the pQCD
expansion of the Adler function is ∆α(5)

had(M2
Z) = 0.02773(15), substantially constant when varying Q2

0 in the 3 to
7 GeV2 range. While this result is larger than a pure data-driven determination, e.g., ∆α(5)

had(M2
Z) = 0.02761(11) from

Ref. [30], the clear tension in the running up to Q2
0 is hidden by the relatively large error of the higher-energy part

of the running corresponding to the second term in Eq. (3.42). Indeed, the result of Ref. [471] is little more than
1σ larger than the indirect determinations from most EW global fits [328, 329, 478, 479], except for the global fit in
Ref. [327] (based on Ref. [480]) that obtains a slightly smaller value with a smaller error hinting at a larger tension.
When interpreting these findings, one must keep in mind that differences among global fits can originate from the
input values for mt and MH , as well as the treatment of MW .

Similar connections exist between Π̂(q2) and the running of the weak mixing angle, whose nonperturbative con-
tributions arise from a different flavor combination of the same correlator. Reference [471] provides the first lattice
calculation thereof, including the SU(3) breaking correlator Π̄08, which removes the SU(3) assumptions required
in previous phenomenological determinations [481–484]. In particular, the evolution of the weak mixing angle to
q2 = M2

Z can be better controlled [485], which reduces the uncertainty in the γ–Z correlator Π̄γZ(−M2
Z), required for

the prediction of aEW
µ , see Sec. 8 and Ref. [72].

3.8. Further cross-checks
Given the high precision that is being aimed at, it is important to provide stringent cross-checks of the lattice

calculations. Reaching consistency among the results of different lattice collaborations is a crucial validation step, in
particular as a test of universality. In this subsection, we discuss further cross-checks aimed at eliminating potentially
underestimated common sources of systematic error.
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In recent years, all lattice collaborations have used the TMR, which means that the states created by the EM
current are at rest. An alternative method, which is particularly natural on physically large lattices, is the covariant
coordinate-space (CCS) representation [486],

aHVP, LO
µ =

∫
d4z Hλσ(z) ⟨ jσ(z) jλ(0)⟩ , (3.43)

with Hµν(x) a known tensorial kernel. The latter can be chosen to be, e.g., transverse, traceless, or proportional to xµxν,
by exploiting the conservation of the vector current. A recipe to translate a quantity defined in the TMR representation
to the CCS representation is provided in Ref. [487]. Consistency between results obtained from the TMR and the CCS
representation are ultimately a test of the restoration of Lorentz symmetry in the continuum and infinite-volume limit.
In particular, finite-size effects are different for the two representations, and therefore the comparison TMR vs. CCS
provides a test of our understanding of these effects.

The CCS representation with a traceless kernel has been applied recently [487] to compute the intermediate
window quantity, thereby providing a cross-check for the Mainz calculation [19] at the point Mπ = 350 MeV,
MK = 450 MeV with a precision of 1.1%. Good consistency was found in the continuum, even though the dis-
cretization errors are rather different for the lattice correlator based on one local and one conserved vector current.

The CCS representation can also be used to compute the bare EM correction to the HVP contribution [488]

a1γ∗
µ (Λ) = −

e2

2
δµν

∫
d4x d4y d4z Hλσ(z) G0(Λ; y − x) ⟨ jσ(z) jν(y) jµ(x) jλ(0)⟩ , (3.44)

where G0 is the massless scalar propagator UV-regulated at scale Λ, either using the same lattice as the QCD degrees
of freedom, in which case Λ = 1/a, or at a scale Λ well below the inverse lattice spacing, for instance à la Pauli–
Villars. In the latter case, the expression has a similar structure as the coordinate-space expression for aHLbL

µ . The
continuum limit of a1γ∗

µ (Λ) can be taken at a fixed value of Λ. It is entirely determined by the forward light-by-
light amplitude, and a Cottingham-like formula [488] allows for an evaluation of a1γ∗

µ (Λ) in the continuum. Quark-
contraction diagrams in which the photon propagator connects two distinct quark loops are UV-finite and may be
evaluated without regularization [453].

If M denotes an (Nf+1)-component vector of stable hadron masses defining the parameters of QCD in the presence
of dynamical photons, the master equation for the correction to HVP to be added to its value in isoQCD reads

δaHVP, LO
µ = lim

Λ→∞

[
a1γ∗
µ (Λ) − ∇MaHVP, LO

µ · Mself(Λ)
]
+ ∇MaHVP, LO

µ · δM . (3.45)

The term containing the bare EM self-energies Mself(Λ) of the reference hadrons corresponds to subtracting from the
bare correction a1γ∗

µ (Λ) the effect that merely comes from an EM shift of the reference hadron masses. The last term
corresponds to a shift in aHVP, LO

µ due to the fact that at the isoQCD expansion point, not all reference hadron masses
are at their physical values, δM = Mphys −MisoQCD. Equation (3.45) is also a rigorous starting point for computing
δaHVP, LO

µ in the continuum, since Mself(Λ) can be evaluated using Cottingham formulae for each reference hadron
(see, e.g., Ref. [489]). Thus, the correction δaHVP, LO

µ can ultimately be cross-checked by continuum evaluations, for
which one might expect a precision of 2 × 10−10 to be achievable, by analogy with aHLbL

µ .

3.9. Conclusions and outlook

At the time of WP20 lattice-QCD calculations were not precise enough to impact the SM prediction, and, as
a result, the value for HVP in the SM prediction of WP20 was entirely based on data-driven analyses of hadronic
e+e− cross-section data. Since then a great deal of progress has been achieved, thanks to dedicated efforts by the
world-wide lattice field theory community, allowing for a precise and robust first-principles calculation of the HVP
contribution from a variety of lattice fermion actions including Wilson-Clover and twisted-mass Wilson, domain wall,
highly improved staggered quark (HISQ), and other implementations of staggered quark actions.

A key ingredient for the observed consolidation of lattice results was the introduction of window observables and
their adoption by the lattice community as a standard for cross-checking and benchmarking lattice calculations for
sub-contributions to HVP. The SD, intermediate, and LD windows amplify or suppress technical challenges related
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to discretization effects, FV corrections, and statistical noise, allowing for tailored approaches for each of them.
The second important development since WP20 is the widespread adoption of blinding procedures by the lattice
community to avoid confirmation bias. This has proved instrumental for establishing the reliability of the observed
consolidation among independent lattice-QCD results and, in turn, for producing a robust and precise average for LO
HVP.

The intermediate-distance window was the first quantity for which a consolidated set of lattice results became
available around 2022, hinting at a significant tension with the corresponding data-driven estimates based on e+e− data
prior to CMD-3’s 2023 result. The currently available set of results for the light-quark, isospin-symmetric short- and
intermediate-distance window observables shows a remarkable degree of consistency and precision among different
lattice collaborations. Fewer results are available for the LD window or for unwindowed contributions, but the results
for the latter are in good agreement with sums of windows.

As the precision of lattice result improves, the focus is gradually shifting towards the calculation of IB correc-
tions. Only a small fraction associated with sea–sea and sea–valence QED corrections, which amounts to approxi-
mately 0.06% of the total HVP contribution, has been calculated by a single lattice collaboration so far. For all other
contributions, at least three independent lattice results exist. The LD QED contributions, which amount to about
0.3% of the total HVP correction, are particularly challenging. For these contributions additional cross-checks against
phenomenology have been performed.

The review of lattice-QCD results in WP25 is based on seventeen different papers from eight independent lattice-
QCD collaborations [13–29], including three lattice calculations of the entire LO HVP contribution [15, 25, 26]. We
use five approaches for obtaining averages for aHVP, LO

µ , which are in excellent agreement. As our final SM prediction
of aHVP, LO

µ we take Avg. 1 from Eq. (3.31), which includes the maximum number of independent lattice results from
Refs. [13–29]. This consolidated average of lattice-QCD results provides a reliable determination of the LO HVP
contribution to the SM prediction of aµ. The total error of ±6.1 × 10−10 is larger compared to that of the data-driven
estimate quoted in WP20. Compared with WP20, the relative precision for aHVP, LO

µ obtained from lattice QCD has
improved by a factor of approximately three.

This section also describes how lattice QED+QCD can provide model-independent results for the isospin rotation
needed to extract the spectral function from hadronic τ decays. In addition to considering the LO HVP contribution,
we have also reviewed lattice calculations of the closely related hadronic running of the EM coupling α, which,
unsurprisingly, shows similar tensions between lattice results and dispersive analyses based on e+e− cross-section
data prior to the results published by CMD-3. Finally, a valuable consistency check of the entire lattice approach to
HVP can be performed by employing the CCS representation as an alternative to the standard TMR.

Continuing efforts by the world-wide lattice community are expected to yield further significant improvements in
precision and, hopefully, even better consolidation thanks to a diversity of methods. We expect, in particular, more
precise evaluations of IB effects and the noisy contributions at long distances.
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4. Interplay of lattice-QCD and data-driven evaluations of HVP

D. Boito, A. X. El-Khadra, M. Golterman, M. Hoferichter, C. Lehner, L. Lellouch, T. Leplumey, B. Malaescu

4.1. Data-driven evaluations of Euclidean windows
For the full HVP contribution, timelike [83–86] and spacelike [421, 448, 490] representations

aHVP, LO
µ =

(αmµ

3π

)2 ∫ ∞

sthr

ds
K̂(s)

s2 Rhad(s) =
(
α

π

)2 ∫ ∞

0
dx0 C(x0) f̃ (x0) , (4.1)

are connected via change of the corresponding kernel functions K̂(s) and f̃ (x0), where K̂(s) and Rhad(s) are defined
in Sec. 2.1, f̃ (x0) and C(x0) in Sec. 3.3. Ultimately, the two formulations are related by a change of kernel functions,
K̂(s) vs. f̃ (x0). In particular, this implies that additional weight functions introduced in the integrals in Eq. (4.1) in
one approach can be translated to the other accordingly,18 e.g., the spacelike weight functions Θ(x0) introduced in
Ref. [13], see Eqs. (3.16) to (3.20), translate to timelike ones Θ̃(s) via

Θ̃(s) =
3s5/2

m2
µK̂(s)

∫ ∞

0
dx0 Θ(x0)e−x0

√
s
∫ ∞

0

dω
ω

f
(
ω2)[ω2x2

0 − 4 sin2
(
ωx0

2

)]
, (4.2)

with f (s) defined in Eq. (3.6). The possibility of evaluating the Euclidean window quantities defined by Θ(x0) also
with data-driven techniques renders them an invaluable diagnostic tool to compare lattice-QCD and data-driven eval-
uations of HVP in more detail, and, ultimately, to combine the two approaches via hybrid evaluations, using either
method in the parameter space where it is most precise [13].

In practice, the comparison is currently performed at the level of the spacelike windows, as the inversion to the
timelike domain amounts to an ill-posed inverse Laplace transform. Optimizing the resolution in

√
s that can be

achieved in such an inversion therefore requires precise knowledge of the covariances within a given lattice-QCD cal-
culation, and several studies already explored the consequences for detailed comparisons between phenomenological
and lattice-QCD evaluations [16, 359, 364, 492, 493], including the development of strategies to extract the maxi-
mum amount of information on the timelike domain from a given set of lattice calculations for aHVP, LO

µ , Euclidean
windows, and ∆αhad(−Q2). In addition to comparing the full HVP contribution in a given window [15, 359, 493],
also comparison quantities for specific parts of a complete lattice calculation have been extracted with data-driven
techniques, such as IB contributions, see Sec. 2.7.3, the light-quark-connected contribution, see Sec. 2.8.1, and the
strange+disconnected contribution, see Sec. 2.8.2.

4.2. Hybrid calculations
The Euclidean windows defined in Ref. [13] are well-defined individually and are independent of the regulator.

They can therefore also be computed with different methods and then combined to obtain the total HVP value. This
was already recognized in Ref. [13], where the SD window and the LD window were obtained from a data-driven
approach and the intermediate-distance window was obtained using the lattice method. This requires that the lattice
calculation be complete, i.e., include all quark flavors and also QED and SIB corrections. Since Ref. [13] appeared,
tensions in the data-driven sector have been identified that make the original hybrid result of RBC/UKQCD-18 no
longer appropriate to use since it included the LD contribution from t1 = 1.0 fm from the data-driven method. Varia-
tions of this idea can, however, be useful with well-consolidated results.

BMW/DMZ-24 builds on this idea, strongly limiting the use of the data-driven component to a LD window beyond
t1 = 2.8 fm, see Eq. (3.19) [23]. Thus, more than 95% of their result is obtained with a lattice calculation and only the
remaining ≲ 5% utilizes a subset of the measured e+e− → hadrons (and τ→ ντ +π

−π0) spectral function discussed in
Sec. 2. More importantly, this LD contribution is predominantly determined by the low-mass region of the spectrum
where all measurements agree within uncertainties, below the ρ-peak region that displays the tensions discussed in
Sec. 2. Even such a small replacement brings a significant reduction in overall uncertainty. As discussed in Sec. 3,

18In a perturbative approach, also the effect of quark-flavor thresholds needs to be taken into account [491].
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Figure 38: Data-driven results for the light-quark connected (ud) components of the RBC/UKQCD windows compared with isospin-symmetric
lattice-QCD determinations of the same quantities. The label “BBGKMP-24(23)” refers to Refs. [353–356]. The bands show averages for these
quantities taken from Sec. 3. Upper-Left: Data-driven aSD

µ (ud) compared with results from Refs. [17, 20–24, 28]. Upper-Right: Data-driven
aW
µ (ud) compared with results from Refs. [16–21, 23, 28]. Lower-Left: Data-driven aLD

µ (ud) compared with the recent results of Refs. [25, 26, 29].
Lower-Right: Data-driven aHVP, LO

µ (ud) compared with results from Refs. [15, 16, 18, 25, 26, 29, 442, 443, 446]. Entries marked with “CMD-3” in
each figure show the exploration of the impact of the replacement of KNT 2π data for energies between 0.33 and 1.2 GeV with CMD-3 data (see
main text).

the statistical noise of light-quark contributions increases rapidly with distance when present-day lattice methods are
utilized. The same is true for effects associated with the finite volume of the lattice. However, those challenges are
circumvented when the measured spectra are used to determine LD contributions instead. The authors find that for
the choice of t1 considered in Ref. [23], the resulting uncertainty on this LD part becomes a negligible contribution
to the one on the final result. It is worth noting that investigations of the dependence of aHVP, LO

µ on t1 have been
performed in Refs. [13, 494]. The result of Ref. [23] for aHVP, LO

µ is not yet published and the authors plan to complete
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Figure 39: Data-driven results for the s+disc components of the RBC/UKQCD windows compared with isospin-symmetric lattice determinations
of the same quantities obtained by adding strange-connected and disconnected contributions given in Sec. 3. The label “BBGKMP 24(23)” refers
to Refs. [352, 354–356]. The bands show averages for these quantities obtained from Sec. 3 by adding the averages of s and disc contributions, see
main text. Upper-Left: Data-driven results for aSD

µ (s+disc) compared with results from Refs. [20, 22, 23, 27, 28]. Upper-Right: Data-driven results
for aW

µ (s + disc) compared with results from Refs. [13, 19, 20, 23, 27, 28]. Lower-Left: Data-driven results for aLD
µ (s + disc) compared with the

result from Ref. [26] (see also Ref. [356]). Lower-Right: Data-driven results for aHVP, LO
µ (s + disc) compared with results from Refs. [13, 15, 26].

Entries marked with “CMD-3” in each figure show the exploration of the impact of the replacement of KNT 2π data for energies between 0.33 and
1.2 GeV with CMD-3 data (see main text).

the documentation of the lattice-QCD calculations that enter the hybrid evaluation in the published version. Moreover,
it is important that the different components, which enter that result, be computed independently by other groups in
view of providing a consolidated combination with similar or even improved precision in the future. We note that
once the discrepancies among experimental e+e− data are resolved and if data-driven and lattice results are found to
be in good agreement, the hybrid method has the potential to yield valuable additional insights, including evaluations
of HVP with improved precision, to fully leverage the Fermilab experiment’s measurement of the muon g − 2.

4.3. Comparison
The results of the analysis in Sec. 2.8 are shown in Fig. 38 for isospin-symmetric light-quark connected quantities,

and in Fig. 39 for isospin-symmetric s+disc quantities, comparing the data-driven results with those obtained from
the lattice. Since the analyses in question [352–356] use phenomenological input for IB corrections in the 2π and 3π
channels [186, 237, 247], which to good approximation is scheme independent once the pion mass is identified with
the mass of the neutral pion, and BMW-20 [15] input for small additional QED IB corrections, it is justified to compare
with lattice-QCD results in the BMW/WP25 scheme, see also Sec. 2.7.3. The lattice averages shown in Fig. 38 are
taken from Sec. 3, while those in Fig. 39 are obtained by adding strange-connected and disconnected averages from
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Figure 40: Final summary of various determinations of aHVP, LO
µ discussed in Secs. 2 and 3, propagated to aSM

µ . The first two panels refer to
data-driven determinations, where the three points for each e+e− experiment reflect the “CHKLS,” “DHMZ,” and “KNTW” methods, see Figs. 26
and 27 for more details. The gray band indicates the WP20 result, based on the e+e− experiments above the first dashed line. The τ point
corresponds to Eq. (2.23). The last panel summarizes lattice-QCD determinations, including the hybrid evaluation [23], the three individual lattice-
QCD calculations shown in Fig. 36, and the five lattice HVP averages from Fig. 37. The blue band refers to the final WP25 result, which coincides
with “Avg. 1.” In all cases, except for the gray WP20 band, the remaining contributions to aSM

µ beyond aHVP, LO
µ are taken from WP25, as given in

Table 1. The red band denotes the experimental world average.

Sec. 3 (adding errors in quadrature, as suggested therein), using the fact that charm-disconnected contributions are
very small, and can thus be neglected. The three lattice points shown in the lower-right panel of Fig. 39 average to a
value larger than the band shown because the band includes more strange-connected results from Tables 7 and 8. For
the single lattice point in the lower-right panel, see Ref. [356]. For the ud and s+disc HVP lattice averages, the line
“Avg. B” in Table 13 has been used.

Figures 38 and 39 show that for the LD and intermediate light-quark connected RBC/UKQCD window quantities,
there are significant discrepancies between the KNT-compilation-based data-driven and the lattice-based estimates,
which lead to a significant discrepancy in the total aHVP, LO

µ (ud) when comparing with the most precise lattice de-
terminations. In contrast, for aSD

µ (ud) and for all the s+disc window quantities, there are no discrepancies (though
the data-driven errors for the latter are relatively large). Moreover, the exploratory exercise of replacing the π+π−

KNT-compilation data in the interval between 0.33 and 1.2 GeV with the CMD-3 π+π− data suggests that these
discrepancies could be due to discrepancies in the experimental data for the π+π− component of Rhad(s) in the re-
gion around the ρ peak. With this replacement, the discrepancies in the light-quark connected results are eliminated
without disturbing the good agreement for the s+disc and the light-quark connected SD parts. The π+π− channel is
responsible for 72% of the data-driven aW

µ (ud) result and for 88% of the data-driven aLD
µ (ud), but only 32% of the

aSD
µ (ud) value and only very small fractions of the s+disc results. These conclusions for the quark-flavor-specific
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contributions agree with the findings from Ref. [493], obtained for the full contributions, including all flavors and
all IB corrections. Confirming the original findings of Ref. [15], the authors observe a significant discrepancy be-
tween the pre-CMD-3 data-driven and lattice results for the full intermediate-window contribution and a large, but
less statistically significant one, for the total HVP contribution to aµ. In addition they show that there is relatively
good agreement for ∆αhad(−10 GeV2) − ∆αhad(−1 GeV2). Using a new approach that allows one to investigate how
the experimentally measured spectral functions would have to be modified to reconcile the data-driven results with
the lattice ones, they show that an enhancement of that function in any interval of CM energy that includes the ρ peak
could explain the observed disagreement pattern. In particular, this pattern can be explained by a rescaling by 5% of
the contribution to each of those observables from the ρ-peak region, defined via the interval

√
s ∈ [0.63, 0.92]. Of

course, such a rescaling is significantly larger than the uncertainties quoted in pre-CMD-3 combinations of the e+e−

spectra. This study included statistical-and-systematic-uncertainty correlations among the observables computed on
the lattice and found the conclusions to be stable with respect to them. It was also performed with an initial blinding
on the data-driven results.

A priori, it is not evident that significant modifications to the 2π spectral function can be introduced without vio-
lating QCD constraints from analyticity and unitarity, but it was shown in Ref. [316] that this is possible. One option
is a modification of the ππ phase shift, which would, however, induce rather large changes in the cross section concen-
trated around the ρ resonance. The second possibility concerns changes in the inelastic contributions, which lead to
largely uniform relative shifts of the cross section in the whole low-energy region; the CMD-3 measurement amounts
to a realization of this latter scenario. Indeed, the CMD-3 data pass the tests of unitarity and analyticity [146, 269],
see Sec. 2.7.1. However, inverting the Laplace transform to translate from Euclidean windows back to CM energies
is inherently ill-posed, where one possible avenue concerns optimizing linear combinations of a number of Euclidean
windows [16, 359, 492], e.g., Ref. [359] explicitly constructs such linear combinations for localization in CM energy,
leading to strong oscillations in Euclidean time, and also proposes to isolate a given hadronic channel via suitable
linear combinations of Euclidean windows. It is emphasized that such optimizations require a precise knowledge of
the full covariance matrix in lattice-QCD calculations. Finally, in Ref. [495] it is proposed to calculate a version of the
R-ratio convolved with Gaussian smearing kernels in lattice QCD using the method from Ref. [240] to extract smeared
spectral densities from Euclidean correlators, including a proof-of-concept calculation with resolutions between 0.44
and 0.63 GeV.

With the new and upcoming lattice results available for the SD, intermediate, and LD windows and for other HVP
related quantities those studies will have to be significantly updated. This is all the more important given the tensions
now observed among the different e+e− → hadrons measurements, as well as with those of hadronic τ decays. Such
studies should offer interesting perspectives in the comparison of lattice and data-driven results for aHVP, LO

µ . It is
important that those studies account for all correlations in lattice and R-ratio observables, as well as for uncertainties
on these [493]. Double-blinding, for observables not yet computed, is also important.

Finally, Fig. 40 presents a detailed overview of the current situation for HVP, comparing the data-driven, lattice,
and hybrid results discussed in Secs. 2 and 3, as well as Sec. 4.2. We note that the good agreement between the lattice
and CMD-3-based results does not imply that the CMD-3 result is to be preferred. The discrepancy between the
CMD-3 and other experimental measurements remains an independent puzzle. This issue, along with the well-known
BaBar–KLOE discrepancy, will require further experimental investigations and detailed studies of the MC generators
and other tools used by the different experiments in their data analyses.

In contrast, the complete lattice HVP results from Refs. [13, 15, 21, 25, 26] show good agreement, including
with the hybrid result from Ref. [23] and the consolidated lattice averages. These averages are based on different
combinations of a large number of results from well-defined sub-contributions, obtained independently by various
lattice-QCD collaborations, as described in Sec. 3.
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Figure 41: The HLbL contribution depicted graphically. The bottom line is the muon. The blob indicates all possible hadronic interactions. The q4
leg indicates the external magnetic field.

5. Data-driven and analytic approaches to HLbL

J. Bijnens, L. Cappiello, G. Eichmann, C. S. Fischer, S. Gonzàlez-Solı́s, N. Hermansson-Truedsson, M. Hoferichter,
B.-L. Hoid, S. Holz, B. Kubis, A. Kupść, P. Masjuan, M. Procura, A. Rebhan, C. F. Redmer, A. Rodrı́guez-Sánchez,
P. Roig, P. Sánchez-Puertas, P. Stoffer, M. Zillinger

5.1. Introduction

The HLbL contribution to the muon anomalous magnetic moment is depicted in Fig. 41.19 For a very long time
it was considered impossible to estimate it with any reliability. This changed during the 90s when a number of
theoretically reasonably well argued models were used, final numbers can be found in Refs. [496, 497]. However,
it was realized much more recently that a proper well-defined separation of different hadronic contributions was
possible [33]. This provided together with a proper definition of short-distance contributions (SDCs) from QCD [38,
498] the basis for a full evaluation of the HLbL contribution in the previous white paper of the muon g − 2 theory
initiative [1]. A proper description of the large amount of work done earlier can also be found there. The Fermilab
experiment expects to release a new result for their total data set in the near future. We therefore need to update the
HLbL result from Ref. [1]. The main improvements are that the dispersive framework has been improved to deal
with spin-1 hadrons in a singularity-free fashion and first steps towards dealing with higher spin resonances have been
done. The short-distance results have also been significantly improved. The model and phenomenological work has
also been updated. This is described in the following sections.

The overall framework is discussed in Sec. 5.2. Improvements in the experimental inputs that are needed in the
various approaches are discussed in Sec. 5.3. The short-distance part is improved in various ways, by including higher
orders in the operator product expansion (OPE) as well gluonic corrections, both for the general case and for the case
with only two internal photons far off-shell. This is described in Sec. 5.4. The improved dispersive framework is used
for determining the η, η′ and axial-vector contributions as well as an update on scalars and a first estimate for tensors.
This is described in Sec. 5.5.1–Sec. 5.5.3. The method to perform a dedicated matching to the short-distance QCD
results is explained in Sec. 5.5.4. Holographic QCD (hQCD) is a model for QCD that incorporates a lot of restrictions
from full QCD. The HLbL contribution can be calculated in various versions of this class of models and the results
are discussed in detail in Sec. 5.6. In particular we have used this to estimate errors on tensor and missing resonances
from the results in Sec. 5.6.5. In WP20 the rational approximants were used as a cross-check for the dispersive result
for the π0 pole and as input for the η, η′ pole. These together with the newer analyses using the resonance-chiral-
theory (RχT) approach for these contributions are described in Sec. 5.7.1. An improved phenomenological treatment
of axial vectors and how they are used together with the short-distance results can be found in Sec. 5.7.2. Another
approach to QCD are the functional methods using Dyson–Schwinger (DSE) and Bethe–Salpeter (BSE) equations.
The approximations needed to be able to solve the equations make this approach a QCD-based model, but it can
capture different aspects than the phenomenological or holographic approaches. The most recent results relevant

19We have kept the q4 sign different in different sections to keep with the notation in the original references.
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for HLbL are given in Sec. 5.8. A few quantities can be easily compared between the various approaches. This
comparison is performed in Sec. 5.9. The combination of all the results into a new number for the HLbL is presented
in Sec. 5.10. Finally, prospects for further improvements on the theory side are given in Sec. 5.11.1 and a wish list
and expected future experimental results in Sec. 5.11.2.

5.2. Framework

The HLbL tensor is defined as the hadronic Green’s function of four EM currents in pure QCD

Πµνλσ(q1, q2, q3) = −i
∫

d4x d4y d4z e−i(q1 · x+q2 · y+q3 · z)⟨0|T { jµem(x) jνem(y) jλem(z) jσem(0)}|0⟩ , (5.1)

which includes the contribution from the three lightest quarks:

jµem := q̄Qγµq , q = (u, d, s)T , Q = diag
(

2
3
,−

1
3
,−

1
3

)
. (5.2)

Contracting Πµνλσ with polarization vectors yields the hadronic contribution to the helicity amplitudes for off-shell
photon–photon scattering, γ∗(q1, µ)γ∗(q2, ν) → γ∗(−q3, λ)γ∗(q4, σ). The starting point of a dispersive approach to
HLbL is the decomposition of the tensor Πµνλσ into a generating set of Lorentz structures T µνλσ

i that are individually
gauge invariant, with scalar coefficient functions Πi free of kinematic singularities. Such a decomposition was con-
structed in [33] following the recipe by Bardeen, Tung, and Tarrach (BTT) [499, 500], which leads to a redundant set
of 54 structures with manifest crossing symmetry,

Πµνλσ =

54∑
i=1

T µνλσ
i Πi . (5.3)

Although the scalar functions Πi are free of kinematic singularities, which is a prerequisite for a dispersive represen-
tation, the redundancy in the decomposition needs to be addressed: a fully off-shell basis contains only 41 elements,
given by the number of independent helicity amplitudes.

The HLbL contribution to aµ can be derived from Πµνλσ using Dirac-space projection operator techniques [501]
in the limit q4 → 0. This leads to the following master formula, which is well-suited for a numerical evaluation:20

aHLbL
µ =

α3

432π2

∫ ∞

0
dΣΣ3

∫ 1

0
dr r
√

1 − r2

∫ 2π

0
dϕ

12∑
i=1

Ti(Σ, r, ϕ) Π̄i(Q2
1,Q

2
2,Q

2
3) , (5.4)

with known kernel functions Ti(Σ, r, ϕ) [35] and Euclidean photon virtualities Q2
i ≡ −q2

i given by

Q2
1 =
Σ

3

(
1 −

r
2

cos ϕ −
r
2

√
3 sin ϕ

)
,

Q2
2 =
Σ

3

(
1 −

r
2

cos ϕ +
r
2

√
3 sin ϕ

)
,

Q2
3 =
Σ

3
(1 + r cos ϕ) . (5.5)

The functions Π̄i are linear combinations of the Πi introduced above and fully parameterize the hadronic content in
aHLbL
µ . The ambiguities in the redundant set of functions Πi cancel in the linear combinations Π̄i in the limit q4 → 0,

hence each of the 12 terms in the master formula Eq. (5.4) is a well-defined quantity.
Unitarity rigorously determines the absorptive part of the HLbL tensor, i.e., the residues of dynamical single-

particle poles and the discontinuities of multi-particle branch cuts of the HLbL tensor in the different kinematic
channels and relates them to various sub-processes with on-shell intermediate states. In order to reconstruct the

20Different variables for the integration can be used, some more examples are given in Ref. [53].
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dispersive (real) part of the HLbL tensor, one makes use of analyticity to write dispersion relations for the BTT scalar
functions in a given set of kinematic variables. This requires the scalar functions to be free of ambiguities, i.e., the
redundancy in Eq. (5.3) needs to be resolved without introducing kinematic singularities in the dispersed variables.
This has been achieved in the original approach of Refs. [33, 35] in four-point kinematics in the limit of an external on-
shell photon, q2

4 = 0, i.e., dispersion relations have been derived in terms of the Mandelstam variables for γ∗γ∗ → γ∗γ
scattering with fixed photon virtualities, with the limit q4 → 0 relevant for aHLbL

µ taken only afterwards. Although
the derived scalar functions are free of singularities in the dispersed Mandelstam variable, they contain kinematic
singularities in the fixed virtualities q2

i . In the static limit q4 → 0, their residues vanish due to a set of sum rules,
hence aHLbL

µ remains unaffected. These sum rules ensure that aHLbL
µ is independent of the choice of the tensor basis.

However, the fulfillment of the sum rules typically involves a cancellation between different hadronic intermediate
states, which leads to complications in practice. In Ref. [48], an optimized basis has been constructed that limits the
appearance of spurious kinematic singularities to intermediate states of spin ≥ 2.

In Ref. [502], an alternative dispersive framework has been introduced, formulated directly for the functions Π̄i in
the static limit q4 → 0. In this approach, all redundancies and kinematic singularities are manifestly absent, but the
dispersion relations in the photon virtualities require new sub-processes as input, see Sec. 5.11.1.

In the dispersive framework in four-point kinematics, the contributions from one- and two-meson intermediate
states have been explicitly accounted for as discussed in the next sections: pseudoscalar-pole and -box contributions,
scalars, axial-vector contributions, as well as partial contributions from tensor mesons. These intermediate-state
contributions are expressed in terms of physical transition form factors (TFFs) and helicity amplitudes, which can
either be reconstructed dispersively, obtained from lattice QCD, or taken as input from hadronic models. Since the
dispersive approach relates all contributions to on-shell intermediate states, these observables serve as the experimental
input for the dispersive data-driven determination of aHLbL

µ .
The dispersive treatment of exclusive intermediate states is feasible only at sufficiently low energies. Therefore,

this description has to be complemented by matching to SDCs, which stem from the OPE and pQCD, see Sec. 5.4.

5.3. Experimental results

Experimental results can serve as input to the calculation of the contributions to HLbL in a direct and a more
indirect way. Direct input to the pseudoscalar-meson pole contributions are TFFs FPγ∗γ∗ (q2

1, q
2
2), which can be mea-

sured in different regions of momentum transfer q2
i . The momentum transfer dependence of the relevant cross sections

and decay rates due to the TFFs makes the experimental access to information at arbitrary values of q2
i challenging.

Similar limitations hold for experimental information on multi-meson production in two-photon collisions, which
can provide corresponding input for the ππ contribution or contributions of heavier scalar, axial-vector, and tensor
resonances. In a more indirect way, experimental information on other hadronic and radiative processes is needed to
determine missing direct information on TFFs from dispersion relations, as successfully demonstrated for the π0 pole
contribution in WP20.

With respect to the available experimental information and the possible approaches, priorities for new experimental
input have been formulated in WP20. In the following an overview on new experimental results beyond those listed
there is provided. An outlook on planned measurements and data to become available in the near future is given in
Sec. 5.11.2.

5.3.1. Meson transition form factors
Experimental methods to obtain information on meson TFFs comprise Primakoff production of mesons P to

address the normalization at FPγ∗γ∗ (0, 0), meson production in two-photon scattering at e+e− machines to address
the spacelike momentum dependence of FPγ∗γ∗ (q2

1, q
2
2), and radiative meson production at e+e− colliders as well as

meson Dalitz decays to test the timelike momentum dependence of the respective TFFs. Furthermore, rare decays of
pseudoscalar mesons into lepton pairs can be related to TFFs.

New measurements of Dalitz decays of η and η′ involving a single off-shell photon are provided by the BESIII
collaboration [503] using the radiative decays of a total of 10 billion inclusively recorded J/ψ decays as source of the
mesons. The invariant mass distribution M2

ee = q2 of the lepton pairs is investigated to determine the TFFs, which
are parameterized with respect to the slope at q2 = 0. The slope parameter Λ2 is obtained by fitting the data with the
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model parameterization21

|FPγ∗γ∗ (q2
1, 0)|2 =

Λ2(Λ2 + γ2)
(Λ2 − q2)2 + Λ2γ2 , (5.6)

where Λ and γ can be interpreted as the mass and width of a contributing effective vector meson, in the context of a
vector-meson-dominance (VMD) picture. In case of the η′, the full parameterization is needed to properly describe
the data with Λ2

η′ = 0.6432(56)(64) GeV2 and γ2
η′ = 0.0128(11)(2) GeV2, which is a four-times improved accuracy

compared to the previously reported first observation [504]. The slope parameter of the η TFF is obtained by setting
γη = 0 as Λ2

η = 0.561(20)(5) GeV2. Compared to the previously reported results of the A2 [505] and NA60 [506]
collaborations, the BESIII result tends towards smaller values, but it is compatible within errors. Currently, a new
measurement of the η TFF is prepared at BESIII using η′ decays as source of η mesons, which are more copiously
produced. The different environment allows for a cross-check with similar statistical, but different systematic uncer-
tainties. It should be mentioned that the timelike TFF has a cusp at the opening of the π+π− channel corresponding
to q2 = 4M2

π. The effect of the cusp is not included in Eq. (5.6), which is a source of bias in the determination of the
slopes. The same data set of inclusive J/ψ decays also allowed one to observe the double Dalitz decay of the η′ at
BESIII with a significance of 5.7σ and to determine the branching fraction for the first time [507].

The CMS collaboration reported the branching ratio of the double Dalitz decay into muon pairs normalized to the
decay into a single muon pair Γ(η → 2µ+2µ−)/Γ(η → µ+µ−) = 0.86(14)(12) × 10−3 [508]. The result can be related
to the double off-shell η TFF [509].

Additional information on doubly-virtual TFFs through the investigation of dilepton decays of mesons is pro-
vided by the BESIII collaboration in the measurement of the direct production of the axial-vector state χc1 in e+e−

annihilation [510]. The meson production is established by exploiting the interference pattern of the decay particles
and the radiative dimuon continuum predicted in Ref. [511] with a 5.1σ significance. The interference method al-
lowed for the first measurement of nonvector meson production at e+e− colliders with an electronic width of χc1 of
Γee = (0.12+0.13

−0.08) eV, and is currently tested to provide equivalent information on further mesons.

5.3.2. Further results from meson decays
The decay of η′ into four pions was prioritized as one of the required inputs for the development of a dispersive

framework of η and η′ TFFs in WP20. The BESIII collaboration reported not only an upper limit of η′ → 4π0, but
also differential information of the decay η′ → 2π+2π− [512]. An amplitude analysis is performed based on the work
of Ref. [513] and finds the coupling constants to be in agreement with their assumptions.

Similarly relevant to the construction of a dispersive framework for the η′ TFF is the decay into a pion pair and a
lepton pair. First studies reported by the BESIII collaboration [514, 515] were updated to the fully available data set
of J/ψ decays [516]. Using different VMD models, the slope parameter of the TFF is determined from the differential
decay distributions as Λ2

η′ = 0.77(11) GeV2. Furthermore, a test for unconventional CP violation is performed based
on the angular distributions of the pion and lepton decay planes.

5.3.3. Hadronic cross sections
Apart from information on meson decays also hadronic cross sections in e+e− collisions are relevant for the

development of dispersive frameworks of the pseudoscalar meson TFFs. Predominantly in the context of the HVP
contribution new measurements of the total cross section of e+e− → π+π−π0 using initial state radiation are reported
by the BaBar and Belle-II collaborations [149, 185]. Additional information on intermediate states are reported
from a partial-wave analysis performed by the BESIII collaboration on high-statistics data points of an energy scan
measurement at CM energies between 2.0 GeV and 3.08 GeV [517]. The three-pion system is found to be dominated
by ρπ, ωπ, ρ(1450)π, ρ(1700)π, and ρ3(1690)π.

An equivalent study of the e+e− → π+π−η cross section is performed on the same data [518]. The intermediate
states are described by dominant contributions of ρη and a2(1320)π. Further significant contributions of higher reso-
nant states are identified. Additional results on the total cross sections of the related processes e+e− → ωπ0/η(′) and
e+e− → π+π−η′ are also reported based on the same data [519–521].

21The pseudoscalar TFF FPγ∗γ∗ is formally defined in Eq. (5.11).
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↘ q1 q2 ↙

q3 ↖↗ q4

Figure 42: The perturbative quark loop.

5.4. Short-distance constraints
SDCs can be derived to address the HLbL contributions to aµ in kinematical regions where two or three photon

virtualities Q2
1, Q2

2, and Q2
3 become large. These constraints are obtained by applying OPEs to the EM quark currents

that define the HLbL tensor [38, 42, 43, 53, 498, 522]. In this section we review these constraints, in particular what
has been done since WP20.

In the aµ kinematics, the external momentum q4 is always soft, but the other three vary in the integration over
virtualities. SDCs can be obtained in two regions

1. Pure short-distance region: Q2
i ≫ Λ

2
QCD,

2. Mixed, corner, or Melnikov–Vainshtein (MV), region: Q2
i ,Q

2
j ≫ Q2

k ,Λ
2
QCD.

In the underlying correlation function with four EM currents, the above limits respectively correspond to the cases
where three and two currents are close in position space, which is how the OPE is applied. Here it should be noted that
there is no inherent hierarchy on Q2

k and Λ2
QCD in the mixed region, but if one imposes Q2

k ≫ Λ
2
QCD, there is partial

overlap between the two regions. Below we discuss them separately. Additionally, other kinds of SDCs also exist,
such as the Brodsky–Lepage constraint on form factors [523, 524]. These are not further discussed in this section.

5.4.1. Pure short-distance region
Whenever the rest of Euclidean momenta entering into the problem are large, the external soft photon at q4 → 0

can be treated as a background field for the OPE [525, 526]. This was used for the electroweak contribution to aµ
in Ref. [70]. In Refs. [38, 42] it was shown that the HLbL tensor in g − 2 kinematics can be directly related to a
three-point function with the external field in the background captured in an external state,

Πµ1µ2µ3 (q1, q2) = −
1
e

∫
d4q3

(2π)4

 3∏
i=1

∫
d4xi e−iqi xi

 ⟨0|T
 3∏

j=1

Jµ j (x j)

 |γ(q4)⟩ . (5.7)

One may perform a well-defined and systematic OPE at this stage [38]. The leading operator is Fµν. Its contribution
corresponds to the massless quark loop depicted in Fig. 42, where q4 corresponds to the soft photon, q4 → 0.

The leading power correction, suppressed by the quark mass, was addressed in Ref. [38]. In Ref. [42] the OPE was

further developed to study the subleading contributions beyond the perturbative quark loop, through orders gs
Λ4

QCD

Q4 ,
m2

q

Q2 , g2
s
Λ4

QCD

Q4 , mq
ΛQCD

Q2 , mq
Λ3

QCD

Q4 , and m3
q
ΛQCD

Q4 . The appearing operators are

Q1, µν = e eqFµν , Q2, µν = q̄σµνq Q3, µν = i q̄Gµνq , Q4, µν = i q̄Ḡµνγ5q ,

Q5, µν = q̄q e eqFµν , Q6, µν =
αs

π
Gαβ

a Ga
αβ e eqFµν ,

Q7, µν = q̄(GµλDν + DνGµλ)γλq − (µ↔ ν) , Q{8}, µν = αs (q̄Γ q q̄Γq)µν . (5.8)

Here σµν = i/2 [γµ, γν], Gµν is the gluon field strength tensor, Ḡµν its dual and the Q{8}, µν is a class of four-quark
operators with Dirac matrix structure Γ. While the massless quark loop provides the leading contribution through the
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Contribution Inputs [GeV] Qmin = 1 GeV Qmin = 2 GeV

X1,0 1.73 × 10−10 4.35 × 10−11

X1,m2 −5.7 × 10−14 −3.6 × 10−15

X2,m X2 = −4 × 10−2 −1.2 × 10−12 −7.3 × 10−14

X2,m3 X2 = −4 × 10−2 6.4 × 10−15 1.0 × 10−16

X3 X3 = 3.51 × 10−3 −3.0 × 10−14 −4.7 × 10−16

X4 X4 = 3.51 × 10−3 3.3 × 10−14 5.3 × 10−16

X5 X5 = −1.56 × 10−2 −1.8 × 10−13 −2.8 × 10−15

X6 X6 = 2 × 10−2 1.3 × 10−13 2.0 × 10−15

X7 X7 = 3.33 × 10−3 9.2 × 10−13 1.5 × 10−14

X8,1 X8,1 = −1.44 × 10−4 3.0 × 10−13 4.7 × 10−15

X8,2 X8,2 = −1.44 × 10−4 −1.3 × 10−13 −2.0 × 10−15

Table 19: Numerical contribution to aHLbL
µ for the indicated inputs. The Xi correspond to the operators in Eq. (5.8) and the order of quark masses

is indicated as well. The input values for the condensates are described in detail in Ref. [42]. Table from Ref. [42].

Figure 43: Gluonic corrections to the perturbative quark loop, with the soft external field denoted by a crossed vertex.

Fµν operator, the leading quark-mass correction is not driven by the (massive) quark loop. Instead, it is linear in mq and
mediated by the q̄σµνq operator. The operators in Eq. (5.8) are defined in the MS scheme. The numerical estimates
for their nonperturbative condensates labeled Xi are based on various methods and approximations as discussed in
Ref. [42] and given in Table 19.

With an OPE in place for the HLbL tensor in the corresponding kinematic regime, the scalar functions in its
Lorentz decomposition, Π̂i, can be determined using projection techniques [42]. One may then use them to compute
the short-distance regions of the aHLbL

µ integral, Q1,2,3 > Qmin. The numerical impact on aHLbL
µ of the associated

terms in the OPE for two values of Qmin is shown in Table 19. The massless perturbative quark loop corresponds
to contribution X1,0, and is clearly dominating over all other corrections. It should be emphasized that also those
contributions that are not suppressed by the light-quark masses are negligible at the current level of precision.

Another possibility for large corrections are the gluonic corrections to the massless quark loop, i.e., the leading
term in the OPE. These have been worked out fully analytically in Ref. [43]. This perturbative two-loop calculation
consists in adding all possible gluonic corrections to the massless perturbative quark loop as in Fig. 43, and reducing
them to a set of six known master integrals [43, 527, 528]. The main conclusion is that the gluonic corrections are of
the order of −10% depending on the value of αs used. In Fig. 44 we show the massless quark loop contribution and
the gluonic corrections as a function of the lower cutoff Qmin on the three virtualities, Qi > Qmin. The uncertainty
indicated is from varying αs [43].

The gluonic corrections have been partially included in model implementations. Especially in the holographic
method as discussed in Sec. 5.6 it allowed for a significantly improved matching. In WP20 it was only known that
the perturbative quark loop was the leading contribution and the directly subleading term was negligible, as had
been shown in Ref. [38]. From Refs. [42, 43] it has now been established that the perturbative quark loop is a good
representation at the current level of precision up to 10% corrections from perturbative gluonic corrections.
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Figure 44: Short-distance contribution to HLbL as a function of the cutoff on the three virtualities. Left: the full contribution. Right: separated
in the longitudinal Πi=1,2 and transverse Πi=3,12 amplitudes. The blue line is the massless quark loop (LO). The full line is the quark loop
including gluonic corrections (LO+NLO) and the shaded region the uncertainty due to varying the scale of evaluating αs. We used the value
αs(1.5 GeV) = 0.3501 and varied the scale of αs from Qmin/

√
2 to
√

2Qmin. The corresponding error becomes large below about 1.2 GeV and may
be slightly overoptimistic for low Qmin values depending on the size of higher-order corrections.
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Figure 45: Diagrammatic depiction of the two-current OPE in the mixed MV kinematical region. Here the particular case Q2
1,Q

2
2 ≫ Q2

3,Λ
2
QCD was

chosen. Figure from Ref. [53].

5.4.2. Mixed region (Melnikov–Vainshtein)
In the mixed kinematical region there are two currents close in the underlying HLbL function. This momentum

configuration was first studied in Ref. [498], and after WP20 this work was extended in Refs. [53, 522]. Following
the notation of the latter references, for the specific case Q2

1,Q
2
2 ≫ Q2

3,Λ
2
QCD the HLbL tensor can be written as

Πµ1µ2µ3µ4 =
∑

j,k

ieq j eqk

e2

∫
d4q4

(2π)4

∫
d4x1

∫
d4x2 e−i(q1 x1+q2 x2)⟨0|T {Jµ1

j (x1)Jµ2
k (x2)}|γµ3 (q3)γµ4 (q4)⟩ . (5.9)

The OPE between the two above currents at can be diagrammatically depicted as in Fig. 45(a), and including gluonic
corrections as in Fig. 45(b)–(e). Additional topologies corresponding to operators made out of photons and gluons
start at D = 4. The large Euclidean scale in the expansion is Q̂ =

√
−q̂2, where q̂ = (q1 − q2)/2. The leading

term (dimension D = 3) studied in Ref. [498] enters as 1/Q̂2, and is directly related to the axial current with two
nonperturbative form factors, ωL and ωT . It was also pointed out that the nonrenormalization theorems for the axial
anomaly have significant consequences for g − 2. The implementation was discussed extensively in WP20 and also
more recently, see Refs. [39, 41, 44, 46, 529–538]. An update on the implementation in the different approaches can
be found in the following, see Sec. 5.5, Sec. 5.6, and Sec. 5.7.

The extension of the leading-order result to dimension D = 4 in Refs. [53, 522] leads to a better understanding
of the power counting and of the structure of perturbative and nonperturbative corrections to the HLbL tensor in the
studied kinematic regime. Additionally, new constraints on the scalar functions determining the HLbL tensor were
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Q1 Q2 Q3

Π̂1 5 5 4
Π̂4 3 3 5
Π̂7 4 5 6
Π̂17 5 5 5
Π̂39 5 5 5
Π̂54 5 5 5

Table 20: The leading power n of 1/Q
n
k , where the OPE through D = 4 lacks prediction.

derived. Through dimension D = 4 the independent operators are [53, 522]

D = 3 : O
αβγ
q3 = q

[
γαγβγγ − γγγβγα

]
q ,

D = 4 : O
αβ
q4 = qγβ

[−→
Dα −

←−
Dα

]
q ,

O
αβ
FF,1 = FαγF β

γ , O
αβ
FF,2 = FγδFγδ gαβ , OF = F × F ,

O
αβ
GG,1 = GαγG β

γ , O
αβ
GG,2 = GγδGγδ gαβ , OG = G ×G . (5.10)

The operators OF and OG represent classes of operators with Lorentz structure different from OαβFF,i and OαβGG,i [53].
In Ref. [53] also gluonic corrections to the OPE were included as well as the corresponding renormalization through
dimension D = 4. This in particular proved the conjecture of Ref. [532] that at D = 3 the gluonic corrections enter as
−αs/π times the original result of Ref. [498]. It was also explicitly checked that in the overlap region between OPEs,
where Q2

3 ≫ Λ
2
QCD, there is analytic agreement between derived scalar functions Π̂i through the relevant orders. The

current limits of predictivity of the OPE in the three mixed regions for the Π̂i are shown in Table 20 (rewritten in terms
of the corner variable Qk = Qi + Q j).

Although there in principle is a plethora of different nonperturbative form factors at dimension D = 4, it was
found in Ref. [53] that, when incorporating the different components of the HLbL tensor into the g − 2 integrand, a
very strong cancellation occurs for all computed contributions. This suggests that, up to chiral corrections, the leading
term of the integrand in the corresponding kinematic regime may be determined by the axial current form factors ωL

and ωT .
To assess how well the leading OPE contribution works, Ref. [53] compared the derived expansion through NLO

for the sum
∑

TiΠ̄i in the g − 2 integral with the LO one given by the quark loop. Since the NLO result depends on
the nonperturbative form factors ωL and ωT , the perturbative limit was taken where 2ωT = ωL = −2/Q2

i in the region
where Q2

i is the small scale. At fixed large scale Q̄i = 10 GeV and corner variable y jk = (Q j − Qk)/Qi = 0 one can
study

∑
TiΠ̄i by varying the small scale Qi in units of Q̄i/2. This is shown in Fig. 46 for y jk = 0. Overall, there is

good agreement up to regions relatively close to the symmetric point, where Qi tends towards Q̄i/2.

5.5. Dispersive approach

Within the dispersive framework [33, 35, 539–542], the different contributions to HLbL can be ordered according
to the mass threshold in the unitarity relation. The lightest intermediate state is a single neutral pion, followed by
two charged pions, etc. This ordering turns out to be roughly reflected in the numerical dominance of the individual
contributions to aHLbL

µ . Single-pseudoscalar contributions are discussed in Sec. 5.5.1 and two-particle intermediate
states in Sec. 5.5.2. A rigorous dispersive description of three-particle intermediate states would be challenging—this
contribution is assumed to be negligible unless resonantly enhanced. It is therefore described in terms of single-
resonance contributions in the narrow-width limit, see Sec. 5.5.3. The infinite sum over hadronic intermediate states
needs to saturate the SDCs discussed in Sec. 5.4. In practice, only a finite number of intermediate states can be related
to data input, hence the remainder typically involves some modeling, which is however controlled by the matching to
the SDCs, see Sec. 5.5.4.
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Figure 46: Numerical comparison between the quark loop and OPE in the MV region. Figure adapted from Ref. [53].

5.5.1. Pseudoscalars
In WP20 [1], the largest individual contribution to HLbL, the π0 pole, was determined from three independent

approaches: dispersively [36, 543], using Canterbury approximants (CA) [34], and on the lattice [544]. For the
subleading η- and η′-pole contributions, however, the consensus relied only on the determination from Canterbury ap-
proximants [34], as dispersion-theoretical or lattice-QCD calculations had not been completed. Since then, progress
has been made on both latter approaches, see Sec. 6.3 for that on the lattice. Meanwhile, a dedicated effort to eval-
uate the η(′)-pole contributions with dispersion relations led to their first determination [55, 545], which requires the
dispersive reconstruction of the pertinent doubly-virtual TFFs [287, 546–550] as input, extending a similar program
for the π0 TFF [36, 282–284, 543, 551]. The pseudoscalar TFFs describe the decay P(q1 + q2) → γ∗(q1, µ)γ∗(q2, ν),
formally defined by the matrix elements

i
∫

d4x eiq1 · x⟨0|T { jµ(x) jν(0)}|P(q1 + q2)⟩ = ϵµνρσqρ1qσ2 FPγ∗γ∗ (q2
1, q

2
2) , (5.11)

where the normalization FPγ∗γ∗ (0, 0) ≡ FPγγ is determined by the P→ γγ decay rate.
Such a reconstruction, based on the low-lying singularities, data input for η(′) → γγ, η(′) → π+π−γ, η(′) → 2(π+π−),

and e+e− → e+e−η(′), as well as an implementation of asymptotic constraints in the dispersive representations of η
and η′ transition form factors comparable to Refs. [36, 543] was recently concluded [55, 545]. This form factor
representation reads

Fη(′)γ∗γ∗ = F(I=1)
η(′) + F(I=0)

η(′) + Feff
η(′) + Fasym

η(′) . (5.12)

In contradistinction to the π0 case, the final-state photons here carry either both isovector (I = 1) or both isoscalar
(I = 0) quantum numbers, leading to the two independent terms in Eq. (5.12). The first of these, the isovector
dispersive piece, dominates the TFFs at low energies and can be cast in the form of a double-spectral representation

F(I=1)
η(′) (−Q2

1,−Q2
2) =

1
π2

∫ Λ2

4M2
π

dx dy
ρη(′) (x, y)

(x + Q2
1)(y + Q2

2)
+ (Q1 ↔ Q2) , (5.13)

with the double-spectral density

ρη(′) (x, y) =
xσ3

π(x)
192π

Im
{[

FV
π (x)

]∗
Fη(′)ππγ∗ (x, y)

}
, (5.14)

where σπ(s) =
√

1 − 4M2
π/s, and FV

π is the pion vector form factor (VFF). Fη(′)ππγ∗ (t, k2) is the P-wave amplitude for
η(′)γ∗(k2)→ π+π−. It is constructed based on dispersive representations of η(′) → 2(π+π−) amplitudes (cf. Ref. [513])
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with the approximation of taking only pairwise rescattering of π+π− into account. In addition, factorization-breaking
effects are included by considering the exchange of a2(1320) tensor mesons as a left-hand-cut contribution, which
leads to a description by means of an inhomogeneous Omnès representation. The subtraction constants of these
representations, which are subject to constraints from ChPT, are eventually fixed by fits to η(′) → π+π−γ decay
data [552, 553]. For the description of FV

π an Omnès representation [270] is utilized. Due to technical reasons [554],
in the solution of the inhomogenous Omnès problem, a representation of the ππ P-wave phase shift based on unitarized
ChPT [333, 555–557] is employed. The resulting representation of FV

π is fixed by fitting to data of τ− → π−π0ντ [192].
The isoscalar channel, on the other hand, is dominated by the narrowω and ϕ resonances in the low-energy regime.

Their (small) contribution is parameterized in a VMD ansatz,

F(I=0)
η(′) (−Q2

1,−Q2
2) =

∑
V∈{ω,ϕ}

wη(′)VγFη(′)γγM4
V

(M2
V + Q2

1)(M2
V + Q2

2)
, (5.15)

with MV as mass parameters and weight factors wη(′)Vγ [547, 558] determined from the respective decays widths of
ω→ ηγ, η′ → ωγ, ϕ→ η(′)γ, and ω, ϕ→ e+e− [225].

The third term in Eq. (5.12), the effective-pole piece, parameterizes higher intermediate states. It serves two
purposes: it ensures that a sum rule for the form factor normalization is exactly fulfilled, and additionally, helps to
describe high-energy, singly-virtual data on e+e− → e+e−η(′). Two distinct parameterizations have been implemented,

Feff (A)
η(′) (−Q2

1,−Q2
2) =

geffFη(′)γγM4
eff

(M2
eff + Q2

1)(M2
eff + Q2

2)
,

Feff (B)
η(′) (−Q2

1,−Q2
2) =

∑
V∈{ρ′,ρ′′}

gV Fη(′)γγM4
V

(M2
V + Q2

1)(M2
V + Q2

2)
, (5.16)

where in the variant (A) the effective coupling geff is used to restore the normalization. For both η and η′, |geff| is found
in a range up to about 10 %. In this variant, the effective mass parameter is fit to singly-virtual TFF data [559–562]
and is found in the range (1.3–2.2) GeV. On the other hand, variant (B) describes the two poles of ρ(1450) ≡ ρ′ and
ρ(1700) ≡ ρ′′ resonances, with their mass parameters taken from Ref. [225]. One resonance coupling gV is used to
fulfill the normalization sum rule, while the other is fit to the singly-virtual TFF data.

The last term in Eq. (5.12) is used to implement constraints from pQCD [523, 524, 563]. As η and η′ are much
more massive than the π0, the masses are explicitly accounted for in this representation. Starting from an asymptotic
piece in the massless limit [36, 543] based on a dispersive reformulation [564] of the leading term of the light-cone
sum rule expansion evaluated with asymptotic distribution amplitudes [523, 524, 563, 565–567], a form including
mass effects can be written as [54, 55, 538, 545]

Fasym
η(′) (q2

1, q
2
2) =

−F̄η(′)

asym

M4
η(′)

∫ ∞

2sm

dv
[ q2

2

v − q2
1

( 1
v − q2

1 − q2
2

−
1

q2
1 − q2

2

)
f asym
η(′) (v, q2

1) + (q2
1 ↔ q2

2)
]
,

f asym
η(′) (v, q2) =

(v − 2q2)2 − M2
η(′) v√

(v − 2q2)2 − 2M2
η(′) v + M4

η(′)

+ 2q2 − v , (5.17)

which does not contribute to the singly-virtual direction, but maintains the correct doubly-virtual behavior, especially
the limit

lim
Q2→∞

Q2Fη(′)γ∗γ∗ (−Q2,−Q2) =
1
3

F̄η(′)

asym . (5.18)

The asymptotic coefficient F̄η(′)

asym is extracted from data utilizing the singly-virtual limit

lim
Q2→∞

Q2Fη(′)γ∗γ∗ (−Q2, 0) = F̄η(′)

asym , (5.19)

of the isovector, isoscalar, and effective-pole pieces in the TFF representation.
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The pole contributions to HLbL can be evaluated according to the well-known expression

aP-pole
µ =

(
α

π

)3 ∫
dQ1dQ2dτ

[
w1(Q1,Q2, τ)FPγ∗γ∗ (−Q2

1,−Q2
3)FPγ∗γ∗ (−Q2

2, 0)

+ w2(Q1,Q2, τ)FPγ∗γ∗ (−Q2
1,−Q2

2)FPγ∗γ∗ (−Q2
3, 0)

]
, (5.20)

where Q2
3 ≡ Q2

1+Q2
2+2τQ1Q2, and the explicit form of the weight functions w1/2(Q1,Q2, τ) is given, e.g., in Refs. [34,

36, 568, 569]. Obviously, Eq. (5.20) requires the spacelike singly- and doubly-virtual TFFs as input. In Fig. 47, we
therefore compare the dispersively reconstructed transition form factors Fη(′)γ∗γ∗ (−Q2, 0) and Fη(′)γ∗γ∗ (−Q2,−Q2) to the
previous approach based on CA [34] adopted in WP20 [1], as well as to lattice-QCD calculations by ETM [570] and
BMW [571]. In general, we find very good agreement between the different approaches, as well as with the singly-
virtual data [559–561] at low energies that the dispersive representation has not included in the fit. The narrowness of
the uncertainty band, in particular in the singly-virtual direction, demonstrates the usefulness of the many constraints
combined in the dispersive reconstruction of the TFFs. In the doubly-virtual direction, there is a tendency to approach
the asymptotic behavior dictated by Eq. (5.18) slightly more slowly than found in Ref. [34].

Numerically, the η- and η′-pole contributions are determined as

aη-pole
µ = 14.72(56)norm(32)disp(23)BL(54)asym × 10−11 = 14.72(87) × 10−11 ,

aη
′-pole
µ = 13.50(48)norm(15)disp(20)BL(48)asym × 10−11 = 13.50(72) × 10−11 , (5.21)

where the different uncertainties arise from the following sources: (i) “norm”: the normalization uncertainty reflecting
the uncertainty on the average of experimental determinations on the Γ(η(′) → γγ) decay widths; (ii) “disp”: the
dispersive uncertainty, where different variants on the underlying representations of the isovector piece as well as
different cutoff values for the dispersive integrals have been taken into account; (iii) “BL”: the fit to high-energy singly-
virtual TFF data approaching the Brodsky–Lepage limit, as well as the difference of the two variants in Eq. (5.16); (iv)
“asym”: the variation of the onset of the asymptotic piece through variation of sm in Eq. (5.17) as well as variation
of the asymptotic coefficient between the data-driven determination, by means of the (I = 1), (I = 0), and effective
pieces, and lattice-QCD determinations [572, 573]. Furthermore, the total uncertainty refers to the quadratic sum.

We mention two more data-driven consistency checks on the dispersive reconstruction of the η and η′ transition
form factors. The doubly-virtual η transition form factor is closely linked to the γ(∗) → ηπ+π− amplitude. In Ref. [549],
π+π− spectra in e+e− → ηπ+π− data [574, 575] have been analyzed for consistency with those measured in the
corresponding real-photon decay η → π+π−γ [552]. It was found that the dependence on the π+π− invariant mass
factorizes to a larger degree from that on the photon virtuality than what a data-driven model of singularities in
the crossed channel induces [548], already suggesting rather mild breaking of factorization in the doubly-virtual η
TFF at low-to-medium energies. For the η′ singly-virtual TFF, a dispersive analysis similarly relies on input for
η′ → π+π−γ [553] and the pion VFF. As both display a prominent isospin-breaking signal due to ρ–ω mixing [576],
in Ref. [287], these were combined in a consistent coupled-channel framework. While such effects are of relevance
for high-precision data on η′ → ℓ+ℓ−γ in the future, the impact of these isospin-breaking corrections in the spacelike
region is rather negligible.

5.5.2. Two-meson contributions: boxes and S -wave rescattering
The next-lightest intermediate state after a single pion is given by the two-pion state. It can be split further accord-

ing to intermediate states in the crossed channels, resulting in the dispersively defined pion-box contribution [35, 577]

aπ-box
µ = −15.9(2) × 10−11 (5.22)

and two-pion rescattering contributions. The first only depends on the pion VFF, whereas the rescattering contribution
can be expanded into partial waves and related to γ∗γ∗ → ππ helicity partial waves [35]. Both contributions have been
discussed in detail in WP20.

Similarly to two-pion intermediate states, the dispersive analysis of two-meson intermediate states can be extended
to KK̄ and πη intermediate states. Due to the heavier mass, the contribution of the kaon box is small.22 It was

22Similarly, the proton box contribution (F1 form factor) is very small, 0.18(1) × 10−11 [578].

109



0

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2 2.5 3

Q
2
F
η
γ
γ
∗
(−

Q
2
,0
)
[G

eV
]

Q2 [GeV2]

CA (2017)
ETM (2022)

BMW (2023)
DR (2024)

CELLO (1991)
CLEO (1997)

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2 2.5 3

Q
2
F
η
′ γ
γ
∗
(−

Q
2
,0
)
[G

eV
]

Q2 [GeV2]

CA (2017)
BMW (2023)

DR (2024)
CELLO (1991)
CLEO (1997)

L3 (1998)

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5 3

Q
2
F
η
γ
∗ γ

∗
(−

Q
2
,−

Q
2
)
[G

eV
]

Q2 [GeV2]

CA (2017)
ETM (2022)

BMW (2023)
DR (2024)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2 2.5 3

Q
2
F
η
′γ

∗ γ
∗
(−

Q
2
,−

Q
2
)
[G

eV
]

Q2 [GeV2]

CA (2017)
BMW (2023)

DR (2024)

Figure 47: Comparison of the singly-virtual (top) and doubly-virtual (bottom) dispersive η (left) and η′ (right) TFFs (DR) [55, 545] with the results
of CA [34], the lattice-QCD approach by ETM [570] and BMW [571], and singly-virtual experimental data from CELLO [559], CLEO [560], and
L3 [561].

previously evaluated based on model input for the kaon VFF [1, 579]. In the meantime, a dispersive analysis of the
kaon VFFs has become available [45], leading to

aK±-box
µ = −0.48(1) × 10−11 , aK0-box

µ = −0.5(4) × 10−15 , (5.23)

and confirming the evaluations based on model input.
The rescattering contributions are expanded into partial waves, with the S -waves providing a model-independent

description of scalar resonances. While the low-energy contribution of the scalar f0(500) resonance was already
treated dispersively in terms of ππ rescattering [35, 577], WP20 combined additional scalar and tensor contributions
together into ascalars+tensors

µ = −1(3) × 10−11 [1]. In Ref. [44], the S -wave rescattering contribution was extended by
using as input the helicity partial waves for γ∗γ∗ → ππ/KK̄I=0 [249, 347–351], derived from a modified coupled-
channel Muskhelishvili–Omnès analysis [351]. The input for the coupled-channel hadronic rescattering ππ/KK̄I=0
was taken from the dispersive analysis of Ref. [580]. This covered the region of the f0(980) resonance within the
dispersive rescattering formalism, updating the isospin I = 0 contribution. Together with the I = 2 estimates of
Refs. [35, 577], an S -wave rescattering contribution of

aHLbL
µ [ππ/KK̄I=0, S -waves] = −8.7(1.0) × 10−11 (5.24)

was obtained. By investigating the line shape of the resonance, an f0(980) contribution of aHLbL
µ [ f0(980)]|rescattering =

−0.2(1)×10−11 was isolated. In addition, Ref. [44] performed a comparison of the dispersive resonance contribution in
terms of two-particle S -wave rescattering with a narrow-width approximation, using the same tensor decomposition
of the dispersive framework. The dispersive definition of narrow-width contributions eliminates model-dependent
nonpole contributions, but the use of a consistent framework, in particular the choice of the tensor basis, is crucial
for a meaningful combination of different hadronic contributions: the independence of the dispersive result for HLbL
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on the choice of the tensor basis only follows from the requirement that a set of sum rules be fulfilled by the scalar
functions [35]. While the pseudoscalar poles and the pion box fulfill the sum rules individually, this is no longer the
case for rescattering contributions or narrow resonances. This implies that these individual contributions depend on
the choice of basis, with only the sum over all hadronic states being unambiguous.

In Ref. [44], it was observed that similarly to the single-channel solution of [35, 577] the coupled-channel solution
for γ∗γ∗ → ππ/KK̄I=0 only leads to small violations of the sum rule relevant for S -waves. Therefore, the obtained
rescattering contribution is essentially basis independent. Differences in the narrow-width estimate of the f0(980)
contribution between Ref. [44] and the earlier estimate of Ref. [581] were attributed mainly to the propagator definition
of the scalar resonance, which only corresponds to a dispersive pole in a different tensor basis and therefore indicates
sum-rule violations of the narrow resonance. To a lesser degree, the differences are related to the input for the transition
form factors [582, 583]. The comparison to Ref. [584] was complicated by the fact that this estimate was based on
a single helicity amplitude, which suffers from kinematic singularities that had to be removed by hand via angular
averages.

Based on the narrow-width approximation, Ref. [44] also evaluated the contribution of the isospin I = 1 scalar
a0(980). In Ref. [51], the S -wave contribution of πη/KK̄I=1 intermediate states has been evaluated dispersively in
terms of helicity partial waves. By incorporating precise experimental data from two-photon processes [585, 586] and
utilizing the modified Muskhelishvili–Omnès formalism, the dispersive analysis provides

aHLbL
µ [πη/KK̄I=1, S -waves] = −0.44(5) × 10−11 . (5.25)

This result represents an order of magnitude improvement in precision compared to the previous narrow-width es-
timate and is of the same order as the charged kaon box contribution in HLbL scattering. In total, the I = 0, 1, 2
rescatterings (including the effects of the f0(980) and a0(980) resonances) amount to a scalar contribution of

aHLbL
µ [scalars] = −9.1(1.0) × 10−11 . (5.26)

In Ref. [44], the contribution of the even heavier scalars f0(1370) and a0(1450) was estimated to be around
−1 × 10−11, but it was pointed out that the two-photon couplings and TFFs of these states are highly uncertain.
In Ref. [54, 587], these heavy-scalar contributions below a matching scale Q0 = 1.5 GeV were estimated as

aHLbL
µ [heavy scalars,Qi < 1.5 GeV] = −0.7(3) × 10−11 , (5.27)

using a simple quark model for the TFFs [582]

F S
1 (q2

1, q
2
2)

F S
1 (0, 0)

=
Λ2

S (3Λ2
S − q2

1 − q2
2)

3(Λ2
S − q2

1 − q2
2)2

,
F S

2 (q2
1, q

2
2)

F S
1 (0, 0)

= −
2Λ4

S

3(Λ2
S − q2

1 − q2
2)2

, (5.28)

with the normalization F S
1 (0, 0) determined from the two-photon widths Γγγ as discussed in Ref. [44]. The scale is

set to ΛS = Mρ, based on the observation that for the scalar mesons f0(980) and a0(980), adopting the expected VMD
scale results in better agreement with the explicit calculations using helicity partial waves [44, 51].

5.5.3. Axial-vector and tensor contributions
As already discussed in WP20, the issue of sum-rule violations is more severe for the contribution of resonances

beyond spin zero. At the time of WP20, the inclusion of axial-vector states or tensor resonances was not possible
due to the presence of kinematic singularities. In the case of axial-vector states, this problem has been solved in
Ref. [48] with the construction of an optimized basis that allows for the inclusion of axial-vector states while leaving
previously evaluated contributions like scalar resonances in terms of S -wave rescattering unchanged. The contribution
of pseudoscalar poles and the scalar-QED pion box are left unchanged, as they do not depend on the choice of basis:
while pseudoscalar poles do not contribute to the set of sum rules, the box contributions fulfill them individually.
Rescattering contributions or narrow resonances do not fulfill the sum rules exactly, which implies that these individual
contributions depend on the choice of basis, with only the sum over all hadronic states being unambiguous.

The new basis optimized for axial-vector states has been tested by analyzing the convergence behavior of the
partial-wave expanded pion box, observing an even faster convergence when summing up higher partial waves than
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in the original basis [48]. The new basis does not fully solve the issue of kinematic singularities, but significantly
simplifies the remaining singularity structure even for tensor resonances. The tensor-meson contribution can in general
be described in a narrow-width approximation in terms of five TFFs [583]. In the new basis, no kinematic singularities
show up in the tensor-resonance contribution if only the TFF F T

1 is retained, as well as in the special cases when only
F T

1,3 or F T
2,3 are present. In Refs. [54, 587], the tensor contributions are estimated using the simple quark model of

Ref. [582], which indeed only gives a contribution to F T
1 of the form

F T
1 (q2

1, q
2
2)

F T
1 (0, 0)

=

( Λ2
T

Λ2
T − q2

1 − q2
2

)2
, F T

2–5(q2
1, q

2
2) = 0 . (5.29)

For a more realistic description at low energies, the contribution of the tensor mesons f2(1270), a2(1320), and f ′2(1525)
below the matching scale Q0 = 1.5 GeV are calculated for ΛT = Mρ

aHLbL
µ [tensors,Qi < 1.5 GeV] = −2.5(3) × 10−11 , (5.30)

where the uncertainty is propagated from the two-photon widths only. This reflects the expectation that the vector-
meson scale should be important at low energies both because the f2(1270) arises primarily from the unitarization
of vector-meson left-hand cuts and because the momentum dependence of the respective TFFs is again largely de-
termined by vector-meson physics [249, 347–351, 541]. Further arguments to consider only F T

1 as a first estimate
originate from the high-energy limit, since F T

1 gives the dominant contribution in the light-cone expansion [583], and
from the low-energy behavior, as the leading term in a chiral-Lagrangian approach only generates F T

1 [588]. Finally,
up to a small correction from F T

2 , it is F T
1 that determines the on-shell two-photon decay width.23

The tensor-resonance estimate of Ref. [590] included in WP20, atensors
µ = 0.9(1) × 10−11, was based on a model-

dependent propagator definition that resulted in the need to average over kinematic singularities [584], see Ref. [44]
for further discussion. It can now be replaced by an estimate within the same basis as other contributions. How-
ever, we emphasize that even in the new basis, tensor-meson contributions beyond the effect of F T

1 still suffer from
kinematic singularities. This issue has been solved within a new dispersive framework in triangle kinematics [502],
see Sec. 5.11.1. The new framework requires further sub-processes as input, but opens a path towards a model-
independent evaluation of tensor contributions in terms of two-meson rescattering [350, 351]. As in the case of heavy
scalars, the final contribution of tensor states should be studied in combination with the SDCs, see below.

In contrast to the rather small tensor contributions, model estimates point to a substantial contribution of axial-
vector mesons as discussed in Sec. 5.6 and Sec. 5.7. These contributions are tightly connected to the saturation of
SDCs, see Sec. 5.4, Sec. 5.5.4, and Sec. 5.10. With the solution of the problem of kinematic singularities for axial
contributions in Ref. [48], the problem is reduced to the determination of the input for the axial-vector TFFs, which at
present are poorly constrained from data. This is related to the fact that the Landau–Yang theorem forbids the decay of
an axial-vector meson into two on-shell photons, hence constraining the TFFs requires data from processes involving
at least one off-shell photon. For the three physical TFFs that enter the dispersive representation, the asymptotic
behavior has been worked out in Ref. [583] using a light-cone expansion. In Ref. [47, 538], a VMD representation
was used to combine all available experimental constraints on the TFFs of the f1(1285). The minimal particle content
that is necessary to fulfill asymptotic constraints as well as reproducing data from e+e− → f1π+π− requires the
inclusion of at least three multiplets of vector mesons. In Ref. [47], the ρ = ρ(770), ρ′ = ρ(1450), and ρ′′ = ρ(1700)
were used for the dominant isovector piece and ω = ω(782), ω′ = ω(1420), ω′′ = ω(1650) as well as ϕ = ϕ(1020),
ϕ′ = ϕ(1680), ϕ′′ = ϕ(2170) for the isoscalar contributions.

Experimental input concerns the tree-level processes e+e− → e+e− f1 [591], which mainly determines the equiva-
lent two-photon decay width and constrains the symmetric TFF rather well; the decay f1 → ργ; and, for the subleading
isoscalar part, f1 → ϕγ. The decay f1 → 4π does not provide information on the TFFs, as it is likely dominated by
the decay chain f1 → a1π → 4π. In addition, the loop induced decay f1 → e+e−, measured for the first time in

23The hQCD scenario described in Sec. 5.6.5, featuring F T
1,3, can also be evaluated in the optimized basis from Ref. [48], but the appearance of

F T
3 is rather unexpected from the arguments given here, e.g., in contrast to hQCD the Lagrangian realization in Ref. [589] violates gauge invariance.

However, given the limited information on tensor TFFs presently available, for the final compilation in Sec. 5.10 both the F T
1 and F T

1,3 scenarios
will be taken into account.
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Figure 48: Constraints on the normalizations of the two antisymmetric f1 TFFs, Ca1 and Ca2 , excluding (left) and including (right) a possible
constraint from f1 → ϕγ. The bands come from the L3 normalization and slope, branching and helicity fraction for f1 → ργ, and σ(e+e− →
f1π+π−), while the gray ellipse indicates the global fit. Figure taken from Ref. [47].

inverse kinematics by SND [592], could provide valuable information on all three TFFs. Unfortunately, the data from
this decay are not yet at the required level of precision to have a meaningful impact on the global fit. Instead, the
scattering process e+e− → f1π+π− [173, 574] was considered in Ref. [47], as it provides further sensitivity also to the
antisymmetric TFFs, see Fig. 48. However, even combining all currently available data, at best the normalizations of
the f1 can be determined, while f ′1 and a1 are largely unconstrained. In this situation, estimates for their TFFs can be
obtained assuming U(3) symmetry, since the corresponding mixing angle θA between f1 and f ′1 was measured by L3
via the ratio of the respective equivalent two-photon decay widths Γ̃γγ yielding θA = 62(5)◦ [591, 593].

While full determinations of all three doubly-virtual TFFs are thus difficult to obtain, as reflected by the challenges
to extract even the three couplings arising in a VMD-motivated representation for the f1 from data, in the special case
of the singly-virtual a1 TFF F a1

2 a cross-check is possible against a recent dispersive description derived in the context
of the VVA correlator [50], see Fig. 49. This comparison shows that the assumption of U(3) symmetry leads to a
result for the a1 in surprisingly good agreement. Moreover, both results for F a1

2 agree well with hQCD models, see
Sec. 5.6.2.

Finally, the VMD representation taking into account three multiplets of vector mesons does not reproduce the cor-
rect asymptotic scaling in the doubly-virtual direction, and the coefficient of the singly-virtual limit is also not repro-
duced exactly, making it necessary to supplement the VMD representation with an asymptotic piece. The asymptotic
contribution takes a form that is an appropriate extension of the one established for pseudoscalars, see Sec. 5.5.1. In
Ref. [54, 587], a suitable representation was found that incorporates relevant mass effects, but at the same time leaves
unaltered the low-energy properties such as normalization and slope, which are already determined by the fit of the
VMD representation to data. The additional asymptotic form introduces a parameter sm that describes the transition
to the asymptotic regime of the corresponding form factor. Good agreement with the dispersive evaluation of the form
factor F a1

2 (q2
1, q

2
2) of Ref. [50] was found for sm = 1.5 GeV2, the typical matching scale expected from light-cone

sum-rule calculations [564, 594].
As the inclusion of axial-vector states is still affected by a basis dependence, their contribution needs to be studied

in combination with the matching to SDCs, see Sec. 5.5.4. In this context, the tails of the pseudoscalar-pole contri-
butions need to be subtracted, while the other contributions summarized in Table 21 have negligible overlap with the
mixed and short-distance regions.

5.5.4. Matching to short-distance constraints
Matching the sum of hadronic intermediate states to the SDCs of the HLbL tensor is most conveniently organized

in terms of a matching scale Q0 that separates the low-energy regime from the high-energy part. Moreover, a parameter
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Figure 49: Comparison of the a1 singly-virtual TFF F a1
2 (−Q2, 0) from the VMD representation and U(3) symmetry (blue band) [47, 54], in

comparison with the dispersive result [50] (gray band).

Contribution aµ[10−11] References

π0, η, η′ poles 91.2+2.9
−2.4 [36, 55, 543, 545]

π± box −15.9(2) [35, 577]
K± box −0.5(0) [45]
S -wave rescattering −9.1(1.0) [35, 44, 51, 577]

Sum 65.7+3.1
−2.6

Table 21: Summary of previously evaluated contributions in dispersion theory. The S -wave rescattering subsumes effects that correspond to the
light scalar resonances f0(500), f0(980), and a0(980).

r ∈ [0, 1] has to be introduced in order to keep track of the applicability of the OPE constraints in the mixed region.
In the following, we describe the matching strategy from Refs. [54, 587].

With a finite number of hadronic states, e.g., including the pseudoscalar poles, the heavy scalars f0(1370) and
a0(1450), the first axial-vector multiplet f1(1285), f ′1(1420), and a1(1260), and the first tensor multiplet f2(1270),
f ′2(1525), and a2(1320), the matching cannot be expected to be smooth in all possible directions of the HLbL tensor.
In Fig. 50, the scalar function Π̄1 for the symmetric limit Qsym = Q1 = Q2 = Q3 is shown. It displays the remaining
discrepancy between the sum of hadronic states and pQCD in the regime above 1 GeV. Therefore, in order to estimate
the remaining uncertainty from the matching procedure, the relevant scales Q0 and r are varied in suitable intervals.

In the region in which all Qi < Q0 are small, the sum of hadronic intermediate states is used, and in the opposite
case, when all Qi are larger than Q0, the pQCD result including αs corrections evaluated at scale µ = Q0. The central
value is chosen for Q0 = 1.5 GeV, with scale varied between 1.2 GeV, the lower boundary at which αs corrections
can still be controlled, and 2 GeV, the upper limit at which a hadronic description should still be meaningful. The
mixed region can be further divided into the part with Q1 > Q0 and Q2,Q3 < Q0 and crossed versions thereof. In this
regime, no OPE constraint applies and hence the sum of hadronic intermediate states is used. Instead, for

Q2
3 ≤ r

Q2
1 + Q2

2

2
, Q2

1 ≥ Q2
0 , Q2

2 ≥ Q2
0 , Q2

3 ≤ Q2
0 , (5.31)

and crossed versions thereof, the HLbL tensor is related to the VVA correlator, leading to the identification

Π̂1 = −
1

π2q̂2

∑
a=0,3,8

C2
aw(a)

L (q2
3) ,
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Figure 50: Matching between the sum of hadronic states,
∑
= π0 +η+η′ +a1 + f1 + f ′1 +a2 + f2 + f ′2 , in Π̄1 as a function of Qsym ≡ Q1 = Q2 = Q3.

P(2200) denotes the contribution of the effective pseudoscalar pole. Figure taken from Ref. [587].

Π̂5 = Π̂6 = −q̂2Π̂10 = −q̂2Π̂14 = q̂2Π̂17 = q̂2Π̂39 = 2q̂2Π̂50 = 2q̂2Π̂51 = −
2

3π2q̂2

∑
a=0,3,8

C2
aw(a)

T (q2
3) , (5.32)

in terms of longitudinal and transverse form factors wL,T (q2).24 In particular, it was shown in Ref. [53] that certain
corrections at higher orders in the OPE accidentally cancel at the level of the aµ integration, making the constraint
Eq. (5.32) more robust. For the numerical analysis, the dedicated dispersive analysis of the hadronic VVA correlator
from Ref. [50] is used for the triplet component a = 3, reproduced in Ref. [48] in a simplified set-up that can be
readily generalized to a = 0, 8. For the central value r = 1/4 is used, varied by a factor of 2 in both directions in order
to assess the uncertainty introduced by this specific matching parameter. The stability of aµ by varying the scales Q0
and r can be seen in Fig. 51.

The mismatch between the sum of hadronic intermediate states and pQCD in the region between 1.2 GeV and
2.0 GeV could have an impact on the low-energy region and the parts of the mixed region for which no OPE constraint
applies. When including more states or even an infinite tower of states in order to saturate the asymptotic behavior and
OPE constraints of the HLbL tensor, a potential nonnegligible contribution might arise at low energies as well, and
this uncertainty would not be captured by the variation of the matching scales Q0 and r. Therefore, effective poles are
introduced that saturate the prescribed asymptotic behavior of the HLbL tensor. As a single state or a finite number of
states in four-point kinematics cannot exactly reproduce the required behavior, the dispersive framework in triangle
kinematics proves beneficial [502], introducing a corresponding pseudoscalar pole for the longitudinal components
and an axial-vector state for the transverse ones, e.g.,

Π̂eff
1 =

FPγ∗γ∗ (q2
1, q

2
2)FPγ∗γ∗ (M2

P, 0)

q2
3 − M2

P

,

Π̂eff
4 =

(q2
1 + q2

3 − M2
A)F A

2 (M2
A, 0)

[
2F A

1 (q2
1, q

2
3) + F A

3 (q2
1, q

2
3)
]

2M4
A(q2

2 − M2
A)

+
(
q2

1 ↔ q2
2
)
. (5.33)

Note that the axial-vector state in triangle kinematics does not contribute to the longitudinal part in contrast to the
dispersive framework in four-point kinematics. The overall couplings are determined from the short-distance matching

24These form factors are identical to ωL,T (q2) introduced in Sec. 5.4, up to an overall factor of Nc = 3, wL,T (q2) = NcωL,T (q2).
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Figure 51: Stability of the aµ integral under variation of Q0, r. Figure taken from Ref. [587].

in the symmetric limit Qsym = Q1 = Q2 = Q3, while the asymmetric matching is included in the error estimate.
The mass scales are taken as Meff

P = 2.2 GeV and Meff
A = 1.7 GeV, motivated by the phenomenology of excited

pseudoscalar and axial-vector states [54], and the TFF scale is varied in the same range as Q0, with central value
at 1.5 GeV. The various contributions in each region are summarized in Table 22, displaying results for the central
values and those errors directly derived from experiment (and αs).

In total, the following results for the subleading HLbL contributions are obtained

aµ[Π̄1,2] = 26.9(2.1)exp(1.0)match(3.7)sys(3.2)eff[5.4]total × 10−11 ,

aµ[Π̄3–12] = 6.3(1.5)exp(1.4)match(0.2)sys(2.2)eff[3.0]total × 10−11 ,

aµ[Π̄1–12] = 33.2(3.3)exp(2.2)match(4.6)sys(3.9)eff[7.2]total × 10−11 , (5.34)

where the “exp” error refers to the two-photon couplings of the heavy scalars and tensor mesons as well as the axial-
vector TFFs; the “match” error indicates the maximal variation under Q0 ∈ [1.2, 2.0]GeV and r ∈ [1/8, 1/2]; the “sys”
error subsumes various systematic effects (a 30% uncertainty on the hadronic contributions to reflect U(3) assump-
tions for the axial-vector TFFs [47, 538] and the simplified form of the tensor TFFs; and a 100% uncertainty for the
total tensor contribution to aµ[Π̄1–12] to reflect the strong cancellations observed among the different scalar functions);
the “eff” error estimates the uncertainties in the effective-pole contributions (variation of TFF scale and symmetric vs.
asymmetric matching), where the uncertainties for the pseudoscalar and axial-vector poles are considered separately
and added in quadrature in the end, again due to a cancellation observed between them. Combined with the disper-
sively evaluated contributions from Table 21 one finds a total HLbL contribution aHLbL

µ = 98.9(7.9)×10−11 (excluding
the charm loop).

5.6. Holographic approach

In WP20, results from simple (chiral) holographic models, which had been shown to naturally implement the MV
SDC through their infinite towers of axial-vector mesons [39, 40], were observed to be roughly consistent with the
combined estimate of the contributions of axials and SDCs, however, with numerical results around the upper value
of the estimated error bar aaxials+SDC

µ = 21(16) × 10−11. In the meantime, more realistic models including finite quark
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Region aµ[Π̄1,2] [10−11] aµ[Π̄3–12] [10−11] Sum [10−11]

Qi < Q0

A = f1, f ′1 , a1 7.2(1.4)exp 5.0(1.0)exp 12.2(2.3)exp

S = f0(1370), a0(1450) – −0.7(3)exp −0.7(3)exp

T = f2, a2, f ′2 2.6(3)exp −5.1(7)exp −2.5(3)exp

Effective poles 2.5 −0.4 2.0

Mixed
A, S ,T 2.5(7)exp 1.3(3)exp 3.8(1.0)exp

OPE 6.3 4.7 10.9
Effective poles 1.1 0.1 1.2

Qi > Q0 pQCD 4.8+0.1
−0.2 1.6+0.0

−0.1 6.3+0.2
−0.3

Sum 26.9(2.1)exp(3.7)sys(3.2)eff 6.3(1.5)exp(0.2)sys(2.2)eff 33.2(3.3)exp(4.6)sys(3.9)eff

Table 22: Summary of the various subleading contributions considered in Refs. [54, 587], at the matching scale Q0 = 1.5 GeV and with the OPE
applied for Q2

3 < r(Q2
1+Q2

2)/2, r = 1/4. In the regions in which OPE and pQCD are used, the tails of the pseudoscalar poles are subtracted to avoid
double counting. The effective poles are determined from the matching in the symmetric asymptotic limit, with TFF scale 1.5 GeV. The errors are
labeled as in Eq. (5.34), see main text for details, while the matching uncertainties from the variation of Q0, r are not yet included. The errors for
the pQCD contribution are propagated from αs.

masses as well as the anomalous mass of the η′ have been worked out that make a numerical comparison with the
results from the updated data-driven approach as well as with lattice results even more interesting. Before doing so, it
is useful to recall the theoretical basis of the holographic approach.

Holographic QCD (hQCD) refers to hadronic models of QCD in the large-Nc limit constructed in analogy to the
conjectural but well-established AdS/CFT correspondence [595, 596], where a conformally invariant supersymmetric
Yang–Mills theory in the limit of infinite ’t Hooft coupling can be mapped to a five-dimensional classical gravity theory
on anti-de Sitter (AdS) space. The extra dimension turns out to correspond to the energy scale of the holographically
dual quantum field theory living on the conformal boundary of AdS space.

A “top-down” construction of a holographic dual to low-energy large-Nc QCD with chiral quarks has been
achieved by Sakai and Sugimoto [597, 598], building upon earlier work by Witten [599], where supersymmetry
and conformal invariance is broken by an additional Kaluza–Klein compactification. While remarkably successful
for a number of low-energy observables, this model does not make contact to QCD at large energies and momenta.
However, there are by now a number of phenomenologically interesting “bottom-up” models of hadron physics that
combine salient features of the top-down construction with a simpler geometry that is asymptotically AdS5 and there-
fore can be matched to the asymptotic conformal symmetry of QCD in the UV. Confinement and chiral symmetry
breaking is implemented either by a hard-wall (HW) cutoff [600–602] with appropriate boundary conditions or by a
soft wall (SW) provided by a nontrivial dilaton [603–611], which has similarities with light-front hQCD [612].

Already the simplest hQCD models have proved to provide good qualitative and oftentimes quantitative predic-
tions of observables in hadron physics with typical errors of (sometimes less than) 10 to 30% with a minimal set of free
parameters [600–602]. While this is clearly much too crude to be of help with the HVP contribution to aµ, bottom-up
hQCD models provide interesting predictions for the HLbL amplitude, where they naturally satisfy the longitudinal
SDC after matching leading-order OPE results for the vector correlation function [39, 40, 537]. In this context, it is
useful to recall that hQCD relies on the so-called holographic dictionary underlying the original conjectured AdS/CFT
duality, where for each gauge-invariant quantum operator O∆(x) of the 4D gauge theory with scaling dimension ∆ one
has a corresponding 5D field ϕ(x, z), whose value on the UV boundary at z = 0 is identified (modulo a certain power
of z) with the 4D source of the operator, J(x) ∝ ϕ(x, 0), and whose 5D mass is determined by ∆ and form degree p
through m2

ϕ = (∆ − p)(∆ + p − 4).
The generating functional of the 4D theory is computed from the 5D action evaluated on-shell,

exp(iW[J]) ≡ ⟨0|T exp
(
i
∫

d4xJ(x)O∆(x)
)
|0⟩4D = exp

(
iS on-shell

5D [J]
)
, (5.35)

so that n-point functions of the 4D theory ⟨0|T {O∆(x1)O∆(x2) · · · O∆(xn)} |0⟩ can be obtained from variational deriva-
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Figure 52: 5D Witten diagrams contributing to the HLbL tensor in hQCD models, generalizing the one-particle exchange diagrams in 4D. The
AdS5 space is represented as the disk, with z as the holographic radial coordinate and ordinary 4D spacetime as its boundary. Solid lines represent
the vector bulk-to-boundary propagators, depending on the 4D external momenta. Double lines denote the Green function of a 5D field, containing
the whole tower of massive resonances in the given channel (pseudoscalars, axial vectors etc.) in the form G(q, z, z′) =

∑
n φn(z)φn(z′)/(q2 − m2

n).
Dots represent interaction vertices derived from the 5D action.

tives δnS on-shell
5D /δJ(x1)δJ(x2) · · · δJ(xn). The calculation of correlation functions of quantum operators thus amounts

to computing tree-level (Witten) diagrams on the gravity side, where the external sources reside on the conformal
boundary of AdS space, which connect with bulk-to-boundary propagators to interactions in the bulk of the 5D the-
ory, involving also bulk-to-bulk propagators when n ≥ 4 as in the case of the HLbL amplitude. In this caseO∆ involves
the vector current q̄γµtaq with ∆ = 3, corresponding to a massless gauge field in the bulk. The global chiral symmetry
U(N f )L× U(N f )R thus turns into a (flavor) gauge theory in the bulk with 5D action

S YM = −
1

4g2
5

tr
∫

d4x
∫ z0

0
dz e−Φ(z) √−g gPRgQS

(
F

(L)
PQF

(L)
RS + F

(R)
PQF

(R)
RS

)
, (5.36)

where P,Q,R, S = 0, . . . , 3, z and FMN = ∂MBN −∂NBM − i[BM ,BN]. Here z0 can either be a finite upper value, when
confinement is implemented by a hard wall, or z0 = ∞ when confinement is due to a nontrivial dilaton field Φ(z).

It is a striking feature of hQCD models that the correlation functions are saturated by infinite sums of narrow 4D
resonances of increasing mass, as is expected in the large-Nc limit of QCD. In particular, the normalizable modes of
the 5D Yang–Mills fields BL,R

M = BV
M ∓B

A
M correspond to an infinite tower of massive vector and axial-vector mesons.

VMD is naturally built in through the bulk-to-boundary propagators for EM currents, which can be expressed in
terms of mode functions of the massive vector mesons. Typically, hQCD models provide closed-form analytic or
semi-analytic expressions summing up the contributions of those infinite towers of resonances. Moreover, hQCD
models with (asymptotically) AdS metric reproduce the approximately conformal behavior of QCD at short distances,
permitting in many cases a matching of SDCs.

Chiral symmetry is broken either by introducing an extra bifundamental scalar field X dual to quark bilinears q̄LqR

as in the original HW model [600, 601] (denoted by HW1 in the following) and in the SW model [604], or through
different IR boundary conditions for vector and axial vector fields at z0 as in the inherently chiral Hirn–Sanz (HW2)
model [602] (as is also the case in the top-down Sakai–Sugimoto model [597, 598]). Versions of the HW1 model with
the latter boundary conditions have been advocated in Ref. [613] and further studied in Ref. [537] (denoted by HW3
therein). With the exception of the HW2 model, these bottom-up models have just enough parameters to match Fπ,
the ρ meson mass, and the leading OPE term of the vector–vector correlation function; the simpler HW2 model can
match only two of those ingredients at once.

In all these models, flavor anomalies follow uniquely from 5D Chern–Simons terms S L
CS − S R

CS, where (in
differential-form notation)

S CS =
Nc

24π2

∫
tr

(
BF 2 −

i
2
B3F −

1
10
B5

)
. (5.37)

In particular, this determines the anomalous interactions of photons with pseudoscalars and axial-vectors which appear
together in the mode expansion of BA

M = (BR
M − B

L
M)/2.

Although suppressed at large Nc, a Witten–Veneziano mechanism for the η0 mass through the U(1)A anomaly is
included in the Sakai–Sugimoto model [597] and yields satisfactory numerical results at Nc = 3 [614]. Extensions
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of the bottom-up models that implement the U(1)A anomaly have been proposed in Refs. [615, 616], and have been
employed in the context of HLbL scattering in Refs. [46, 617].

5.6.1. Pseudoscalar TFFs in hQCD
In a mode decomposition of the bulk-to-bulk propagator in the 5D Witten diagrams for the HLbL tensor shown in

Fig. 52, integration over the holographic coordinate of an internal vertex yields the TFF of the exchanged meson. The
internal vertex is provided by the Chern–Simons action Eq. (5.37), yielding

Fπ0γ∗γ∗ (Q2
1,Q

2
2) =

Nc

12π2Fπ

∫ z0

0
dzJ(Q1, z)J(Q2, z)Ψ(z) , (5.38)

where J(Q, z) is the bulk-to-boundary propagator of a photon with virtuality Q2 = −q2 and Ψ(s) a holographic
pion profile function. The authors of Refs. [618–620] were the first to notice that in hQCD models with asymptotic
AdS5 geometry the expression in Eq. (5.38) reproduces the asymptotic momentum dependence obtained by BL in
QCD [523, 524, 563],

Fπ0γ∗γ∗ (Q2
1,Q

2
2)→ C

2Fπ

Q2

[
1

w2 −
1 − w2

2w3 log
1 + w
1 − w

]
, (5.39)

with C = g2
5Nc/(12π2), Q2 = (Q2

1 + Q2
2)/2 → ∞, w = (Q2

1 − Q2
2)/(Q2

1 + Q2
2). The correct functional dependence

on w is due to the infinite sum of vector resonances contained in J , and cannot be obtained in VMD models with a
finite number of resonances. When the vector–vector correlator is matched to the leading-order OPE result, one has
C = 1, in exact agreement with the BL limit. This can be achieved in the bottom-up hQCD models with asymptotic
AdS geometry except for the simple HW2 model, when the latter matches both Fπ and Mρ, which reduces C to 0.616
(fitting the asymptotic limit would instead lead to an overweight ρ meson with mass of 987 MeV).

Pion-pole contribution. First estimates of the corresponding holographic results for the pion pole contribution aπ
0

µ

were obtained in Ref. [621, 622] and more fully in Ref. [623]. The experimental data on the pion TFF turned out
to be bracketed by the HW1 and HW2 results when these models are fit to Fπ and Mρ. Since the HW2 model then
undershoots the asymptotic limit of Eq. (5.39) by 38%, its prediction of aπ

0

µ = 56.9 × 10−11 is correspondingly on the
low side. The HW1 model, which exactly satisfies the asymptotic limit Eq. (5.39) and which can also accommodate
finite quark masses [537], predicts aπ

0

µ = (66.0–66.6) × 10−11 depending on the precise boundary conditions [537].
This is consistent with, but slightly larger than the dispersive result 63.0+2.7

−2.1 × 10−11 [1, 36, 543].
At high but still phenomenologically relevant energy scales, gluonic corrections modify the large-Q2 behavior

of the TFF by about 10% [43, 624]. Holographic QCD models with a simple AdS5 background have no running
coupling constant and thus approach the asymptotic limit too quickly. Similar corrections, but with opposite sign,
appear in the vector correlator determining also HVP. Indeed, the HW1 model with a complete UV fit underestimates
the HVP contribution. Reducing g2

5 by 10% (incidentally corresponding to an exact fit of the decay constant of the
ρ meson) brings HVP in line with the dispersive result (to within 5%) [625]. It also makes the HW1 result with
aπ

0

µ = 63.4 × 10−11 almost completely coincident with the dispersive result [46, 537]. In Fig. 53 the HW1 result (with
finite quark masses) is compared with experimental data and the dispersive result of Ref. [36] for the two choices of
g5.

More recently, the pseudoscalar TFFs and their contribution to aµ have been evaluated also in the SW model [617].
In this model, the pseudoscalar TFFs turn out to approach the BL limit from above, and the good agreement with data
obtained in the HW1 model is lost. The result for the pion contribution is aπ

0

µ = 75.2 × 10−11, significantly larger
than the results from data-driven and lattice approaches. A drawback of the SW model as set up in Ref. [617] is
that the background of the bifundamental scalar, which implements chiral symmetry breaking, is taken over from the
HW models but is not a solution of the field equations in the modified geometry. On the other hand, self-consistent
solutions would make the chiral condensate proportional to quark masses [604], so that some modifications are needed
which presumably would change the behavior at larger momenta. Improved hQCD models with nontrivial dilaton
background exist in the literature [606, 607, 626], but they involve a rather large parameter space; so far they have not
been worked out with regard to the HLbL amplitude.
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Figure 53: Comparison of the hQCD results for the pion TFF of Ref. [46] (LMR22) with OPE fit of g2
5 (blue lines) and a 10% reduced coupling g2

5
(red lines) from fitting Fρ instead, compared to the dispersive results of Ref. [36] and experimental data.

Excited pions. With the exception of the inherently chiral HW2 model, the hQCD models also have excited pseu-
doscalars. Those decouple from the anomaly in the chiral limit, where Fπn → 0 for n > 1, but even then have
nonvanishing two-photon decay amplitudes. Away from the chiral limit, one has the sum rule [537]

∞∑
n=1

Fπn Fπnγγ =
Nc

12π2 (5.40)

and asymptotic behavior according to the BL result given in Eq. (5.39).
In the massive HW models, the first excited pion has a mass of 1.9 GeV (HW1) or 1.7 GeV (HW3), contributing

aπ
0∗

µ = 0.7× 10−11 or 0.8× 10−11, respectively [537]. In Ref. [613] it was noted that with a different scaling dimension
for the bifundamental operator one can adjust the HW3 model such that the mass of the π(1300) resonance is matched.
This increases the contribution to aπ

0∗

µ = 1.5 × 10−11; however, the predicted decay amplitude |Fπ0∗γγ| = 0.206 GeV−1

is in conflict with the estimated experimental upper bound [530] |Fπ(1300)γγ| < 0.0544(71) GeV−1. Without this modi-
fication, the contribution from the collection of excited pions with n ≥ 2 is

∑
n≥2 aπn

µ ≃ 0.8 × 10−11 in the HW models.
In the SW model of Ref. [617], where the first excited pion has a mass of about 2.1 GeV, already this mode would
contribute 1.68 × 10−11. In contrast to the HW model, the contributions from higher excited pions do not fall off
quickly, despite their more rapidly growing masses [627].

η and η′. In order to describe the η and η′ pseudoscalars consistently, the larger strange quark mass as well as
the anomaly induced mass of the η0 singlet has to be taken into account. In the chiral models studied initially in
Refs. [39, 40, 622, 623], the decay constants and masses were adjusted manually, whereas in the early HW1 study
of Ref. [621] with finite quark masses the Chern–Simons action was implemented incorrectly [537]. From the chiral
HW2 model, Ref. [40] obtained the ranges aηµ = (14 . . . 21)× 10−11 and aη

′

µ = (10 . . . 16)× 10−11, while from the chiral
HW1 model Ref. [623] estimated aηµ = 18.2 × 10−11 and aη

′

µ = 15.6 × 10−11.
In the hQCD models with bifundamental scalar field, quark masses can be introduced by the nonnormalizable

modes of the latter, while the anomalous mass of the η0 singlet can be obtained by a Witten–Veneziano mechanism.
This permits to predict masses, decay constants, and TFFs of η and η′ when the quark masses are fixed to reproduce
π and K masses. The best result so far was obtained in Ref. [46] by using the Katz–Schwartz model [615] for
implementing the U(1)A anomaly in a HW AdS background, but allowing for a gluon condensate (referred to as
model v1 in LMR22 [46]). This reproduced η and η′ masses and Fη(′)γγ(0, 0) to within a few percent.25

The HW results for the singly and doubly virtual TFFs are displayed in Fig. 54. While they are fully compatible
with the CA results used in WP20, they are significantly above the new dispersive results [55, 545]. Correspondingly

25The SW model of Ref. [617] with U(1)A anomaly also achieves this, but the TFFs of η and η′ approach the BL limit from above like the SW
result for π0, leading to rather poor agreement with data, in particular in the case of η.
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Figure 54: Comparison of the hQCD results for the η and η′ TFFs of Ref. [46] (LMR22) with OPE fit of g2
5 (blue lines) and a 10% reduced coupling

g2
5 (red lines) from fitting Fρ instead, compared to the dispersive results of Refs. [55, 545] and experimental data.

the results for aηµ and aη
′

µ listed in Table 23, which would agree with WP20 within errors, are larger than those of
Refs. [55, 545], by 3σ and 2σ, respectively.

5.6.2. Axial-vector TFFs in hQCD
All hQCD models involve an infinite tower of axial vector mesons. Their coupling to two photons is determined

by the same action Eq. (5.37) that gives rise to the anomalous TFFs of the pseudoscalars. It has the form [39, 40]

MAnγ∗γ∗ = i
Nc

4π2 tr(Q2ta) ϵµ(1)ϵ
ν
(2)ϵ
∗ρ
A
ϵµνρσ

[
qσ(2)Q

2
1Aa

n(Q2
1,Q

2
2) − qσ(1)Q

2
2Aa

n(Q2
2,Q

2
1)
]
, (5.41)

involving an asymmetric structure function

An(Q2
1,Q

2
2) =

2g5

Q2
1

∫ z0

0
dz

[
d
dz
J(Q1, z)

]
J(Q2, z)ψA

n (z) , (5.42)

where ψA
n (z) is the holographic profile function of the n-th axial vector meson. The Landau–Yang theorem [628, 629],

which forbids the decay of an axial vector meson into two real photons, is satisfied because ∂zJ(0, z) ≡ 0.
In the notation of Refs. [47, 538, 583], An(Q2

1,Q
2
2) ∝ F2(q2

1, q
2
2) ≡ −F3(q2

2, q
2
1). The most general decay amplitude

of axial-vector mesons would permit one further structure function [538, 630, 631], denoted as F1 ≡ Fa1 in Refs. [47,
538, 583]. The holographic prediction that this vanishes is consistent with the results of the study of all available
experimental data on f1(1285) in Ref. [47].

In all hQCD models that are asymptotically AdS, the asymptotic form of An(Q2
1,Q

2
2) is given by [39]

An(Q2
1,Q

2
2)→ C

12π2FA
n

NcQ4

1
w4

[
w(3 − 2w) +

1
2

(w + 3)(1 − w) log
1 − w
1 + w

]
, (5.43)
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Figure 55: Comparison of the hQCD results for the a1 TFF of Ref. [46] (LMR22) with OPE fit of g2
5 (blue lines) and a 10% reduced coupling g2

5
(red lines) from fitting Fρ instead, compared to the dispersive result of Ref. [50]. The BL limit [583] is shown as a dotted (dash-dotted) gray line
without (with) mass corrections.

for Q2 = (Q2
1+Q2

2)/2→ ∞, w = (Q2
1−Q2

2)/(Q2
1+Q2

2), which agrees with the result obtained by light-cone expansions
in Ref. [583], where in fact F1 does not contribute terms of order 1/Q4. Again, C = g2

5Nc/(12π2) = 1 when g5 is fixed
such that the asymptotic behavior of the vector correlator matches the leading-order OPE result in QCD.

In Fig. 55 the result obtained for the singly-virtual a1 TFF in the HW model of Ref. [46] (LMR22) is compared to
the recent dispersive result of Ref. [50]. With g5 fixed by fitting Fρ instead of the OPE result, the BL limit is reached
asymptotically only at the level of 89%, but for virtualities at moderate values of Q2 a perfect agreement with the
dispersive result is obtained.

5.6.3. Short-distance constraints in hQCD
In the BTT basis of the HLbL four-point function [33], the longitudinal SDC of MV [498] in the region Q2

1 ≃

Q2
2 ≫ Q2

3 ≫ M2
ρ and Q4 = 0, which is governed by the chiral anomaly and protected by its nonrenormalization

theorem, reads [38, 498, 529, 530]

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1(Q,Q,Q3) = −

2
3π2 (5.44)

for Nc = N f = 3, while the symmetric limit is 2/3 of this,

lim
Q→∞

lim
Q→∞

Q4Π̄1(Q,Q,Q) = −
4

9π2 . (5.45)

The short-distance behavior of the form factors of both pseudoscalars and axial-vector mesons implies that each
individual meson gives a pole contribution with Π̄1(Q,Q,Q3) ≃ Q−2Q−4

3 . However, in Ref. [39, 40] it was shown that
in hQCD a summation over the infinite tower of axial-vector mesons changes this. The infinite sum yields

Π̄AV
1 = −

2C
π2Q2

3

∫ z0

0
dz

∫ z0

0
dz′J ′(Q, z)J(Q, z)J ′(Q3, z′)GA(0; z, z′) , (5.46)

where GA is the Green function for the axial-vector mode equation at q2 = 0. For large Q,Q3 ≫ Mρ, Eq. (5.46) is
dominated by z, z′ ≪ z0, where all hQCD models with (at least asymptotic) AdS geometry haveJ(Q, z)→ QzK1(Qz),
and

GA(0, z, z′) =
1
2

(
min(z, z′)

)2
(
1 + O(Q−n) + O(Q−n

3 )
)
, n > 0 , (5.47)
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when z = ξ/Q and z′ = ξ′/Q3. For Q ≫ Q3 ≫ Mρ this leads to

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄

AV
1 (Q,Q,Q3) =

C
2π2

∫ ∞

0
dξξ2 d

dξ
[ξK1(ξ)]2 = −

2
3π2 C , (5.48)

reproducing Eq. (5.44) for C = 1, i.e., whenever the leading-order OPE behavior of the vector correlator is matched.
As shown in Ref. [537], an infinite tower of excited pseudoscalars, which is present in the hQCD models apart from
the HW2 model, does not contribute to Eq. (5.48). An analogous analysis of the symmetric limit Q2

1 ≃ Q2
2 ≃ Q2

3 ≫ M2
ρ

yields

lim
Q→∞

Q4Π̄AV
1 (Q,Q,Q) = −

C
π2

∫ ∞

0
dξ ξ[ξK1(ξ)]3 = −0.812

4
9π2 C , (5.49)

which reproduces the correct power behavior, but for C = 1 is only 81% of the result Eq. (5.45).

5.6.4. Complete axial-sector HLbL contributions to aµ in hQCD
The virtue of bottom-up hQCD models is to provide simple, self-contained hadronic models for the HLbL tensor

covering all virtualities, including the consequences of the axial anomaly for the longitudinal SDC in full, while also
capturing 81% of the transverse SDC. Because the pseudoscalar and axial-vector contributions are coupled, complete
results for the HLbL contribution in a given hQCD model require that both be fully evaluated. So far this has been
done in the chiral HW models studied in Ref. [39, 40], flavor-symmetric HW models with a quark mass that matches
Mπ in Ref. [537], and more recently in an N f = 2 + 1 model including the anomalous η′ mass in Ref. [46]. The
resulting values for aHLbL

µ are summarized in Table 23. There CCDGI(set1-set2) refers to the results for the HW2
model from Ref. [40], which made an estimate for the N f = 2 + 1 case by using the chiral TFFs with physical
pseudoscalar masses and by introducing a different decay constant for η′, with two sets of parameters which either
undershoot the BL limit by a factor of 0.616, or overshoot the ρ mass, but give pseudoscalar TFFs that bracket the
experimental results. LMR22 refers to the HW model Ref. [46] with quark masses and an η0 mass contribution from
the U(1)A anomaly. The latter entails a pseudoscalar glue ball (G/η′′) that mixes with η and η′ and also couples to two
photons. Most recently, variations of such hQCD models have been considered in Ref. [632] with scalar-extended
Chern–Simons actions, motivated by string-theoretic constructions [616]. One of those named CS”(Fρ-fit) is included
in Table 23, which has the virtue of reproducing quite well the experimentally observed [591, 593] equivalent photon
rates and mixing of f (′)

1 axial-vector mesons, albeit at the expense of a less good fit of η′ data. Moreover, the π0 TFF
appears to be overestimated at nonzero virtualities. However, the total sum of all contributions turns out to be similar
to the LMR22 result due to larger contributions from the tower of excited pseudoscalars and axials, which compensate
for the smaller result from ground-state axial-vector mesons. Reference [632] still considers the LMR22 v1(Fρ-fit)
as the best-guess hQCD result, with the variation obtained in the CS′′ (and the partially scalar-extended CS′) models
providing estimates for inherent errors.

A comparison of these results with other approaches that determine the pole contributions from single meson
exchanges is made in Secs. 5.9 and 5.10 below, and reasonable agreement is obtained within estimated systematic
errors.26

5.6.5. Scalar and tensor contributions in hQCD
In WP20 the broad resonance f0(500) was covered by the S -wave ππ scattering contribution and largely domi-

nates those of heavier scalars, which have been estimated in the narrow-width approximation. The contributions of
the lightest tensor mesons f2(1270), f2(1565), a2(1320) and a2(1700), were evaluated in the narrow-resonance ap-
proximation in Refs. [584, 590]. The total contribution from scalar and tensor resonances with masses greater that
1 GeV was estimated to be ascalar+tensors

µ = −1(3) × 10−11. There were no dispersive estimate for the single tensor
resonance exchanges due to some spurious dependence on the result on the tensor basis. Recently, this problem has
been overcome in Ref. [48] allowing for the dispersive evaluation reported in Ref. [587]

26An exception in recent work concerns Refs. [633–635], where significantly smaller results, aπ
0+η+η′

µ = 58.5(8.7) × 10−11 and a
a1+ f1+ f ′1
µ =

3.6(1.8) × 10−11, are obtained in a nonlocal quark model. However, these results and the other contributions in those papers do not correspond to
pure pole contributions, and it is thus not clear how to compare to the results discussed here.
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aµ × 1011 CCDGI(set1-set2) LMR22 v1(OPE fit) LMR22 v1(Fρ-fit) CS′′(Fρ-fit)

π0 57–75 66.1 63.4 68.8
η 14–21 19.3 17.6 17.2
η′ 10–16 16.9 14.9 12.2
G/η′′ – 0.2 0.2 2.6∑

PS ∗ – 1.6 1.4 3.2

π0 + η + η′ 81–112 102.3 95.9 98.2
PS poles 81–112 104 97.5 104

a1 – 7.8 7.1 4.9
f1 + f ′1 – 20.0 17.9 12.0∑

a∗1
– 2.5 2.6 2.3∑

f (′)∗
1

– 4.0 3.5 7.9

AV+LSDC 28(2) 34.3 31.1 27.0
AV+P∗+LSDC 28(2) 36.0 32.7 32.8

Total 110–140 138 129 131

Table 23: Breakdown of the axial-sector contributions to aHLbL
µ in N f = 2 + 1 hQCD models, where the HLbL contributions of pseudoscalars and

axial-vector mesons have been evaluated completely. LMR22 v1(Fρ-fit) represents the best-guess model of Ref. [46]. The table gives a partial
summary of the results from Refs. [40, 46, 632] for the different contributions to aHLbL

µ .

The hQCD models which involve a bifundamental scalar field for implementing chiral symmetry breaking also
feature nonets of scalar mesons and their excitations. However, in the minimal setup of Refs. [600, 601, 604], they do
not give rise to a coupling to photons. Such a coupling is only naturally present for the flavor-singlet dilaton, which
corresponds to a scalar glue ball, and metric fluctuations, corresponding to a tensor glue ball. In Ref. [636], this was
considered within the Witten–Sakai–Sugimoto model with two-photon decay rates in the keV range, but the resulting
aµ contributions have been found to be negligible.

In Ref. [534], the minimal HW1 model of Ref. [600, 601, 604] was extended by adding, in the 5D Lagrangian,
two new interaction terms quadratic in both the 5D scalar field and tensor gauge fields in Eq. (5.36). Chiral symmetry
breaking generated scalar–photon–photon interaction vertices and hence a nonvanishing scalar TFF. Only the chiral
limit was considered in that model. The contribution of the full tower of scalar resonances in each channel was
obtained. The final result for the total contribution of σ(500), a(980), and f0(980) was aS

µ = −9(2) × 10−11, with
roughly 90% of it coming from σ(500), being compatible with the estimates in WP20. A shortcoming of the model
is that the asymptotic behavior of the scalar TFF does not match the one expected from a BL analysis [583] in QCD
for large photon virtualities. In Ref. [632] it has been shown that this mismatch persists also beyond the chiral limit,
although consistency with the OPE limit is achieved.

In Ref. [617] a holographic description of tensor mesons was considered which postulated two-photon vertices as
obtained from metric fluctuations, analogously to tensor glue balls, but with phenomenologically determined coupling
strengths. In this paper a result of a f2(1270)

µ ≃ +0.6 × 10−11 was reported for both HW and SW models, when the
experimental decay width is matched, however, in a simplified and thus incomplete evaluation. Recently, in Ref. [56],
a full evaluation of the tensor meson pole contribution has been performed for the HW models.27 This involves two
structure functions, F T

1 and F T
3 in the notation of Ref. [48], which have the correct Q2 scaling expected from the

analysis of Ref. [583], but not the same asymmetry functions. The normalized TFF of singly-virtual tensor decays
involves only F T

1 . This turns out to agree well with available Belle data, see Fig. 56, in particular at the lowest
available Q2 values. Using this TFF together with F T

3 , which only contributes in the doubly-virtual case, the pole
contribution as defined by the dispersive approach in the optimized basis of Ref. [48] yields a positive aµ result of
3.4(4) × 10−11 when refit to the lowest f2, a2, f ′2 multiplet (3.2(4) × 10−11 from the integration region Qi < 1.5 GeV).

27This contribution is the same in all the HW models considered above, depending only on z0, which is matched to Mρ.
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MT [GeV] Γγγ [keV] IR Mixed aµ [10−11]

1.235 2.3 + 0.8 + 0.2 9.61 − 6.68 = 2.93 0.55 − 0.32 = 0.23 3.17

1.2754(8) 2.65(45) 6.6 − 4.3 = 2.3 0.4 − 0.2 = 0.2 2.4(4)
1.3182(6) 1.01(9) 2.2 − 1.3 = 0.9 < 0.1 0.9(1)

1.5173(24) 0.08(2) 0.1 − 0.04 = 0.06 < 0.01 0.06(2)

f2 + a2 + f ′2 8.9 − 5.7 = 3.2 0.5 − 0.3 = 0.2 3.4(4)
f2 + a2 + f ′2 w/o F T

3 4.6 − 9.1 = −4.5 0.2 − 0.3 = −0.1 −4.6(6)

Table 24: aµ results for the tensor meson pole contributions, in units of 10−11, obtained by inserting the hQCD results for F T
1,3 in the formulae

obtained in Ref. [48], where the first line corresponds to the lowest HW tensor mode normalized as in Ref. [56, 637] (Fρ-fit) and the remaining
lines to a refit to experimental data. The IR region is defined by Qi ≤ Q0 = 1.5 GeV for all i = 1, 2, 3, the mixed region by having only one or two
below Q0. The first term of each sum is from Π1,2, while the second one is from the other 10 structure functions. Table adapted from Ref. [56].

This is in stark contrast to the quark model, where similarly large but negative results are obtained [54]. In fact,
setting F T

3 to zero in the holographic result would reverse the sign and increase the absolute value to −4.6(6) × 10−11

for a f2+a2+ f ′2
µ (of which −4.5(6) × 10−11 is due to Qi < 1.5 GeV), see Table 24.

In Ref. [637] it was moreover shown that summing over the infinite tower of tensor mesons gives a contribution to
the symmetric longitudinal SDC, where axial vector mesons give only 81% of the OPE result, see Eq. (5.49), without
modifying the result for the MV constraint Eq. (5.48). Fixing the tensor normalization by the condition that tensor and
axial-vector contributions together match both longitudinal SDCs leads to a somewhat larger result than the original
prescription of Ref. [638] and it also restores the correct Nc dependence of tensor meson couplings.

In contrast to the case of pseudoscalar and axial-vector contributions, evaluating the complete contribution of
tensor mesons to the HLbL amplitude in the HW model does give a different result than the pole contribution as
defined by the dispersive approach. Instead of 3.17 × 10−11 (2.93 × 10−11 from the IR region), the lowest tensor mode
as given by the model contributes [56, 637]

aT,n=1
µ = 8.3 × 10−11 , aT,n=1

µ |IR = 7.4 × 10−11 , (Fρ-fit) (5.50)

which increases to a value of

aT
µ = 11.1 × 10−11 , aT

µ |IR = 8.5 × 10−11 , (Fρ-fit) (5.51)

when the whole tower of tensor meson modes is included. From the perspective of the holographic model, which is
self-contained and does not need matching with pQCD results except for the parameters, it is more natural to take the
complete contribution into account, which is independent of the choice of basis. Remarkably, the sum over individual
pole contributions from the tensor tower converges much more slowly than the sum over the complete contributions,
while both sums tend to equally large totals [56].

In Table 29 below, the contribution in hQCD that is attributed to the ground-state tensor mesons, however, refers
only to the n = 1 pole contribution as defined in the dispersive approach; the remaining contribution from the tower
of tensor modes is included under “other” contributions, together with the contributions from the axial sector as given
by the LMR22 v1(Fρ-fit) result of Table 23. However, a larger value is obtained than in all previous estimates, with a
positive sign due to the presence of F T

3 . Unfortunately, at present there are no experimental data available to test the
hQCD prediction of a nonzero F T

3 as this requires double virtuality.28

5.6.6. Holographic QCD summary
The strongest point of hQCD models so far has been clearly the ability to match anomalies in the hadron sector

in a way that is consistent with asymptotic conformal invariance and corresponding SDCs. Comparatively minimal

28A nonzero F T
3 also appears in so-called minimal models of tensor mesons [589], which contributes even at vanishing virtualities due to poles

at Q2
i = 0, thereby violating gauge invariance, in contrast to the hQCD case; see Sec. 5.5.3 for a related discussion of the tensor TFFs.
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Figure 56: Comparison of hQCD result (HW) and quark model ansatz with Λ = Mρ [54] and MT [582, 583] for the singly-virtual tensor TFF for

helicity λ = 2 with Belle data [639] for the f2(1270), normalized to F f2 (0, 0) ≡
√

5Γγγ/(πα2 MT ). Figure adapted from [56].

models succeed in reproducing the masses and photon couplings of π0, η, and η′ rather well, which makes their
predictions for the experimentally less well-known axial-vector sector that is responsible for the saturation of the MV
SDC also quantitatively interesting.

In principle, such models would also permit the study of π± and K± box contributions, by evaluating one-loop
Witten diagrams, but this has not been carried out so far. However, such contributions are anyway determined with
negligible errors by the dispersive approach. On the other hand, the similarly important S -wave rescattering contri-
bution, corresponding to light scalar resonances, depends on phenomenological data for which hQCD models do not
provide particular clues. However, using available data on scalars as input, the hQCD model calculation of Ref. [534]
obtained a result that completely agrees with the dispersive approach, with somewhat enlarged error.

It thus seems more pertinent to compare only the available hQCD results for the axial sector and the tensor sector
with corresponding results from other approaches, or to combine it with the contribution from pseudoscalar boxes,
which in the dispersive approach amounts to [35, 45, 577] −16.4(2) × 10−11 together with the S -wave rescattering
contribution from either the dispersive approach or the hQCD model calculation [534], the latter amounting to −9(2)×
10−11. The sum total given in Table 23 for the best-fitting LMR22 v1(Fρ-fit) model, combined with the relatively large
positive contribution from the tower of tensor modes [56, 637], 11.1+1.3

−3.0 × 10−11, would then correspond to

aHLbL
µ

∣∣∣∣
hQCD completed

= 114+10
−4 × 10−11 , (5.52)

where the estimate for an (hQCD-systematic) error accommodates the range of the (Fρ-fit) models considered in
Ref. [632] (including also the OPE-fit models would enlarge the upwards error to +17 points).

5.7. Rational approximants, resonance chiral theory, and Regge evaluations

5.7.1. π0, η, η′ poles
Until recently, the estimate for the η, η′ poles was obtained from CA alone, which provides us with a mathematical

framework to approximate the TFFs in a systematically improvable way, while other approaches available at the time
were deemed insufficient to meet the quality criteria outlined in WP20 [1]. As such, new alternative evaluations
are necessary to better establish their current estimate. In particular, while for the singly-virtual case a wealth of
experimental data confirms the idea that TFFs are reasonably described by VMD, the doubly-virtual case stands
on a different footing. More specifically, while the singly-virtual behavior is dominated by the physics of the light
vector resonances (and any approach faithfully describing them should provide an excellent parameterization), for
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the doubly-virtual case the lightest vector mesons cannot fulfill pQCD asymptotics. Instead, an infinite number of
them, or some alternative mechanism supplying the missing physics, is required. While guidance can be found from
pQCD at asymptotically large energies, the fact that fundamental physics is missing at intermediate energies calls
for a critical inspection of this region and potential systematic effects therein. Advances along these lines have been
undertaken in different theoretical approaches, see Secs. 5.5.1, 5.6.1, and 5.8.

Concerning data, the very useful singly-virtual (spacelike) measurements from the BaBar [562, 640], Belle [641],
CELLO [559], CLEO [560], and LEP [561] collaborations are complemented, for the doubly-virtual case, only by
five data points published by BaBar in the η′ channel [642]. Therefore, it is natural to wonder if η′ data could shed
light on the π0, η cases based on U(3)F symmetry (and its breaking) arguments. In this context, Ref. [49] explores
this possibility incorporating, also, lattice QCD results for double virtuality [570, 571, 643], that improves notably the
control on this difficult dependence of the lightest pseudoscalar TFFs and has a nonnegligible impact on aPS-poles

µ [49].
To such endeavor, Ref. [49] uses the framework of RχT, incorporating resonances along similar lines as developed
in Refs. [213, 214] in a large-number of colors expansion [644] and accounting for flavor-breaking29 and includes all
operators with resonance fields that—after being integrated out—saturate theO(p6) chiral low-energy constants [216].
In this approach, the effect of the infinite tower of vector and pseudoscalar resonances is accounted for with a second
(effective) meson multiplet and contact terms—of ChPT origin—that, together with the first multiplet, comply with
the singly- and doubly-virtual leading asymptotic behaviors predicted by pQCD [563, 565, 648, 649]30 and order by
order with the chiral-symmetry-breaking expansion. The relations found among the Lagrangian couplings agree with
the consistent SDCs in the odd-intrinsic parity sector [650]. In addition to the singly- and doubly-virtual experimental
and lattice data quoted above,31 Ref. [49] also fits the P → γγ decay widths [306] and uses the η–η′ mixing param-
eters [651] as stabilization points. It is instructive [49] to relate this RχT approach to the CA: the resulting π0 TFF
corresponds to a C2

2 and the η(′) to C4
4 CA32 (for which clearly there is not enough data to determine all their unknown

coefficients), although in the chiral limit they correspond as well to a C2
2. Even though Ref. [49] considers data fits

using independent C2
2 for the three P channels in which the OPE is constrained, it is concluded that these would

require more doubly-virtual data (either from experimental measurements or from lattice QCD) to prevent overfitting.
Interestingly, RχT allows one to predict from BaBar η′ doubly-virtual measurements the π0 and η corresponding de-
pendence due to the built-in U(3)F relations, though lattice results (as future measurements on any of the P channels
would also do) improve this knowledge. This is not possible in CAs that, in addition, provide limited ability to extract
information from lattice QCD data due to the absence of U(3)F relations [49]. Concluding, the RχT model predicts

a{π
0,η,η′}

µ =
{
61.9(0.6)(+2.4

−1.5) , 15.2(0.5)(+1.1
−0.8) , 14.2(0.7)(+1.4

−0.9)
}
× 10−11 ,

aPS-poles
µ = 91.3(1.0)(+3.0

−1.9) × 10−11 , (5.53)

where the first uncertainty is statistical and the second one is the systematic theory error. In order of importance,
the sources of the main systematic uncertainties are: the effect of modeling the n = 2, . . . ,∞ multiplets by a second
effective one, subleading corrections in 1/Nc, and the combination of experimental and lattice data. In turn, they
contribute by {+1.8,±1.5,+0.4}, {+1.0,±0.5,−0.6}, {+1.4,±0.3,−0.8} to the error for the {π0, η, η′} channels (see
Ref. [49] for a detailed discussion, including smaller uncertainties as well). This result is fully compatible for the π0,
compared to the estimate based on DR or CA, and the η, η′ ones agree well with previous estimates based on CA
(aηµ = 16.3(1.0)(0.5)(0.9) × 10−11, aη

′

µ = 14.5(0.7)(0.4)(1.7) × 10−11).
The results are compared to CAs for the singly and doubly-virtual TFFs in Fig. 57 together with a z-expansion fit

to lattice data from Ref. [571]. Good agreement is found—even within statistical uncertainties—for the singly-virtual
TFFs between RχT and CA. In turn, differences appear in doubly-virtual kinematics for the π0 and η case, yet results
are fully consistent if systematic uncertainties are accounted for (for CA this is estimated as the difference among the

29It improves over and/or extends earlier descriptions in this framework [216, 645–647].
30The subleading correction to the doubly-virtual result, computed within the OPE, is also fit, with its coefficient determined from QCD sum

rules [565].
31Reference [49] explains that only three lattice data points per channel can be used, to represent faithfully the lattice information.
32Note that coefficients must be chosen to reproduce the appropriate high-energy behavior. Further, it must be noted that, by contrast to the

most general CA (such as in Ref. [34]) the denominator reduces to a product of poles, which would relate to what is known in the literature as
Padé-type approximants, with different convergence properties.
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Figure 57: First row: the singly-virtual TFFs. The inner dashed-blue (dotted-black) band is the CA (RχT) result with statistical uncertainties,
whereas the full ones include a combination in quadrature of statistics and systematic uncertainties. The green band is the dispersive results from
Refs. [55, 545] (cf. Sec. 5.5.1). The red band stands for the z-expansion fit to lattice data [571] (no systematics). Second row: the results analogous
to the first row for doubly-virtual TFFs. Third row: the difference of the two approaches to the partial contribution to aHLbL,P

µ up to a given scale.

C1
2 and C0

1 approximants). In this respect, it would be interesting to better constrain the doubly-virtual behavior in
the region relevant for the HLbL contribution. In particular, in the last row from Fig. 57 we show the difference of
the contributions among CA and RχT to aHLbL

µ if the TFFs are cut off at an upper scale Λ (the band stands for the
central one obtained with CA, but lacks any kind of uncertainties). As can be observed, the main differences arise in
the energy region up to Q2

i ≃ 2 GeV2, well below BaBar’s data for the doubly-virtual η′ case. This region could be
accessed at BESIII [652] and could help improve the uncertainties above provided the experimental errors are below
the plotted bands.

As a final remark, the size of doubly-virtual systematics emphasizes the relevance of less-controlled intermediate
physics effects in both approaches. This can be better appreciated in CA, where no data was employed to constrain
the doubly-virtual TFFs. There, one observes that singly-virtual data is vastly dominated by a single hadronic scale
in the spacelike region, that relates to the success of VMD. In turn, the slower convergence for the doubly-virtual one
is related to the existence of further scales that require one to go beyond the simplest C0

1 approximant or naive VMD
approaches, requiring further input to determine the additional parameters in CA and RχT approaches.

5.7.2. Other mesons and short-distance constraints
Previous results on axial-vector-meson contributions scattered over a large range [1] due to differences in their

implementation. While some of them may be ascribed to an incorrect high-energy doubly-virtual behavior [584],
additional ambiguities arise from incorrect claims on the Landau–Yang theorem, kinematic zeros [653], or the
treatment of the axial-vector meson propagator [631, 653], that clearly required an improved understanding in
Lagrangian/resonance-exchange models. Along these lines, recent evidence has accumulated that axial-vector mesons
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play a leading role in fulfilling SDCs [39–41].
In particular, Ref. [41] makes use of the important connection of SDCs in the MV limit [498] of the HLbL tensor

to the ⟨VVA⟩ Green’s function and the anomaly. The central point is to advocate for a tensor basis free of kinematic
singularities that allows for a transparent identification of the role of intermediate states. This contrasts to the standard
⟨VVA⟩ basis employed in earlier discussions of the MV limit, which basis naturally splits longitudinal, wL, from
transverse contributions at the cost of introducing kinematic singularities. More specifically, borrowing the notation
from Ref. [1], Eq. (4.76), one can show that (q12 = q1 + q2) [41, 533]

wL(q2
1, q

2
2, q

2
12)

8π2 =
w̃0(q2

1, q
2
2, q

2
12)

8π2 −
(q2

1 + q2
2)

q2
12

w+T (q2
1, q

2
2, q

2
12)

8π2 +
(q2

1 − q2
2)

q2
12

w−T (q2
1, q

2
2, q

2
12)

8π2 . (5.54)

The form factors on the RHS (w̃0,w±T ) contain only physical singularities, but wL clearly contains, in general, kinematic
ones. More specifically, pseudoscalar poles exclusively appear in wL, w̃0, whereas w±T contain axial-vector meson
poles. Clearly, the only physical pole at q2

12 → 0 (in the chiral limit) identifies with the π0 one, and its residue
relates to its TFF, that only fulfills the anomaly (wL = 2Nc/q2

12) for real photons. For virtual photons, the anomaly
can only be fulfilled if transverse contributions in Eq. (5.54) are included, showing that transverse physics cannot
be excluded when accounting for the anomaly. It is also along these lines that Ref. [533] discusses the (g − 2)µ
soft-photon limit. Identifying the form factors there [533], −8π2{w0 + w2,w1,w2,w3} = {w̃0,w−T ,w

+
T , w̃

−
T }, one obtains

−wL(q2
1, 0, q

2
1)/8π2 = w0(q2

1, 0, q
2
1) + w1(q2

1, 0, q
2
1). Only the full tensor is free from unphysical poles. This is the

principal line of thought in Ref. [41], which investigates axial-vector meson contributions to the HLbL tensor and
⟨VVA⟩. There it is shown how (an infinite number of) axial-vector mesons, that introduce pole-free contributions
to wL in Eq. (5.54), together with the π0 pole, can fulfill the anomaly. In particular, this fixes all the ambiguities
with axial-vector-meson propagators previously discussed that, together with high-energy constraints, fix the way in
which Lagrangian models/resonance-exchange axial contributions should be accounted for. Note also that similar
findings have been obtained recently albeit in a dispersive approach for the ⟨VVA⟩ function [50]. In addition, the
discussion explains why RχT calculations of axial exchanges—that are necessarily transverse—cannot reproduce
SDCs with axial-vector mesons alone, and contact terms would be required. This is nevertheless standard in RχT, but
discourages its use in the context of axial contributions to HLbL scattering.

Accounting for all these subtleties and focusing on the symmetric form factor exclusively, Ref. [41] finds, for the
ground state multiplet,

aa1
µ + a f1

µ + a f ′1
µ = [5.4(+3.7

−3.3) + 8.3(+3.4
−2.9) + 2.3(+1.1

−0.9)] × 10−11 = 16.0(+5.1
−4.5) × 10−11 , (5.55)

where the symmetric form factor is analogous in functional form to that in Eq. (5.56). Note, however, that for a
complete evaluation also the two asymmetric TFFs need to be taken into account, as their numerical contribution
might not be negligible and only F1 is suppressed asymptotically [583], see Secs. 5.5.3 and 5.6.2. Still, in this
framework, this suffices to fulfill the SDCs for the HLbL tensor in the MV regime when an infinite number of axial-
vector mesons are considered (see further comments in this respect below). The a1 input used for Eq. (5.55) was
obtained from the RχT estimate in Ref. [631] under U(3)F relations and the assumption that f1, f ′1 are, analogously to
the vector case, mostly light and strange mesons, respectively. This seems reasonable from BR[ f1 → γρ]/BR[ f1 →
γϕ] decays, and the equivalent 2γ decay widths for f1, f ′1 are in line with experiment due to their RχT scaling
∝ MA/Λ

3
H differing from the standard assumption ∝ M−2

A [593] (in holographic models ∝ Λ−2
H ), outlining once more

the need for experimental input for the axials.33 The estimates Ba1
2S (0, 0) = 0.245(63) GeV−2 (in agreement with

0.252(30) GeV−2 [50] or 0.230 GeV−2 [632]) and Λa1 = 1.0(1) GeV lead in addition to a doubly-virtual high-energy
behavior in agreement with the OPE, limQ2→∞ Q4B2S (−Q2,−Q2) =

∑
a MAFa

ATr
(
Q2λa) [41]. Further, in order to fulfill

the MV SDCs, Ref. [41] introduces a Regge-like model for an infinite tower of axial-vector meson resonances and
their form factors where

BAa
n

2S =
4FATr(Q2λa)MAa

n

[q2
1 + q2

2 − (M2
a + nΛ2

V )]2
, M2

Aa
n
= M2

Aa
0
+ nΛ2

A , a = {3, q, s} , (5.56)

33The mixing angle of f1, f ′1 can be estimated as well from the equivalent two-photon decay widths [591, 593] under U(3) assumptions. Apart
from data on axial-vector TFFs directly, these flavor assumptions can also be tested in radiative decays to vector mesons. For a more complete
discussion, see Refs. [47, 538] and Table 30.
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Figure 58: The ground state a1 meson singly-virtual TFF M−2
a1
F

a1
2 (−Q2, 0). The results from the Regge model [41] identify with Eq. (5.56) and

are shown in blue, with uncertainties from Fa1 and the half-width rule applied to Ma1 . The dispersive result [50] is shown as a gray band and the
BL limit [583] is shown as a dotted (dash-dotted) gray line without (with) mass corrections.

with Aa
n the n-th axial-vector resonance with isospin index a and decay constant FA = 140(10) MeV. MV SDCs, the

anomaly, and the asymptotic behavior of the doubly-virtual π0 TFF completely fix the parameter for the form factors
to ΛV = 4πFA/

√
Nc and M2

3 = (8π2/3)[F2
A + 2F2

π], predicting Ba1
2S (0, 0) = 0.246 GeV−2 and a slope for the π0 TFF

in agreement with recent estimates [34, 36], that warrants then the appropriate low-energy behavior for the transverse
part of the ⟨VVA⟩ Green’s function (find similar discussions in Ref. [50]). This reflects the connection between the
pseudoscalar and axial-vector sectors in the model. To bypass a detailed analysis of η–η′ mixing, the parameters Mq,s

in Eq. (5.56) were fixed to reproduce the experimental 2γ equivalent decay widths for the ground state, and Λ2
A was

taken to reproduce the Regge trajectories. As a result, the estimate for the tower of axial-vector mesons was found to
be

aHLbL;{a1, f1, f ′1 }
µ = {5.89, 10.52, 1.97} × 10−11 ,

99∑
n=1

aHLbL;{a1, f1, f ′1 }
µ = {3.67, 8.46, 0.90} × 10−11 . (5.57)

While not discussed in Ref. [41], by choosing ΛA = ΛV , it is possible to satisfy the MV SDC for the transverse part
as well (wL(Q2) = 2wT (Q2) asymptotically [498]). In the following, we provide an update for the tower of excited
axial-vector meson states if ΛA = ΛV is taken, including as well uncertainties from the half-width rule [654], FA

[655], and experimental uncertainties on B f1, f ′1
2S (0, 0)34

a{a1, f1, f ′1 }
µ = {6.0(0.2), 10.5(1.5), 2.0(0.5)} × 10−11 ,

99∑
n=1

a{a1, f1, f ′1 }
µ = {3.6(0.4), 8.6(0.7), 0.91(0.09)} × 10−11 , (5.58)

but still lacking a genuine systematic uncertainty from the model itself. In order to compare against other results,
it is interesting to provide their contributions divided in the different regions introduced in Refs. [54, 587] for Q0 =

1.5 GeV (cf. Sec. 5.5.3). In particular, aa1, f1, f ′1
µ |Qi<Q0 = 10.9(1.0) × 10−11, a

∑
A∗

µ |Qi<Q0 = 3.2(6) × 10−11, a
∑

A
µ |Mixed =

12.8(5) × 10−11, a
∑

A
µ |Qi>Q0 = 4.8(1) × 10−11, a

∑
A

µ = 31.7(1.6) × 10−11, where
∑

A∗ refers to the sum of excited
axial-vector multiplets and

∑
A to the full tower (including the ground state), cf. Table 29. In addition, we show

the prediction of the model above for the ground state a1 meson M−2
a1
F

a1
2 (−Q2, 0) TFF compared to the dispersive

result in Fig. 58. Remarkably, the plot shows a nice agreement at low energies. Note, in particular, that the model
above predicts M−2

a1
F

a1
2 (0, 0) = 0.25(5) GeV−2, to be compared with the dispersive result 0.25(2) GeV−2. At high

energies some differences appear, that are expected from the simplistic model and the omission of the antisymmetric
form factors. More specifically, the latter seem necessary, in connection with the anomaly, to correctly match the
singly-virtual π0 TFF asymptotic behavior. Note that, still, the pQCD relation wL(Q2) = 2wT (Q2) holds.

34We note that changes are minor, and differences are mostly due to the updated numerical integration recipe Divonne from CUBA library [656].
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Figure 59: HLbL in terms of a quark Compton vertex including contributions from the dressed quark loop and meson exchange and box diagrams,
as well as other contributions subsumed in the 1PI part of the Compton vertex [658].

Finally, also the tensor contributions a(a2+f2+f′2)−pole
µ have recently been computed in RχT [657]. Using a large-

Nc expansion, working in the chiral limit, and including two vector resonance multiplets to fulfill the SDCs, this
contribution reads

(
− 4.5+0.5

−0.3
)
× 10−11 (cutting off the integrals above Q0 = 1.5 GeV). This coincides with the result

given in the last line of table 24, corresponding to the fact that in this approach the only nonvanishing TFF is F T
1 , in

line with the discussion in Sec. 5.5.3, and its shape turns out similar to hQCD, see Sec. 5.6.5. The numerical effect is
therefore covered by the uncertainty estimates discussed in Sec. 5.10.

5.8. Functional methods
Another approach to the muon g−2 problem employs functional methods, in particular a formalism based on cou-

pled Dyson–Schwinger equations (DSEs) and Bethe–Salpeter equations (BSEs) in QCD. The DSEs are the quantum
equations of motion which relate QCD’s n-point correlation functions with each other, including the dressed quark and
gluon propagators, the quark–gluon and three-gluon vertices, etc. These are exact equations in QCD, but in practice
they require truncations to obtain numerical solutions. The status quo in the DSE sector is by now quite advanced
and arriving at a point where ab-initio solutions, whose only approximations amount to neglecting higher n-point
functions, have become feasible [659–661]. On the other hand, its implementation in hadronic BSEs is technically
challenging and has so far generally been limited to the rainbow-ladder (RL) truncation, where the quark–(anti-)quark
interaction is modeled by an effective gluon exchange [662]. This is the leading order in a systematic expansion of
the kernel, which satisfies chiral symmetry constraints by construction, including its spontaneous breaking which is
responsible for hadron mass generation. Over the past decades this approach has been employed in studying a wide
range of hadron properties from light- and heavy-meson spectroscopy to baryon spectroscopy, four-quark states, EM
elastic and TFFs, parton distributions and various scattering amplitudes; see Refs. [662–664] for reviews.

In principle, the HLbL contribution within the DSE/BSE formalism can be evaluated through two different frame-
works: (i) directly and (ii) indirectly via the dispersive framework (see below). First, in the direct approach, the
HLbL amplitude can be systematically expressed in terms of the underlying correlation functions like the quark prop-
agator, the quark–photon vertex and quark–two-photon vertex, which are then computed through their DSEs and
BSEs [662]. This yields a decomposition of the amplitude in terms of a dressed quark loop plus diagrams with in-
termediate qq̄ → qq̄ four-point functions, which automatically contain all possible meson poles. The latter can be
rearranged such that the central ingredient is the quark–two-photon vertex, see Fig. 59, which has been calculated
in the context of nucleon Compton scattering [658]. Therefore, this establishes an independent approach to compute
HLbL scattering that is complementary to lattice QCD and dispersion relations.

The full HLbL scattering amplitude is electromagnetically gauge invariant and thus transverse. This is preserved
by the RL truncation but does not hold for the individual diagrams contributing to the amplitude like the dressed
quark loop. The main obstacle so far is the lack of a complete basis for the HLbL amplitude that is “minimal,” i.e.,
free of kinematic constraints. The amplitude depends on 136 linearly independent tensors, of which 41 are purely
transverse and 95 nontransverse [665, 666]. A minimal basis for the transverse part alone is known [539, 666] but its
analog for the nontransverse part is still missing. However, the latter is needed for a projection onto all 136 tensors.
This allows one to remove gauge artifacts because any further approximation (in addition to the RL) would break
gauge invariance and induce kinematic singularities, which impedes an extraction of aHLbL

µ . An analogous but simpler
example was recently discussed in the context of axial-vector-meson TFFs contributing to HLbL scattering: In that
case, three tensors are transverse and three are nontransverse; the full RL calculation is gauge invariant, but any further
approximation would introduce gauge artifacts that can only be removed by projecting onto the complete basis [52].
The construction of a complete basis for HLbL scattering is ongoing work.

The second approach to HLbL scattering with functional methods has been advocated in Refs. [37, 52, 579]. Here
the meson EM and transition form factors entering in the HLbL amplitude are calculated separately in the DSE/BSE
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DSE/BSE WP20

π0 exchange 62.6(1)(1.3) 63.0+2.7
−2.1

η exchange 15.8(2)(3)(1.0) 16.3(1.4)
η′ exchange 13.3(4)(3)(6) 14.5(1.9)

π0, η, η′ exchange 91.6(1.9) 93.8+4.0
−3.6

π box −15.7(2)(3) −15.9(2)
K box −0.48(2)(4) −0.46(2)

π, K boxes/loops −16.2(5) −16.4(5)

S -wave ππ rescattering – −8.0(1.0)
higher scalar exchange −1.6(5) −2.0(2.0)
AV exchange (single) 17.4(6.0) 6.0(6.0)

AV exchange (tower) + SDC 24.8(6.1) 21.0(16.0)

Table 25: DSE/BSE results for various contributions to aHLbL
µ in units of 10−11 compared to the values quoted in WP20 [1]. The results for

pseudoscalar exchange and pseudoscalar-box contributions are from Refs. [37, 579] and those from axial-vector and scalar exchange from Ref. [52].

framework and then inserted into the dispersive formalism described in Sec. 5.5. In this case the systematics of
meson-exchange and meson-box diagrams is identical to the dispersive approach, while the effects from the quark
loop must be implemented through SDCs, see Sec. 5.4. Once again, all ingredients in the form factor calculations
(quark propagators, quark–photon vertices and meson amplitudes) are determined in the RL truncation without further
approximations. In particular, the quark–photon vertex dynamically develops vector-meson poles so that the form
factors in the timelike region automatically capture the physics of VMD.

The results obtained in the DSE/BSE framework are collected in Table 25 and compared to the values quoted in
WP20.35 The sum of intermediate π0, η, and η′ single-meson pole contributions amounts to aPS-poles

µ = 91.6(1.9) ×
10−11, where the error contains the variation of the parameter in the RL effective interaction, the numerical error, and
the uncertainties in the η and η′ mixing parameters [37]. The corresponding π0, η, η′ → γ(∗)γ(∗) TFFs, displayed in
Fig. 60, are calculated in the spacelike domain including the doubly- and singly-virtual kinematic limits [37, 669, 670].
Similar results in a slightly different framework have been found in Ref. [667]. The sum of the pion and kaon box
diagrams, which depend on the pion and kaon EM form factors, yields aPS-box

µ = −16.2(5)× 10−11 [37, 579]. All these
results are in good agreement with results from other approaches and the WP20 estimate.

Since WP20, three new issues have been addressed in the DSE/BSE approach. First, the authors of Ref. [671] have
determined corrections to the pseudoscalar pion and kaon box contributions beyond RL (BRL), see also Ref. [672] for
a summary. To this end they determined the (RL and BRL) EM form factors of the pion and the kaon in the space- and
timelike region [673–675]. A major result is the remarkable robustness of the RL truncation in the spacelike region,
leading to the observation that BRL pion and kaon box contributions to HLbL are safely contained within the error
bars of previous RL results. Second, after calculating the EM form factor of the first radial excitation of the pion,
π1, its box contribution to the HLbL component of the aµ has been computed in Ref. [676], producing, respectively,
aπ1−box
µ (RL) = −2.03(12)×10−13 and aπ1−box

µ (BRL) = −2.02(10)×10−13 in the RL and BRL truncation schemes. Third,
the contributions from intermediate axial-vector and scalar mesons have been calculated [52]. Their corresponding
TFFs have been determined in the very same setup used previously to determine pseudoscalar meson exchange (π0,
η and η′) as well as meson (π and K) box contributions. The corresponding results are also shown in Table 25.
In the scalar meson sector, contributions from f0(980), a0(980), f0(1370), and a0(1450) have been combined into a
single number, aHLbL

µ [scalar] = −1.6(5) × 10−11. In the axial-vector sector, the result aHLbL
µ [AV exchange (single)] =

17.4(6.0) × 10−11 combines contributions from the lowest lying multiplet of a1, f1, and f ′1 states, whereas the result
aHLbL
µ [AV-tower+SDC] = 24.8(6.1) × 10−11 combines contributions from a whole tower of a1, f1, and f ′1 multiplets

including short-distance contributions in the form of a quark loop using the matching procedure outlined above and

35The DSE/BSE framework also delivers results for the HVP contribution in the ballpark of dispersive and lattice results, although the error of
roughly 3% is much too large to make any claims for this quantity [668].
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Figure 60: Results for the singly- (left) and doubly-virtual (right) TFFs of π0 (first row), η (second row), and η′ (third row) from the DSE/BSE
approach of Ref. [37] (2019-1) and Ref. [667] (2019-2) compared to dispersive results [36, 55, 543, 545] and experimental data [559–561].

in Refs. [530, 535]. The latter is necessary because, even though a whole tower of axial-vector contributions has been
taken into account, one cannot show analytically whether an infinite resummation of such a tower would satisfy the
SDCs as it does in hQCD [39, 40, 46, 537]. In contrast to hQCD, the TFFs in the DSE/BSE framework are given
numerically, and much more refined numerical methods would be needed to extract the necessary information.

In summary, systematic cross-checks and comparisons between the dispersive approach, lattice QCD, hQCD, and
the approach to QCD via functional methods certainly has the potential to further decrease the spread of results and
consequently the error bar of the axial-vector and other contributions to HLbL in the future.

5.9. Form factor comparisons

For the pseudoscalar TFFs, several cross-checks between the various approaches have already been discussed
and illustrated throughout the various subsections. Here, we add a broader comparison of all phenomenological
theoretical calculations, specifically for the TFF slopes and asymptotic behavior. We define the slope parameters for
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Figure 61: Results for the axial-vector TFF F2 from the DSE/BSE approach of Ref. [52] (2024) compared to the dispersive result of Ref. [50]. The
momentum dependency of the form factors agrees nicely; differences in an overall factor can be mostly attributed to the assumption of ideal mixing
in the DSE/BSE result. The BL limits [583] are shown as dash-dotted/dotted lines similar to previous plots.

Dispersive [36, 55, 543, 545] CA [34] RχT [49] hQCD [46] DSE/BSE [37]

bπ0 [GeV−2] 1.73(5) 1.76(10) 1.74(1) 1.68(8) 1.71(1)
bη [GeV−2] 1.83(4) 1.91(3) 2.00(3) 1.53(3) 1.87(1)
bη′ [GeV−2] 1.49(3) 1.43(3) 1.37(2) 1.31(2) 1.54(3)

F̄π0

asym 2Fπ 2Fπ 2Fπ 2Fπ[×0.9] 2.6(4)Fπ

F̄η
asym [GeV] 0.186(13) 0.180(12) 0.174(3) 0.194(14) 0.21(2)

F̄η′

asym [GeV] 0.264(13) 0.255(4) 0.260(4) 0.32(4) 0.36(4)

Table 26: The slope and the asymptotic value of the pseudoscalar singly-virtual TFFs from the different approaches.

the pseudoscalar TFFs according to

bP ≡
1

FPγγ

∂

∂q2 FPγ∗γ∗ (q2, 0)
∣∣∣
q2=0 . (5.59)

In the simplest VMD model, the slopes are expected to be given approximately by bP ≃ M−2
ρ ≃ 1.66 GeV−2 for all

three pseudoscalars. These slope parameters, as well as the singly-virtual asymptotic values

lim
Q2→∞

Q2FPγ∗γ∗ (−Q2, 0) = F̄P
asym , (5.60)

are collected, for various theoretical approaches, in Table 26. We find that the slopes bπ0 of the π0 TFF agree within
uncertainties for all calculations. The hQCD results for bη and bη′ are smaller than all others, with the most significant
discrepancy for bη, while the RχT number for bη deviates somewhat towards a larger value. Dispersive, CA, and
DSE/BSE slopes are well consistent with each other also for η and η′. The results for the singly-virtual asymptotic
behavior are largely consistent with each other within uncertainties for all TFFs, with discrepancies at most at the 2σ
level.

In Table 27, we compare the different models for the TFF normalization F2(0, 0)/M2
a1

for the a1(1260) axial-vector
meson, again finding excellent agreement among all of them. Note that this only constrains one out of the in total
three axial-vector TFFs, cf. the discussion in Sec. 5.5.3.

5.10. A new final number for analytic HLbL

We now have a fully dispersive evaluation of the π0, η, and η′ contributions, which agrees well with the other ap-
proaches based on phenomenological analyses, CA and RχT modeling as well as the more QCD modeling approaches
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Dispersive VMD, U(3) Regge RχT hQCD DSE/BSE
[50] [47, 583] [41] [41, 631] [46] [37, 579]

F2(0, 0)/M2
a1

0.25(2) 0.23(3) 0.25(5) 0.25(6) 0.265(20) 0.18(3)
Ma1 1.23(4) 1.23(4) 1.23(21) 1.23(21) 1.28(8) 1.23(4)

Table 27: The normalization of the a1 TFF F2(0, 0)/M2
a1

and Ma1 used from the different approaches in units of GeV−2 and GeV, respectively.

Dispersive [36, 55, 543, 545] CA [34] RχT [49] hQCD [46] DSE/BSE [37]

π0 63.0+2.7
−2.1 63.6(2.7) 61.3+2.5

−1.6 63.4(2.7) 62.6(1.3)
η 14.7(9) 16.3(1.4) 15.2+1.2

−0.9 17.6(1.7) 15.8(1.1)
η′ 13.5(7) 14.5(1.9) 14.2+1.6

−1.1 14.9(2.0) 13.3(8)

Sum 91.2+2.9
−2.4 94.4(3.6) 91.3+3.2

−2.1 95.9(3.8) 91.6(1.9)

Table 28: The pseudoscalar pole contributions to aµ in units of 10−11 from the different approaches.

hQCD and the functional approaches. The comparison of these is shown in Table 28. This contribution is improved
over WP20 [1] of 93.8+4.0

−3.6 × 10−11 to
aPS-poles
µ = 91.2+2.9

−2.4 × 10−11 . (5.61)

The next contributions are those from the pion and kaon box and rescattering in the S -wave channel. The dispersive
box contributions for the pion have not changed compared to WP20. The kaon box is now evaluated with dispersive
methods with a very small change compared to WP20. Both contributions are now evaluated as well by functional
methods in good agreement with the dispersive results. The sum is unchanged giving

aπ,K-box = −16.4(2) × 10−11 . (5.62)

The S -wave rescattering has been updated and now includes I = 0, 1, 2 ππ, K̄K, πη rescattering, leading to

aS-waves
µ = −9.1(1.0) × 10−11 . (5.63)

The above contributions are well established and agree well among the different approaches. They sum to

adisp-low
µ = 65.7+3.1

−2.6 × 10−11 . (5.64)

This is slightly lower than the WP20 result of 69.4(4.1) × 10−11 and a somewhat smaller error. This is mainly due to
the improved estimates of the η, η′ contributions from dispersive methods compared to the CA results used previously.

The main source of the error in WP20 came from the short- and intermediate-distance domain with both missing
resonances and issues of double counting. The SDCs have been improved very much as described in Sec. 5.4. The
remaining contributions are split in different integration regions which we treat differently. This allows one to deal
with the double counting issue. The integration regimes are split by a scale Q0 = 1.5 GeV in a purely short-distance
regime with all three Qi > Q0, a purely long-distance regime with all three Qi < Q0, and a mixed regime.

The purely short-distance regime can be calculated by using the QCD results discussed in Sec. 5.4 with contribu-
tions already included in Eq. (5.64) subtracted. Similarly, in the phenomenological approaches all other contributions
can be included. This is shown in Table 29 in the row Qi > Q0. The agreement from the QCD result with the other
approaches is reasonable with the possible exception of the functional approach. For this region we will use the QCD
result with

aSD-QCD
µ = 6.2+0.2

−0.3 × 10−11 . (5.65)

The error is mainly from the uncertainty in αs.
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Region Dispersive hQCD Regge DSE/BSE

Qi > Q0 6.2+0.2
−0.3 6.3(7) 4.8(1) 2.3(1.5)

Mixed A, S ,T 3.8(1.5)
OPE 10.9(0.8)
Effective pole 1.2
Sum 15.9(1.7) 13.5(2.4) 12.8(5) 10.1(3.0)

Qi < Q0 A = f1, f ′1 , a1 12.2(4.3) 13.1(1.5) 10.9(1.0) 8.6(2.6)
S = f0(1370), a0(1450) −0.7(4) −0.8(3)
T = f2, a2 −2.5(8) 2.9(4)
Other 2.0 8.0(9) 3.2(6) 2.8(6)
Sum 11.0(4.4) 24.0(2.8) 14.1(1.2) 10.6(2.7)

Sum 33.2(4.7) 43.8(5.9) 31.7(1.6) 23.0(7.4)

Table 29: The contributions in units of 10−11 from the different regions with the parts included in adisp-low
µ removed. Dispersive results from

Table 22, with a 30% error added for the hadronic contributions; hQCD, Regge, and DSE/BSE results are calculated from the models described in
Sec. 5.7.2, Sec. 5.6, and Sec. 5.8 with this value of Q0 and numbers can thus be slightly different from those quoted there. The row “other” includes
all contributions not specified explicitly, in particular from excited axial-vector mesons, and for hQCD also from excited tensors and tensor nonpole
contributions (the latter two give 5.6 out of the 8.0). In the row labeled “Sum” the errors for hQCD have been added linearly.

The next part is the mixed region where at least one of the Qi is larger than Q0 and one smaller. In this regime
there are known short-distance results [53, 498, 522, 533]. These constraints have been included to a large extent in
all the modeling as well for direct evaluation of some parts of this region. For the modeling approaches the results
have been calculated for the sum. The dispersive results follow from Table 22. The uncertainty on the hadronic part
has a 30% error added quadratically to the input uncertainties added. The results from the four approaches are in
reasonable agreement but the dispersive is somewhat larger due to a large contribution from the OPE domain. The
error on the OPE domain has been determined from varying r, defined in Eq. (5.31), and shows that there is some
remaining mismatch even after adding the effective poles. For this part we will use

aMixed
µ = 15.9(1.7) × 10−11 . (5.66)

The remaining error we expect to be covered by the Q0 variation discussed below.
The last remaining contribution is the low-energy one with all three Qi < Q0. The contribution from the lowest

axial-vector nonet has been much clarified compared to WP20 and all approaches are now in acceptable agreement.
The heavy scalars are estimated both in the functional and dispersive approach and are in good agreement with each
other as well as with estimates for the scalars used in WP20, but now with a smaller error. For the tensor contributions
the error estimate used in WP20 was shown to not be reliable. Here the dispersive approach uses a phenomenological
estimate including only one of the five TFFs, as argued from the quark model. The hQCD estimate includes one more
and finds a different sign due to this; with only the same single TFF as in the dispersive calculation the result for
hQCD for the tensors is somewhat more negative than the dispersive estimate. We will use as the tensor contribution
−1(4) covering all available results. With this and the dispersive results agreeing well with the others we will use for
this contribution

aLow
µ = 12.5(5.9) × 10−11 . (5.67)

When putting all together there are still some remaining uncertainties. These we estimate by varying Q0 as
described in Sec. 5.5.4 and Ref. [54] to be an error of 1.9 and the estimate of missing contributions by varying how
matching to the SDCs is done. This is estimated by varying how the matching with the effective poles is done and
adds an error of 3.9. However, while the estimate of “Other” from the dispersive estimates agrees well with the Regge
and DSE/BSE results, the hQCD estimate of the remaining contributions is higher, we therefore increase the error for
this uncertainty to 5.0.
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Finally we use the same estimates for the NLO HLbL charm contribution contribution as in WP20:

acharm·
µ = 3(1) × 10−11 . (5.68)

Adding all the errors quadratically and the contributions gives a total (LO) HLbL contribution of

aHLbL
µ = 103.3(8.8) × 10−11. (5.69)

This should be compared with the WP20 result of 92(19) × 10−11. Our new number is perfectly compatible with
the previous number within errors and has a significantly improved precision due to improvements of many hadronic
contributions as well as improvements in short-distance calculations and matching.

Finally, there is the estimate of the NLO HLbL contribution from Ref. [57], which we update along the lines of
Ref. [1]:

aHLbL, NLO
µ = 2.6(6) × 10−11 . (5.70)

5.11. Prospects for future improvements

5.11.1. Theory
The original approach of Refs. [33, 35] is based on dispersion relations for the HLbL tensor in general four-point

kinematics, which can be derived from the Mandelstam double-spectral representation. The photon virtualities are
treated as fixed external variables, while dispersion relations are written in terms of the Mandelstam variables for off-
shell photon–photon scattering. A disadvantage of this approach is that, even in the optimized BTT decomposition of
Ref. [48], the cancellation of kinematic singularities from the contribution of intermediate states of spin equal to 2 or
larger is not manifest. This is due to the fact that in this approach—based on the decomposition of the HLbL tensor
in terms of a redundant set of BTT structure—kinematic singularities in the photon virtualities are eliminated by sum
rules that involve a tower of intermediate states in the unitarity relation. This issue is solved within a novel approach
in triangle kinematics [502], in which the external photon is taken soft prior to setting up the dispersion relations for
the scalar functions entering the master formula in Eq. (5.4). In this framework the original cuts in the Mandelstam
variables and in the photon virtualities are no longer separated, which leads to more complicated unitarity relations
and the fact that the dependence of pole contributions on the photon virtualities is not automatically resummed as in
the original approach. In the new framework, a reshuffling of intermediate-state contributions takes place and further
sub-processes enter the two-pion unitarity relations, e.g., γ∗γ∗γ → ππ. These can be dispersively reconstructed
without introducing kinematic singularities nor ambiguities [502]. A comparison and a suitable combination of the
two dispersive approaches to HLbL [502] will, in the future, provide optimal control over residual uncertainties in the
matching between hadronic and asymptotic continuum contributions. A detailed study of the relationship between the
two types of dispersion relations and the reshuffling of different hadronic intermediate-state contributions has been
recently performed in Ref. [50] for the simpler case of the VVA correlator.

Ultimately, one would like to have in addition a data-driven approach given in terms of a single observable, as
is done for the HVP contribution. Such an alternative approach is, in principle, provided by the Schwinger sum
rule [677]. It expresses the anomalous magnetic moment via an integral of a polarized photoabsorption cross section
as follows:

aµ =
m2
µ

π2α

∫ ∞

ν0

dν
[
σLT (ν,Q2)

Q

]
Q2→0

, (5.71)

where Q2 is the photon virtuality, ν is the photon lab frame energy, and ν0 is the first inelastic particle-production
threshold. The polarized photoabsorption cross section σLT is the observable quantity that corresponds to the sum of
the muon spin structure functions, g1(x,Q2)+ g2(x,Q2). In this approach the HVP and HLbL contributions appear on
the same footing; see Ref. [678] for more details. Work in this direction is ongoing [679–681].

5.11.2. Experiment
Experimental input for a data-driven evaluation of the HLbL contribution requires measurements of TFFs

FPγ∗γ∗ (Q2
1,Q

2
2) of pseudoscalar mesons P at arbitrary virtualities Q2

i to improve on the pseudoscalar-pole contribu-
tions. The normalization of the TFF at Q2

i = 0 is given by the radiative width Γ(P→ γγ) of the respective pseudoscalar
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Experimental input

Axial-vector TFFs
e+e− → e+e−A, A = f1, f ′1 , a1

Radiative decays A→ Vγ, V = ρ, ω, ϕ
Dilepton decays A→ e+e−

Scalar and tensor TFFs γ∗γ(∗) → ππ, πη, K̄K, πππ

Pseudoscalar TFFs
γγ → η, η′

e+e− → e+e−(γ∗γ(∗) → π0, η, η′)
e+e− → e+e−(γγ → P), P = π(1300), η(1295), η(1405)

Table 30: Examples of useful experimental inputs related to the exclusive hadronic channels.

meson. A new measurement of the radiative width of η using Primakoff-type meson production is announced by the
PrimEx-eta collaboration at JLab [682]. A first, preliminary evaluation without considering systematic effects yields
Γ(η → γγ) = 0.499(36) keV [683], which is in agreement with the current value Γ(η → γγ) = 0.515(18) keV [225]
listed by the PDG. As the PDG only considered results from e+e− experiments in their average and fits, the agreement
suggests that the previously observed discrepancy with results from Primakoff-type experiments is resolved.

With the proposed upgrade of JLab to 22 GeV beam energy significant improvements on the accuracy of the radia-
tive width measurements of π0, η, and η′ will be possible [684]. While the Primakoff-type measurements for η and, for
the first time, also for η′, will be performed on nuclear targets with projected accuracies of 2% and 3.5%, respectively,
the measurement for π0 can be performed off atomic electrons, which will allow one to avoid uncertainties of nuclear
effects and achieve sub-percent accuracy on the radiative width. The Primakoff program is to be extended to measure
the momentum dependence of the meson TFFs in a range of 0.001 GeV2 up to 0.3 GeV2, which is complementary to
the ongoing investigations at e+e− colliders.

The preliminary result of the BESIII collaboration on the singly virtual spacelike TFF of the π0 [685] has already
demonstrated the potential of the e+e− experiment to contribute high-precision data in the most relevant region of
momentum transfer around 1 GeV2. In spring 2024 the collaboration finalized the data taking of a 20 fb−1 data set
at
√

s = 3.773 GeV, which improves on the statistics of the preliminary result by a factor seven and will be the new
standard sample for two-photon fusion reaction studies at BESIII. First results on singly-virtual TFFs of π0, η, and η′

based on the complete data set are expected in 2025, providing information for virtualities from Q2 ≥ 0.1 GeV2 to
5 GeV2. A comparison with the results of BaBar and Belle at lower values Q2 should be possible. The results will
consider the full radiative corrections at NLO, as provided by the Ekhara 3.0 event generator [686] without applying
the previously accepted approximations [687, 688]. The size of the data set will also allow one to provide information
on the doubly-virtual spacelike TFF of the lightest pseudoscalar mesons.

The data will also be used to provide information on the partial waves in γ∗γ(∗) → π+π−/π0π0. Results with a
single off-shell photon are reported to be provided for invariant masses from the two-pion threshold up to 2.0 GeV at
0.2 GeV2 ≤ Q2 ≤ 3.0 GeV2 and the full coverage of the pion helicity angle. Furthermore, a revised analysis scheme
allows for doubly-virtual information in a limited region of the second virtuality [689].

The analysis of single-virtual production of higher meson multiplicities will allow to provide results on the TFFs
of the axial-vector meson f1(1285) at virtualities in the region at 0.2 GeV2 ≤ Q2 ≤ 3.0 GeV2. Here, a partial-wave
analysis is performed to separate the a0(980)π and f0η contributions in the π+π−η final state. Further investigations of
higher-multiplicity pion final states as well as final states involving kaons are being prepared to provide information
on further axial and tensor states.

Complementary measurements at Q2
i > 3 GeV2 are to be expected from the Belle-II collaboration as a continuation

of the successful activities at Belle [690].
In addition to the ongoing investigation Table 30 summarizes recommendations for intensified experimental ac-

tivities to improve on HLbL.

5.11.3. Monte-Carlo event generators
The measurement of multi-particle final states produced in two-photon fusion reactions with virtual photons be-

yond the individual decay modes of η and η′ mesons requires new event generators to evaluate detection efficiencies.
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The Ekhara 3.0 generator [686] has been extended to provide a data-driven description of the resonance contribu-
tions in γ(∗)γ(∗) → π+π−/π0π0 up to invariant pion pair masses of 2 GeV and virtualities Q2

1,2 ≤ 4 GeV2. The dominant
resonances f0(500), f0(980), and f2(1270) are included based on Refs. [349, 691].

The development of Ekhara will unfortunately not continue. To provide the MC simulations necessary in ex-
perimental investigations for efficiency studies and partial-wave analyses, a new event generator project has been
started [692]. The focus is on multi-particle final states, which are relevant for measurements of axial-vector and
tensor mesons, but the design allows for flexibility in the generated final states. The generator determines the cross
section observable at e+e− machines as the product of the luminosity function [630, 693] and two-photon cross-
sections. The latter depend on the polarization of the virtual photons and can be taken from theory calculations, e.g.,
for two-pion [349, 351] or f1(1285) → π+π−η [694] production in two-photon collisions, or can be modeled from
existing experimental results. The ongoing measurements of γγ∗ → π0π0 and γγ∗ → f1(1285) at BESIII are the first
applications of the new event generator.
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6. Lattice approaches to HLbL

X. Feng, A. Gérardin, L. Jin, T. Lin, H. Meyer

6.1. Introduction

The idea to compute the HLbL contribution to the muon (g − 2) in lattice QCD was pioneered in Ref. [695]. The
relevant diagram is illustrated on the RHS of Fig. 62. A first peer-reviewed publication on the subject based on these
methods appeared in 2014 [696]. Substantial improvements to the methodology [697] led to a lattice calculation of
aHLbL
µ at physical pion mass [698]. An important feature of this methodology is the calculation of lepton and photon

propagators on the same (periodic) lattice as the QCD degrees of freedom. By the time of WP20, one complete lattice
calculation, by the RBC/UKQCD collaboration [58], had been published; it entered the WP20 average. Starting in
2015, in a series of conference proceedings [458, 699–702] and papers [703], the Mainz/CLS group developed a
method treating the QED parts of the diagram in continuum and infinite volume coordinate-space perturbation theory.
This type of method, sometimes referred to as QED∞, was also investigated by the RBC/UKQCD collaboration
starting with Ref. [704], providing some important refinements. Since WP20, three collaborations (Mainz/CLS,
RBC/UKQCD, and BMW) have produced lattice results for aHLbL

µ based on QED∞. Their methodology and results
are reviewed in Sec. 6.2, which concludes with a lattice average for aHLbL

µ .
A separate line of approach to HLbL scattering in the muon (g − 2) is to provide the relevant hadronic input

to compute individual contributions as defined in a given dispersive framework. The most important case is that
of the pseudoscalar meson exchanges. Starting with Ref. [705], lattice calculations have aimed at providing the
FPγ∗γ∗ (q2

1, q
2
2) TFFs (P = π0, η, η′), or else directly evaluating the relevant integral in coordinate space [706]. By

now, several evaluations have appeared for the π0 pole contribution and first corresponding calculations for the η are
available as well. All these are reviewed in Sec. 6.3.

6.2. Direct lattice calculations of the hadronic light-by-light contribution

The starting point for computing aHLbL
µ in lattice QCD using Euclidean position-space techniques can be written

as [458]

aHLbL
µ =

mµe6

3

∫
d4x d4y L[ρ,σ];µνλ(p, x, y) iΠ̂ρ;µνλσ(x, y) , (6.1)

iΠ̂ρ;µνλσ(x, y) = −
∫

d4z zρ
〈

jµ(x) jν(y) jσ(z) jλ(0)
〉

QCD
. (6.2)

The nonperturbative physics of the strong interaction enters via the QCD four-point function Eq. (6.2) of the EM
current carried by the quarks, jµ = 2

3 ūγµu − 1
3 d̄γµd − . . . The QED kernel

L[ρ,σ];µνλ(p, x, y) =
1

16m2
µ

∫
d4u d4v d4w G(w − x) G(u − y) G(v) e−ip · (w−v)

× Tr
{
[γρ, γσ] (−i/p + mµ)γµS (w − u)γνS (u − v)γλ(−i/p + mµ)

}
(6.3)

represents the photon and muon elements of the HLbL diagram, which are depicted in the left diagram of Fig. 62. In
Eq. (6.3), G(x) = 1/(4π2x2) is the massless scalar propagator,

S (x) =
∫

d4 p
(2π)4

−i/p + mµ

p2 + m2
µ

eip · x (6.4)

is the muon propagator, and the notation is fully Euclidean, in particular for the space-time scalar products, and the
(Hermitian) Dirac matrices obey {γµ, γν} = 2δµν. The kernel is dimensionless as well as infrared finite thanks to the
trace of Eq. (6.3), which projects onto the anomalous magnetic moment, and obeys the properties

L[ρ,σ];µνλ(−p,−x,−y) = − L[ρ,σ];µνλ(p, x, y) ,
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Figure 62: Left: QED part of the HLbL Feynman diagram, with the muon in- and outgoing with a definite momentum √. The position-space QED

kernel L[ρ,σ];µνλ(p, x, y) results from integrating over the internal vertices w, u, v. Note that the represented amplitude is translationally invariant,
whence the origin 0 can be chosen to coincide with one of the photon end-points without loss of generality. Figure from Ref. [708]. Right: the full
amplitude yielding aHLbL

µ , with the blob corresponding to the HLbL scattering amplitude. Figure from Ref. [703].

L[ρ,σ];µνλ(−p∗, x, y) = L[ρ,σ];µνλ(p, x, y)∗ ,
L[ρ,σ];λνµ(p, x, x − y) = − L[ρ,σ];µνλ(−p∗, x, y)∗ . (6.5)

While in earlier approaches the QED kernel used to be “immersed” in the lattice formulation of aHLbL
µ , recent calcula-

tions have worked with the kernel in the continuum and infinite-volume theory. A reliable calculation of Eq. (6.3), or
its momentum-averaged version L̄[ρ,σ];µνλ defined below in Eq. (6.6) is a demanding task in itself [699, 703, 704]. A
code with auxiliary look-up files providing L̄[ρ,σ];µνλ is publicly available [703].36

As for the muon momentum, one option, adopted by the RBC/UKQCD collaboration [61, 704], is to choose the
rest frame of the muon, de facto averaging over the Euclidean momenta p = (±imµ, 0); see Sec. 6.2.2 for more details.
The option followed by all other collaborations [59, 62, 707] so far is to employ a full average of the QED kernel over
the direction of the muon momentum, thus making the following substitution [458] in Eq. (6.1),

L[ρ,σ];µνλ(p, x, y)→ L̄[ρ,σ];µνλ(x, y) ≡
1

2π2

∫
dΩϵ̂ L[ρ,σ];µνλ(p = imµϵ̂, x, y) . (6.6)

Here ϵ̂ is understood to be a real, four-component unit vector, and dΩϵ̂ the corresponding solid-angle differential. An
advantage of using L̄ is that, after contraction of the Lorentz indices and integration (say) over x in Eq. (6.1), the
remaining integral over y reduces to a one-dimensional integral over |y| that can be performed reliably with O(20)
points.

Irrespective of the choice made for handling the muon momentum, a significant amount of flexibility remains to
optimize the QED kernel for numerical purposes. First, there is a freedom to add total-divergence terms—sufficiently
well-behaved not to generate boundary terms upon partial integration—to the kernel, due to the conservation of the
vector currents [702, 704]. A proposal that has been adopted by several collaborations [59, 62, 707] is [702]

L̄
(Λ)
[ρ,σ];µνλ(x, y) = L̄[ρ,σ];µνλ(x, y) − ∂(x)

µ (xαe−Λm2
µx2/2)L̄[ρ,σ];ανλ(0, y) − ∂(y)

ν (yαe−Λm2
µy2/2)L̄[ρ,σ];µαλ(x, 0) , (6.7)

where the value 0.4 was chosen for the free parameter Λ. The rationale behind this choice is to make the integrand
neither too long-range, nor too short-distance dominated, as this leads to smaller overall uncertainties in the lattice
calculation. Second, there is the option of symmetrizing the kernel with respect to the Bose symmetries of Π̂, for
instance under the exchange of the pairs (x, µ)↔ (y, ν). Thirdly, for each individual Wick contraction contributing to
Π̂, translation invariance can be exploited [697, 698, 709] so as to minimize the overall computational cost.

The notation used in Eq. (6.1) is the one introduced by the Mainz/CLS group. The connection to the notation used
by the RBC/UKQCD collaboration [61], provided here for convenience, is

i
4

Tr{[γρ, γσ]GRBC
µνλ (x, y, z)} = L[ρ,σ];µνλ(p = (imµ, 0), x − z, y − z) ,

36https://github.com/RJHudspith/KQED
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Figure 63: Illustration of the connected and (2+2) disconnected Wick-contraction diagrams for the quarks. The latter are not SU(3)F suppressed
and turn out to be the dominant class of disconnected diagrams. Figure from Ref. [61].

−6
∫

d4xop (xop − xref) j H
RBC
k,ρ,σ,λ(xop, x, y, z) = iΠ̂ j;ρσλk(x − z, y − z) . (6.8)

A further redundancy in the master formula Eq. (6.1) for aHLbL
µ exploited in Ref. [61] is that in the definition of iΠ̂,

Eq. (6.2), the factor zρ could be replaced by37 (zρ − zref
ρ )—as made explicit in Eq. (6.8), where in RBC/UKQCD

notation the external vertex is written xop instead of z.
The flavor structure of iΠ̂ plays an important role. In terms of the isospin decomposition jµ = j3µ + j8µ/

√
3 of the

EM current in the (u, d, s) sector, iΠ̂ can be decomposed into three terms, involving either zero, two, or four isovector
currents j3µ, which lead respectively to the contributions aHLbL{ j8}

µ , aHLbL{ j3, j8}
µ , and aHLbL{ j3}

µ . On the other hand, for a
given quark current there are five classes of Wick contractions, the connected (4) as well as the (2+2), the (3+1), the
(2+1+1), and the (1+1+1+1) disconnected diagrams. For instance, we denote the (2+2) contribution to aHLbL

µ from
the u, d quarks aHLbL,(2ℓ+2ℓ)

µ . In particular, the contribution involving four isovector currents j3µ corresponds to a linear
combination of the two leading quark-level contractions, aHLbL,(4)ℓ

µ and aHLbL,(2+2)ℓ
µ . We write

aHLbL
µ = aHLbL,ℓ

µ + aHLbL,s
µ + aHLbL,c

µ + aHLbL,rest
µ , (6.9)

where

aHLbL,ℓ
µ ≡ aHLbL,(4ℓ)

µ + aHLbL,(2ℓ+2ℓ)
µ ,

aHLbL,s
µ ≡ aHLbL,(4s)

µ + aHLbL,(2s+2ℓ)
µ + aHLbL,(2s+2s)

µ ,

aHLbL,c
µ ≡ aHLbL,(4c)

µ + aHLbL,(2c+2ℓ)
µ + aHLbL,(2c+2c)

µ ,

aHLbL,rest
µ ≡ aHLbL,(3ℓ+1ℓs)

µ + aHLbL,(2ℓ+1ℓs+1ℓs)
µ + aHLbL,(1ℓs+1ℓs+1ℓs+1ℓs)

µ + . . . , (6.10)

where we will neglect the contributions represented by the ellipsis. The notation 1ℓs refers to the difference of a
light- and a strange-quark loop with a single, vector-current insertion. We begin by reviewing the calculations by
three different collaborations of the sum aHLbL,ℓ

µ of the connected and leading disconnected light-quark contributions
illustrated in Fig. 63. Subsequently, we treat the strange, as well as the charm-quark contribution, and finally we
present the status of the subleading contributions in the (u, d, s) quark sector. The term aHLbL,ℓ

µ by far dominates the
total aHLbL

µ , and the other contributions are found to be smaller than the current uncertainty of aHLbL,ℓ
µ .

6.2.1. aHLbL,ℓ
µ : the Mainz/CLS calculation

A calculation of aHLbL
µ by the Mainz group [59] was published in 2021. In this calculation, the kernel employed

is L̄(Λ=0.4)
[ρ,σ];µνλ(x, y) as given in Eq. (6.7). The lattice formulation consists of a nonperturbatively O(a)-improved Wilson

37A more general class of subtractions to the integrand jσ(z) zρ is jα(z) ∂(z)
α fρσ(x, y, z), where the special case is recovered for fρσ(x, y, z) ≡

zσ zref
ρ (x, y).
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fermion action with an O(a2) tree-level improved Lüscher–Weisz gauge action, and the calculations are performed on
ensembles generated as part of the Coordinated Lattice Simulations (CLS) initiative [710]. The Mainz group follows
the strategy of performing the x and z integrals as explicit four-dimensional sums over the lattice, whereas the final
integral over y is performed in spherical coordinates, by sampling O(20) values of |y|.

A pilot study at Mπ = MK ≃ 415 MeV. The Mainz group initially performed a pilot study [709] at the SU(3)F-
symmetric point Mπ = MK ≃ 415 MeV. The enlarged flavor symmetry leads to a simplification, namely only the
fully-connected and the (2 + 2) topologies contribute. For the connected contribution, two methods were explored:
the first based on computing all three connected Wick-contractions of the HLbL amplitude called “Method 1.” This
requires the calculation of a large number of (sequential) propagators and is therefore rather expensive. The second
by contrast, “Method 2,” exploits the symmetries of the tensor iΠ̂ to reduce the connected contribution to aHLbL

µ to a
single Wick contraction. This can then be computed with far fewer propagator calculations. “Method-2” was found
to broaden the integrand somewhat, and the subtraction scheme of Eq. (6.7) was necessary to have it peak in a range
suitable for the lattice. In the end, the two methods led to the same result for aHLbL

µ within uncertainties. For the (2+2)
disconnected contribution, only one method was used: the contraction in which a quark loop connects the origin to
point y was handled by interchanging the integration variables x and y in Eq. (6.1).

One challenge in the calculation is the control over long-distance effects. This includes finite-size effects on the
final |y| integrand, as well as the extension of this integrand to arbitrarily long distances, since the statistical noise is
difficult to tame in this regime. Both issues were handled using a coordinate-space calculation of the π0 exchange in
finite volume, based on a VMD TFF with parameters determined from a direct lattice calculation of the TFF on the
same ensemble [544]. A 25% uncertainty was assigned to the total long-distance correction applied to the data.

The other major challenge is to control cutoff effects. For the (positive) connected contribution at the SU(3)F-
symmetric point, these were found to lead to a 15% (upward) correction between the lattice data at the coarsest lattice
spacing and the continuum result. Discretization errors on the (negative) disconnected contribution turned out to
have the same sign as for the connected. Thus, while a strong cancellation takes place when adding connected and
disconnected contributions in the continuum, no such cancellation occurs for the corresponding discretization errors.
At the SU(3)F-symmetric point [709], this means that the continuum result for aHLbL

µ is a factor of about 1.6 larger than
aHLbL
µ at the coarsest lattice spacing used, a = 0.086 fm. The uncertainty of the continuum extrapolation is made larger

by the expected presence of O(a), as opposed to O(a2) discretization errors, due to contact terms in the vector four-
point function and the use of unimproved vector currents. The relative size of the O(a) and the O(a2) discretization
errors is not known in the range of lattice spacings employed (0.049 to 0.086 fm) and is difficult to determine from the
lattice data. Nevertheless, applying various fit ansätze reflecting this uncertainty, the result obtained in [709] was:

aHLbL
µ = 65.4(4.9)(6.6) × 10−11 at Mπ = MK ≃ 415 MeV , (6.11)

with the first error resulting from the uncertainties on the individual gauge ensembles, and the second from the sys-
tematic error of the continuum extrapolation.

Lattice result extrapolated to physical (u, d, s) quark masses. The calculation of Ref. [709] was extended away from
the SU(3)F-symmetric point towards physical quark masses in Ref. [59]. The lattice ensembles used Ref. [710] keep
the sum of the (u, d, s) quark masses constant, and the smallest pion mass reached was around 200 MeV. They found
a strong increase in the value of the light-quark fully-connected contribution to aHLbL

µ with decreasing pion mass.
Similarly, the (2+ 2) disconnected contribution was found to increase in magnitude in this limit. The absolute amount
of cancellation between the two contributions thus strongly increases as the pion mass is lowered, and the authors
concluded that adding the two contributions prior to the continuum extrapolation was beneficial. Furthermore, three
more Wick-contraction topologies appear away from the SU(3)F-symmetric point. They have all been computed
within Ref. [59] and are discussed in Sec. 6.2.7.

In Ref. [59], the tail of the integrand and the finite-size correction, though still based on the π0 exchange, were
handled differently: first, an ansatz describing the final integration in the variable |y| faithfully for the π0 exchange was
fit to the lattice data in order to extend the integration up to |y| = ∞. Secondly, a finite-size correction term of the form
exp(−MπL/2) with a fit coefficient was included in the final extrapolation to the physical point. This alternative, more
data-driven procedure was shown to yield results consistent with those of Ref. [709] at the SU(3)F symmetric point.

143



0 5 10 15 20 25 30

|y|
Max.

/a

0

20

40

60

80

100

120

140

160

a µ(C
o

n
n

) ( 
|y

| M
ax

./a
 )

 x
 1

0
1

1

m
π
 = 221 MeV

m
π
 = 280 MeV

m
π
 = 356 MeV

m
π
 = 415 MeV

5 10 15 20

|y|
Max.

/a

-60

-50

-40

-30

-20

-10

0

a µ(2
+

2
) ( 

|y
| M

ax
./a

 )
  
x
 1

01
1

m
π
 = 415 MeV

m
π
 = 356 MeV

m
π
 = 280 MeV

m
π
 = 221 MeV

Figure 64: Partially-integrated light-quark connected (left) and (2,2) disconnected contribution to aHLbL
µ versus |y|Max./a for four ensembles which

have a broad range of pion masses but the same lattice spacing (a = 0.086 fm) and similar volumes (4 ≲ MπL ≲ 6). The points are the numerically
integrated lattice data and the curves result from switching the integrand to a fit above a certain distance. Figures from Ref. [59].

The final value of aHLbL
µ at the physical point is the result of an extrapolation to infinite volume, zero lattice

spacing, and physical pion mass. Various fit ansätze as well as cuts in the pion mass and lattice spacing were used to
assess the systematic uncertainty. The final result reads

aHLbL,ℓ
µ = 107.4(15.8) × 10−11 , (6.12)

where the indicated total error of 15.8 consists of the statistical error (11.3), of the systematic error from varying the fit
ansatz and data cuts (9.2), which is dominated by the difference in the results obtained from extrapolations linear in a
and in a2; and finally, of an error associated with the chiral extrapolation quantified as (6.0). The different components
were then combined in quadrature. In Ref. [711], a modified strategy for the chiral extrapolation was investigated,
namely by first subtracting the π0 exchange contribution from aHLbL

µ computed on each gauge ensemble, and adding
back the π0 contribution at the every end. This procedure leads to a very flat chiral extrapolation, with a result entirely
consistent with Eq. (6.12).

6.2.2. aHLbL,ℓ
µ : the RBC/UKQCD calculation

By the time of WP20, the RBC/UKQCD collaboration had published a lattice calculation [58] with both QCD and
QED in a finite-size box using the so-called QEDL [457] scheme. The finite volume error of HLbL with QEDL scales
with O(1/L2). Lattices with different sizes ranging from L = 4.67 fm up to L = 9.33 fm were used to extrapolate
to the infinite-volume limit. Two different lattices a = 0.114 fm and a = 0.084 fm are used for extrapolating to the
continuum limit. The results obtained are listed below:

aHLbL,ℓ
µ + aHLbL,(2s+2ℓ)

µ + aHLbL,(2s+2s)
µ = 78.7(30.6)stat(17.7)syst [35.4] × 10−11 ,

aHLbL,(4ℓ)
µ = 241.6(23.0)stat(51.1)syst [56.0] × 10−11 ,

aHLbL,(2ℓ+2ℓ)
µ + aHLbL,(2s+2ℓ)

µ + aHLbL,(2s+2s)
µ = −164.5(21.3)stat(39.9)syst [45.2] × 10−11 . (6.13)

This publication does not quote aHLbL,ℓ
µ or aHLbL,(2ℓ+2ℓ)

µ alone. For the purpose of comparison, we subtract the result
aHLbL,(2s+2ℓ)
µ + aHLbL,(2s+2s)

µ = −3.6(2.2)stat(0.3)syst × 10−11 calculated in RBC/UKQCD’s new publication [61], and
obtain the following results:

aHLbL,ℓ
µ = 82.3(30.7)stat(17.7)syst [35.4] × 10−11 ,

aHLbL,(2ℓ+2ℓ)
µ = −160.9(21.4)stat(39.9)syst [45.3] × 10−11 . (6.14)

The remaining part of this subsection is dedicated to the new RBC/UKQCD calculation [61] with QED∞. In this
calculation, the muon momentum p is set to its rest frame value, p2 = −m2

µ with p = 0. Note that the time direction
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Figure 65: Example of a chiral, continuum, and infinite-volume extrapolation of the sum of the light-quark, fully-connected, and (2+2) contributions
to aHLbL

µ . For this fit ansatz, the discretization errors are assumed to be linear in a2 and Mπ-independent, and the chiral dependence to be linear
in M2

π . The red straight lines labeled by an MπL value correspond to the lattice spacing a = 0.086 fm. The infinite-volume, continuum behavior
inferred from the fit is shown as the black, uppermost straight line. Figure from Ref. [59].

is identified with the axis of the hypercubic lattice that has the longest extent. A first observation is that due to the
property Π̂ρ;µνλσ(−x,−y) = −Π̂ρ;µνλσ(x, y), the kernel L can be replaced by its odd part,

LI
[ρ,σ];µνλ(p, x, y) = 1

2

(
L[ρ,σ];µνλ(p, x, y) − L[ρ,σ];µνλ(p,−x,−y)

)
. (6.15)

This modification, which by property Eq. (6.5) is equivalent to averaging the kernel over the two values (±imµ, 0) of
the muon momentum, has the technical advantage that LI computed using Eq. (6.3) is infrared finite prior to taking
the Dirac trace. The kernel LI is then fed into the linear combination

LII
[ρ,σ];µνλ(p, x, y) = LI

[ρ,σ];µνλ(p, x, y) − LI
[ρ,σ];µνλ(p, y, y) − LI

[ρ,σ];µνλ(p, x − y, 0) , (6.16)

which has the property of vanishing for y = 0 and for x = y. The second term in Eq. (6.16) does not contribute to aHLbL
µ

(in infinite volume) due to the property ∂(x)
µ Π̂ρ;µνλσ(x, y) = 0, and neither does the third term due to the conservation

of the EM current at the origin, which implies (∂(x)
λ + ∂

(y)
λ )Π̂ρ;µνλσ(x, y) = 0. The main motivation for this subtraction

is to reduce the discretization error. Compared with the scheme adopted by the Mainz group proposed in Ref. [702],
this choice of the subtraction scheme introduced in Ref. [704] has more contributions from the long-distance region,
and needs a dedicated study for this region as described below.

Subsequently, the kernel LII is replaced by the version LIIsym, which is symmetrized under the permutation group
of the three photon end-points (x, µ), (y, ν) and (0, λ). Exploiting the invariance of LII,sym under permutation of
the internal photon vertices, the calculation of the connected contribution is reduced (from three) to a single Wick
contraction with quark flow in both directions. The selected Wick contraction is such that it would lead to an overall
planar quark–photon–muon diagram if combined with (the unsymmetrized) LII. Similarly, using LII,sym the three
disconnected diagrams of topology (2+2) are traded for the single diagram in which the origin is connected by quark
lines to the external vertex.

The subtraction vector zref (introduced below Eq. (6.8)) can depend on x, y. In the treatment of the (2+2)-type
diagrams, zref is set to be located at the internal vertex on the quark loop that couples to the external photon. With the
reduction of the Wick contractions due to the symmetrization in LII,sym, this choice of zref simply means zref = 0. This
choice of zref suppresses the (2+2)-type diagram contribution when the external photon vertex is close to the internal
vertex belonging to the same quark loop, whereby one expects milder cutoff effects. The choice of zref is legitimate due
to the classical current conservation condition being satisfied at every vertex in each individual (2+2)-type diagram.
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Figure 66: Left: partially integrated light-quark contributions computed on a Möbius domain-wall fermion ensemble of size 483 × 96 with Mπ =

139 MeV, a = 0.114 fm from the connected diagrams, the (2+2) disconnected diagrams, and the total. Right: linear combination of light-quark
connected and (2+2) disconnected diagrams canceling the π0 exchange contribution from long distances. The variable Rmax is the longest side of
the triangle formed by the internal vertices. Figures from Ref. [61].

For the connected diagrams, the same choice of zref as the (2+2)-type diagrams does not apply, since all vertices
belong to the same quark loop. Therefore, a slightly different choice is made which (a) maintains the symmetry among
the three internal vertices and (b) mimics the choice for the (2+2)-type diagrams in the long-distance region: zref is set
to coincide with the internal vertex that is opposite to the shortest side of the triangle formed by the internal vertices
(0, x, y). Indeed, in the long-distance region, the π0-exchange contribution dominates, and the two vertices coupled
to one end of the π0 propagator are relatively close to each other, but far away from the other two vertices, which are
coupled to the other end of the π0 propagator. Furthermore, in the (2+2)-type diagram case, the two vertices on the
same quark loop are coupled to the same end of the π0 propagator. Therefore the integrand of the (2+2)-type diagram
in which the external vertex and the vertex at zref are in the same quark loop is dominated precisely by the constellation
where zref is far away from the other two internal vertices.

The position-space integral as a function of its upper boundary is illustrated in Fig. 66 for the connected and (2+2)
disconnected diagrams, where Rmax represents the longest side of the triangle formed by the internal vertices. Reading
off the values from the left plot in Fig. 66 for contributions within Rmax < 4 fm:

aHLbL,ℓ
µ (Rmax < 4 fm) = 111.1(21.1)stat × 10−11 ,

aHLbL,(4ℓ)
µ (Rmax < 4 fm) = 186.1(12.2)stat × 10−11 ,

aHLbL,(2ℓ+2ℓ)
µ (Rmax < 4 fm) = −74.9(18.2)stat × 10−11 . (6.17)

These results are obtained with the 48I MDWF ensemble from RBC/UKQCD collaborations. The lattice spacing
is 0.114 fm. Due to the subtraction of the QED kernel described in Eq. (6.16), the discretization error is expected
to be smaller than the 48I results obtained from the previous QEDL calculation. Due to the lack of light-quark
data from a second lattice spacing, the discretization error of the above results were estimated based on the continuum
extrapolation for the strange-quark-connected contribution, in which case the continuum limit is 8% larger than the 48I
result. Therefore, we estimate 8% discretization systematic error for the total light quark contribution (8.3)syst×10−11.

The observed cancellation between connected and disconnected contributions motivates the partitioning of the
dominant HLbL contribution into a term proportional to the contribution from the purely isovector part j3µ = (ūγµu −
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Figure 67: The long-distance HLbL contribution to the muon g − 2 associated with π0 exchange. The amplitudes inside the boxes are calculated
in lattice QCD, while the pion propagator linking them (solid lines) is given by the analytic, infinite-volume, continuum expression. Figure from
Ref. [61].

d̄γµd)/2 of the photon coupling, aHLbL{ j3}
µ , and a remaining fraction of the light-connected contribution,

aHLbL,ℓ
µ =

100
81

aHLbL{ j3}
µ︸         ︷︷         ︸

=ano pion
µ

+
9

34
aHLbL,ud conn
µ . (6.18)

The integrand for the first term, denoted ano pion
µ in Ref. [61], being free of the pion-pole contribution [712], is expected

to be of shorter range. On the other hand, aHLbL{ j3}
µ is expected to contain the entire charged-pion-loop contribution to

aHLbL
µ , which is negative. Clearly, the positive result shown on the right panel of Fig. 66 indicates that other effects,

such as the η and η′ exchanges and shorter-distance contributions, dominate over the charged pion loop. To take
advantage of the shorter-range property of ano pion

µ , this contribution is included directly from a lattice calculation up
to Rmax < 2.5 fm, which gives 50.9(7.6)stat × 10−11. For the region where Rmax > 2.5 fm, a fit is performed

f (Rmax) = A/fm4 R6
max

R3
max + (C fm)3

e−BRmax/(fm×GeV) , (6.19)

as illustrated in the right plot of Fig. 66. This tail contribution is 3.1(2.2)stat(3.1)syst×10−11. This is the only part of the
entire calculation that is based on a fit. Many different fitting forms are studied and 100% systematic error is assigned
to this contribution.

As mentioned above, the long-distance π0 exchange contribution is calculated separately as illustrated in Fig. 67
based on the following long-distance approximation:

⟨T jµ′ (x′) jµ(x) jν′ (y′) jν(y)⟩ ≃ Dπ0 (x − y)Fµ′,µ
(
x′ − x, iMπ

x − y
|x − y|

)
Fν′,ν

(
y′ − y, iMπ

y − x
|y − x|

)
, (6.20)

where the π0 TFF Fµ′,µ(x, iMπn̂) is directly calculated on the lattice with

Fµ,ν(x, iMπ t̂) = ⟨0|T jµ(x) jν(0)|π0(p = 0)⟩ (6.21)

and a proper Euclidean space-time rotation. Here, the long-distance contribution includes regions with Rmax > 4 fm.
This contribution is calculated to be 20.0(1.1)stat(2.8)syst × 10−11.

The finite-volume correction for the contribution in the region Rmax < 4 fm is calculated based on the coordinate
space formulation of the π0-pole contribution in finite volume, with the π0 transition form factor given by the LMD
model. The correction is −4.7(1.1)syst × 10−11. This model can also be used to calculate the above long-distance
contribution and is consistent with the above lattice results based on the long-distance approximation.

The last correction is from a small mismatch of the physical pion mass 135 MeV and the pion mass used in the
above lattice calculation, 139 MeV. The correction is based on a separate lattice calculation at Mπ = 340 MeV. The
correction is calculated to be 3.5(0.7)stat(1.7)syst × 10−11.
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The final value of aHLbL,ℓ
µ after applying the corrections from finite volume, small mismatch of pion mass is

aHLbL,ℓ
µ = 122.0(10.1)stat(9.5)syst [13.8] × 10−11 . (6.22)

The leading source of systematic error is from the estimation of the discretization effects, which is estimated to be
(8.3)syst × 10−11. A future calculation at a finer lattice spacing can help reduce this systematic error. Results for the
individual contributions are also obtained

aHLbL,(4ℓ)
µ = 257.0(13.3)stat(19.9)syst [23.9] × 10−11 ,

aHLbL,(2ℓ+2ℓ)
µ = −135.0(13.6)stat(12.1)syst [18.2] × 10−11 ,

ano pion
µ =

25
34

aHLbL,(4ℓ)
µ + aHLbL,(2ℓ+2ℓ)

µ = 54.0(9.4)stat(5.3)syst [10.8] × 10−11 . (6.23)

6.2.3. aHLbL,ℓ
µ : the BMW calculation

In Ref. [62], the staggered-fermion formulation of QCD is used with N f = 2 + 1 + 1 dynamical quarks, whose
action involves four steps of stout smearing. The pion and kaon masses are very close to their physical values. The
light-quark contribution is computed on seven ensembles at three values of the lattice spacing, 0.132, 0.112 and
0.095 fm. The linear extent of three ensembles is just above L = 6 fm, one has L = 4.2 fm, and the other three, which
do not enter the final continuum extrapolation, have L ≃ 3.1 fm. The conserved vector current, which does not receive
any multiplicative renormalization, is used throughout.

The starting point for the integral representation chosen of aHLbL,ℓ
µ is the kernel L̄(Λ) defined in Eq. (6.7), for which

the same numerical implementation [703] is used as in the Mainz/CLS calculation. In contrast to the latter, however,
the kernel L̄(Λ) is then entirely symmetrized with respect to the three internal vertices. The x and z integrals are
performed as sums over the lattice, while the remaining y integral is handled as a one-dimensional integral over |y|
thanks to the use of spherical coordinates. The position vector y of the vertex is chosen to be an integer multiple of
(1,1,1,1) or (3,1,1,1). In fact, this vertex is spread over the eight nearest neighbors of its nominal position in order to
suppress oscillating lattice artifacts.

For the connected contribution aHLbL,(4ℓ)
µ , the calculation is reduced to the quark-contraction diagram in which the

vertex at the origin is connected to the internal vertex at x and to the external vertex at z. Due to the use of translation
invariance to perform this reduction to one diagram, effectively a subtraction term zref

ρ = −xρ/3 appears (see the
comment below Eq. (6.8)). The chosen representation is validated by reproducing the known contribution of a lepton
loop to aLbL

µ on the lattice, for a lepton twice as heavy as the muon.
For the disconnected contribution aHLbL,(2ℓ,2ℓ)

µ , there are again three Wick contractions, which can all be expressed
in terms of the diagram in which 0 is connected (by two quark lines) with x, or in terms of the diagram where 0 is
connected with z. Each of these two possibilities leads to a valid expression for aHLbL,(2ℓ,2ℓ)

µ , and the final estimator
is the average of these two expressions. This choice has the effect of giving the pseudoscalar-pole contribution to the
connected diagram and the two disconnected diagrams precisely the same weight function, so that the π0 contribution
can be made to cancel at the integrand level in the linear combination ano pion

µ . The final |y| integral as a function of its
upper bound is displayed in the left panel of Fig. 68 for aHLbL,(4ℓ)

µ , aHLbL,(2ℓ,2ℓ)
µ and for their sum, aHLbL,ℓ

µ .
The pion-pole contribution is computed in position space and in finite volume in order to extend the |y| integrand

at long distances and to correct for finite-size effects. The switch from lattice data to the pion-pole prediction is done
at ycut ≃ 2.3 fm. It is also used to assess how soon the x integral can be truncated once |y| > 1.5 fm, a technique that
is used to reduced statistical fluctuations. The parameterizations used for the pion TFF are the VMD and LMD ones.
The latter is found to provide a satisfactory description of finite-size effects, while the prediction using the VMD form
factor yields corrections that are 20 to 25% smaller. Overall, the corrections applied to the raw lattice data summed
up to ycut are on the order of 4 to 6.5 × 10−11 for aHLbL,ℓ

µ .
The continuum extrapolation of aHLbL,ℓ

µ is shown in the right panel of Fig. 68. The alternative route, which consists
in working with the linear combination Eq. (6.18) of the shorter-range ano pion

µ and the connected part, gives consistent
results. The final results are collected in the rightmost column of Table 31. No continuum-extrapolated result is
quoted for ano pion

µ , however, the results at finite lattice spacing are in the range 49 to 59 × 10−11, increasing toward
the continuum. This contribution would end up being higher than the central value obtained by the RBC/UKQCD
collaboration (penultimate column of Table 31), but still compatible given the uncertainties.

148



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
|y| [fm]

−100

−50

0

50

100

150

200

250

a
µ
(|y
|)
×

10
11

a`µ

aconn, `
µ

a(2 + 2), `
µ

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

a2 [fm2]

0

20

40

60

80

100

120

140

a
` µ
×

10
11

conn + (2+2)

no-pion + 9/34 * conn

Figure 68: Left: partially integrated light-quark contributions computed on a staggered-quark, physical-mass ensemble of size 643 × 96 with
a = 0.095 fm from the connected diagrams, the (2+2) disconnected diagrams, and the total. Right: continuum extrapolation of aHLbL,ℓ

µ , either based

on the direct calculation of the sum of the connected and disconnected diagram, or based on combining the ano pion
µ with the connected contribution.

Figures from Ref. [62].

6.2.4. aHLbL,ℓ
µ : our average

Before proceedings to average aHLbL,ℓ
µ , we briefly compare the results for the connected and the disconnected

contributions; see Table 31. The Mainz/CLS publication does not quote a final result for the two topologies separately,
but provides the results of four different fit ansätze with regards to the chiral extrapolation. This results in a fairly large
spread. Nevertheless, all three collaborations obtain central values in the range 200 to 260 for the connected, while
the disconnected part is in the range −145 to −100. Clearly, the absolute size of systematic effects is larger when
the connected and the disconnected contributions are handled separately, due to the enhanced weight with which the
π0 exchange contributes in these. For that reason, we refrain for now from presenting an average for aHLbL,(4ℓ)

µ and
aHLbL,(2ℓ+2ℓ)
µ separately. The decomposition into connected and ano pion

µ is more favorable in that respect.
We now proceed to perform an average of the light-quark contribution aHLbL,ℓ

µ . The four calculations were done
with three qualitatively different quark actions on independent ensembles; therefore the statistical errors are fully
uncorrelated (the two RBC/UKQCD calculations are performed with the same quark action but with two almost
independent data sets). We adopt the approach of taking into account correlations among the systematic errors conser-
vatively. In the Mainz/CLS case, the systematic uncertainty of 6.0×10−11 associated with the chiral extrapolation will
be treated as being uncorrelated to the other two calculations, since the latter are performed directly at (near-)physical
quark masses.

Now treating the systematic errors {17.7, 9.2, 9.5, 1.8} × 10−11 of the four calculations as being 100% correlated
(that is the systematic errors from different results added linearly in the average), we construct the covariance matrix
of the results and perform a fit to a constant. 38 The χ2/dof is 0.69 and the result is

aHLbL,ℓ
µ = 119.6(7.1)stat(5.5)syst[9.0]tot × 10−11 (our average) . (6.24)

If we treated the systematic errors as being uncorrelated, the result would change to 117.1(6.5)stat(4.0)syst)[7.6]tot ×

10−11. We have checked that interpolating between these two results with a scale factor ξ ∈ [0, 1] multiplying the
off-diagonal components of the covariance matrix, the error of the average increases monotonously towards the fully
correlated ξ = 1 case.

38In the weighted average we always add linearly the absolute value of the weighted systematic errors. The fit is performed to find the
weights wi (the weights should satisfy

∑
i wi = 1) that minimize the total error of the weighted average. The formula for the final error is√∑

i w2
i e2

stat,i + (
∑

i |wiesyst,i |)2 + (
∑

i |wiechiral-extrap,i |)2, where estat,i and esyst,i are the statistical and systematic errors for each lattice calculations,
echiral-extrap,i are the errors for the chiral extrapolations, which are equal to zero for calculations performed at physical quark masses. Note that, with
the above minimization procedure, the final weights should always be nonnegative.
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[10−11] RBC/UKQCD QEDL [58]

aHLbL,(4ℓ)
µ 241.6(23.0)stat(51.1)syst [56.0]

aHLbL,(2ℓ+2ℓ)
µ −160.9(21.4)stat(39.9)syst [45.3]

aHLbL,ℓ
µ 82.3(30.7)stat(17.7)syst [35.4]

[10−11] Mainz/CLS [59] RBC/UKQCD [61] BMW [62]

aHLbL,(4ℓ)
µ see text 257.0(13.3)stat(19.9)syst [23.9] 220.1(13.0)stat(3.8)syst

aHLbL,(2ℓ+2ℓ)
µ see text −135.0(13.6)stat(12.1)syst [18.2] −101.1(12.4)stat(3.2)syst

ano pion
µ − 54.0(9.4)stat(5.3)syst [10.8] see text

aHLbL,ℓ
µ 107.4(11.3)(9.2)(6.0)[15.8] 122.0(10.1)stat(9.5)syst [13.8] 122.6(11.5)stat(1.8)syst

Table 31: Results for the light-quark contributions in various linear combinations, as well as the total aHLbL,ℓ
µ .

6.2.5. The strange contribution aHLbL,s
µ

Three collaborations [59, 61, 62] have produced results for aHLbL,s
µ . We begin by discussing the connected part

alone. The strange connected contribution aHLbL,(4s)
µ is an excellent benchmark quantity to compare lattice calculations,

since the signal is of good quality, not too long range, and finite-size effects are expected to be suppressed. We quote
the results

aHLbL,(4s)
µ =

 3.530(70)stat × 10−11 RBC/UKQCD

3.694(17)stat(18)a(8)syst × 10−11 BMW
. (6.25)

Both calculations are performed directly at (practically) physical quark masses. The BMW calculation uses five lattice
spacings in the range 0.064 to 0.132 fm, and the statistical precision was sufficiently high that finite-size effects could
be resolved—and corrected for. The cutoff effect on the coarsest lattice spacing is about 16% of the continuum value.
The RBC/UKQCD calculation uses two lattice spacings, 0.114 and 0.084 fm to obtain the continuum limit, relative
to which the data on the coarser ensemble is 8% lower. Here we also mention the preliminary results of the ETM
collaboration [707], that obtains continuum-extrapolated values somewhat lower than RBC/UKQCD or BMW, with
an error still to be quantified.

The Mainz/CLS publication [59] does not quote a result for aHLbL,(4s)
µ alone. For the purpose of a comparison with

the two results above, we produce an estimate from (a) the continuum-extrapolated result at the Mπ = MK ≃ 415 MeV
point, Eq. (22) [709] with the charge factor adjust from 18/81 to 1/81 in order to isolate the strange contribution
of 5.49(14) × 10−11, and (b) by fitting the aHLbL,(4s)

µ values obtained on three ensembles at a fixed lattice spacing
a = 0.086 fm and MK = 415, 461 and 487 MeV in order to correct to the physical MK = 494.6 MeV. Indeed, the
data for aHLbL,(4ℓ)

µ suggests that the cutoff effects on the valence-quark mass dependence is weak. We do so using a
quadratic fit in M2

K and obtain aHLbL,(4s)
µ = 3.64(14)SU(3)F (9)MK fit × 10−11, where we have assigned a 5% uncertainty to

the MK dependence.
We conclude that the agreement between the three calculations of aHLbL,(4s)

µ is satisfactory. At the same time,
there is evidence that the quoted errors are somewhat underestimated. A straightforward fit to a constant leads to
χ2/dof = 1.8; the error inflated by the square-root of this quantity would be 0.034 × 10−11. For simplicity, we then
quote

aHLbL,(4s)
µ = 3.68(4) × 10−11 (our average) . (6.26)

After this important consistency check, we quote the following results for the full contribution aHLbL,s
µ ,

aHLbL,s
µ =


−0.6(2.0)stat × 10−11 Mainz/CLS
−0.0(2.2)stat(0.3)syst × 10−11 RBC/UKQCD
−1.7(8)stat(3)syst × 10−11 BMW

. (6.27)
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Figure 69: Extrapolation of the strange connected (left, aHLbL,(4s)
µ ) and disconnected contribution (right, aHLbL,(2l+2s)

µ + aHLbL,(2s+2s)
µ ) in the calcula-

tion by the BMW collaboration [62] based on ensembles with dynamical up/down, strange, and charm quarks tuned to their physical masses.

Due to, in part, the much larger statistical errors of the disconnected diagrams, these results are entirely consistent
with each other. Performing a straightforward average, we again slightly inflate the error and obtain

aHLbL,s
µ = −1.4(8) × 10−11 (our average) . (6.28)

6.2.6. The charm contribution aHLbL,c
µ

The Mainz/CLS and the BMW collaboration have performed dedicated lattice calculations of the charm-quark
contribution aHLbL,c

µ [60, 62], and preliminary results by the ETM collaboration are available [707]. Due to the large
mass scale involved, the main challenge in this case is to control the cutoff effects.

In the Mainz/CLS calculation, based on quarks with an O(a)-improved Wilson action, the adopted strategy con-
sisted in using very fine lattice spacings (down to 0.039 fm) and lighter-than-physical charm-quark masses. These cal-
culations were followed by a simultaneous extrapolation in both variables to the continuum and physical charm quark
mass, respectively, to obtain the final result. To make this strategy computationally affordable, the calculation was
performed on ensembles with dynamical (u, d, s) quarks at the SU(3)F-symmetric point with Mπ = MK ≃ 415 MeV.
Indeed, neither the charm-quark loop, nor the ηc exchange is expected to depend strongly on the light-quark masses.

An important question is then what fit ansätze to employ in order to describe the charm mass and lattice spacing
dependence of aHLbL,c

µ . Being a heavy degree of freedom, general arguments [713, 714] strongly suggests a leading
1/m2

c dependence. As for the lattice-spacing dependence, both O(a) and O(a2) effects are present in the Mainz setup.
The (dominant) connected charm contribution and its uncertainty were estimated so as to cover the continuum results
emerging from all fits with good χ2/dof.

The correlation between a light-quark and a charm-quark two-vector-insertion loop (2+2 Wick-contraction topol-
ogy), expected to be the next most important contribution, was computed as well and found to amount to a −10%
correction to the connected piece. The corresponding (2+2) diagram involving two charm loops was found to be
negligible. Altogether, the final result of Ref. [60] was

aHLbL,c
µ = 2.8(5) × 10−11 (Mainz/CLS) , (6.29)

where the uncertainty is entirely systematics dominated. It also contains an estimate of the effect of not performing
the calculation at physical (u, d, s) quark masses.

In the BMW calculation [62], which is performed directly at physical quark masses in the staggered-quark formu-
lation, the continuum extrapolation also represented a major source of uncertainty. Additively implemented tree-level
improvement of the observable aHLbL,c

µ was applied to data obtained from six lattice spacings in the range 0.048 to
0.132 fm. Two directions were used for the vertex y integrated over last, (1, 1, 1, 1) and (0, 1, 1, 1), leading to separate
continuum extrapolations. The difference in results was taken as an additional systematic error. Additional checks

151



	0

	2

	4

	6

	8

	10

	12

	14

	0.1 	0.15 	0.2 	0.25 	0.3 	0.35 	0.4 	0.45 	0.5 	0.55

a μ
co
nn
.,c
	x
	1
01

1

1/Mηc
2	[GeV-2]

J500
N300
N202
B450
H101
A653
cont.
WP

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200

a2 [fm2]

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

a
µ
×

1
0

11

aconn, c
µ

Figure 70: Extrapolations of the connected charm contribution. Left: One representative fit to the lattice data of the Mainz/CLS collaboration [60]
at different charm-quark masses and lattice spacings. The ηc meson mass is used as a proxy for the charm mass. The continuum limit of the lattice
data is represented by the blue, uppermost curve. For comparison, the WP20 estimate of aHLbL,c

µ = 3(1) × 10−11 is displayed at the physical ηc
mass. Right: representative continuum extrapolation at physical charm quark mass by the BMW collaboration [62].

were performed, by using lighter-than-physical charm quark masses as well as by reproducing the result for a lepton
loop in the continuum. As a result of the spread obtained in the latter exercise, a sizable uncertainty (0.25 × 10−11)
was associated with the numerical implementation of the kernel.

The leading disconnected diagrams involving a charm-quark loop, namely those of topology (2+2), were com-
puted at four values of the lattice spacing, extrapolated to the continuum and found to be negative. The final integrand
is more extended than for the connected diagram, reaching its maximum size around |y| = 0.6 fm and is found to yield
a contribution on the order of −0.2 × 10−11 after continuum extrapolation. All in all, the total charm contribution was
found to be

aHLbL,c
µ = 3.73(26) × 10−11 (BMW) , (6.30)

where the error is entirely dominated by the systematic uncertainty associated with the short-distance part of the
kernel, see the previous paragraph, and the continuum extrapolation of the connected part.

The ETM collaboration has performed preliminary calculations of the connected charm contribution [707] at phys-
ical quark masses with twisted-mass Wilson sea quarks, using three lattice spacings in the range 0.057 to 0.080 fm.
While an upward trend is observed in the aHLbL,c

µ results as the continuum is approached, pointing to a similar order
of magnitude as found by Mainz/CLS and BMW, it is too early to derive a quantitative result.

We thus proceed to average the Mainz/CLS and BMW results. The BMW result Eq. (6.30) exhibits a mild 1.7σ
tension39 with the Mainz result Eq. (6.29). Therefore, after fitting the results of the two collaborations to a constant,
we need to inflate the error. The scale factor obtained from χ2/dof would lead to an error of 0.4 × 10−11. We make a
slightly more conservative choice for the latter and thereby obtain for the charm light-by-light contribution

aHLbL,c
µ = 3.5(5) × 10−11 (our average) . (6.31)

6.2.7. Subleading disconnected diagrams, aHLbL,rest
µ

For those topologies (X+1) containing one or more quark loops consisting of a single vector insertion, L f
α(x) =

−Tr{γαS f (x, x)}, where S f (y, x) denotes the quark propagator of flavor f , it is helpful to include all three flavors,∑
f=u,d,s Q f L f

α(x), exploiting the fact that
∑

f=u,d,s Q f = 0. The latter property implies the vanishing of these diagrams
at the SU(3)F-symmetric point, ml = ms and therefore a suppression at short distances.

39Recall that the statistically precise strange connected contribution agrees well between the two collaborations.
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Figure 71: The two quark-contraction diagrams of the (3+1) topology class, up to permutations of the vertices on the muon propagator. Figure
from Ref. [61].

Figure 72: Representatives of the (2+1+1, left) and (1+1+1+1, right) class of diagrams. Figure from Ref. [61].

The topology (3+1) consists of two quark loops and is therefore of the same order in 1/Nc counting as the (2+2)
topology. Also, the pion loop contributes to this topology with a significant weight. Therefore, a direct lattice calcu-
lation is called for. The Mainz/CLS calculation could not resolve a signal and yielded aHLbL,3+1

µ = 0.0(6)× 10−11. The
more recent BMW calculation [62] did obtain a positive signal,

aHLbL,3+1
µ = 0.82(18)stat(17)syst × 10−11 (BMW) . (6.32)

Since the Mainz/CLS result only amounts to an upper bound on the magnitude of this contribution, we will adopt the
result Eq. (6.32) for our average.

Two collaborations [60, 62] have found the (2+1+1) and the (1+1+1+1) contributions (see Fig. 72) to be entirely
negligible, hence we will not go into any details. No statistically significant signal is obtained for these contributions.
However, the lattice data allows one to bound them. The Mainz/CLS calculation arrives at

aHLbL,(2+1+1)
µ = 0.0(3) × 10−11 ,

aHLbL,(1+1+1+1)
µ = 0.0(1) × 10−11 , (6.33)

while the BMW collaboration quotes even tighter bounds, 0.04 × 10−11 and 0.0005 × 10−11, respectively. Therefore,
we will neglect these contributions altogether.

6.2.8. Final average for aHLbL
µ

Adding the four contributions of Eqs. (6.24), (6.28), (6.31), and (6.32), treating their uncertainties as being uncor-
related, we arrive at our final average of lattice QCD results for aHLbL

µ ,

aHLbL
µ = 122.5(7.1)stat(5.6)syst × 10−11 = 122.5(9.0) × 10−11 (lattice QCD average) . (6.34)

Clearly, the uncertainty is entirely dominated by that of the light-quark contribution aHLbL,ℓ
µ . The entire remaining

contribution is
aHLbL,s
µ + aHLbL,c

µ + aHLbL,rest
µ = 2.92(98) × 10−11 (lattice QCD average) . (6.35)

A summary of the status of the HLbL contribution is shown in Fig. 82 in Sec. 9.
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6.3. Exclusive state contributions

In the dispersive framework, the dominant contribution to the HLbL diagram comes from the light pseudoscalar-
poles according to Eq. (5.20). The hadronic inputs are the TFFs FPγ∗γ∗ at spacelike virtualities with P = π0, η, η′.
The integrand in Eq. (5.20) is peaked at low virtualities and the dominant contribution comes from the region Q2

1,2 <

3 GeV2 [569] that can be reached by lattice calculations.
Regarding the determination of TFFs, two distinct approaches are currently employed. The first approach adopts

the time-momentum representation, as proposed by Ref. [715], where the momenta for the pseudoscalar meson and
photons are constrained to discrete values. This necessitates the use of parameterizations like the z-expansion for
momentum interpolation. This method was used in early calculations to evaluate the TFFs and the lifetime of the
pion [716] and has recently been adopted by three groups to determine the pseudoscalar-pole contributions to HLbL,
extending from the pion pole to the η- and η′-poles [544, 570, 571, 643, 705, 717]. The second approach, proposed
very recently by the RBC/UKQCD collaboration [706], calculates TFFs with arbitrary photon momenta by introducing
an appropriate coordinate-space weight function (coordinate-space representation) [718, 719]. To date, this method
has only been applied to the pion-pole contribution, where the significant signal-to-noise problem in computing TFFs
at large virtualities is mitigated by introducing a structure function. Below, we present the results obtained from both
approaches.

6.3.1. Time-momentum representation
By the time of WP20, a single complete lattice calculation of the pion TFF, by the Mainz group [544, 705], had

been published. The TFF had been computed in the kinematic range relevant to the (g − 2)µ using N f = 2 + 1
Wilson-Clover quarks. Four lattice spacings in the range [0.050-0.086] fm and pion masses down to 200 MeV were
used to extrapolate the result to the physical point using a systematically improvable parameterization, inspired by
the analysis of other hadronic form factors. This parameterization satisfies the short-distance constraints [523, 524,
563, 565, 566] and can be further constrained by experimental inputs, such as the two-photon decay width. In the
first publication [705] the calculation was limited to the pion rest-frame. In Ref. [544] it was realized that including
data in a moving frame, where the pion carries one unit of momentum, allows a better coverage of the (Q2

1,Q
2
2)-plane,

especially when one of the virtualities tends to zero (single-virtual regime). Using the parameterization of the form
factor, the Mainz group was able to provide the first lattice calculation of the pion-pole contribution to the HLbL. The
result is

aπ
0-pole
µ = 59.7(3.4)(0.9)(0.5) × 10−11 = 59.7(3.6) × 10−11 , (6.36)

where the first error is statistical, the second one is the systematic error associated with the parameterization of the
TFF, and the third one from the disconnected contribution. The disconnected contribution is −1.0(5) × 10−11. Using,
in addition, the experimental measurement of the two-photon decay width [720, 721] as a constraint in the fit of the
TFF, the authors quote aπ

0-pole
µ = 62.3(2.3) × 10−11.

Since the publication of WP20, two additional groups have presented lattice calculations of the pion TFF in the
time-momentum representation. The ETM collaboration [643] uses N f = 2 + 1 + 1 flavors of Wilson Clover twisted
mass quarks. The simulations are performed at the physical pion mass and at maximal twist [722, 723]. This ensures
automatic O(a)-improvement of the three-point function. The latter is evaluated in the pion rest frame for three values
of the lattice spacing in the range [0.057:0.080] fm using lattices of spatial extents L ≃ 5.5 fm. The calculation
includes both connected and disconnected contributions. The form factor is extrapolated to the continuum limit using
the parameterization introduced by the Mainz group [544]. The authors quote

aπ
0-pole
µ = 56.7(3.1)(1.0) × 10−11 = 56.7(3.2) × 10−11 , (6.37)

where the first error is statistical and the second is the systematic uncertainty.
The BMW collaboration [571] uses N f = 2 + 1 + 1 flavors of staggered quark fermions with four steps of stout

smearing. The calculation is also performed at the physical pion mass and includes five values of the lattice spacing
in the range [0.065:0.132] fm. The spatial extents of the lattices are in the range [6.1-6.7] fm. In addition to the pion
rest frame, the pion frame with one unit of momentum is also considered. As for the other groups, both connected
and disconnected contributions are included and the parameterization introduced in Ref. [544] is used to extrapolate
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Figure 73: The η TFF from the ETM collaboration in the single-virtual (left) and double-virtual (right) kinematics [570]. The result, obtained at a
single lattice spacing, is compared with experimental results and the Canterbury estimate (cyan bands).

the TFF in the continuum limit. The result reads

aπ
0-pole
µ = 57.8(1.8)(0.9) × 10−11 = 57.8(2.0) × 10−11 . (6.38)

where the disconnected contribution is −1.33(19) × 10−11.
Besides the pion, the η and η′-poles are the largest pseudoscalar-pole contributions. Compared to the pion, the

TFFs are much more challenging to compute on the lattice. The calculation requires additional quark-disconnected
diagrams that involve a single pseudoscalar loop. This noisy disconnected contribution is large and of opposite
sign as compared to the fully connected part. Thus, large statistics is needed to control this delicate cancellation.
Because of the heavier pseudoscalar masses, the integrand in Eq. (5.20) is also peaked at larger virtualities and the
pole contribution is less sensitive to the normalization of the TFF [569]. The η meson is the lowest-lying eigenstate
with quantum numbers IG(JPC) = 0+(0−+) and the associated form factor can be extracted using the same strategy as
the one used for the pion. In this case, the η′ contribution is seen as an excited-state contribution that vanishes for
sufficiently large time separations between the pseudoscalar insertion and the two vector currents. This is the strategy
followed by the ETM collaboration in Ref. [570, 724]. In principle, any pseudoscalar interpolating operator can be
used as long as it overlaps with the physical η meson. For the η′ meson, a proper treatment of the mixing between the
flavor-octet and flavor-singlet states is required to isolate the eigenstate of the Hamiltonian.

In Ref. [570], the ETM collaboration has presented the first lattice calculation of the η TFF, at the physical pion
mass but at a single lattice spacing. The result for the double-virtual and single-virtual kinematics is shown in Fig. 73
and compared with experimental data and the CA estimate [34]. Using this TFF and the master formula Eq. (5.20),
they quote

aη-pole
µ = 13.2(5.2)stat(1.3)syst[5.3]tot × 10−11 , (6.39)

where the error is dominated by statistics. The main systematic error comes from varying the order of their z-
expansions used to parameterize the virtuality dependence of the form factor. The diagrams that contain single vector
loops are suppressed in the SU(3) flavor limit and have been neglected in this work.

The BMW collaboration has presented a first calculation including both the η and η′ contributions. The results for
the single-virtual regime are depicted in Fig. 74. All connected and disconnected contributions have been estimated.
It has been shown that the disconnected diagrams that are suppressed in the SU(3) flavor limit are small and negligible
at the current statistical precision. As for the pion, two pseudoscalar frames have been included for cross-checks. This
calculation includes a continuum extrapolation based on five lattice spacings. The corresponding pseudoscalar-pole
contributions read

aη-pole
µ = 11.6(1.6)stat(0.5)syst(1.1)FSE × 10−11 ,

aη
′-pole
µ = 15.7(3.9)stat(1.1)syst(1.3)FSE × 10−11 . (6.40)
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The uncertainty is dominated by statistics, followed by the finite-volume effects. The η and η′ contributions are
comparable in size and their sum is about half of the pion-pole contribution.

The η-pole contribution is compatible within 1.4 standard deviations with the data-driven dispersive result pre-
sented in Ref. [55]. Good agreement is found for the η′-pole contribution, although with larger uncertainties on the
lattice side.

6.3.2. Coordinate-space representation
In the coordinate-space representation, the methodology is designed within the framework of infinite volume,

where spatial momentum can take arbitrary values. The TFFs can be extracted via the Fourier transform

Fµν(Q,Q′) =
∫

d4x e−i
(
Q− Qπ

2

)
· x
Hµν(x) = iεµναβQαQπ,βFπ0γ∗γ∗ (−Q2,−Q′2) , (6.41)

with Q′ = Qπ − Q and Q = (iE,q) parameterized in terms of the real-valued kinematic variables E and q. The

hadronic matrix element Hµν(x) ≡
〈
0
∣∣∣∣T {

jµ
(

x
2

)
jν

(
− x

2

)}∣∣∣∣ π(Qπ)
〉

is defined in Euclidean spacetime with jµ(x) rep-
resenting the EM current and Qπ = (iEπ,qπ) denoting the 4-momentum of the on-shell pion. This matrix element
can be decomposed as Hµν(x) = −εµναβxαQπ,βH(x2,Qπ · x). Consequently, the TTFs can be determined through an
integral [706]

Fπ0γ∗γ∗ (−Q2,−Q′2) =
∫

d4xω(K,Qπ, x)H(x2,Qπ · x) , (6.42)

where the weight function ω(K,Qπ, x) is defined as

ω(K,Qπ, x) ≡ i e−iK · x (K · x)Q2
π − (K · Qπ)(Qπ · x)

K2Q2
π − (K · Qπ)2 , (6.43)

with K = Q − Qπ/2. Unfortunately, the factor e−iK · x = e(E−Eπ/2)te−i(q−qπ/2) · x grows rapidly when E becomes large,
leading to a severe signal-to-noise problem, which is also common in the time-momentum representation. The chal-
lenge is addressed by introducing a pion structure function ϕπ(x2, u) and expressing H(x2,Qπ · x) as

H(x2,Qπ · x) =
∫ 1

0
du ei(u− 1

2 )Qπ · xϕπ(x2, u)H(x2, 0) . (6.44)

In this way, the TFFs can be obtained through

Fπ0γ∗γ∗ (−Q2,−Q′2) =
∫ 1

0
du

∫
d4xω(K̄,Qπ, x)ϕπ(x2, u)H(x2, 0) , (6.45)

156



100 101

Q2[GeV2]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

[G
eV

]

Q2Fπ0γ∗γ(−Q2, 0) 64I
LO pQCD
CZ model
VMD model
AdS/QCD

Asymptotic
Point-like
CELLO
BABAR
CLEO
Belle
BESIII (prelim.)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8

ϕ2

58.0

58.5

59.0

59.5

60.0

60.5

61.0

61.5

62.0

aπ
0−pole
µ × 1011 64I

CZ model

VMD model

AdS/QCD

Asymptotic

Point-like
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54 58 62 66 10 14 18 22 10 14 18 22 80 90 100

RBC/UKQCD-24

BMW-23

ETM-23

Mainz/CLS-19

DSE/BSE

hQCD

RχT

CA

Disp-18,24

WP20

a
π
0
−pole

µ
a
η−pole
µ a

η
′
−pole

µ a
PS−poles
µ

Figure 76: Summary of the lattice calculations (in blue) and of the approaches presented in Sec. 5, and comparison with the WP20 average. The
blue band represents the lattice average for the pion-pole contribution.

with K̄ = Q − uQπ. Since ϕπ(x2, u)H(x2, 0) is symmetric under SO(4) spacetime rotations, an SO(4) average can
be performed for the weight function ω(K̄,Qπ, x), yielding ⟨ω(K̄, P, x)⟩SO(4) = 2 J2(|K̄||x|)

K̄2 , with J2(x) being the Bessel
function. As J2(|K̄||x|) does not exhibit exponential growth at large |K̄||x|, there is no signal-to-noise problem in
computing the TFFs. The integral can be further improved by replacing H(x2, 0) with H(x2,Qπ · x) based on the
relation Eq. (6.44).

The methodology involves a Gegenbauer expansion to express the pion structure function ϕπ(x2, u). The size of
different Gegenbauer terms is evaluated by incorporating lattice data, and the LO Gegenbauer term is demonstrated to
be model independent. Five parameterizations for ϕπ(x2, u), which span a wide range of large-momentum behaviors
for the TFFs and cover all experimental data as shown in Fig. 75, are used to estimate the systematic effects induced
by ϕπ(x2, u). These parameterizations yield the coefficients for different Gegenbauer terms. The results of aπ

0-pole
µ align

closely with a linear form of the NLO coefficient φ2(|x|) as shown in Fig. 75, indicating that the higher-order effects
are negligible. More details are presented in Ref. [706].

Using eight gauge ensembles generated with 2+1 flavor domain wall fermions, incorporating multiple pion
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Figure 77: Comparison of lattice calculations [544, 571, 643, 706], the dispersive determination of Ref. [543], and experimental data (Refs. [559,
560] and preliminary BESIII data [1, 725]) for the single-virtual and the double-virtual π0 TFF.

masses, lattice spacings, and volumes, the RBC/UKQCD calculation provides the result

aπ
0-pole
µ = 59.6(1.6)stat(1.0)ϕ(1.0)a(0.4)FV × 10−11 = 59.6(2.2) × 10−11 . (6.46)

In this result, the first error is statistical, the second reflects the dependence on the structure function, the third repre-
sents lattice artifacts, and the fourth accounts for residual finite-volume effects. It is noteworthy that the finite-volume
effects are estimated by assuming that the hadronic function Hµν(x) at long distances is dominated by the ρ meson
and πρ states. These finite-volume effects can reach 0.8 × 10−11 for a lattice size of L ≃ 4.6 fm and are quickly
suppressed to 0.2 × 10−11 at L ≃ 5.5 fm. In Eq. (6.46), the uncertainty (0.4)FV × 10−11 indicates potential residual
effects after the finite-volume correction is applied. When using small lattice volumes, the finite-volume effects are
not negligible, making corrections essential, particularly as lattice precision improves in future studies. In the total
contribution to aπ

0-pole
µ , the connected diagrams account for 57.8(2.2)×10−11, while the disconnected pieces contribute

1.81(15) × 10−11, based on the results from the finest ensemble.

6.3.3. Conclusion
A summary of the lattice calculations of pseudoscalar-pole contributions is given in Fig. 76. Four groups, using

different lattice regularizations, have presented results on the pion-pole contribution, with precisions between 3.5 and
6%. They agree within one standard deviation. However, the sign of the small disconnected contribution aπ

0-pole,disc
µ

is found to be different among groups and needs further investigations. At present, Mainz, BMW, and ETM find the
disconnected contribution to be negative, and the more recent RBC/UKQCD calculation finds it to be positive. Also,
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Contribution Average [10−11] Sources

aHLbL,ℓ
µ 119.6(7.1)stat(5.5)syst[9.0]tot Eq. (6.24), Table 31

aHLbL,s
µ −1.4(8) Eqs. (6.27) and (6.28)

aHLbL,c
µ 3.5(5) Eqs. (6.29) to (6.31)

aHLbL,3+1
µ 0.82(25) Eq. (6.32)
aHLbL
µ 122.5(7.1)stat(5.6)syst[9.0]tot Eq. (6.34)

Table 32: Current lattice results for the direct calculation of aHLbL
µ , where statistical and systematic errors have been added in quadrature.

Mainz, BMW, and RBC/UKQCD provided the results for the disconnected contribution aπ
0-pole,disc
µ , in which case, we

can subtract it from the total and obtain the connected-only contribution aπ
0-pole,conn
µ . The ETM group has only obtained

the total contribution, which should equal to aπ
0-pole,conn
µ − |aπ

0-pole,disc
µ | in their calculation. We can perform a global

fit and obtain both the averaged connected-only contribution and the magnitude of the disconnected contribution. We
find good agreements in the connected contribution with χ2/dof = 0.24. For the disconnected diagram, in addition to
the sign disagreement, there is also about 2σ tension in the magnitude between the BMW and RBC/UKQCD results.
Therefore, we use the connected-only contribution as the central value and the disconnected contribution is treated as
an additional uncertainty. The final lattice QCD average is

aπ
0-pole
µ = aπ

0-pole,conn
µ ±

∣∣∣aπ0-pole,disc
µ

∣∣∣ = 58.8(1.1)stat(1.1)syst(1.6)disc[2.2]tot × 10−11 (lattice QCD average) . (6.47)

The lattice average is shown in Fig. 76, where it is compared to the data-driven approaches presented in Sec. 5. In
particular, the value Eq. (6.47) is compatible with the data-driven result of Ref. [543] within 1.3σ. A more detailed
comparison between the latter and lattice calculations, at the level of the TFF, is made in Fig. 77. Both at single- and
at double-virtual kinematics, one observes broad agreement between the different determinations. We note that the
number of parameters used in parameterizing the TFF has a significant impact on the uncertainty bands.

Since WP20, first lattice calculations for the η and η′ have appeared. They suffer from the noisy disconnected
contribution that largely cancels the connected contribution. The ETM collaboration has published results for the η-
pole contribution at the physical point using a single lattice spacing and the BMW collaboration has presented results
for both the η- and η′-pole contributions at the physical point and in the continuum limit. Finally, it is worth noting
that the light pseudoscalar TFFs can be valuable inputs in reducing the statistical and systematic errors in the direct
HLbL calculation.

6.4. Summary and future prospects
6.4.1. Summary of current knowledge from the lattice

Great strides have been made in the lattice computation of the HLbL contribution to (g − 2)µ compared to WP20.
In WP20, the only determination was that of the RBC/UKQCD collaboration using finite-volume QEDL, but now
an infinite-volume QED result has also been determined and the two are consistent. Chiral-continuum determina-
tions of all contributing diagrams using lattice QCD and infinite-volume QED have now been measured in the direct
calculation [59]. It is shown that only the fully-connected and (2 + 2)-disconnected light quark contributions are sig-
nificant to the overall value, and there are three independent lattice calculations of these contributions: those of the
RBC/UKQCD collaboration [58, 61], the Mainz group [59], and the BMW collaboration [62].

Table 32 summarizes various contributions to aHLbL
µ based on the averages of different lattice studies currently

available.

6.4.2. Final estimate and outlook
Our estimate for the lattice determination of the HLbL contribution reads as follows:

aHLbL
µ = 122.5(7.1)stat(5.6)syst[9.0]tot × 10−11 (lattice QCD average) . (6.48)

The individual contributions of the determinations are listed in Table 32. It has been shown that the current techniques
and methods are sufficient for the expected precision on this quantity that are required. It is now evident that only two
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contributions are really relevant, the light-quark (u, d) fully-connected, and (2 + 2) disconnected contributions, thus
facilitating cheaper future studies of aHLbL

µ . Future improvements in the lattice determination are possible with higher
statistics and more gauge ensembles with different lattice spacings and volumes.

In addition, lattice QCD calculations have obtained the π0-pole contribution in HLbL. The lattice average is

aπ
0-pole
µ = 58.8(1.1)stat(1.1)syst(1.6)disc[2.2]tot × 10−11 (lattice QCD average) . (6.49)
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7. The QED contributions to aµ

T. Aoyama, M. Hayakawa, M. Nio, S. Volkov

No significant changes have arisen in the QED contribution to aµ since WP20 [1]. However, several remark-
able new results were obtained in related studies. They are summarized in this section, and their influences on the
theoretical value of aµ are discussed.

7.1. The fine-structure constant α from atom-interferometer experiments
The EM coupling constant known as the fine-structure constant α is a fundamental and essential input for predict-

ing the theoretical value of the lepton g − 2. The latest and most accurate values of α are provided in two methods.
One is the atom-mass measurement using an atom interferometer, and the other is the measurement of the electron’s
anomalous magnetic moment ae together with its theoretical prediction.

The atom-interferometer experiment determines the quotient of the Planck constant h and the mass of an atom X
mX. Since May 2019, the Planck constant h is a defined constant, so that it becomes a direct measurement of the mass
of a neutral atom. The cesium (133Cs) atom mass [67] and the rubidium (87Rb) atom mass [68] are available for the
determination of α:

h/mCs = 3.002 369 4721(12) × 10−9 m2s−1 [0.40 ppb] ,

h/mRb = 4.591 359 258 90(65) × 10−9 m2s−1 [0.14 ppb] . (7.1)

Both experiments are ongoing, aiming for an order-of-magnitude improvement. Another atom-interferometer exper-
iment with strontium (Sr) or ytterbium (Yb) has started also, aiming at a relative precision 0.01 ppb [726]. The mass
mX is converted to α with the help of more precisely determined physical constants:

α(X) =
[
2R∞

c
Ar(X)
Ar(e)

h
mX

]1/2

, (7.2)

where R∞ is the Rydberg constant, c is the speed of light in vacuum, and Ar(X) and Ar(e) are the relative atomic mass
of the atom X and that of the electron, respectively.

The Rydberg constant R∞ has been determined by combining many measurements on various transition frequen-
cies of the hydrogen, deuterium, and muonic atoms from 1979 to 2022 and the theoretical QED predictions of these
spectra. The latest CODATA2022 recommended value of R∞ is [727]

R∞ = 10 973 731.568 157(12) m−1 [1.1 ppt] . (7.3)

The relative atomic masses of Cs and Rb atoms were also updated in 2020 [728, 729]. The relative atomic masses
of the ions of these nuclei were measured and then converted to the neutral atom masses by adding the appropriate
number of electron masses and subtracting the ionization energies. The latest values are

Ar(133Cs) = 132.905 451 9585(86) [0.065 ppb] ,

Ar(87Rb) = 86.909 180 5291(65) [0.075 ppb] . (7.4)

The relative atomic mass of the electron Ar(e) has been determined by measuring cyclotron and spin-precession
frequencies of hydrogen-like ions of carbon (12C5+) and silicon (28Si13+) using a Penning trap, in conjunction with the
QED predictions for the g factor of a Coulomb-bound electron. The CODATA2022 recommended value of Ar(e) is
[727]

Ar(e) = 5.485 799 090 441(97) × 10−4 [0.018 ppb] . (7.5)

The values of the fine-structure constant α from the atom-interferometer experiments are then updated by using
Eqs. (7.1) and (7.3) to (7.5), and the defined value c = 299 792 458 m/s as

α−1(Cs) = 137.035 999 045(27) [0.20 ppb] , (7.6)
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α−1(Rb) = 137.035 999 2052(97) [0.071 ppb] . (7.7)

The last digit of α−1(Cs) in Ref. [67] is changed from 6 to 5, but the uncertainty is unchanged. The updated value of
α−1(Rb) is smaller than that in Ref. [68] by 0.8 × 10−9 and the uncertainty is reduced from 11 × 10−9 to 9.7 × 10−9.
The difference between Eqs. (7.6) and (7.7) is

α−1(Cs) − α−1(Rb) = −0.160(29) × 10−6 , (7.8)

corresponding to a significance of 5.5σ.

7.2. Measurement of the electron anomalous magnetic moment ae

The electron anomalous magnetic moment ae = (ge − 2)/2 has been measured using a single electron trapped in
EM fields known as a Penning trap. The longstanding ae measurement at Harvard University (HV) in 2008 [730] was
superseded in 2022 by a new measurement from the same team, now based at Northwestern University (NW) [69].
The new measurement

aexp
e (NW22) = 1 159 652 180.59(13) × 10−12 [0.11 ppb] (7.9)

demonstrates a 2.2-fold improvement in precision, with a shift −0.14× 10−12 from aexp
e (HV08), which remains within

the assigned uncertainties. As correlations between the two similar measurements are not obvious, the authors of
Ref. [69] do not recommend averaging the two determinations. Stabilizing the magnetic field of a Penning trap
typically takes weeks, but the NW team developed a faster method. This breakthrough enabled measurements at
multiple magnetic field strengths for the first time. The consistency of results across different magnetic field strengths
significantly enhanced the reliability of the measurement.

A value of the fine-structure constant α from ae can be obtained by treating α as an unknown variable in the
theoretical formula for ae and equating it to the measured value in Eq. (7.9). The derived value is

α−1(ae) = 137.035 999 163(15) [0.11 ppb] , (7.10)

which is smaller than the value reported in Ref. [69] by 3 × 10−9. This shift, within the assigned uncertainties, is
attributed to two factors. The first is a 13 % reduction of the tenth-order QED term of ae, as discussed in Sec. 7.3. The
second is an updated evaluation of the HVP contribution, detailed in Sec. 7.4, which affects the result in the opposite
direction. As a result, α−1(ae) remains nearly unchanged. The total uncertainty is entirely driven by the measurement
in Eq. (7.9), while the uncertainties from the QED tenth-order term and the hadronic contributions are 0.44×10−9 and
0.36 × 10−8, respectively.
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The differences between the values of α determined by the atom-interferometer experiments and that obtained
from ae are

α−1(Cs) − α−1(ae) = −0.118(31) × 10−6 ,

α−1(Rb) − α−1(ae) = +0.042(18) × 10−6 , (7.11)

corresponding to −3.8σ and +2.3σ, respectively. The relationships among the three values of α in Eqs. (7.6), (7.7),
and (7.10) are visualized in Fig. 78.

7.3. The QED tenth-order mass-independent and universal term
The QED contribution involves only four particles: the photon, electron, muon, and τ lepton. Thus, the QED

contribution to aQED
µ can be divided according to the lepton-mass dependence as

aQED
µ = A1 + A2(mµ/me) + A2(mµ/mτ) + A3(mµ/me,mµ/mτ) , (7.12)

and each can be calculated by perturbation theory using Feynman diagrams as

Ai =
∑

n=1,2,···

(
α

π

)2n
A(2n)

i . (7.13)

To match the current precision of aµ, the QED contribution up to the tenth-order of perturbation theory are required.
The second-, fourth-, sixth-, and eighth-order terms are well established and were reported in the QED section of
WP20 [1].

All Feynman diagrams contributing to aµ of the tenth-order terms A(10)
1 , the two A(10)

2 , and A(10)
3 , as well as the

term A(10)
2 (me/mµ) contributing to ae were numerically calculated by a single team AHKN [63, 731]. The τ-lepton

contribution to ae of the tenth order is negligible. The mass-independent and universal term A(10)
1 , which contributes

equally to both ae and aµ, receives contributions from 12,672 vertex Feynman diagrams. Among these, 6,318 diagrams
that include at least one fermion loop also contribute to A(10)

2 . Due to the complexity and enormity of the calculation,
only relatively simple diagrams were independently cross-checked until recently [732, 733].

In Ref. [64] and successively in Ref. [65], the contribution to A(10)
1 from Set V, which consists of 6,354 vertex

diagrams without a fermion loop, was obtained using numerical integration. The two results, both calculated by
Volkov using different intermediate renormalization schemes, are consistent with each other. The best estimate is then
obtained by statistically combining both results [65]:

A(10)
1 [Set V : Volkov] = 6.828(60) . (7.14)

This exhibited a 5σ discrepancy from the latest report 7.668(159) given in Ref. [734] by AHKN, which was used to
determine the QED contribution to aµ in WP20.

To resolve the discrepancy, AHKN performed a diagram-by-diagram numerical comparison with Volkov’s re-
sults [66]. The 6,354 vertex diagrams were consolidated into 389 groups using the Ward–Takahashi identity. Because
of different choices of intermediate renormalization schemes, the integrated magnetic moment amplitudes of the same
group in Volkov’s and AHKN’s calculations show different values. However, the lower-order magnetic moment am-
plitudes and finite renormalization constants can account for this difference. No apparent inconsistencies were found
between Volkov’s and AHKN’s results for any individual group. However, the sum of the results from 98 groups—
each containing a single second-order self-energy subdiagram and no other self-energy subdiagrams—was found to
be responsible for the 5σ discrepancy. The 98 integrals representing these 98 groups were then reevaluated by Monte-
Carlo integration with substantially increased statistics. Although the old and new results of individual integrals are
consistent with each other, the sum of the 98 integrals becomes smaller than before. As a consequence, AHKN’s
tenth-order contribution has been updated to

A(10)
1 [Set V : AHKN] = 6.800(128) , (7.15)

which is in good agreement with Eq. (7.14).
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The contributions from the remaining 6,318 diagrams of the tenth order, which involve at least one fermion loop,
were also calculated and reported in Ref. [65]:

A(10)
1 [with fermion loops : Volkov] = −0.9377(35) . (7.16)

The corresponding AHKN value was first reported in Ref. [731] and updated in Ref. [735]:

A(10)
1 [with fermion loops : AHKN] = −0.9304(36) , (7.17)

which is larger than Eq. (7.16) by 0.0073(50), indicating good agreement between the two. The mass-independent
and universal A(10)

1 terms of Volkov and AHKN then become

A(10)
1 [all : Volkov] = 5.891(61) ,

A(10)
1 [all : AHKN] = 5.870(128) . (7.18)

Since they are in good agreement and independent, the weighted average of the two determinations gives the best
estimate

A(10)
1 = 5.887(55) , (7.19)

which is used to derive the fine-structure constant α(ae) in Eq. (7.10).

7.4. Theory of the electron anomalous magnetic moment ae

To compare the measurement of ae to the theoretical prediction, the SM contributions to ae besides the QED
contributions must be considered. The HVP contribution to the muon g − 2, aHVP, LO

µ , has been under discussion in
light of recent lattice-QCD calculations and new measurements of the π+π− cross section from CMD-3. The details
are described in Secs. 2 and 3. In connection with these new evaluations of HVP, the HVP contribution to ae was
recalculated in Ref. [31], replacing the π+π− channel of KNT19 [30] by the corresponding CMD-3 data. Additionally,
lattice-QCD predictions of aHVP, LO

e are available [443, 447, 736], though their precision is not yet comparable to
data-driven calculations, whose values are, e.g.,

aHVP, LO
e =

{
1.8608(66) × 10−12 KNT19 [30] ,
1.920(9) × 10−12 KNT19/CMD-3 [31] . (7.20)

The difference between KNT19 and KNT19/CMD-3 corresponds to a 6.2σ discrepancy.
The magnitude of this difference 0.059 × 10−12 is still much smaller than the difference of 1.35 × 10−12 arising

from the discrepancy between the two theoretical predictions of ae caused by the two values of α, see Eqs. (7.6), (7.7),
and (7.23). To take a conservative approach, we adopt the simple mean of KNT19 and KNT19/CMD-3 and assign
half of their difference as the uncertainty, in analogy to Sec. 2.9:

aHVP, LO
e = 1.89(3) × 10−12 , (7.21)

which should cover all realistic HVP evaluations for ae at the moment and is also consistent with the lattice-QCD
predictions. Other hadronic and EW contributions are summarized as follows:

aHVP, NLO
e = −0.2263(35) × 10−12 [30, 31] ,

aHVP, NNLO
e = 0.027 99(17) × 10−12 [737] ,

aHLbL
e = 0.0351(23) × 10−12 [738] ,

aEW
e = 0.030 53(23) × 10−12 [737] .

(7.22)

Equations (7.21) and (7.22) are used to derive the fine-structure constant α(ae) in Eq. (7.10) as well as the SM pre-
diction for ae. With QED perturbation theory up to the tenth order and the hadronic and EW contributions, the SM
predictions aSM

e are determined using the fine-structure constant α of Eq. (7.6) or Eq. (7.7) as

aSM
e

[
α(Cs)

]
= 1 159 652 181.59(23)(0)(3) × 10−12 [0.20 ppb] ,
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aSM
e

[
α(Rb)

]
= 1 159 652 180.238(82)(4)(30) × 10−12 [0.075 ppb] , (7.23)

where the uncertainties, listed from left to right, correspond to the fine-structure constant α, the tenth-order QED term
A(10)

1 , and the hadronic contributions. While the uncertainties in α still dominate, a more reliable HVP contribution
remains essential for probing BSM physics through ae. The differences from the measurement Eq. (7.9) are

aexp
e (NW22) − aSM

e
[
α(Cs)

]
= −1.00(26) × 10−12 ,

aexp
e (NW22) − aSM

e
[
α(Rb)

]
= +0.35(16) × 10−12 , (7.24)

corresponding to −3.8σ and +2.2σ, respectively. The comparison between the measurement and the SM predictions
is shown in Fig. 78.

7.5. The QED contribution to the muon anomalous magnetic moment aµ
The lepton-mass ratios necessary for aSM

µ are unchanged since WP20 and they are [727]

me/mµ = 4.836 331 70(11) × 10−3 ,

me/mτ = 2.875 85(19) × 10−4 . (7.25)

As discussed earlier, the three values of α differ from each other by 2.4σ to 5.6σ, making it inappropriate to average
them. Accordingly, we present the three values of the QED contribution to aSM

µ using three values of α in Eqs. (7.6),
(7.7), and (7.10):

aQED
µ

[
α(Cs)

]
= 116 584 718.932(23)(7)(17)(6)(100)[104] × 10−11 ,

aQED
µ

[
α(ae)

]
= 116 584 718.833(13)(7)(17)(6)(100)[103] × 10−11 ,

aQED
µ

[
α(Rb)

]
= 116 584 718.795(8)(7)(17)(6)(100)[102] × 10−11 , (7.26)

where the uncertainties from left to right arise from α, the τ-lepton mass, the QED eighth-order term, the QED tenth-
order term, the estimated QED twelfth-order term, and the total combined uncertainties [1]. The difference between
the largest and the smallest values of aQED

µ is 0.137 × 10−11, which is of the same order of magnitude as the estimated
QED twelfth-order term. In view of Eq. (7.26), we use

aQED
µ = 116 584 718.8(2) × 10−11 , (7.27)

in the calculation of the complete SM prediction of aµ.
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Figure 79: One-loop Feynman diagrams contributing to aEW
µ .
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Figure 80: Sample bosonic two-loop Feynman diagrams contributing to aEW
µ .

8. The electroweak contributions to aµ

D. Stöckinger, H. Stöckinger-Kim

By definition, the EW SM contributions to aµ comprise all SM contributions that are not contained in the pure
QED, HVP, or HLbL contributions. They are given by Feynman diagrams that contain at least one of the EW bosons
W, Z, or the Higgs. Figures 79–81 show sample one-loop and two-loop diagrams. Already in WP20 [1], the EW SM
contributions aEW

µ had a very small theoretical uncertainty of 10−11, which had a negligible impact on the total SM
theory uncertainty. Here we summarize the current status of the EW SM contributions and describe relevant recent
updates. The updates are related to more accurate measurements of input parameters entering Feynman diagrams,
leading to reduced parametric uncertainties, and to improved determinations of hadronic EW contributions. For
further details, we refer to Ref. [1], the original papers described below, and to the review Ref. [568].

The overall magnitude of the EW contributions can be obtained from the essential factors entering the EW one-
loop contribution from a W-boson loop,

aEW(1)
µ ∝

g2
2

16π2

m2
µ

M2
W

∼ 10−9 . (8.1)

Here g2
2/16π2 corresponds to a loop factor involving the weak SU(2) gauge coupling, and m2

µ/M
2
W ≃ 10−6 is a suppres-

sion factor arising from the heavy W-boson. The appearance of two powers of the ratio mµ/MW can be related to the
need for a muon chirality flip and the need for spontaneous electroweak symmetry breaking to generate a nonvanishing
muon mass and dipole moment, see e.g., Ref. [739].

For a precise and systematic evaluation of the EW contributions, the decomposition

aEW
µ = aEW(1)

µ + aEW(2)
µ;bos + aEW(2)

µ;ferm + aEW(≥3)
µ (8.2)

is useful. Here aEW(1)
µ are the one-loop contributions, aEW(2)

µ;bos and aEW(2)
µ;ferm are two-loop contributions, and aEW(≥3)

µ are
three-loop corrections and higher.

The EW one-loop contributions arise from diagrams with W-, Z-, or Higgs-boson exchange as shown in Fig. 79.
Depending on the chosen gauge, diagrams with unphysical Goldstone bosons must also be included. The full one-loop
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Figure 81: Sample fermionic two-loop Feynman diagrams contributing to aEW
µ .

result can be written as

aEW(1)
µ =

GF
√

2

m2
µ

8π2

[5
3
+

1
3

(1 − 4s2
W)2

]
= 194.79(1) × 10−11 , (8.3)

where the SU(2) gauge coupling and the factor 1/M2
W appearing in Eq. (8.1) have been replaced with the Fermi

constant GF , which is more precisely measured. The on-shell weak mixing angle s2
W = 1 − M2

W/M
2
Z is defined via the

W- and Z-boson pole masses. In the evaluation of aEW
µ , the W-boson mass is treated as an intermediate quantity that

is itself predicted within the SM as a function of GF , MZ , and further inputs such as the Higgs-boson and top-quark
masses. We use here the current best-fit value MW = 80.356(5) GeV [225], which is very slightly different than the
value used in Ref. [1]. Though the W-boson mass is the result of a calculation and thus unaffected by discrepancies
between different direct MW measurements [225], it has an uncertainty due to missing higher-order corrections and
due to the parametric dependence in particular on the top-quark mass. The numerical impact of the modification on
the number quoted above is below 10−13. The quoted uncertainty covers the parametric uncertainty from SM input
parameters and neglected contributions that are suppressed by additional powers of m2

µGF .
The bosonic two-loop contributions aEW(2)

µ;bos are defined by two-loop and associated counterterm diagrams without
closed fermion loop, as in Fig. 80. These contributions have been computed in Ref. [740] in the limit MH ≫ MW ,
and with full Higgs-boson mass dependence in Ref. [741]. A seminumerical result has been obtained in Ref. [742]
and a fully numerical computation has been carried out in Ref. [743]. Here we use the analytical result of Ref. [741],
updated in Ref. [71], with the PDG value MH = 125.20(11) GeV [225] and obtain

aEW(2)
µ;bos = −19.962(3) × 10−11 . (8.4)

The renormalization scheme used here reflects the chosen parameterization of the one-loop result in terms of the Fermi
constant GF . Thanks to the increased experimental accuracy of the SM input parameters it is possible to provide here
an additional digit compared to Ref. [1]. The quoted uncertainties are the parametric uncertainties obtained from
varying the Higgs-boson and W-boson masses by 1σ around their central values.

The fermionic two-loop contributions can be further subdivided into

aEW(2)
µ;ferm = aEW(2)

µ;f-rest,H + aEW(2)
µ (e, u, d; µ, c, s; τ, t, b) + aEW(2)

µ;f-rest,no H . (8.5)

The first term on the RHS of Eq. (8.5) denotes the Higgs-dependent fermion-loop diagrams like in Fig. 81a. The
second term denotes contributions from the diagrams in Fig. 81b with a γ∗–γ–Z∗-subdiagram and fermions of the 1st,
2nd, and 3rd generation in the inner loop. For these diagrams, quarks and leptons must be combined because of gauge
anomaly cancellation. The third term collects all remaining fermionic two-loop contributions, e.g., from the diagram
in Fig. 81c.

First we focus on the Higgs-dependent fermion-loop corrections. They are given by the so-called Barr-Zee di-
agrams of Fig. 81a with Higgs–γ–γ or Higgs–γ–Z subdiagram. Various limits of the result have been computed in
Ref. [744]; the exact result can be found, e.g., in Ref. [71]. These Higgs-dependent fermion-loop corrections are pro-
portional to the Higgs–fermion Yukawa couplings and are therefore largest for the top quark. For the evaluation we
use the quark masses of Ref. [225], in particular mt = 172.57(29) GeV. The full result for this class of contributions
is then

aEW(2)
µ;f-rest,H = −1.500(2) × 10−11 . (8.6)
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Compared to Ref. [1] the result has a slightly reduced magnitude due to the smaller top-quark mass. The indicated
uncertainty is only the parametric uncertainty arising essentially from the uncertainty of the input parameters mt and
MH . The theory uncertainty from missing higher-order corrections to these contributions could be estimated, e.g., by
changing the renormalization scheme of the quark mass definitions and would be significantly larger. Since it will be
covered by the general estimate of missing three-loop corrections below, it is not included in Eq. (8.6).

After the precise Higgs-boson mass measurement at the LHC, all the EW contributions discussed so far have
a tiny uncertainty. The uncertainty of the remaining fermionic EW contributions appearing in Eq. (8.5) is larger
because potentially large QCD corrections affect the two-loop diagrams with quark loops. It has become standard
to generalize the perturbative loop counting and define the quantities aEW(2)

µ (e, u, d; µ, c, s; τ, t, b) + aEW(2)
µ;f-rest,no H more

generally as the EW contributions given by the respective two-loop diagrams plus appropriate higher-order, potentially
nonperturbative, QCD corrections. Early results of such an improved treatment have been obtained in Refs. [70, 745,
746], and the results described and quoted in Ref. [1] were the ones of Ref. [70].

More recently, Ref. [72] further improved the evaluation of these hadronic EW contributions. The largest of these
remaining contributions are the ones involving fermion loops inserted into a γ–γ–Z subdiagram, shown in Fig. 81b.
Because of the Furry theorem, here only the axial Z-boson coupling can contribute. Therefore, the subdiagram con-
stitutes a VVA correlator and gauge anomaly cancellation is important. For 3rd-generation fermions, these diagrams
can be evaluated perturbatively, and the two-loop calculation and its uncertainty due to missing higher orders have
been discussed in Refs. [70, 71]. Reference [72] incorporated three-loop QCD corrections of Ref. [747] and obtained

aEW(2)
µ (τ, t, b) = −8.12(1) × 10−11 . (8.7)

Compared to the pure two-loop result, the central value has shifted slightly within the previous uncertainty interval,
but the uncertainty has been reduced by a factor 10.

For the first two generations of quarks it is appropriate to define the VVA Green functions ⟨0|T jµ(x) jν(y) jρ5(z)|0⟩,
which can be expressed in terms of two scalar functions wL,T (Q2) that only depend on the Z∗ momentum scale Q2.
The contribution to aµ can then be obtained from integrals over wL,T . References [70, 745, 746] have investigated
constraints on these functions from nonrenormalization theorems and from operator product expansions. For the
actual calculation of aµ, Ref. [70] used a model ansatz for the four light-quark functions w[u,d],[s]

L,T that is compatible
with all constraints, while charm-quark and lepton loops are added perturbatively. Reference [72] similarly treats
the light quarks nonperturbatively but uses a dispersive calculation [50] for the VVA Green function with u, d-quark
loops. The combined result for the 1st-generation quarks and leptons then reads

aEW(2)
µ (e, u, d) = −2.08(3) × 10−11 . (8.8)

Compared to Ref. [70] the uncertainty is reduced by almost an order of magnitude.40

For the 2nd-generation contribution to the VVA Green function both Ref. [70] and Ref. [72] use an ansatz for
the strange-quark contribution similar to the 1st-generation approach, combined with perturbation theory for the
charm-quark and the muon loop. Reference [72] includes the perturbative three-loop correction of Ref. [747] to
the charm-quark contribution. In total, Ref. [72] finds the 2nd-generation result

aEW(2)
µ (µ, c, s) = −4.14(28) × 10−11 . (8.9)

Here the uncertainty is not significantly reduced compared to the result of Ref. [70] quoted in Ref. [1]. However,
particularly the pQCD three-loop corrections have shifted the central value by more than the previously estimated
uncertainty.

The non-Higgs-dependent contributions aEW(2)
µ;f-rest,no H have first been computed in Ref. [744] neglecting the combi-

nation 1−4s2
W → 0 appearing in the vectorial muon–Z coupling. These leading contributions contain the enhancement

factor m2
t /M

2
W . Subleading terms suppressed by 1 − 4s2

W have been added in Ref. [70]. They arise in part via correc-
tions to the ρ-parameter that are again enhanced by m2

t , and in part from the diagrams with γ–Z interaction shown
in Fig. 81c, which are logarithmically enhanced. Based on Ref. [70], Ref. [71] provides the full analytic result. The

40This result is consistent with the Regge model evaluation discussed in Sec. 5.7.2, which gives aEW(2)
µ (e, u, d) = −1.98(9) × 10−11.
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required hadronic part of the γ–Z interaction, 8π2Π̄γZ(−M2
Z), is again subject to nonperturbative QCD corrections. For

the required result of this quantity, Ref. [1] used the value 6.88(50) based on Ref. [70] and references therein. More
recent work shows that an improved data-based evaluation yields a significantly lower value, e.g., Ref. [653] quotes
5.87(4), and including lattice-QCD results [471] to quantify SU(3)-breaking corrections Ref. [72] obtains 6.0(1).
Based on this last number, the full result can hence be written as

aEW(2)
µ;f-rest,no H =

[
− 4.09 − 0.23 − 0.26(10)

]
× 10−11 = −4.58(10) × 10−11 . (8.10)

Here the three individual results correspond to the terms without 1 − 4s2
W suppression, the terms related to the ρ-

parameter, and the terms involving the γ–Z mixing subdiagram, respectively. Compared to Ref. [1], the first result
has changed because of the lower top-quark mass and the last term has changed as a result of the improvement in
Ref. [72]. The change is smaller than the quoted uncertainty, which is unchanged and corresponds to an estimate of
still neglected terms which are suppressed by a factor 1 − 4s2

W or M2
Z/m

2
t .

Finally, aEW(≥3)
µ collects corrections beyond the two-loop level which are not yet taken into account via the QCD

corrections within aEW(2)
µ (e, u, d; µ, c, s; τ, t, b) + aEW(2)

µ;f-rest,no H. These correspond to weak and QED corrections with

and without fermion loops to aEW(2)
µ;bos and weak, QED, and QCD corrections to aEW(2)

µ;f-rest,H. The leading-logarithmic
corrections of the form ≃ GFα

2 log(MZ/m f ) log(MZ/m f ′ ), where m f , f ′ are light fermions, have been evaluated in
Refs. [70, 748] using EFT and RG methods. A surprising numerical cancellation among the three-loop corrections
was observed in Ref. [70] if the two-loop contributions are parameterized in terms of GF α as done in all the above
results. In this case the three-loop logarithms are numerically negligible. Hence,

aEW(≥3)
µ = 0.00(20) × 10−11 . (8.11)

The uncertainty estimate from remaining unknown higher-order contributions is from Ref. [70]. It is based on an
analysis of subleading weak logarithmic three-loop corrections, but is expected to also cover nonlogarithmic three-
loop QCD contributions to aEW(2)

µ;f-rest,H.
In total, the full EW SM contribution to aµ is obtained by summing the one-loop contributions Eq. (8.3), the

bosonic two-loop contributions Eq. (8.4), the fermionic two-loop contributions Eqs. (8.6) to (8.10), and the leading
three-loop logarithms Eq. (8.11). The result is

aEW
µ = 154.4(4) × 10−11 , (8.12)

where we follow Ref. [72] and add the individual uncertainties in quadrature. After significant reduction of the
hadronic EW uncertainties, the remaining uncertainty is dominated about equally by 2nd-generation hadronic contri-
butions of the kind of Fig. 81b and by remaining unknown higher-order contributions beyond the two-loop level.
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Contribution WP25 WP20

HVP LO (lattice) 7132(61) 7116(184)
HVP LO (e+e−, τ) Table 5 6931(40)∗

HVP NLO (e+e−) −99.6(1.3) −98.3(7)
HVP NNLO (e+e−) 12.4(1) 12.4(1)
HLbL (phenomenology) 103.3(8.8) 92(19)
HLbL NLO (phenomenology) 2.6(6) 2(1)
HLbL (lattice) 122.5(9.0) 82(35)
HLbL (phenomenology + lattice) 112.6(9.6) 90(17)

QED 116 584 718.8(2) 116 584 718.931(104)
EW 154.4(4) 153.6(1.0)
HVP (LO + NLO + NNLO) 7045(61) 6845(40)
HLbL (phenomenology + lattice + NLO) 115.5(9.9) 92(18)
Total SM Value 116 592 033(62) 116 591 810(43)

Table 33: Comparison of the key results from this work (WP25), as given in Table 1, to the corresponding numbers from WP20 [1] (in units of
10−11). Note that the “HLbL (lattice)” result from WP20 has been adapted to include the charm-loop contribution. The entry “HVP (LO + NLO
+ NNLO)” derives from HVP LO (lattice) [WP25] and HVP LO (e+e−) [WP20], respectively. The asterisk indicates that the LO HVP value from
WP20 was based on e+e− data only, while in Table 5 we also include the current status for τ-based evaluations.

9. Conclusions and outlook

In this second edition of the White Paper on the muon g − 2, we have charted the progress that has been achieved
since 2020 in evaluating the contributions from the electromagnetic (QED), electroweak (EW), and strong (QCD)
interactions to aµ.

Both the QED and EW contributions have changed very slightly since the first edition, as can be seen from Ta-
ble 33. A discrepancy in the evaluation of a sub-class of the 10th-order QED contribution has been resolved [64–66],
leading to a tiny shift in the central value of aQED

µ . At the same time, the current tension in the experimental deter-
mination of the fine-structure constant α is reflected in an increase of the error and a change in the last decimal. The
quoted uncertainty for the EW contribution has more than halved since WP20, thanks to a more precise determination
of hadronic effects in the two-loop EW contributions [738], while also the precision in input parameters such as the
top-quark and Higgs-boson masses has increased. Contributions to aµ from QCD are still by far the dominant sources
of uncertainty. Here, much of the current debate is centered on hadronic vacuum polarization (HVP). Significant
developments in both data-driven, dispersive and lattice-QCD determinations of the HVP contribution to aµ have fun-
damentally changed the picture since WP20. This is reflected by the updated SM estimate, in which the result for the
LO HVP contribution is now based on lattice-QCD calculations rather than the data-driven dispersive method.

For the data-driven approach, the CMD-3 measurements of the e+e− → π+π− cross section [93, 94] are higher
than those of all other data sets. Despite substantial efforts, see the detailed discussions in Sec. 2, the emerged discrep-
ancies in this dominant channel are so far not understood and, unlike in WP20, cannot be accommodated any longer
through any reasonable inflation of uncertainties in data combinations. The current situation is summarized in Fig. 26.
Resolving the puzzles will require new measurements, together with an improved understanding of higher-order ra-
diative corrections and their implementation in MC generators. For the former, new data analyses, in particular for
the two-pion channel, are expected from several experiments. For the latter, efforts are underway by several groups,
coordinated by the RadioMonteCarLow 2 initiative. However, at this moment, the situation regarding the π+π− data
remains unresolved and prevents us from providing a common average for the data-driven dispersive estimate of
aHVP, LO
µ . In addition, we re-examined the role of isospin-breaking corrections to hadronic τ spectral-function data,

providing a detailed assessment of our current understanding thereof, of promising work in progress and avenues for
future improvements. We are confident that the latter will allow the use of hadronic τ decays as additional input for
the critical two-pion channel in the future. At the time of WP20 the precision of lattice-QCD calculations was not
yet sufficient to impact the SM prediction, and the value quoted for HVP in the SM prediction of WP20 is entirely
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Figure 82: Summary of HLbL evaluations, from data-driven methods (green), lattice QCD (blue), and combinations (black). The averages are from
WP20 [1] and WP25, respectively, the other points refer to HSZ-24 [54, 587], RBC/UKQCD-19 [58], Mainz/CLS-21+22 [59, 60], RBC/UKQCD-
23 [61], and BMW-24 [62].

based on data-driven analyses of hadronic e+e− cross-section data. In the meantime lattice-QCD calculations have ma-
tured significantly, allowing for a precise and robust first-principles calculation of the HVP contribution. Two aspects
are particularly important to achieve this. First, the introduction of window observables has proved instrumental for
cross-checking and benchmarking lattice calculations of sub-contributions to HVP with a high level of precision. The
individual windows isolate and separate the different technical challenges for lattice calculations and allow for tailored
approaches for each window. A diverse set of methods with complementary systematic advantages and disadvantages
employed by the different lattice-QCD collaborations has led to the consolidation of the individual window contri-
butions one by one. While this process highlights the consistency of the lattice approaches, significant tensions are
observed between lattice and data-driven estimates for the intermediate and long-distance window observables. These
tensions appear to originate from the dominant π+π− channel, and would disappear if only CMD-3 data were used.
A second very important development in the lattice community is the broad adoption of blinding procedures to avoid
confirmation bias. This is instrumental in establishing the reliability of the observed consolidation when comparing
independent lattice-QCD results. The review of lattice-QCD results in WP25 is based on seventeen different papers
from eight independent lattice-QCD collaborations [13–29], including three almost complete lattice calculations of
the entire LO HVP contribution [15, 25, 26]. All available results are combined in various ways, yielding consistent
averages for aHVP, LO

µ —as our final SM prediction of the latter we take the average that includes the maximum num-
ber of independent lattice results from Refs. [13–29]. In summary, our consolidated average of lattice-QCD results
provides a reliable determination of the LO HVP contribution to the SM prediction of aµ.

The hadronic light-by-light (HLbL) contribution was already provided as an average of data-driven and lattice
QCD results in WP20. Since then both data-driven and lattice evaluations have been developed further such that in
this White Paper an update with reduced uncertainty can be provided. At the current level of precision the different
lattice results as well as the lattice and data-driven average are consistent with each other (the latter two at the level of
1.5σ), see Fig. 82.

Adding the LO HVP average from lattice QCD, given in Eq. (3.37), to the NLO and NNLO iterations from e+e−

data, given in Eqs. (2.47) and (2.48), we obtain for the total HVP contribution

aHVP
µ = 7045(61) × 10−11 . (9.1)

Averaging the data-driven and lattice-QCD evaluations of the HLbL contribution, given in Eqs. (5.69) and (6.34), we
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Figure 83: Summary of the current SM prediction for aµ in comparison to experiment (red band and data points). The final WP25 prediction is
denoted in black and via the blue band, it derives from the LO HVP result defined by the lattice-QCD “Avg. 1” shown in blue, see Eq. (3.37). The
gray band indicates the WP20 result, based on the e+e− experiments above the first dashed line. These experimental ranges, as well as the ones for
SND20 and CMD-3 that appeared after WP20, are produced as in Fig. 27; they are meant to illustrate the current situation, but cannot be interpreted
as uncertainties with a proper statistical meaning. The τ point refers to Eq. (2.23), the numerical results are collected in Table 5. In all cases except
for the gray WP20 band the LO HVP results are combined with WP25 values for the remaining contributions, as summarized in Table 1.

obtain
aHLbL
µ = 112.6(9.6) × 10−11 , (9.2)

where the uncertainty includes a scale factor S = 1.5. With this average, the NLO contribution in Eq. (5.70) slightly
changes to aHLbL, NLO

µ = 2.8(6) × 10−11, and the total HLbL contribution becomes

aHLbL
µ + aHLbL, NLO

µ = 115.5(9.9) × 10−11 . (9.3)

Combining Eqs. (9.1) and (9.3) with the QED and EW contributions from Eqs. (7.27) and (8.12), we obtain for the
final SM prediction

aSM
µ = 116 592 033(62) × 10−11 , (9.4)

which can be compared to the current experimental average [5–7, 9–12]

aexp
µ = 116 592 059(22) × 10−11 . (9.5)

At the current level of precision there is no tension between the SM prediction and the experimental world average:

∆aµ ≡ aexp
µ − aSM

µ = 26(66) × 10−11 . (9.6)

This marks a significant shift from the conclusions of WP20, which is driven by the developments relating to the HVP
LO contribution, as can be seen in Table 33 and Fig. 83.

By comparing the uncertainties of Eq. (9.5) and Eq. (9.4) it is apparent that the precision of the SM prediction must
be improved by at least a factor of two to match the precision of the current experimental average, which will soon be
augmented by the imminent release of the result based on the final statistics of the E989 experiment at Fermilab. We
expect progress on both data-driven and lattice methods applied to the hadronic contributions in the next few years.
Resolving the tensions in the data-driven estimations of the HVP contribution is particularly important, and additional
experimental results combined with further scrutiny of theory input such as from event generators should provide a
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path towards this goal. Further progress in the calculation of isospin-breaking corrections, from both data-driven and
lattice-QCD methods, should enable a robust SM prediction from τ data as well. For lattice-QCD calculations of
HVP continuing efforts by the world-wide lattice community are expected to yield further significant improvements
in precision and, hopefully, even better consolidation thanks to a diversity of methods. The future focus will be, in
particular, on more precise evaluations of isospin-breaking effects and the noisy contributions at long distances.

The role of aµ as a sensitive probe of the SM continues to evolve. We stress that, even though a consistent picture
has emerged regarding lattice calculations of HVP, the case for a continued assessment of the situation remains very
strong in view of the observed tensions among data-driven evaluations. New and existing data on e+e− hadronic cross
sections from the main collaborations in the field, as well as new measurements of hadronic τ decays that will be
performed at Belle II, will be crucial not only for resolving the situation but also for pushing the precision of the SM
prediction for aµ to that of the direct measurement. This must be complemented by new experimental efforts with
completely different systematics, such as the MUonE experiment, aimed at measuring the LO HVP contribution, as
well as an independent direct measurement of aµ, which is the goal of the E34 experiment at J-PARC. The interplay
of all these approaches, various experimental techniques and theoretical methods, may yield profound insights in the
future, both regarding improved precision in the SM prediction and the potential role of physics beyond the SM.
Finally, the subtleties in the evaluation of the SM prediction for aµ will also become relevant for the anomalous
magnetic moment of the electron, once the experimental tensions in the determination of the fine-structure constant
are resolved.

In this second-edition White Paper, WP25, the Muon g−2 Theory Initiative is presenting their new SM prediction
for aµ, which constitutes a major change from WP20. For the future, the Theory Initiative remains dedicated to
continuing to support the wide-ranging efforts and to compile updated predictions.
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[22] S. Kuberski, M. Cè, G. von Hippel, H. B. Meyer, K. Ottnad, A. Risch, and H. Wittig, JHEP 03, 172 (2024), arXiv:2401.11895 [hep-lat].
[23] A. Boccaletti et al., (2024), arXiv:2407.10913 [hep-lat].
[24] S. Spiegel and C. Lehner, (2024), accepted for publication in Phys. Rev. D, arXiv:2410.17053 [hep-lat].
[25] T. Blum et al. (RBC, UKQCD), Phys. Rev. Lett. 134, 201901 (2025), arXiv:2410.20590 [hep-lat].
[26] D. Djukanovic, G. von Hippel, S. Kuberski, H. B. Meyer, N. Miller, K. Ottnad, J. Parrino, A. Risch, and H. Wittig, JHEP 04, 098 (2025),

arXiv:2411.07969 [hep-lat].
[27] C. Alexandrou et al. (ETM), Phys. Rev. D 111, 054502 (2025), arXiv:2411.08852 [hep-lat].
[28] A. Bazavov et al. (Fermilab Lattice, HPQCD, MILC), Phys. Rev. D 111, 094508 (2025), arXiv:2411.09656 [hep-lat].
[29] A. Bazavov et al., (2024), accepted for publication in Phys. Rev. Lett., arXiv:2412.18491 [hep-lat].
[30] A. Keshavarzi, D. Nomura, and T. Teubner, Phys. Rev. D 101, 014029 (2020), arXiv:1911.00367 [hep-ph].
[31] L. Di Luzio, A. Keshavarzi, A. Masiero, and P. Paradisi, Phys. Rev. Lett. 134, 011902 (2025), arXiv:2408.01123 [hep-ph].
[32] A. Kurz, T. Liu, P. Marquard, and M. Steinhauser, Phys. Lett. B 734, 144 (2014), arXiv:1403.6400 [hep-ph].
[33] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 09, 074 (2015), arXiv:1506.01386 [hep-ph].
[34] P. Masjuan and P. Sánchez-Puertas, Phys. Rev. D 95, 054026 (2017), arXiv:1701.05829 [hep-ph].
[35] G. Colangelo, M. Hoferichter, M. Procura, and P. Stoffer, JHEP 04, 161 (2017), arXiv:1702.07347 [hep-ph].
[36] M. Hoferichter, B.-L. Hoid, B. Kubis, S. Leupold, and S. P. Schneider, JHEP 10, 141 (2018), arXiv:1808.04823 [hep-ph].
[37] G. Eichmann, C. S. Fischer, E. Weil, and R. Williams, Phys. Lett. B 797, 134855 (2019), [Erratum: Phys. Lett. B 799, 135029 (2019)],

arXiv:1903.10844 [hep-ph].
[38] J. Bijnens, N. Hermansson-Truedsson, and A. Rodrı́guez-Sánchez, Phys. Lett. B 798, 134994 (2019), arXiv:1908.03331 [hep-ph].
[39] J. Leutgeb and A. Rebhan, Phys. Rev. D 101, 114015 (2020), arXiv:1912.01596 [hep-ph].
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F. T. Solmitz, Phys. Rev. D 7, 1279 (1973).
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D 109, 076019 (2024), arXiv:2308.04221 [hep-ph].
[494] C. T. H. Davies, A. S. Kronfeld, G. P. Lepage, C. McNeile, and R. S. Van de Water, Phys. Rev. D 111, 014513 (2025), arXiv:2410.23832

[hep-lat].
[495] C. Alexandrou et al. (ETM), Phys. Rev. Lett. 130, 241901 (2023), arXiv:2212.08467 [hep-lat].
[496] J. Bijnens, E. Pallante, and J. Prades, Nucl. Phys. B 626, 410 (2002), arXiv:hep-ph/0112255 [hep-ph].
[497] M. Hayakawa and T. Kinoshita, (2001), arXiv:hep-ph/0112102 [hep-ph].
[498] K. Melnikov and A. Vainshtein, Phys. Rev. D 70, 113006 (2004), arXiv:hep-ph/0312226 [hep-ph].
[499] W. A. Bardeen and W. K. Tung, Phys. Rev. 173, 1423 (1968), [Erratum: Phys. Rev. D 4, 3229 (1971)].
[500] R. Tarrach, Nuovo Cim. A 28, 409 (1975).
[501] J. Aldins, T. Kinoshita, S. J. Brodsky, and A. J. Dufner, Phys. Rev. D 1, 2378 (1970).
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[511] H. Czyż, J. H. Kühn, and S. Tracz, Phys. Rev. D 94, 034033 (2016), arXiv:1605.06803 [hep-ph].
[512] M. Ablikim et al. (BESIII), Phys. Rev. D 109, 032006 (2024), arXiv:2311.12895 [hep-ex].
[513] F.-K. Guo, B. Kubis, and A. Wirzba, Phys. Rev. D 85, 014014 (2012), arXiv:1111.5949 [hep-ph].
[514] M. Ablikim et al. (BESIII), Phys. Rev. D 103, 092005 (2021), arXiv:2011.07902 [hep-ex].
[515] M. Ablikim et al. (BESIII), Phys. Rev. D 103, 072006 (2021), arXiv:2012.04257 [hep-ex].
[516] M. Ablikim et al. (BESIII), JHEP 07, 135 (2024), arXiv:2402.01993 [hep-ex].
[517] M. Ablikim et al. (BESIII), Phys. Rev. D 110, 032005 (2024), arXiv:2401.14711 [hep-ex].
[518] M. Ablikim et al. (BESIII), Phys. Rev. D 108, L111101 (2023), arXiv:2310.10452 [hep-ex].
[519] M. Ablikim et al. (BESIII), Phys. Lett. B 813, 136059 (2021), arXiv:2009.08099 [hep-ex].
[520] M. Ablikim et al. (BESIII), JHEP 07, 093 (2024), arXiv:2404.07436 [hep-ex].
[521] M. Ablikim et al. (BESIII), Phys. Rev. D 103, 072007 (2021), arXiv:2012.07360 [hep-ex].
[522] J. Bijnens, N. Hermansson-Truedsson, and A. Rodrı́guez-Sánchez, JHEP 02, 167 (2023), arXiv:2211.17183 [hep-ph].
[523] G. P. Lepage and S. J. Brodsky, Phys. Lett. B 87, 359 (1979).
[524] S. J. Brodsky and G. P. Lepage, Phys. Rev. D 24, 1808 (1981).
[525] B. Ioffe and A. Smilga, Nucl. Phys. B 232, 109 (1984).
[526] I. I. Balitsky and A. V. Yung, Phys. Lett. B 129, 328 (1983).
[527] N. I. Usyukina and A. I. Davydychev, Phys. Lett. B 332, 159 (1994), arXiv:hep-ph/9402223.
[528] F. Chavez and C. Duhr, JHEP 11, 114 (2012), arXiv:1209.2722 [hep-ph].
[529] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, Phys. Rev. D 101, 051501 (2020), arXiv:1910.11881 [hep-ph].
[530] G. Colangelo, F. Hagelstein, M. Hoferichter, L. Laub, and P. Stoffer, JHEP 03, 101 (2020), arXiv:1910.13432 [hep-ph].
[531] K. Melnikov and A. Vainshtein, (2019), arXiv:1911.05874 [hep-ph].
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[647] T. Kadavý, K. Kampf, and J. Novotný, JHEP 10, 142 (2020), arXiv:2006.13006 [hep-ph].
[648] V. A. Nesterenko and A. V. Radyushkin, Phys. Lett. B 128, 439 (1983).
[649] S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).
[650] P. Roig and J. J. Sanz Cillero, Phys. Lett. B 733, 158 (2014), arXiv:1312.6206 [hep-ph].
[651] T. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D 58, 114006 (1998), arXiv:hep-ph/9802409.
[652] M. Anderson, EPJ Web Conf. 303, 01001 (2024).
[653] F. Jegerlehner, Springer Tracts Mod. Phys. 274, 1 (2017).
[654] P. Masjuan, E. Ruiz Arriola, and W. Broniowski, Phys. Rev. D 85, 094006 (2012), arXiv:1203.4782 [hep-ph].
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