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We present a systematic decomposition of QCD splitting functions into scalar dipole radiators
and pure splitting remainders up to second order in the strong coupling. The individual compo-
nents contain terms that are formally sub-leading in soft or collinear scaling parameters, but well
understood and universal due to their origin in scalar QCD. The multipole radiator functions which
we derive share essential features of the known double-soft and one-loop soft gluon currents, and
are not based on kinematical approximations.

I. INTRODUCTION

For more than half a century, experiments at particle colliders have shaped our understanding of the building blocks
of matter. They continue to be at the forefront of fundamental science [1, 2]. The quantitative description of particle
production in these experiments received a strong boost from the development of QCD as a gauge theory of the strong
interactions [3]. High-energy collider experiments often make detailed measurements of QCD dynamics in the region
where partons are asymptotically free and form jets. The production and evolution of these jets is one of the key
features of the strong interactions at high energy and remains of greatest interest, both because of its importance as
an often irreducible background to new physics searches, and as a precision test of QCD dynamics.

Being a non-abelian, asymptotically free gauge theory, QCD presents many obstacles to the practitioner. Perturba-
tive calculations are typically hampered both by the number and the complexity of the Feynman diagrams associated
with a particular partonic final state [4–7]. In addition, at higher orders in the perturbative expansion, scattering
matrix elements exhibit infrared singularities that cancel to all orders between real and virtual corrections [8–11],
often leading to enormous complications for the numerical evaluation of observables with the help of Monte-Carlo
integration methods. Generic techniques to address this problem at next-to-leading order (NLO) in the perturbative
expansion were introduced long ago [12–14], and have been fully automated in various computer codes. A similar
automation at the next-to-next-to leading order (NNLO) seems within reach [7].

The two sources of infrared singularities are soft gluon radiation and the collinear decay of massless partons.
However, when multiple particles become collinear one or more of them can still be soft, leading to an overlap
between the two types of divergence. Removing this overlap is key to identifying all singular regions of scattering
matrix elements, and to providing the infrared subtraction counterterms that enable numerical computations. The
goal of this work is therefore to construct process-independent NNLO double-real and real-virtual splitting functions
that have no remaining overlaps. This is achieved as follows. First, the universal component of all splitting functions
involving final-state gluons is extracted by making the scalar part of the theory manifest. This part generates the pole
structure in the soft limit and is related to the classical limit [15–18]. For the purpose of infrared subtraction, it can
be computed in the dipole approximation [19, 20]. Consistently going beyond the leading power soft approximation
by using scalar dipoles allows us to capture universal contributions which appear in the splitting functions in a
well-understood manner. Second, we identify the factorizable part of the higher-order splitting functions based on
diagrammatic considerations, which results in an improved understanding of sub-leading singular terms, especially
those involving azimuthal correlations. Third, the scalar radiators are formulated differentially in color space, in order
to make them maximally useful for practical calculations. Similarly, the spin-dependent remainders are differential in
spin.

Our algorithm makes use of the techniques introduced in [21, 22], in particular the choice of an axial gauge to obtain
a physical interpretation of the gluon polarization tensor [23–30]. We provide the scalar extension of the double-soft
radiators in both axial and Feynman gauge, allowing for an unambiguous matching to the splitting functions. Using
the background field method [31–37], we compute scalar dipole radiator functions at one-loop level, which are matched
to the known one-loop splitting amplitudes. The outline of this manuscript is as follows. In Section II we introduce
the basic ideas and illustrate the spin decomposition at the vertex level. Section III describes the methodology for
the computation of tree-level splitting functions, reviews the results of [21] and presents their spin decomposition.
Section IV includes our results for the one-loop scalar radiator functions and one-loop splitting functions and discusses
their spin decomposition. Section V contains some concluding remarks and an outlook.

https://arxiv.org/abs/2505.10408v1
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II. SPIN DECOMPOSITION OF QCD AMPLITUDES

In the soft vector-boson limit, QCD matrix elements develop well-understood infrared singularities [38–43]. Their
source is gluon interactions in the eikonal limit, which can be derived by making kinematical approximations to
fixed-order QCD scattering matrix elements. However, their physical origin is better understood by investigating the
minimal coupling of the vector potential to a classical, accelerated charge [44, 45]. In QED, the corresponding current
in momentum space reads

jµik(q) = igQ

(
pµk
pkq

− pµi
piq

)
, (1)

where g is the coupling constant, Q is the charge of the particle, and pi and pk are the momenta of the radiating
charge dipole formed by the particle before and after an instantaneous impact. Once the radiation field, Aµ, sourced
by the dipole is quantized, radiative effects can be computed in perturbation theory using the interaction Hamiltonian
density jµ(x)Aµ(x). It can be shown that singularities in the infrared that are induced by this interaction cancel
between real-emission corrections and virtual corrections [8, 10, 11].

Equation (1) does not account for the quantum nature of the charged particle. However, a minimal change to it
yields the expression for scalar QED with massless radiators, and thus provides an extension to a full quantum field
theory without kinematical constraints:

jµik(q) = igQ
(
Sµ(pk, q) − Sµ(pi, q)

)
, where Sµ(p, q) =

(2p + q)µ

(p + q)2
. (2)

For the emission of a single on-shell vector boson, this expression results in the exact same scattering matrix elements as
the eikonal current in Eq. (1). It has in fact been shown in the case of scalar QED that both the leading and sub-leading
contributions to the squared amplitudes in the soft-photon limit can be obtained from classical calculations [17, 18].
We make this observation the basis for using scalar currents instead of the commonly employed eikonal currents when
constructing multipole radiator functions. In the soft or double-soft limit, these radiators yield the known leading soft
or double-soft behavior of the theory, but they also contain additional sub-leading contributions which are important
for the correct matching to collinear splitting functions away from the soft region.

The QCD equivalent of the QED current in Eq. (2) can be obtained by using the techniques of [13, 43]:

Jµ(q) = igs
∑
i

T̂i S
µ(pi, q) . (3)

Here, T̂, are the charge operators, which are defined as (T̂c
i )ab = T c

ab for quarks, (T̂c
i )ab = −T c

ba for anti-quarks, and

(T̂c
i )ab = ifacb for gluons [13, 43]. Charge conservation in the QCD multipole implies

∑
i T̂i = 0. For the emission

of a single on-shell vector boson, Eq. (3) results in exactly the same scattering matrix elements as the QCD eikonal
current. Moreover, the numerators in Eq. (3) obey elementary Ward identities, such that the single-gluon current is
conserved, as long as the radiating particles remain on their mass shell.

In Sec. III C we will use Eq. (3) and its extension to the two-emission case to derive the scalar component of matrix
elements that form the basis of the higher-order tree-level splitting functions. As the complete calculation is quite
cumbersome, we highlight the basic correspondence using two simple examples at the amplitude level. The first is
the quark-to-quark-gluon splitting process shown in Fig. 1(a) left. The scattering amplitude is proportional to the
following combination of the coupling-stripped quark-gluon vertex and the quark propagator:

/p + /q

(p + q)2
T a
ijγ

µ = T a
ij

[
Sµ(p, q) +

iσνµqν
(p + q)2

− γµ/p

(p + q)2

]
. (4)

A decomposition of this current has been provided for the first time in [46], and an extension to massless fermions
is given in [47]. The first term in the square bracket is the scalar current of Eq. (2). The second term, proportional
to σνµ = i

2 [γν , γµ], describes the magnetic interaction due to the fermion’s spin. This contribution is sub-leading in
the soft and collinear limits. The contribution proportional to γµ/p vanishes in the squared amplitude for one-to-two
splittings due to the equations of motion. Using an axial gauge for the final-state gluon, after squaring the amplitude
we obtain the standard quark-to-quark splitting function, cf. Sec. III A. We emphasize that this is achieved without
any kinematical approximations. Additionally, the squared scalar interaction term can be identified at the amplitude
squared level, where it emerges as a nontrivial combination of the square of the scalar contribution in Eq. (4) and
the interference of the scalar and the magnetic term. This is a consequence of the fact that a magnetic interaction is
needed to make the chiral kinetic theory Lorentz invariant [48, 49]. The vertex decomposition is sketched in Fig. 1(a)
right, and discussed in detail in App. A.



3
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FIG. 1. Examples of one-to-two splitting processes. Figure (a) shows the splitting of a quark into a quark and a gluon, Fig. (b)
the branching of a gluon into two gluons. The right-hand side sketches the decomposition of the full vertices into scalar and
spin-dependent components.

Our second example will be the gluon-to-gluon-gluon splitting, shown in Fig. 1(b) left. The gluon propagator times
the coupling stripped triple gluon vertex can be written as a sum of two components in two different permutations

dµσ(p12)

p212
fabcΓσνρ(p1, p2) = idµσ(p12)

{
Tr(T c[T b, T a])

[
Sν(p1, p2)gρσ − (p1 − p2)ρ

2p212
gσν

]
+

(
a ↔ b
σ ↔ ν
1 ↔ 2

)}
, (5)

where Γµνρ(p, q) = gµν(p− q)ρ + gνρ(2q+p)µ− gρµ(2p+ q)ν . Here, dµσ(p12) is the gluon polarization tensor. The two
orderings of the color operators in the commutator appear because either the color charge or the anti-color charge of
the incoming gluon can be the source of the gluon field. The first, scalar term in the square brackets is proportional
to a metric tensor connecting the polarization vectors of the external particle to the incoming gluon. This agrees
with the requirement that the classical interaction described by Sµ(p, k) must be both spin-independent and helicity
preserving. In the limit where the emitted gluon becomes soft, the second term in the square brackets does not
scale due to the transversality of the Born amplitude. In the collinear limit, it scales as the inverse of the transverse
momentum. We have again achieved a separation into different types of splitting vertices, without having to perform
any kinematical approximations. The one-to-two splitting function derived in Sec. III A has a similar structure. The
vertex decomposition is sketched in Fig. 1(b) right and discussed in detail in App. A.

Before discussing the tree-level splitting functions in Sec. III, we will comment on the gauge choices for our calcu-
lations. The tree-level expressions are simplest to obtain in an axial gauge. Axial gauges benefit from being ghost
free [50–54], because they encode only the physical degrees of freedom of the gluon field [23–30, 55], see also the later
discussion of Eq. (12) in Section III. The corresponding polarization tensor,

dµν(p, n) = −gµν +
pµnν + pνnµ

pn
− n2 pµpν

(pn)2
, (6)

satisfies the physical requirements for on-shell gluons, namely −dµµ(p, n) = D−2 and pµd
µν(p, n) = 0, where D = 4−2ε

is the number of space-time dimensions. The vector nµ is an auxiliary gauge vector. When used in the computation
of a splitting amplitude, the axial gauge mimicks the effects of coherent gluon emission off particles that are omitted
from the explicit computation, but whose physical presence can be inferred from color charge conservation. As a
simple example, consider a process with two charged scalars. The leading-order matrix element for the production of
these scalars is just an overall constant. The real-emission matrix element is given by the constant times the eikonal in
Eq. (1), contracted with the polarization vector of the the external vector boson. The key observation is that one can
choose the auxiliary vector, nµ, in the polarization sum such that one term in the current, Eq. (1), is eliminated. In
this manner, one moves contributions needed to describe coherent vector boson radiation from one Feynman diagram
to another [56, 57]. In the computation of collinear splitting functions to leading power, this technique makes the
result independent of the hard process.

At one-loop order, we will use the axial gauge to compute the splitting functions using the methods of [58, 59].
In order to determine their scalar components, we would ideally determine the scalar radiators in the same gauge.
As this calculation is very cumbersome we use a different approach. The scalar radiators at one-loop level are an
extension of the one-loop soft current [22, 60, 61] to the full scalar theory. They are determined from the same set
of diagrams and acquire a physical meaning when computed in the background field method [31–37, 62–64]. We can
therefore match the collinear limit of the scalar radiators in the background field method to the one-loop splitting
amplitudes computed in axial gauge. By means of this technique, the one-loop integrals needed for the calculation
can be limited to a small set which is known to all orders in the dimensional regularization parameter.
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III. TREE-LEVEL EXPRESSIONS

In order to capture the singularity structure of a tree-level process in the m-particle collinear limit, one can compute
the relevant off-shell current in axial gauge and project the result onto the physical polarization states [21]. We obtain
the relevant expressions from a general definition of the tree-level currents using recursive techniques [65–68]

Ψi(pα) =
∑

{β,γ}∈
P (α,2)

gsT
a
ij M

µ(pβ , pγ)Ja
µ(pγ , n)Ψj(pβ) ,

+
∑

{β,γ}∈
P (α,2)

[
gsT

a
ijS

µ(pβ , pγ)Ja
µ(pγ , n) −

∑
{δ,ϵ}∈
OP (γ,2)

g2s
p2ij

{
T a, T b

}
ij
Jµ,a(pδ, n)Jb

µ(pϵ, n)

]
Ψj(pβ) ,

(7)

Ja
µ(pα, n) =

∑
{β,γ}∈
P (α,2)

[
gs

F a
bc

2
Dµ(pβ , pγ)Jρ,b(pβ , n)Jc

ρ(pγ , n) + gsT
a
ij Ψ̄i(pγ)Fµ(pβ , pγ)Ψj(pβ)

]

−
∑

{β,γ}∈
P (α,2)

[
gsF

c
ab S

σ(pβ , pγ)Jc
σ(pγ , n) −

∑
{δ,ϵ}∈
OP (γ,2)

g2s
p2ij

{
F c, F d

}
ab

Jσ,c(pδ, n)Jd
σ(pϵ, n)

]
d ν
µ (pα, n)Jb

ν(pβ , n) .

(8)

For details on the above notation, see App. A. The individual building blocks of the recursion are defined as

Sµ(pi, pj) =
(2pi + pj)

µ

p2ij
, Dµ(pi, pj , n) =

dµν(pij , n)

p2ij
(pi − pj)

ν ,

Mµ(pi, pj) =
iσµν

p2ij
pj,ν , Fµ(pi, pj , n) = dµν(pij , n)

γν
p2ij

.

(9)

They correspond to the scalar (S) and magnetic (M) interactions introduced in Eq. (A3), as well as the scalar decay
vertex (D) and fermionic decay vertex (F ) of the gluon introduced in Eq. (A9). The m-particle quark and gluon
collinear splitting functions are given as a ratio of the m-particle to 1-particle quark and gluon currents after projection
onto an auxiliary wave function conserving color charge and spin:

P ss′

q (1, . . . ,m) = δss
′
(

s1...m
8παsµ2ε

)m−1 Tr
[
/̄nΨ({p1, . . . , pm})Ψ̄({p1, . . . , pm})

]
Tr
[
/̄nΨ({p̄1...m})Ψ̄({p̄1...m})

] ,

Pµν
g (1, . . . ,m) =

D − 2

2

(
s1...m

8παsµ2ε

)m−1
dµρ(p1...n, n̄)Jρ({p1, . . . , pm})J†

σ({p1, . . . , pm})dσν(p1...m, n̄)

dκλ(p̄1...m, n̄)Jλ({p̄1...m})J†
τ ({p̄1...m})dτκ(p̄1...m, n̄)

.

(10)

For a discussion of the scaling behavior of the splitting functions, it is convenient to parametrize the final-state
momenta in terms of a forward, transverse, and backward component as [21, 69]

pµi = zip̄
µ
1..m + k̃µi − k̃2i

zi

n̄µ

2p̄1..mn̄
, where p̄µ1..m = pµ1..m − p21..m

n̄µ

2p1..mn̄
. (11)

This allows us to express all results in terms of the forward light-cone momentum fractions, zi, and transverse
momenta, k̃i. Local four-momentum conservation takes the form z1 + z2 + . . . + zm = 1 and k̃1 + k̃2 + . . . + k̃m = 0.
To simplify the computation, we have changed the so far arbitrary vector nµ defining the axial gauge to a light-like
vector, which we denote as n̄µ. For p2 = 0, the light-like axial gauge allows a simple interpretation of Eq. (6) in terms
of polarizations of massless particles in the helicity formalism [57]1:

dµν(p, n̄) =
1

4pn̄

∑
λ=±

Tr
[
/pγµ/̄nγνPλ

]
=
∑
λ=±

ϵµλ(p, n̄)ϵν ∗
λ (p, n̄) , where ϵµ±(p, n̄) = ±⟨n̄∓|γµ|p∓⟩√

2⟨n̄∓|p±⟩
. (12)

1 At higher orders in the perturbative expansion, this identity requires the four-dimensional helicity scheme [70, 71]
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(a)

p2

p1

(b)

p2

p1

(c)

p2

p1

FIG. 2. Feynman diagrams leading to the 1 → 2 parton splitting functions discussed in Sec. IIIA. The shaded blob and lines
to the left represent the hard process with its associated external partons. See the main text for details.

Here P± = (1 ± γ5)/2 are the left- and right-chiral projectors. For off-shell vector bosons, one can use the shifted
momentum defined in Eq. (11), which leads to the following generalization of Eq. (12):

dµν(p, n̄) = dµν(p̄, n̄) + p2
n̄µn̄ν

(pn̄)2
= −dµρ(p, n̄)d ν

ρ (p, n̄) + p2
n̄µn̄ν

(pn̄)2
. (13)

We have implicitly used this relation in Eq. (10) to define the collinear splitting functions. In the m-particle collinear

limit, k̃i → λk̃i, λ → 0, the second term on the right-hand side of Eq. (13) scales as λ2. It can therefore be neglected
in the computation of the leading-power gluon splitting functions. The factorized form of the first term allows us to
absorb one of the polarization tensors into the splitting amplitude, while the other is associated with the gluon current
produced by the hard matrix element. Any n̄µ-dependent contribution to the gluon splitting function in Eq. (10) will
then vanish upon multiplication by this current and can therefore be dropped. We will use this particular feature of
the collinear limit in Sec. III D 2.

A. One-to-two splittings

In this subsection we re-derive the well-known two-parton splitting functions and systematically extend them to
the off-shell region, which is needed to derive factorized expressions for the three-parton final states.

1. Quark initial state

The 1 → 2 quark splitting function can be computed from Eq. (10) using the 2-particle fermion current [21]. The
corresponding Feynman diagram is shown in Fig. 2(a). We find

P ss′

q→q(p1, p2) =
δss

′
s12

8παsµ2ε

Tr
[
/̄nΨ({p1, p2})Ψ̄({p1, p2})

]
Tr
[
/̄nΨ({p̄12})Ψ̄({p̄12})

] = δss
′
Pq̃→q̃(p1, p2) + P ss′ (f)

q→q (p1, p2) . (14)

Following Ref. [21], we denote spin-averaged quark splitting functions by ⟨Pq→X(1, . . . ,m)⟩ = δss′P
ss′

q→X(1, . . . ,m)/2.
As the quark splitting tensors are diagonal in spin space, we will refrain from listing both their spin-dependent and
spin-averaged version. The individual components of the one-to-two quark splitting function are given by the 1 → 2
scalar splitting function and the purely fermionic term

Pq̃→q̃(p1, p2) = CF
2z1
z2

(
1 − p21

p212

z12
z1

− p22
p212

z12
z2

)
,

⟨P (f)
q→q(p1, p2)⟩ = CF (1 − ε)

(
z2
z12

− z2
z1

p21
p212

− p22
p212

)
,

(15)

where p21 → 0 and p22 → 0 in the standard collinear factorization approach. In order to extend the massless result to
the off-shell region, we have replaced dµν(p2, n̄) → dµν(p̄2, n̄), see the discussion of Eq. (13). In complete analogy, we
have replaced the spinors u(p1) by u(p̄1). Both these shifts are needed to achieve the expected scaling behavior of the
remainder functions computed in Sec. III D. The gluon-spin dependent quark-to-quark splitting tensor is given by

⟨Pµν
q→q(p1, p2)⟩ = Pµν

q̃→q̃(p1, p2) + ⟨P (f)µν
q→q (p1, p2)⟩ . (16)

Its scalar and purely fermionic components are given by

Pµν
q̃→q̃(p1, p2) =

CF

2
p212 S

µ(p1, p2)Sν(p1, p2) ,

⟨P (f)µν
q→q (p1, p2)⟩ = − CF

2

[
gµν
(

z2
z12

− z2
z1

p21
p212

− p22
p212

)
+

pµ2p
ν
2

p212

]
+ . . . ,

(17)
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where the dots stand for contributions proportional to the gauge vector, n̄µ or n̄ν . Such terms vanish after multipli-
cation by a gluon polarization tensor of the form dµν(p2, n̄) or dµν(p̄2, n̄), and can therefore be dropped.

2. Gluon initial state

The Feynman diagrams leading to the tree-level g → qq̄ and g → gg splitting tensors are shown in Figs. 2(b)
and (c), respectively. The algebraic expressions are obtained from Eq. (10) as follows [21].

Pµν
g→q(p1, p2) =

TR

2p212
dµρ(p12, n̄)Tr[ /̄p1γ

ρ/̄p2γ
σ ]dνσ(p12, n̄) ,

Pµν,αβ
g→g (p1, p2) =

CA

2p212
dµλ(p12, n̄) Γκαλ(p1, p2)Γρβτ (p1, p2)dκρ(p̄1, n̄)dντ (p12, n̄) ,

(18)

where Γµνρ(p, q) implements the Lorentz structure of the three-gluon vertex, and where the Lorentz indices α and β
refer to the final-state gluon with momentum p2, while the indices µ and ν refer to the initial-state gluon. Computing
the gluon-to-quark splitting tensor is straightforward, and we obtain

Pµν
g→q(p1, p2) = TR

[
dµν(p̄12, n̄)

(
1 − z12

p212

(
p21
z1

+
p22
z2

))
+ p212

n̄µn̄ν

(p12n̄)2
− p212D

µ(p1, p2, n̄)Dν(p1, p2, n̄)

]
, (19)

where we have summed over the spins of the final-state quarks. In the final-state on-shell case Eq. (19) reduces to

Pµν (os)
g→q (p1, p2) = TR

[
dµν(p12, n̄) −

4 p̃µ1,2p̃
ν
1,2

p212

]
, where p̃µi,j =

zi p
µ
j − zj p

µ
i

zi + zj
. (20)

The momenta p̃ are generalizations of the transverse momenta k̃ in Eq. (11). In particular, they fulfill momentum
conservation in the form p̃i,j + p̃j,i = 0 for any i and j. Similarly, in the 3-parton case we have p̃1,23 + p̃2,13 + p̃3,12 = 0.
Using the standard Sudakov parametrization in Eq. (11) [69], taking the collinear limit, and summing over quark
spins, we can write Eq. (19) in the familiar form of the spin-dependent DGLAP splitting kernel

Pµν (os)
g→q (p1, p2) → TR

[
− gµν + 4z1z2

k̃µ1 k̃
ν
1

k̃21

]
. (21)

Averaging over the polarizations of the initial-state gluon using conventional dimensional regularization (CDR),
⟨Pg→X(1, . . . ,m)⟩ = dµν(p1...m, n̄)Pµν

g→X(1, . . . ,m)/(2 − 2ε), yields the CDR DGLAP splitting kernel

⟨Pg→q(p1, p2)⟩ = TR

[
1 − 2

1 − ε

z1z2
z212

]
. (22)

The computation of the gluon-to-gluon splitting tensor is aided by the observation that any function multiplying
this object must be symmetric in the Lorentz indices µ and ν. It is known that, in the on-shell case, this causes
all interferences between the three components of Γµνρ to vanish [72]. In the following, we derive the corresponding
expression, including some of the off-shell effects needed in Sec. III D. We assume that p21 = 0, which is sufficient
to compute all factorizable components of the three-parton splitting functions. The relation dµρ(p1, n̄)dνρ(p1, n̄) =
dµν(p1, n̄) can then be exploited to factorize the triple-gluon vertex functions in Eq. (18). We separate the resulting
splitting tensor into a symmetric and an interference part

Pµν,αβ
g→g (p1, p2) = Pµν,αβ

g→g,(s)(p1, p2) + Pµν,αβ
g→g,(i)(p1, p2) + P νµ,βα

g→g,(i)(p1, p2) . (23)

The symmetric component is given by the sum of squared scalar emission and decay vertices

Pµν,αβ
g→g,(s)(p1, p2) =

CA

2

[
p212 S

α(p1, p2)Sβ(p1, p2) dµν(p̄12, n̄)

+ 2dµα(p12, n̄)dνβ(p12, n̄)
2z2
z1

(
1 − p22

p212

z12
z2

)
+ p212 d

αβ(p1, n̄)Dµ(p1, p2, n̄)Dν(p1, p2, n̄)

]
.

(24)
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The interference component is better understood by contracting Pµν,γδ
g→g,(i)(p1, p2) with the polarization tensors for the

decay of gluon 2. The definitions in Eqs. (9) lead to

Sν(p1, p2)dµν(p2, n̄) =
2

p212

p̃µ1,2
z2/z12

+ . . . , Dµ(p1, p2, n̄) =
2

p212
p̃µ1,2 + . . . , (25)

where the ellipses represent terms proportional to n̄µ that vanish upon multiplication with dρµ(p, n̄) for any momentum,
p. We can use these identities to simplify the interference contribution as follows

Pµν,γδ
g→g,(i)(p1, p2) dαγ(p2, n̄)dβδ(p2, n̄) =

4CA

z1z2

(
z12p̃

α
1,2 −

p22n̄
α

2p12n̄

)
z12p̃

ρ
1,2 d

νσ(p12, n̄) dµρ(p12, n̄) dβσ(p2, n̄)

− 4CA

z1z2

(
z12p̃

ν
1,2 −

p22n̄
ν

2p12n̄

)[
z2z12p̃

σ
1,2d

ρα(p2, n̄) + z1

(
z12p̃

α
1,2 −

p22n̄
α

2p12n̄

)
dρσ(p1, n̄)

]
dµρ(p12, n̄)dβσ(p2, n̄) .

(26)

In the strongly ordered soft and collinear limits, p̃νi,jd
µ
ν(p, n̄) reduces to p̃µi,j , and we find that the sum of asymmetric

terms in Eq. (23) vanishes when combined with a tensor that is symmetric in µ and ν. The complete gluon splitting
tensor is then effectively given by the sum of squared diagrams that led to Eq. (24). In the final-state on-shell case
the symmetric component is given by

Pµν,αβ (os)
g→g (p1, p2) =

CA

2

[
p212 S

α(p1, p2)Sβ(p1, p2) dµν(p̄12, n̄)

+ 2dµα(p12, n̄)dνβ(p12, n̄)
2z2
z1

+ p212 d
αβ(p1, n̄)Dµ(p1, p2, n̄)Dν(p1, p2, n̄)

]
.

(27)

Contracting Eq. (24) with the external polarization sum for gluon 2, we find

Pµν
g→g(p1, p2) = 2CA

[
dµν(p̄12, n̄)

(
z1
z2

+
z2
z1

− z12
z1

p22
p212

)
+ 2(1 − ε)

p̃µ1,2p̃
ν
1,2

p212

]
. (28)

Using the standard Sudakov parametrization in Eq. (11) [69], Eq. (27) yields the spin-dependent DGLAP kernel [72]

Pµν,αβ (os)
g→g (p1, p2) → 2CA

[
z1
z2

k̃α1 k̃
β
1

k̃21
gµν +

z2
z1

gµαgνβ − dαβ(p12, n̄)
z1z2
z212

k̃µ1 k̃
ν
1

k̃21

]
. (29)

Contracting this with the polarization tensor for gluon 2, we find the familiar expression

dαβ(p2, n̄)Pµν,αβ (os)
g→g (p1, p2) → 2CA

[
− gµν

(
z1
z2

+
z2
z1

)
− 2(1 − ε)

z1z2
z212

k̃µ1 k̃
ν
1

k̃21

]
. (30)

Averaging over the polarizations of the initial-state gluon yields the DGLAP splitting kernel

⟨Pg→g(p1, p2)⟩ = 2CA

[
z1
z2

+
z2
z1

+
z1z2
z212

]
. (31)

Based on the above derivation, this function can be decomposed as

⟨Pg→g(p1, p2)⟩ = P (sc)
g→g(p1, p2) + P (sc)

g→g(p2, p1) + ⟨P (v)
g→g(p1, p2)⟩ , (32)

where the scalar and purely vectorial part are defined as

P (sc)
g→g(p1, p2) = CA

2z1
z2

=
CA

CF
Pq̃→q̃(p1, p2)

∣∣∣
p2
1→0,p2

2→0
,

⟨P (v)
g→g(p1, p2)⟩ = 2CA

z1z2
z212

.
(33)

Note that Eqs. (19) and (24) are independent of the kinematics parametrization, as the invariants have not yet been
expressed in terms of transverse momenta, and the light-cone momentum fractions are defined unambiguously.
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(a)

p2

p1

p3
(b)

p2

p1

p3

FIG. 3. Feynman diagrams leading to the 1 → 3 quark only splitting functions discussed in Sec. III B 1. The shaded blob and
lines to the left represent the hard process with its associated external partons. See the main text for details.

B. One-to-three splittings

The leading terms of the three-parton splitting functions have been computed in [21, 73]. We will re-derive them
here, together with their scalar QCD counterparts. We begin with the simpler quark initial states, which do not have
a spin dependence, before discussing the gluon initial states that have a non-trivial Lorentz structure.

1. Quark initial state

The sole Feynman diagram leading to the flavor-changing quark-to-quark three-parton splitting function is shown
in Fig. 3(a). It can be obtained from the product of the off-shell quark splitting function in Eq. (16) and the
spin-dependent gluon-to-quark splitting function, Eq. (19). The result is [21]

⟨Pq→q̄′q′q(p1, p2, p3)⟩ =
CFTR

2

s123
s12

[
−

t212,3
s12s123

+
4z3 + (z1 − z2)2

z1 + z2
+ (1 − 2ε)

(
1 − z3 −

s12
s123

)]
, (34)

where sij = (pi + pj)
2, and where we have defined

t12,3 = s123 S
µ(p3, p12) s12Dµ(p1, p2, n̄) = 2

z12p2p3 − z22p1p3
z1 + z2

+
z1 − z2
z1 + z2

2p1p2 . (35)

The corresponding scalar-to-quark splitting function is given by the product of the scalar part of Eq. (17) and Eq. (19).

Pq̃→q̄′q′q̃(p1, p2, p3) =
s123
s12

Pµν
q̃→q̃(p3, p12)Pg→q,µν(p1, p2) =

CFTR

2

s123
s12

[
4z3

z1 + z2
+

s12
s123

(
1 −

t212,3
s212

)]
. (36)

As a consequence of the fact that only a single diagram contributes to Eq. (34), the splitting function factorizes. A
simple, yet non-trivial observation is that, in the double-soft limit, both Eq. (34) and Eq. (36) yield

⟨P (ds)
q→q̄′q′q(p1, p2, p3)⟩ = CFTR

2(s13 + s23)

s12(z1 + z2)

[
1 − (z1s23 − z2s13)2

(z1 + z2)(s13 + s23)s12

]
. (37)

Compared to the complete scalar expression, this result lacks sub-leading power contributions. In particular, the
azimuthal angle dependence differs between Eqs. (34), (36) and (37), because Eq. (35) is reduced to the first term
alone. This exemplifies how higher-order splitting functions based on kinematic limits can obscure the origin of
soft-collinear overlaps at sub-leading power in the soft scaling parameter.

The three-parton quark-to-quark splitting function is obtained as the coherent sum of the two Feynman diagrams
in Figs. 3(a) and (b). It can be written as the sum of splitting functions for identical quarks, and an interference
part [21].

⟨Pq→q̄qq(p1, p2, p3)⟩ =
(
⟨Pq→q̄′q′q(p1, p2, p3)⟩ + ⟨P (id)

q→q̄qq(p1, p2, p3)⟩
)

+
(

2 ↔ 3
)
, (38)

where

⟨P (id)
q→q̄qq(p1, p2, p3)⟩ = CF

(
CF − CA

2

){
(1 − ε)

(
2s23
s12

− ε

)
+

s123
s12

[
1 + z21
1 − z2

− 2z2
1 − z3

− ε

(
(1 − z3)2

1 − z2
+ 1 + z1 −

2z2
1 − z3

)
− ε2(1 − z3)

]
− s2123

s12s13

z1
2

[
1 + z21

(1 − z2)(1 − z3)
− ε

(
1 + 2

1 − z2
1 − z3

)
− ε2

]}
.

(39)
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(a)

p2

p1

p3
(b)

p2

p1

p3
(c)

p2

p1

p3

FIG. 4. Feynman diagrams leading to the 1 → 3 quark-to-quark-gluon splitting functions discussed in Sec. III B 1. The shaded
blob and lines to the left represent the hard process with its associated external partons. See the main text for details.

The scalar-to-quark splitting function corresponding to this interference term does not exist.

Next we investigate double gluon radiation. The splitting function can be separated into abelian and purely
non-abelian components [21], which are derived from the diagrams in Figs. 4(a) and (b), and from Figs. 4(a)-(c),
respectively. The result for the abelian component is

⟨P (ab)
q→ggq (p1, p2, p3)⟩ = C2

F

{
s2123

2s13s23
z3

[
1 + z23
z1z2

− ε
z21 + z22
z1z2

− ε(1 + ε)

]
+ ε(1 − ε) − s23

s13
(1 − ε)2

+
s123
s13

[
z3(1 − z1) + (1 − z2)3

z1z2
+ ε2(1 + z3) − ε(z21 + z1z2 + z22)

1 − z2
z1z2

]}
+ (1 ↔ 2) .

(40)

In the scalar case, we obtain

P
(ab)
q̃→ggq̃(p1, p2, p3) = C2

F

{
s2123
s13s23

z23
z1z2

+
s123
s13

2z3(1 − z2)

z1z2
+ (1 − ε)

}
+ (1 ↔ 2) . (41)

This is the first splitting function involving the seagull vertices in Eq. (7).

The non-abelian part of the splitting function can be written as (see [21])

⟨P (nab)
q→ggq(p1, p2, p3)⟩ = − CA

2CF
P (ab)
q→ggq(p1, p2, p3) + CFCA

{
1 − ε

4

(
t212,3
s212

+ 1

)
− (1 − ε)2

s23
2s13

+
s123
2s12

[
(1 − ε)

z1(2 − 2z1 + z21) − z2(6 − 6z2 + z22)

z2(1 − z3)
+ 2ε

z3(z1 − 2z2) − z2
z2(1 − z3)

]
+

s123
2s13

[
(1 − ε)

(1 − z2)3 + z23 − z2
z2(1 − z3)

− ε
2(1 − z2)(z2 − z3)

z2(1 − z3)
− ε(1 − ε)(1 − z1)

]
+

s2123
2s12s13

[
(1 − z3)2(1 − ε) + 2z3

z2
+

z22(1 − ε) + 2(1 − z2)

1 − z3

]
+ (1 ↔ 2)

}
.

(42)

In the scalar case, we obtain instead

P
(nab)
q̃→ggq̃(p1, p2, p3) = − CA

2CF
P

(ab)
q̃→ggq̃(p1, p2, p3) + CFCA

{(
s23
s13

− t13,2
2s13

)
(1 − z2)2

2z1z2

+
s123
s12

[
z3
z2

− 1 + 3z3
1 − z3

+
s123
s13

(
z3
z2

+
1 − z2
1 − z3

)
+

1 − ε

4

t212,3
s123s12

]
+

s123
s13

[
z3(1 − z2)

2z1z2
− (1 − z2)2

z1(1 − z3)

]
+

z3 + z21
4z1z2

+
1 − ε

4
+ (1 ↔ 2)

}
.

(43)

In the strongly ordered soft-collinear limit, p1 ∥ p2, one obtains the product of a soft-emission term, times a spin-
correlated decay to two gluons. This factorized form is obtained from Eqs. (17) and (28). The result is

P
(nab)
q̃→ggq̃(p1, p2, p3) → s123

s12
Pµν
q̃→q̃(p3, p12)Pg→g,µν(p1, p2)

= CFCA
s123
s12

[
4z3

z1 + z2

(
1 − s12

s123

1

z1 + z2

)(
z1
z2

+
z2
z1

)
+

1 − ε

2

t212,3
s123s12

]
.

(44)
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(a)

p2

p1

p3
(b)

p2

p1

p3
(c)

p2

p1

p3

FIG. 5. Feynman diagrams leading to the 1 → 3 gluon-to-quark-gluon splitting functions discussed in Sec. III B 2. The shaded
blob and lines to the left represent the hard process with its associated external partons. See the main text for details.

(a)

p2

p1

p3
(d)

p2

p1

p3
(c)

p2

p1

p3
(b)

p2

p1

p3

FIG. 6. Feynman diagrams leading to the 1 → 3 gluon-to-gluon splitting function discussed in Sec. III B 2. The shaded blob
and lines to the left represent the hard process with its associated external partons. See the main text for details.

2. Gluon initial state

The Feynman diagrams needed to compute the three-parton gluon-to-quark splitting function are shown in Fig. 5.
The abelian component is determined from Figs. 5(a) and (b). We find

P
µν (ab)
g→gqq̄ (p1, p2, p3) = CFTR

{
dµν(p123, n̄)

[
2s123s23
s12s13

+ (1 − ε)

(
s12
s13

+
s13
s12

)
− 2ε

]
+

4s123
s12s13

(
p̃µ2,13p̃

ν
3,12 + p̃µ3,12p̃

ν
2,13 − (1 − ε) p̃µ1,23 p̃

ν
1,23

)}
.

(45)

With the help of the Sudakov decomposition in Eq. (11), the expression can be written in terms of transverse momenta
and reduced to the leading-power result given in [21]. Similarly, the on-shell non-abelian part of the splitting tensor
of a gluon into a gluon and a qq̄-pair is determined from the diagrams in Figs. 5(a)-(c).

P
µν (nab)
g→gqq̄ (p1, p2, p3) = − CA

2CF
P

µν (ab)
g→gqq̄ (p1, p2, p3) +

CATR

4

{
s123
s223

[
− dµν(p123, n̄)

t223,1
s123

− 16
1 − z1
z1

p̃µ2,3p̃
ν
2,3

]
+ dµν(p123, n̄)

[
2s13
s12

(1 − ε) +
2s123
s12

(
1 − z3

z1(1 − z1)
− 2

)
+

2s123
s23

1 − z1 + 2z21
z1(1 − z1)

− 1

]
+

s123
s12s23

[
2s123 d

µν(p123, n̄)
z2(1 − 2z1)

z1(1 − z1)
− 16p̃µ3,12p̃

ν
3,12

z22
z1(1 − z1)

+ 8(1 − ε)p̃µ2,13p̃
ν
2,13

+ 4(p̃µ2,13p̃
ν
3,12 + p̃µ3,12p̃

ν
2,13)

(
2z2(z3 − z1)

z1(1 − z1)
+ 1 − ε

)]
+ (2 ↔ 3)

}
+ P

µν (nab,n̄)
g→gqq̄ (p1, p2, p3) .

(46)

This splitting tensor contains an explicitly n̄-dependent contribution, listed in App. C, which does not contribute
in the triple-collinear limit, cf. the discussion of Eq. (13). The spin-averaged splitting functions can be obtained by
contracting Eqs. (45) and (46) with dµν(p123, n̄). They are given in Eqs. (68) and (69) of [21].
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(a) (b)

q1 q1

pi

pk

pi

pk

FIG. 7. Diagrams contributing to the radiation of a single gluon from scalar dipoles.

The one-to-three gluon splitting tensor is obtained from the diagrams in Fig. 6. It was computed in [21] and reads

Pµν
g→ggg(p1, p2, p3) = C2

A

{
1 − ε

4s212

[
dµν(p123, n̄)

(
t212,3 + 3s212

)
+ 16s123

1 − z3
z3

p̃µ1,2p̃
ν
1,2

]
− s123

s12

dµν(p123, n̄)

z3

[
2(1 − z3) + 4z23

1 − z3
− 1 − 2z3(1 − z3)

z1(1 − z1)

]
+

s123(1 − ε)

s12s13

[
2z1

(
p̃µ2,13p̃

ν
2,13

1 − 2z3
z3(1 − z3)

+ p̃µ3,12p̃
ν
3,12

1 − 2z2
z2(1 − z2)

)
− s123

2(1 − ε)
dµν(p123, n̄)

(
4z2z3 + 2z1(1 − z1) − 1

(1 − z2)(1 − z3)
− 1 − 2z1(1 − z1)

z2z3

)
+
(
p̃µ2,13p̃

ν
3,12 + p̃µ3,12p̃

ν
2,13

)(2z2(1 − z2)

z3(1 − z3)
− 3

)]
+ (5 permutations)

}
+ Pµν (n̄)

g→ggg(p1, p2, p3) .

(47)

This splitting tensor contains an explicitly n̄-dependent contribution, listed in App. C, which does not contribute in
the triple-collinear limit, cf. the discussion of Eq. (13). The spin-averaged splitting function, obtained by contracting
Eq. (47) with dµν(p123, n̄), is given in Eq. (70) of [21].

C. Scalar multipoles

In this section we focus on the radiation pattern of the scalar emitters in Eq. (9), which is given by the current in
Eq. (3), applied to QCD. The emission of a single gluon from a pair of charged scalar particles in the fundamental
representation is described by the coherent sum of the two diagrams in Fig. 7:

S∓
g (pi, pk; q1;n) =

(
T a
ijS

µ(pi, q1) ∓ T a
lkS

µ(pk, q1)
)(
T a
ijS

ν(pi, q1) ∓ T a
lkS

ν(pk, q1)
)
dµν(q1, n) , (48)

where S− applies to opposite sign charges and S+ to same sign charges. Note that we have dropped the coupling
factors still present in Eq. (3), to be consistent with the definition of the splitting functions in Secs. III A and III B.
We can use the notation of [13, 43] to generalize Eq. (48) to arbitrary radiators

Sg({p}; q1; n̄) =
∑
i,k

T̂iT̂k Si;k(q1; n̄) . (49)

The space-time dependent part of individual radiators for on-shell gluons is given by

Si;k(q1; n̄) =
1

p2i1

2zi
z1

(
1 − p2k

p2k1

)
+

1

p2k1

2zk
z1

(
1 − p2i

p2i1

)
− 4pipk

p2i1p
2
k1

. (50)

To simplify the notation in Sec. III D, we introduce an analogous notation for the gluon-spin dependent radiator.

Sµν
g ({p}; q1) =

∑
i,k

T̂iT̂k Sµν
i;k (q1) , where Sµν

i;k (q1) = Sµ(pi, q1)Sν(pk, q1) . (51)

Neglecting the momentum dependence of the hard matrix element, and assuming on-shell radiators, we can use color
conservation in the form T̂2

i = −
∑

k ̸=i T̂iT̂k to eliminate the terms where i = k from Eq. (49).

Sg({p}; q1; n̄) = −
∑
i,k ̸=i

T̂iT̂k

piq1

(
pipk
pkq1

− p2i
piq1

+
zi
z1

− zk
z1

piq1
pkq1

)
. (52)
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(a) (b)

q1 q1

pi

pk

pi

pk

q2 q2

FIG. 8. Double-branching diagrams contributing to the emission of a quark-antiquark pair from scalar dipoles.

If the gauge vector nµ is chosen such as to define the frame of the color multipole, this expression is simply the
additively matched radiator function in the angular ordered parton shower approach to QCD resummation [74, 75].
However, the more common way to write Eq. (52) is to use its symmetry properties and remove the ratios of z factors,
making positivity and gauge invariance manifest.

Sg({p}; q1) = −
∑
i,k ̸=i

T̂iT̂k

(
pipk

(piq1)(pkq1)
− p2i /2

(piq1)2
− p2k/2

(pkq1)2

)
. (53)

In any collinear limit, pi ∥ q1, the i = k term in Eq. (49) approaches p−2
i1 4zi/zj , which, up to a color prefactor and the

collinear propagator agrees with the 2zi/zj contribution of the DGLAP splitting functions in Eqs. (15) and (31). In
this case the color correlations become trivial, and the sole remaining term is proportional to the quadratic Casimir
operator. In general, we can identify the i = k term in Eq. (49) with the contributions proportional to the scalar
radiators squared in Eqs. (17) and (24).

1. Quark-antiquark emission

The emission of a quark-antiquark pair from a pair of scalar radiators in the fundamental representation is given by
the coherent sum of the two diagrams in Fig. 8. Making use of color charge operators, this can be generalized to the
emission off a scalar current in the form of Eq. (3). Charge conservation and the transversality of the decay vertex
Fµ in Eq. (9) can be used to simplify the computation [21], leading to the following result for massless final-state
partons:

Sqq̄({p}; q1, q2) =
∑
i,k

T̂iT̂k 4TR
si1sk2 + si2sk1 − siks12

s212 si12 sk12
. (54)

Note that in contrast to Eq. (96) in Ref. [21], Eq. (54) contains the physical propagators rather than their eikonal
counterparts. The matching to the squared amplitudes in Sec. III B is better understood when retaining the gauge
dependence term by term. This leads to the following result

Sqq̄({p}; q1, q2; n̄) =
∑
i,k

T̂iT̂k TR S(qq̄)
i;k (q1, q2; n̄) , (55)

where the space-time dependent part of the individual radiators is given by

S(qq̄)
i;k (q1, q2; n̄) =

2

si12 sk12

[
2

s12

(
zisk12 + zksi12

z1 + z2
− sik

)
+ 1 − t12,it12,k

s212

]
. (56)

For i = k, this expression corresponds to twice the squared scalar splitting amplitude in Eq. (36).

2. Two-gluon emission

The emission of a gluon pair can be described in a fashion similar to the double-gluon soft current in [21]. The
diagrams contributing to this current are shown in Fig. 9. The main difference to the computation of the soft current
lies in the form of the one-gluon current, which is given by Eq. (3) rather than its eikonal counterpart. However,
this current is not conserved if the scalar particle is off mass-shell, a problem that is solved in the abelian case by
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FIG. 9. Types of diagrams contributing to the two-gluon current for emission of the charged parton pair {i, k}. The same
diagrams exist with i and k interchanged.

the seagull diagrams in Fig. 9(d), and in the non-abelian case by the use of a physical gauge or external ghosts. For
massless partons, we obtain the following simple result

Jµν
ab (q1, q2) =

∑
i,k

{
T̂a

i , T̂
b
k

}
J (ab),µν
ik (q1, q2) +

∑
i

ifabcT̂c
i J

(nab),µν
i (q1, q2) . (57)

The color-stripped abelian and non-abelian two-gluon currents J µν
ik are defined as

J (ab),µν
ik (q1, q2) =

1

2
Sµ(pi, q1)Sν(pk, q2)

+
δik

(pi + q12)2

[
qν1S

µ(pi, q1) + qµ2S
ν(pi, q2) − q1q2 S

µ(pi, q1)Sν(pi, q2) − gµν
]
,

J (nab),µν
i (q1, q2) = Sρ(pi, q12)

(
dρν(q12)Sµ(q2, q1) − dρµ(q12)Sν(q1, q2)

)
+

1

(pi + q12)2

[
qν1S

µ(pi, q1) − qµ2S
ν(pi, q2) + pi(q2 − q1)Sµ(pi, q1)Sν(pi, q2) +

t12,i
q212

gµν
]
.

(58)

In the double-soft limit, q1/2 → λ q1/2, these functions reduce to the double-soft current in Eq. (101) of Ref. [21].

Making use of the color-space identity 2

{
T̂a

i , T̂
b
k

}{
T̂a

l , T̂
b
m

}
=
{
T̂a

i T̂
a
l , T̂

b
kT̂

b
m

}
+ i
(
2δkl − δlm

)(
1 − δik

)(
1 − δkm

)(
1 − δim

)
fabc T̂a

i T̂
b
kT̂

c
m

− CA

(
δkl −

δlm
2

)(
δikT̂

a
i T̂

a
m +

(
1 − δik

)(
δkm − δim

)
T̂a

i T̂
a
k

)
+

(
i ↔ k
l ↔ m

)
,

(59)

we obtain a relatively compact form of the two-gluon squared current. In particular, due to its symmetries, the result
is free of terms of the form ifabc T̂a

i T̂
b
kT̂

c
m.

[
Jab
µν(q1, q2)

]†
dµρ(q1, n̄)dνσ(q2, n̄)Jab

ρσ(q1, q2) = 2
∑
i,k

∑
l,m

{
T̂a

i T̂
a
l , T̂

b
kT̂

b
m

}
S(ab)
i,k;l,m(q1, q2; n̄)

+ 2
∑
i,k

∑
l

({
T̂a

i T̂
a
l , T̂

b
kT̂

b
l

}
+
{
T̂a

l T̂
a
i , T̂

b
l T̂

b
k

})
S(ab)
i,k;l (q1, q2; n̄) + 2

∑
i,l

{
T̂a

i T̂
a
l , T̂

b
iT̂

b
l

}
S(ab)
i;l (q1, q2)

−
∑
i,l

CA T̂c
i T̂

c
l

[
S(nab)
i;l (q1, q2; n̄) − (1 − 2δil)S(ab)

i;l (q1, q2) − S(ab)
i,i;l (q1, q2; n̄) − S(ab)

l,l;i (q1, q2; n̄)

+ S(ab)
i,l;i (q1, q2; n̄) + S(ab)

l,i;i (q1, q2; n̄) + S(ab)
i,l;l (q1, q2; n̄) + S(ab)

l,i;l (q1, q2; n̄)
]
.

(60)

2 See also App. B of Ref. [76], which contains the symmetric part of this equation.
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We have defined the abelian and non-abelian radiator functions, S(q1, q2; n̄), which are natural extensions of the soft
functions in Ref. [21]. For on-shell radiators they are given by

S(ab)
i,k;l,m(q1, q2; n̄) =

1

4
Si;l(q1; n̄)Sk;m(q2; n̄) =

z1sil − zisl1 − zlsi1
z1 si1sl1

z2skm − zksm2 − zmsk2
z2 sk2sm2

,

S(ab)
i,k;l (q1, q2; n̄) =

1

sl12

silskl
si1sk2

(
sk1

sklsl1
+

si2
silsl2

− s12
sl1sl2

)
+

1

sl12

[
zl
z2

(
sils12 − si2sl1

si1sl1sl2
− zls12

2z1 sl1sl2

)
+

zisl1 + zlsi1 − z1sil
z2 si1sl1

− sik
2si1sk2

+

(
i↔ k
1↔ 2

)]
,

S(ab)
i;k (q1, q2) =

(si1sk2 − si2sk1)2 − 2s12sik(si1sk2 + si2sk1) + s212s
2
ik

si12sk12 si1sk1si2sk2
+

2(1 − ε)

si12sk12
,

(61)

and

S(nab)
i;k (q1, q2; n̄) =

[
3

4
+

(si1 − si2)(sk1 − sk2)

4 si12sk12

][
sik

si1s12sk2
+

sik
si2s12sk1

− S(ab)
i,i;k,k(q1, q2; n̄)

]
+

1

si12sk12

{(
1 +

si2sk1
si1sk2

)(
1

2
− zizk

z1z2

)
− z1si2

z2si1
+

zisk2
z2si1

(
4zi
z1

− 1

)
− zi

z2

(
3(si2 + sk1)

si1
+ 1

)
− sik

si1

(
2zi
z1

+
2zi
z2

sk2
sk1

+
s12
z2

(
zk
sk1

+
zk
sk2

+
zi
si2

(
1 +

z2sk1
z1sk2

))
+

s12
2sk2

+ 2

)
− 2sik

s12

+
zis12
z2si1

(
2zi
z1

(
1 +

sk1
si2

)
− zk

z1

(
1 +

si2
sk2

)
− 2

)
+

s212
2si1

zi
z2

(
1

z1

(
2zi
si2

− zk
sk2

)
− 2sik

si2sk1

)
− 4z2si1

s212

(
sk1
z1

− sk2
z2

)
− 2sk2

s12

(
si2
si1

2zi + z1
z2

+
si1
si2

(
zi
z1

− 1

)
+

2zi
z1

− zi − z1
z2

− 1

)
− t12,k

2s12

[
si1
si2

(
1 +

zi
z2

)(
z2
z1

− zis12
z1si1

)
+

2si1
s12

(
1 +

z2
z1

)
+

3zi
z2

−
(
1↔2

)]
− 1 − ε

2

t12,it12,k
s212

}
+

zi
si1z1

(
2zk
sk2z2

+
zi

si2z2
− 2sikz1

si2sk1z2

)
+
(
i ↔ k

)
+
(
1 ↔ 2

)
+

(
i↔ k
1↔ 2

)
.

(62)

These radiators are related to the splitting functions in Eqs. (41) and (43) as follows3:

⟨P (ab)
q̃→ggq̃(p1, p2, pi)⟩ = s2i12 C

2
F

(
S(ab)
i,i;i,i(p1, p2; n̄) + 2S(ab)

i,i;i (p1, p2; n̄) + S(ab)
i;i (p1, p2)

)
,

⟨P (nab)
q̃→ggq̃(p1, p2, pi)⟩ = − s2i12

CFCA

4
S(nab)
i;i (p1, p2; n̄) − CA

4CF
P

(ab)
q̃→ggq̃(p1, p2, pi) .

(63)

Next we derive the radiator functions in covariant gauge. Their abelian components are given by

S(ab)
i,k;l,m(q1, q2) =

sil + sil1
2si1sl1

skm + skm2

2sk2sm2
,

S(ab)
i,k;l (q1, q2) =

1

sl12

[
sil

si1sl1

sk1
sk2

− sik
2si1sk2

+
si2

2si1sl2
− s12

8sl1sl2

(
1 +

2sil
si1

)(
1 +

2skl
sk2

)]
+

(
i↔ k
1↔ 2

)
.

(64)

The computation of the non-abelian components requires the introduction of external ghosts [77–80], because the
currents corresponding to gluon 1 and 2 are not conserved independently. We find

S(nab)
i;k (q1, q2) =

[
3

4
+

(si1 − si2)(sk1 − sk2)

4si12sk12

][
sik

si1s12sk2
+

sik
si2s12sk1

− s2ik
si1sk1si2sk2

]
+

1

si1

(
sik

si2sk1
+

1

4si2
+

1

2sk2

)
+

1

si12

{
2si1
s212

− 5

4s12
− sik + s12

si1sk2
− s12

8si1si2
− sik

si1sk1

(
1 +

s12
si2

)}
+

1

si12sk12

{
si1
s12

(
3sk2 + sk1

si2
− 1

2

)
− 2sik

si1

(
1 +

si1
s12

)
− s12(sik − s12)

2si1sk2
− 1

4

− 1 − ε

2

(si1 − si2)(sk1 − sk2)

s212

}
+ (i ↔ k) + (1 ↔ 2) +

(
i↔ k
1↔ 2

)
.

(65)

3 Note that the factor 1/4 relating the abelian and non-abelian scalar splitting function in Eq. (63) is a consequence of the color algebra
leading to the definition of the non-abelian radiator function in Eq. (60). It therefore differs from the factor 1/2 obtained by direct
diagrammatic calculation and resulting in the relation between the abelian and non-abelian splitting functions in Eqs. (42) and (43).
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In the double-soft limit, Eq. (65) reduces to the double-soft function in Eq. (110) of Ref. [21].

D. Composition of one-to-three splitting functions

In this section, we present a decomposition of the splitting functions in Eqs. (34), (38), (40) and (42), and of the
splitting tensors in Eqs. (45), (46) and (47). In most existing approaches, their singular components are identified by
analyzing the strongly ordered soft and collinear limits, as well as the double soft limit. Knowing that the splitting
functions are in fact just off-shell squared matrix elements in a particular gauge, we find it more useful to investigate
their diagrammatic structure. This allows us to achieve a clean separation into the off-shell splitting tensors derived
in Eqs. (16), (19) and (24), and the two-gluon scalar radiators in Eqs. (41) and (43), which are related via Eq. (63)
to the general scalar radiators derived in Sec. III C 2.

1. Quark initial state

Equation (34) describes the splitting of a quark to a quark and a distinct flavor quark pair. The result is due to the
sole Feynman diagram in Fig. 3 (a), hence the splitting function trivially factorizes and can be written as the product
of Eqs. (16) and (19)

⟨Pq→q̄′q′q(p1, p2, p3)⟩ =
s123
s12

⟨Pµν
q→q(p3, p12)⟩Pg→q,µν(p1, p2) . (66)

By means of Eq. (16), the result can be assembled from the scalar radiator in Eq. (51), the magnetic remainder in
Eq. (17), and the splitting function in Eq. (19)

⟨Pq→q̄′q′q(p1, p2, p3)⟩ =
s123
s12

[
CF

2
s123 Sµν

3;3(p12) + ⟨P (f)µν
q→q (p3, p12)⟩

]
Pg→q,µν(p1, p2) . (67)

Equation (38) describes the splitting of a quark to a quark and a same flavor quark pair. The result involves both
Feynman diagrams in Fig. 3, and hence it is expected that it cannot be fully factorized. The leading singularities
do, however, originate in the two possible double-collinear limits. One can therefore express the splitting function in
terms of its leading components and the interference term [21]

⟨Pq→q̄qq(p1, p2, p3)⟩ =
s123
s12

⟨Pµν
q→q(p3, p12)⟩Pg→q,µν(p1, p2) +

s123
s13

⟨Pµν
q→q(p2, p13)⟩Pg→q,µν(p1, p3)

+ ⟨P (p)
q→q̄qq(p1, p2, p3)⟩ ,

(68)

where

⟨P (p)
q→q̄qq(p1, p2, p3)⟩ = ⟨P (id)

q→q̄qq(p1, p2, p3)⟩ +
(
2 ↔ 3

)
. (69)

We will call ⟨P (p)
q→q̄qq⟩ the (spin-averaged) pure q → qqq̄ splitting function, as it cannot be reconstructed from lower-

order results. By means of Eq. (16), the splitting function can be assembled systematically from the scalar radiator in
Eq. (51), the magnetic remainder in Eq. (17), the splitting function in Eq. (19), and the pure interference contribution

⟨Pq→q̄qq(p1, p2, p3)⟩ =

{
s123
s12

[
CF

2
s123 Sµν

3;3(p12) + ⟨P (f)µν
q→q (p3, p12)⟩

]
Pg→q,µν(p1, p2) +

(
2 ↔ 3

)}
+ ⟨P (p)

q→q̄qq(p1, p2, p3)⟩ .
(70)

Equation (40) describes the abelian component of a splitting of a quark to a quark and a pair of gluons. The result
involves factorized contributions corresponding to the Feynman diagrams in Fig. 4(a) and (b), plus a non-factorizable
component. It takes the simple form

⟨P (ab)
q→ggq(p1, p2, p3)⟩ =

s123
s13

⟨Pq→q(p13, p2)⟩ ⟨Pq→q(p3, p1)⟩ +
s123
s23

⟨Pq→q(p23, p1)⟩ ⟨Pq→q(p3, p2)⟩

+ P
(ab,p)
q̃→ggq̃(p1, p2, p3) + ⟨P (ab,p,f)

q→ggq (p1, p2, p3)⟩ ,
(71)
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which can be written in terms of the scalar radiator, Eq. (51), and the magnetic remainder, Eq. (17), as follows:

⟨P (ab)
q→ggq(p1, p2, p3)⟩ =

[
C2

F

4
s2123 S13;13(p2; n̄)S3;3(p1; n̄) +

CF

2

s2123
s13

S13;13(p2; n̄)⟨P (f)
q→q(p3, p1)⟩

+
CF

2
s123 ⟨P (f)

q→q(p13, p2)⟩ S3;3(p1; n̄) +
s123
s13

⟨P (f)
q→q(p13, p2)⟩⟨P (f)

q→q(p3, p1)⟩ +
(

1 ↔ 2
)]

+ P
(ab,p)
q̃→ggq̃(p1, p2, p3) + ⟨P (ab,p,f)

q→ggq (p1, p2, p3)⟩ .

(72)

The scalar remainder function, P
(ab,p)
q̃→ggq̃, is defined as the difference between Eq. (63) and the factorized scalar contri-

butions in the two different permutations induced by the diagrams in Fig. 4(a) and (b), with the fermion replaced by
a scalar:

P
(ab,p)
q̃→ggq̃(p1, p2, p3) = C2

F s
2
123

[
S(ab)
3,3;3,3(p1, p2; n̄) + 2S(ab)

3,3;3(p1, p2; n̄) + S(ab)
3;3 (p1, p2)

− 1

4
S13;13(p2; n̄)S3;3(p1; n̄) − 1

4
S23;23(p1; n̄)S3;3(p2; n̄)

]
= C2

F

{
s2123
s13s23

z23
z1z2

− s123
s13

2z3(1 − z2)

z1z2
+

4z3
z1z2

+ 1 − ε

}
+
(

1 ↔ 2
)
.

(73)

The pure fermionic splitting contribution is defined as the overall remainder and is given by

⟨P (ab,p,f)
q→ggq (p1, p2, p3)⟩ = C2

F (1 − ε)

{
s2123

2s13s23
z3

(
(z1 + z2)2

z1z2
+ ε

)
+

(
s12
s13

+
z1z2

(1 − z2)2

)
(1 − ε)

− s123
s13

[
(1 − z2)

(
(z1 + z2)2

z1z2
+ 1

)
+ (1 − ε)

(
z1z2

1 − z2
− z3

)]
+

2z1
z2

(
1

1 − z2
+

z3
1 − z1

)}
+
(

1 ↔ 2
)
.

(74)

To reconstruct the non-abelian part of the q → ggq splitting function, we first note that there is an additional
factorization channel, corresponding to the diagram in Fig. 4(c), which is singular in the 1 ∥ 2 collinear limit. In this
configuration, Eq. (42) can be written as a gluon emission term, times a spin-correlated decay to two gluons. Due to
color coherence, the non-abelian splitting function has no leading or sub-leading singularities associated with the 1 ∥ 3
and 2 ∥ 3 collinear limits. However, it does have single-soft singularities associated with the interferences between
the diagrams in Fig. 4(c) and (a), and between the diagrams in Fig. 4(c) and (b). We therefore obtain the following
result for its decomposition into lower-order components

⟨P (nab)
q→ggq(p1, p2, p3)⟩ =

CFCA

4
s2123

[
S̄3;3(p12; n̄)

(
S1;1(p2; n̄) + S2;2(p1; n̄) − S1;3(p2; n̄) − S2;3(p1; n̄)

)
+ 2(1 − ε)Sµν

3;3(p12; n̄)Dµ(p1, p2, n̄)Dν(p1, p2, n̄)
]

+
CA

2
s123

[
⟨P (f)

q→q(p3, p12)⟩
(
S1;1(p2; n̄) + S2;2(p1; n̄) − S1;3(p2; n̄) − S2;3(p1; n̄)

)
+ 2(1 − ε) ⟨P (f)µν

q→q (p3, p12)⟩Dµ(p1, p2, n̄)Dν(p1, p2, n̄)
]

− CA

2CF

[
P

(ab,p)
q̃→ggq̃(p1, p2, p3) + ⟨P (ab,p,f)

q→ggq (p1, p2, p3)⟩
]

+ P
(pnab,p)
q̃→ggq̃ (p1, p2, p3) + ⟨P (pnab,p,f)

q→ggq (p1, p2, p3)⟩ .

(75)

The shifted scalar radiator function, S̄, is defined as an extension of Eq. (50) to off-shell gluons

S̄i;k(q1; n̄) = Sµν
i;k (q1; n̄) dµν(q̄1, n̄) =

1

p2i1

2zi
z1

(
1 − p2k

p2k1
− q21

p2k1

zk1
z1

)
− 2pipk

p2i1p
2
k1

+ (i ↔ k) . (76)

The shifted momentum, q̄1, is given by Eq. (11). It is not related to an actual alteration of the kinematics, but simply
accounts for the fact that gluon propagators are evaluated in axial gauge. By means of Eq. (13) we can relate this to
the fact that only transverse gluon polarizations appear in the factorizable components of Eq. (75). Equation (15) is
a special case of this radiator, Pq̃→q̃(p1, p2) = CF /2 s12 S̄1;1(p2, n̄).

The purely non-abelian component of the scalar splitting function is defined as the difference between the double-
gluon emission result for scalar radiators, Eq. (43), and the corresponding factorized contributions. Using Eq. (63) to
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make the origin of this splitting function in a dipole radiator manifest, we can write

P
(pnab,p)
q̃→ggq̃ (p1, p2, p3) = −CFCA

4
s2123

[
S(nab)
3;3 (p1, p2; n̄) + S(ab)

3;3 (p1, p2) + 2S(ab)
3,3;3(p1, p2; n̄)

+ S(ab)
3,3;3,3(p1, p2; n̄) + S̄3;3(p12; n̄)

(
S2;2(p1; n̄) + S1;1(p2; n̄) − S2;3(p1; n̄) − S1;3(p2; n̄)

)
+ 2(1 − ε)Sµν

3;3(p12; n̄)Dµ(p1, p2, n̄)Dν(p1, p2, n̄)
]

+
CA

2CF
P

(ab,p)
q̃→ggq̃(p1, p2, p3) .

(77)

The explicit form of this function is given by

P
(pnab,p)
q̃→ggq̃ (p1, p2, p3) = CFCA

{(
s23
s13

− t13,2
2s13

)
(1 − z2)2

2z1z2
+

s123
s12

[
s123
s13

(
z3
z2

+
z1 − z3
1 − z3

)
− 1 − z1

z2

]
− s123

s13

[
3z3(1 − z2)

2z1z2
+

1 − z2
1 − z3

(
1 − z3

z1

)
− 2z3

(1 − z3)2

]
− s12

s13

2z3(1 − z2)

z1(1 − z3)2

+
2z3(z1 − z2)

z2(1 − z3)2
+

9z3 + z21
4z1z2

+
1 − ε

4

}
+ (1 ↔ 2) .

(78)

In analogy to the purely non-abelian component of the scalar splitting function, we have defined a purely non-abelian
component of the fermionic part of the splitting function. It is given by

⟨P (pnab,p,f)
q→ggq (p1, p2, p3)⟩ = CFCA

{
s123
2s13

[(
s123
s12

− 1 − z2
z1

)(
(1 − z3)2

z2
+

z22
1 − z3

)
(1 − ε) − 1 − z2

z2

]
+

[
z2
z1

(
1

1 − z1
+

z3
1 − z2

)
+

(
2z2
z1

+ 1

)(
1 − 3

4

s123
s12

(1 − z3)

)
− 3

4

]
(1 − ε)

+

(
s12
s13

+
t13,2
2s13

+
1

2

)
(1 − z2)2

2z1z2
+

(1 − ε)2

2

[
1 +

s12
s13

+
z1

1 − z2

(
z2

1 − z2
− s123

s13

)]
+

(
s123
s12

1 − z3
z1

+
s123
s13

1 − z2
z1

− s2123
s12s13

)(
1 − z3 −

s12
s123

)
(1 − ε)

}
+ (1 ↔ 2) .

(79)

2. Gluon initial state

Equations (45) and (46) describe the splitting of a gluon to a gluon and a quark-antiquark pair. The results
involve factorized contributions corresponding to each individual Feynman diagram in Fig. 5, plus a non-factorizable
component. For the abelian part we find

P
µν (ab)
g→gqq̄ (p1, p2, p3) =

[
CF

2
s123 P

µν
g→q(p12, p3)

(
S2;2(p1; n̄) − S2;3(p1; n̄)

)
+

s123
s12

Pµν
g→q(p12, p3)⟨P (f)

q→q(p2, p1)⟩ + (2 ↔ 3)

]
+ P

µν (ab,p)
g→gqq̄ (p1, p2, p3) + . . . .

(80)

Here and in the remainder of this section, the dots stand for terms proportional to n̄µ or n̄ν . These term vanish after
the splitting function is combined with a gluon current in the triple-collinear limit and can therefore be dropped,
see the discussion following Eq. (13). Because a new scalar color dipole is created by the g → qq̄ splitting, Eq. (81)
contains a soft singular contribution proportional to Pµν

g→q(p2, p3)S2;3(p1; n̄). The abelian pure g → gqq̄ splitting

function must in fact be interpreted as a subtracted single-gluon radiator function, similar to P
(ab,p)
q̃→ggq̃, but with a

non-trivial helicity dependence. We find

P
µν (ab,p)
g→gqq̄ (p1, p2, p3) = CFTR

{
2ε s123
s12s13

p̃µ1,23 p̃
ν
1,23 − dµν(p123, n̄)

[
(s123 − s23)2

2s12s13
(1 + ε) − z1(1 − ε)

(1 − z3)2

]
− dµν(p123, n̄)

[
s123
s12

z2
z1(1 − z2)

+
s23
s12

(
1 − z2

z1

1 + z1
1 − z2

)
− 1 − z1

z1(1 − z3)
+ 1

]
+

(
dµν(p123, n̄) −

4p̃µ12,3p̃
ν
12,3

s123

)[
s123
s12

(
z1 − z2

z1
− (1 − ε)

z1
1 − z3

)
+

s123
s13

1 − z2
z1

]}
+ (2 ↔ 3) .

(81)
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To reconstruct the components of the non-abelian splitting function, we first note that the non-abelian splitting
function itself has no leading or sub-leading singularities associated with the 1 ∥ 2 or 1 ∥ 3 collinear limits. This is a
consequence of color coherence. The 2 ∥ 3 collinear limit projects Eq. (46) onto the product of a gluon emission term,
times a spin-correlated decay to a quark-antiquark pair. Schematically,

P
µν (nab)
g→gqq̄ (p1, p2, p3) =

s123
s23

Pµν,αβ
g→g,(s)(p1, p23)Pg→q,αβ(p2, p3) + remainder , (82)

where Pµν,αβ
g→g,(s)(p1, p23) is the symmetric part of the off-shell gluon splitting function, defined in Eq. (24). This gives

the final expression for the assembly of the g → gqq̄ splitting function

P
µν (nab)
g→gqq̄ (p1, p2, p3) =

CA

2

s2123
s23

[
Sαβ
1;1(p23)Pg→q,αβ(p2, p3)dµν(p123, n̄) + S23;23(p1; n̄)Pµν

g→q(p2, p3)
]

+
CA

2

s2123
s23

2(1 − ε)Dµ(p1, p23, n̄)Dν(p1, p23, n̄) ⟨Pg→q(p2, p3)⟩

+
CA

4
s123

[
Pµν
g→q(p12, p3) + Pµν

g→q(p2, p13)
]
S2;3(p1; n̄)

− CA

2CF
P

µν (ab,p)
g→gqq̄ (p1, p2, p3) + P

µν (pnab,p)
g→gqq̄ (p1, p2, p3) + . . . .

(83)

The purely non-abelian component is given by

P
µν (pnab,p)
g→gqq̄ (p1, p2, p3) =

CATR

2

{
− dµν(p123, n̄) (1 − ε)

(
s123
s12

z1
1 − z3

− s13
s12

− z1
(1 − z3)2

)
− dµν(p123, n̄)

[
1 − 2z1

z1

(
s123
s12

1 − z3
1 − z1

+
s123
s23

− s2123
s12s23

z2
1 − z1

)
− 2

z1
− 2z2

z1(1 − z3)
+ 1

]
+

2(p̃µ2,13p̃
ν
3,12 + p̃µ3,12p̃

ν
2,13)

s23

s123
s12

[
2z2
z1

z3 − z1
1 − z1

+ 1 − ε

]
+

4p̃µ1,23p̃
ν
1,23

s23

[
2z2z3

(1 − z1)2
− (1 − ε)

]
−

4p̃µ3,12p̃
ν
3,12

s23

[
2z2
z1

(
s123
s12

z2
1 − z1

− s23
s12

)
− (1 − ε)

(
s123
s13

+
s23
s12

z1
1 − z3

)]
− 2

z1

4p̃µ2,3p̃
ν
2,3

s23

}
+ (2 ↔ 3) .

(84)

This expression is regular in the single-soft gluon limit, as well as in all double-collinear limits, see Sec. III D 3.
Equation (47) describes the splitting of a gluon to three gluons. The result involves factorized contributions

corresponding to each Feynman diagram containing a propagator, plus a non-factorizable component. To reconstruct
the splitting function, we first note that only one transverse projector is needed, while all remaining terms can be
inferred from the symmetry. We obtain

Pµν
g→ggg(p1, p2, p3) =

[
1

2

s123
s12

Pµν,αβ
g→g (p3, p12)Pg→g,αβ(p1, p2) +

C2
A

4C2
F

P
(ab,p)
q̃→ggq̃(p1, p2, p3)dµν(p123, n̄)

+
CA

2CF
P

(pnab,p)
q̃→ggq̃ (p1, p2, p3)dµν(p123, n̄) + (5 permutations)

]
+ remainder .

(85)

As in the case of the abelian and non-abelian q → ggq splitting functions, we need to account for the fact that the full
single-gluon dipole radiation pattern includes interference terms which appear explicitly in the three-parton splitting
functions. Color coherence dictates that this overlap must factorize into the gluon splitting tensor and a single-gluon
dipole radiator, while Bose symmetry requires that it appears in all permutations. The g → ggg splitting function
can therefore be assembled as

Pµν
g→ggg(p1, p2, p3) =

{
CA

4
s123

[
s123
s12

S12;12(p3; n̄)Pµν
g→g(p1, p2)

+

(
s123
s12

Sαβ
3;3(p12)Pg→g,αβ(p1, p2) − CA s123 S̄3;3(p12; n̄)S2;3(p1; n̄)

)
dµν(p123, n̄)

+ 2(1 − ε)Dµ(p12, p3, n̄)Dν(p12, p3, n̄)

(
s123
s12

⟨Pg→g(p1, p2)⟩ − CA

2
s123 S2;3(p1; n̄)

)]
+

C2
A

4C2
F

P
(ab,p)
q̃→ggq̃(p1, p2, p3)dµν(p123, n̄) +

CA

2CF
P

(pnab,p)
q̃→ggq̃ (p1, p2, p3)dµν(p123, n̄)

+ (5 permutations)

}
+ Pµν (p)

g→ggg(p1, p2, p3) + . . . .
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Function Definition Scaling behavior for λ → 0

×s−2
123 p1 → λp1, p2 → λp2 p1 → λp1 p̃1,2 → λp̃1,2 p̃2,3 → λp̃2,3

Pq̃→q′q̄′q̃ Eq. (36) ∝ λ−4 – ∝ λ−2 –

⟨P (p)
q→qq̄q⟩ Eq. (69) ∝ λ−3 – ∝ λ−2 ∝ λ−2

P
(ab)
q̃→ggq̃ Eq. (41) ∝ λ−4 ∝ λ−2 – ∝ λ−2

P
(ab,p)
q̃→ggq̃ Eq. (73) ∝ λ−4 ∝ λ−1 – ∝ λ0

⟨P (ab)
q→ggq⟩ Eq. (40) ∝ λ−4 ∝ λ−2 – ∝ λ−2

⟨P (ab,p,f)
q→ggq ⟩ Eq. (74) ∝ λ−2 ∝ λ−1 – ∝ λ0

P
(nab)
q̃→ggq̃ Eq. (43) ∝ λ−4 ∝ λ−2 ∝ λ−2 –

P
(pnab,p)
q̃→ggq̃ Eq. (78) ∝ λ−4 ∝ λ−1 ∝ λ0 –

⟨P (nab)
q→ggq⟩ Eq. (42) ∝ λ−4 ∝ λ−2 ∝ λ−2 –

⟨P (pnab,p,f)
q→ggq ⟩ Eq. (79) ∝ λ−2 ∝ λ−1 ∝ λ0 –

P
µν (ab)
g→gqq̄ Eq. (45) – ∝ λ−2 – ∝ λ−2

P
µν (ab,p)
g→gqq̄ Eq. (81) – ∝ λ−1 – ∝ λ0

P
µν (nab)
g→gqq̄ Eq. (46) ∝ λ−4 ∝ λ−2 – ∝ λ−2

P
µν (pnab,p)
g→gqq̄ Eq. (84) ∝ λ−3 ∝ λ−1 – ∝ λ0

Pµν
g→ggg Eq. (47) ∝ λ−4 ∝ λ−2 ∝ λ−2

P
µν (p)
g→ggg Eq. (87) ∝ λ−3 ∝ λ−1 ∝ λ0

TABLE I. Scaling behavior of the tree-level splitting functions and their pure components. See the main text for details.

(86)

The relative prefactors of the abelian and pure non-abelian pure splitting functions, P
(ab,p)
q̃→ggq̃ and P

(pnab,p)
q̃→ggq̃ , are due

to the color structure of the scalar multipole radiator in the octet case, cf. Sec. III C, and the remainder function is
defined as

Pµν (p)
g→ggg(p1, p2, p3) = C2

A

{
− dµν(p123, n̄)

[
s123
s12

z2
1 − z1

+
s2123
s12s13

(
1 − z22 − z23

2(1 − z2)(1 − z3)
− 1

)
+

4z3
z1z2

]
+ (1 − ε)

4p̃µ12,3p̃
ν
12,3

s123

[
s2123
s12s13

(
z1
z2

− z1
1 − z2

− 1

2

)
+

s123
2s13

1 − z2
z1

− s123
s12

(
3(1 − z3)2

4z1z2
+

z1z2
(1 − z3)2

− 2

)]
+ (1 − ε)

p̃µ12,3p̃
ν
2,13 + p̃µ2,13p̃

ν
12,3

s123

s2123
s12s13

(
3 − 2z2(1 − z2)

z3(1 − z3)

)}
+

CA

z3
Pµν
g→g(p1, p2) + (5 permutations) .

(87)

3. Singularity structure of the remainder functions

Here we summarize the singularity structure of the various three-parton splitting functions introduced in Secs. III B
and III D. The kinematical limits are taken according to Ref. [21] and are parametrized in terms of a scaling parameter
λ. In the limit where particle i becomes soft, λ enters the computation as pi → λpi. In the limit where particles i and
j both become soft, λ enters the computation as pi → λpi and pj → λpj . In the limit where particles i and j become
collinear, λ enters the computation as p̃i,j → λp̃i,j . The results are given in Tab. I. A few comments are in order

• The function ⟨P (p)
q→qq̄q⟩ has a leading pole in the double-collinear limits because it constitutes a new type of

interference term for which no unique Born splitting function exists at the next lower order.
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• All other pure splitting functions are sub-leading in the single soft limits, and sub-sub-leading in the double-
collinear limits. This is achieved by consistently subtracting the single-soft and double-collinear enhanced
components, including spin correlations. We emphasize that the subtraction must be performed in the same
axial gauge that has been used to determine the splitting functions, in order to avoid remainders which would
create spurious singularities that cannot be removed systematically.

• The functions P
(ab,p)
q̃→ggq̃ and P

(pnab,p)
q̃→ggq̃ have leading poles in the double-soft limit. By means of Eqs. (73) and (77),

these two splitting functions are identified as scalar radiators rather than genuine splitting functions. The
double-soft singularities arise from interferences in the two-gluon emission pattern, which occur for the first
time in the computation of the three-parton final state.

• All other pure splitting functions are sub-leading in the double-soft limit. As in the single-gluon radiator case,
it is important that the scalar components are subtracted using the same gauge that was used to compute the
full splitting function. In particular, using Eqs. (63) with radiator functions in covariant gauge would lead to
an inconsistent result that contains spurious sub-leading poles.

IV. ONE-LOOP EXPRESSIONS

The one-to-two parton splitting functions at one loop have been discussed and computed in multiple ways [58,
60, 61, 81–84], and their soft limits have been analyzed in great detail [58, 61, 85]. In this section we derive a
composition of the corresponding splitting amplitudes in terms of scalar and spin-dependent components, as needed
for a correspondence with the treatment of the tree-level splitting functions in Sec. III B. We will also derive a
generalization of the one-loop soft current in [22] and discuss its relation to the one-loop splitting amplitudes.

A. One-to-two splittings

The calculation is performed using the techniques of Ref. [58, 59]. As in the tree-level case, we make use of
the conventional dimensional regularization scheme in D = 4 − 2ε dimensions. Taking gauge invariance of on-
shell amplitudes as a guiding principle, we evaluate t-channel gluon propagators in Feynman gauge, while s-channel
gluon propagators are in light-like axial gauge. The calculation of one-loop splitting amplitudes was performed
in Form [86–88], with all standard and light-cone integrals cross-checked against the literature with the help of
Mathematica [89]. The reduction of tensor integrals was carried out using a dedicated implementation of the
Passarino-Veltman scheme [90] using the FeynCalc [91–93] package. All scalar and tensor integrals needed for the
computation are listed in App. B. Following the notation of [58], we express the one-loop splitting amplitudes in terms
of the basis functions

f1(z) =
2cΓ
ε2

[
− Γ(1 − ε)Γ(1 + ε)

1

z

(
1 − z

z

)ε

− 1

z
+

(1 − z)ε

z
2F1(ε, ε, 1 + ε, z)

]
, (88)

f2 = −cΓ
ε2

, (89)

where

cΓ = (4π)ε
Γ(1 + ε)Γ2(1 − ε)

Γ(1 − 2ε)
. (90)

Note that, in contrast to [58], we have chosen to pull out a factor of 1/(4π)2 from the definition of cΓ.
Unlike the tree-level 1 → 2 splittings considered earlier, where it was important to track the momentum fractions

z1 and z2 in order to use them as building blocks for 1 → 3 splitting functions, in this section we simply identify
z1 ≡ z and z2 ≡ 1 − z.

1. Quark initial state

The q → qg splitting amplitude at one-loop order is determined from the diagrams shown in Fig. 10. It has been
shown that due to the gauge invariance of the sum of cut diagrams, any t-channel gluon propagators can be evaluated
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(a)

p2

p1
(b)

p2

p1
(c)

p2

p1

FIG. 10. Feynman diagrams leading to the 1 → 2 quark splitting function at one loop discussed in Sec. IVA1.

in Feynman gauge [58, 59], which substantially simplifies the calculation. For future reference, we introduce the
tree-level quark-splitting amplitude,

P(0)
q→qg(p1, p2) = gsT

a
ij ū(p1)/ε∗(p2)/p12u(n) . (91)

Using the results of App. B, the integration of the abelian contribution in Fig. 10(a) yields

P(1),a
q→qg(p1, p2) =

g2s
16π2

(
CF − CA

2

)(
− µ2

s12

)ε [
zf1(z) +

(
2

1 − 2ε
− ε

)
f2

]
P(0)
q→qg(p1, p2)

− g3s
16π2

T a
ij

(
CF − CA

2

) (
− µ2

s12

)ε
2

s12

ε2

1 − 2ε
f2 ū(p1)/p2/p12u(n)(p1ε

∗(p2)) .

(92)

The non-abelian contribution in Fig. 10(b) is given by

P(1),b
q→qg(p1, p2) =

g2s
16π2

CA

2

(
− µ2

s12

)ε [
(1 − z)f1(1 − z) +

4 − 5ε

1 − 2ε
f2

]
P(0)
q→qg(p1, p2)

+
g3s

16π2
T a
ij

CA

2

(
− µ2

s12

)ε
2

s12

ε2

1 − 2ε
f2 ū(p1)/p2/p12u(n)(p1ε

∗(p2)) .

(93)

The self-energy in Fig. 10(c) yields

P(1),c
q→qg(p1, p2) = − g2s

16π2
CF

(
− µ2

s12

)ε
(4 − ε)(1 − ε)

1 − 2ε
f2 P(0)

q→qg(p1, p2) . (94)

The complete splitting amplitude is given by the sum of the above terms and reads [58, 61]

P(1)
q→qg(p1, p2) =

g2s
16π2

CA

2

(
− µ2

s12

)ε [
(1 − z)f1(1 − z) − 1

N2
C

(
zf1(z) − 2f2

)]
P(0)
q→qg(p1, p2)

− g3s
16π2

T a
ij

(
NC

2
+

1

2NC

)(
− µ2

s12

)ε [
ū(p1)/ε∗(p2)/p12u(n) − 2

s12
ū(p1)/p2/p12u(n)(p1ε

∗(p2))

]
ε2

1 − 2ε
f2 .

(95)

The scalar one-loop splitting amplitude corresponding to the q → qg case is determined from the three diagrams in
Fig. 10 and the bubble-type diagrams involving seagull vertices. However, the latter vanish in light-like axial gauge.
Upon integration of the loop momentum, the abelian contribution corresponding to the scalar analogue of Fig. 10(a)
is given by

P(1),a
q̃→q̃g(p1, p2) =

g2s
16π2

(
CF − CA

2

)(
− µ2

s12

)ε [
zf1(z) +

2

1 − 2ε
f2

]
P(0)
q̃→q̃g(p1, p2) , (96)

where we have introduced the tree-level (anti-)triplet scalar amplitude

P(0)
q̃→q̃g(p1, p2) = gsT

a
ij

(
2pµ1ε

∗
µ(p2)

)
. (97)

The non-abelian contribution, corresponding to the scalar version of Fig. 10(b), reads

P(1),b
q̃→q̃g(p1, p2) =

g2s
16π2

CA

2

(
− µ2

s12

)ε [
(1 − z)f1(1 − z) +

4(1 − ε)

1 − 2ε
f2

]
P(0)
q̃→q̃g(p1, p2) , (98)
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p2

p1
(c)

p2

p1
(d)

p2

p1

FIG. 11. Feynman diagrams leading to the 1 → 2 gluon-to-quark splitting function at one loop discussed in Sec. IVA2.

while the scalar counterpart of the self-energy in Fig. 10(c) yields

P(1),c
q̃→q̃g(p1, p2) = − g2s

16π2
CF

(
− µ2

s12

)ε
4(1 − ε)

1 − 2ε
f2 P(0)

q̃→q̃g(p1, p2) . (99)

Combining the three contributions gives the (anti-)triplet scalar one-loop splitting amplitude

P(1)
q̃→q̃g(p1, p2) =

g2s
16π2

CA

2

(
− µ2

s12

)ε [
(1 − z)f1(1 − z) − 1

N2
C

(
zf1(z) − 2f2

)]
P(0)
q̃→q̃g(p1, p2) . (100)

We note that this result has the same singularity structure as P(1)
q→qg, given by the first line of Eq. (95).

2. Gluon initial state

There are two one-to-two splittings initiated by a gluon, g → qq̄ and g → gg. The calculation of the corresponding
splitting functions is again performed in light-like axial gauge, as this gauge choice reflects the physical degrees of
freedom in the gluon propagators. As before, due to the gauge invariance of the on-shell amplitude arising from the
sum of cut diagrams, any t-channel gluon propagator can be evaluated in Feynman gauge [58, 59].

The one-loop g → qq̄ splitting function is determined by the four diagrams in Fig. 11. In diagrams (a) and (c),
the s-channel gluon loop momenta are labeled by k and p1 + p2 − k, in diagrams (b) and (d) the same denote the
quark and anti-quark loop momenta. Integrands involving two light-cone denominators are rewritten using the partial
fractioning,

1

(kn)((p1 + p2 − k)n)
=

1

n(p1 + p2)

(
1

kn
+

1

(p1 + p2 − k)n

)
, (101)

and a subsequent shift of the loop momentum k → −k + p1 + p2 in the second term. This allows us to express all
amplitudes in terms of the loop integrals in App. B.

For the triangle contributions in Figs. 11(a) and 11(b), integration of the loop momentum leads to

P(1),a
g→qq̄(p1, p2) =

g2s
16π2

CA

(
− µ2

s12

)ε [
zf1(z) + (1 − z)f1(1 − z) +

4 − 5ε

1 − 2ε
f2

]
P(0)
g→qq̄(p1, p2) , (102)

P(1),b
g→qq̄(p1, p2) = − g2s

16π2
(CA − 2CF )

(
− µ2

s12

)ε (
2

1 − 2ε
− ε

)
f2 P(0)

g→qq̄(p1, p2) , (103)

with the tree-level gluon-to-quark splitting amplitude

P(0)
g→qq̄(p1, p2) = gsT

a
ij ū(p2)/ε(p12)v(p1) . (104)

The vacuum polarization diagrams in Fig. 11(c) and 11(d) are given by

P(1),c
g→qq̄(p1, p2) = − g2s

16π2
CA

(
− µ2

s12

)ε
6(1 − ε)(4 − 3ε)

(1 − 2ε)(3 − 2ε)
f2 Pg→qq̄(p1, p2) , (105)

P(1),d
g→qq̄(p1, p2) =

g2s
16π2

TRnf

(
− µ2

s12

)ε
4(1 − ε)ε

(1 − 2ε)(3 − 2ε)
f2 P(0)

g→qq̄(p1, p2) . (106)
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FIG. 12. Feynman diagrams leading to the 1 → 2 gluon-to-gluon splitting function at one loop discussed in Sec. IVA2.

The full splitting function is given by the sum of the terms above [58, 61],

P(1)
g→qq̄(p1, p2;n) =

g2s
16π2

(
− µ2

s12

)ε
[
CA

(
zf1(z) + (1 − z)f1(1 − z) −

(
2 +

3(2 − ε)

(1 − 2ε)(3 − 2ε)

)
f2

)

− 1

NC

(
2

1 − 2ε
− ε

)
f2 + TRnf

4(1 − ε)ε

(1 − 2ε)(3 − 2ε)
f2

]
P(0)
g→qq̄(p1, p2) .

(107)

The diagrams leading to the one-loop g → gg splitting amplitude are shown in Fig. 12. The additional bubble-like
amplitude involving the four-gluon vertex vanishes in light-like axial gauge and is not shown. In diagrams (a) and
(c), the s-channel gluon loop momenta are again denoted by k and p1 + p2 − k, whereas these label the s-channel
quark-loop momenta in diagram (b) and (d). The tree-level splitting amplitude is given by

P(0)
g→gg(p1, p2) = 2gsf

abc [ε∗(p1) · ε∗(p2)ε(p12) · p2 + ε(p12) · ε∗(p1)ε∗(p2) · p1 − ε(p12) · ε∗(p2)ε∗(p1) · p2] . (108)

After integrating over the loop momentum, the triangle diagrams Fig. 12(a) and Fig. 12(b) yield

P(1),a
g→gg(p1, p2;n) =

g2s
16π2

CA

2

(
− µ2

s12

)ε [(
zf1(z) + (1 − z)f1(1 − z)

+

(
6(1 − ε)(4 − 3ε)

(1 − 2ε)(3 − 2ε)
− 2

)
f2

)
P(0)
g→gg(p1, p2)

+ gsf
abc 2ε2

(1 − 2ε)(3 − 2ε)
f2

(
ε∗(p1) · ε∗(p2) − 2ε∗(p2) · p1ε∗(p1) · p2

s12

)
ε(p12) · (p1 − p2)

]
,

(109)

P(1),b
g→gg(p1, p2;n) =

g2s
16π2

TRnf

(
− µ2

s12

)ε
[
− 2(1 − ε)ε

(1 − 2ε)(3 − 2ε)
f2 P(0)

g→gg(p1, p2)

− gsf
abc ε2

(1 − ε)(1 − 2ε)(3 − 2ε)
f2

(
ε∗(p1) · ε∗(p2) − 2ε∗(p2) · p1 ε∗(p1) · p2

s12

)
ε(p12) · (p1 − p2)

]
.

(110)

The two vacuum-polarization diagrams Fig. 12(c) and 12(d) read

P(1),c
g→gg(p1, p2;n) = − g2s

16π2

CA

2

(
− µ2

s12

)ε
6(1 − ε)(4 − 3ε)

(1 − 2ε)(3 − 2ε)
f2 P(0)

g→gg(p1, p2) , (111)

P(1),d
g→gg(p1, p2;n) =

g2s
16π2

TRnf

(
− µ2

s12

)ε
2(1 − ε)ε

(1 − 2ε)(3 − 2ε)
f2

1

2
P(0)
g→gg(p1, p2) . (112)

The complete splitting amplitude is given by the sum of the above terms and reads [58, 61]

P(1)
g→gg(p1, p2) =

g2s
16π2

CA

2

(
− µ2

s12

)ε [ (
zf1(z) + (1 − z)f1(1 − z) − 2f2

)
P(0)
g→gg(p1, p2)

+ gsf
abc

(
1 − TRnf

NC

1

1 − ε

)
2ε2

(1 − 2ε)(3 − 2ε)
f2

×
(
ε∗(p1) · ε∗(p2) − 2ε∗(p2) · p1 ε∗(p1) · p2

s12

)
ε(p12) · (p1 − p2)

]
.

(113)

In order to extract the scalar component of the g → gg splitting amplitude, we decompose the triple-gluon vertex
according to Eq. (5). For diagram 12(a), the scalar can be routed in two ways, which correspond to the fermion flow of
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Fig. 10(a) and (b). Their contributions agree with Eqs. (96) and (98) up to color factors. Diagram 12(c) also gives two
contributions, corresponding to routing the scalar piece on each propagator of the loop. These are trivially identical
and the sum agrees with Eq. (99) up to color factors. Diagrams 12(b) and 12(d) do not contribute, as they do not
contain triple-gluon vertices linking the initial- and final-state gluons. The scalar decomposition of the amplitudes
corresponding to Fig.12 can therefore be identified as

P(1,sc)
g→gg(p1, p2;n) =

g3s
16π2

fabcCA

(
− µ2

s12

)ε [
zf1(z) + (1 − z)f1(1 − z) − 2f2

]
× (ε(p12) · ε∗(p1) ε∗(p2) · p1 − ε(p12) · ε∗(p2) ε∗(p1) · p2) .

(114)

As expected this reproduces the pole structure of the full splitting function, P(1)
g→gg, i.e., the first line of Equation (113).

Accounting for the symmetry of the two-gluon final state (see Eq. (5) and Fig. 1(b)), we can read off the one-loop
splitting function for a color adjoint scalar,

P(1,sc)
g→g (p1, p2;n) =

g3s
16π2

fabcCA

2

(
− µ2

s12

)ε [
zf1(z) + (1 − z)f1(1 − z) − 2f2

]
2pµ1ε

∗
µ(p2) . (115)

B. Scalar multipoles

The starting point for the computation of the one-loop scalar radiation pattern is an extension of the decomposition
of the soft one-loop amplitude in Eq. (38) of Ref. [22]. It states that, in the soft gluon limit, one can write the matrix
element as

|M(1)
soft(q, {p})⟩ = µ2εεµ(q)Jµ(q)|M(1)⟩ +

(
|M(1)

soft(q, {p})⟩ − µ2εεµ(q)Jµ(q)|M(1)({p})⟩
)
. (116)

The non-factorizable one-loop soft corrections are contained in |M(1)
soft(q, {p})⟩. They can be computed using eikonal

Feynman rules. Their explicit poles follow a dipole radiation pattern described by Catani’s infrared singularity
operators [19, 20]. The natural extension of Eq. (116) to the case of scalar radiators is therefore given by a dipole
approximation to the hard process producing the scalar particles. As the matrix elements in this approximation may
not include all Feynman diagrams, a systematic and manifestly gauge-invariant approach to the one-loop computation
is indispensable. This problem is solved by the background field method [31–36]. The technique allows to obtain
individually renormalizable n-point Greens functions that obey the naive Ward identities and are thus physically
meaningful quantities. The extension of Eq. (116) reads

|M(1)
approx(q, {p})⟩ = µ2εεµ(q)Jµ(q)|M(1)⟩ +

(
|M(1)

BGF,dip(q, {p})⟩ − µ2εεµ(q)Jµ(q)|M(1)({p})⟩
)
, (117)

where, |M(1)
BGF,dip(q, {p})⟩ consists of a sum over all dipole contributions and one-particle reducible contributions in

the background field technique. We will compute them in the following subsections, using a number of standard
methods [90, 94] and tools [86–88, 91–93, 95–98]. Due to the spin-independence of the soft-gluon limit of the one-loop
matrix element, Eq. (117) reproduces Eq. (116), but it includes additional terms at sub-leading power in the soft
scaling parameter.

We begin with a single term in the dipole approximation, where the antenna is formed by massless scalars with
momenta pi and pk and color indices i and k. They radiate a gluon of momentum q1 and color index a. All momenta
are considered outgoing. To simplify the notation, we define the invariants

s = (pi + pk)2 , t = (pi + q1)2 , u = (pk + q1)2 , and Q2 = (pi + pk + q1)2 . (118)

The leading-order diagrams are shown in Fig. 7, and the leading-order dipole component of the current is defined in
Eq. (3).

1. Factorizable contributions

We first derive the factorizable one-loop corrections to the production of the scalars. The relevant diagrams are
shown in Fig. 13. The one-loop scalar integrals are listed in App. B. Diagrams of type (a) and (b) are given by the
leading-order current, times the scalar self energy, which, for a scalar of virtuality p2, is given by

Σ̂ij(p) = − g2s
16π2

CF δij 2p2 Î2
(
p2
)
. (119)
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(f )

a, q1

i, pi

k, pk
(e)

a, q1

i, pi

k, pk
(g)

a, q1

i, pi

k, pk
(h)

a, q1

i, pi

k, pk

(a)

a, q1

i, pi

k, pk
(b)

a, q1

i, pi

k, pk
(d)

a, q1

i, pi

k, pk
(c)

a, q1

i, pi

k, pk

FIG. 13. Factorizable one-loop corrections to the scalar-scalar interference.

Diagrams of type (c) are given by the leading-order current times the CA part of the vacuum polarization, which, for
a gluon of virtuality q2 is given by

Π̂ab
µν(q) = − g2s

16π2
CAδ

ab Pµν(q) q2 Î2(q2)
11 − 7ε

3 − 2ε
, where Pµν(q) = −gµν +

qµqν

q2
. (120)

Diagrams of type (d) are given by the leading-order current times the fermionic (nf part) of the vacuum polarization,
which, for a gluon of virtuality q2, is given by

Π̂ab (f)
µν (q) = − g2s

16π2
TRnfδ

ab Pµν(q) q2 Î2(q2)
4 − 4ε

3 − 2ε
. (121)

This contribution is needed as the virtual correction corresponding to Eq. (56), which is schematically shown in Fig. 8.
Diagrams of type (e), (f), (g) and (h) are given in terms of the leading-order current, times the vertex correction to
the scalar-scalar-gluon vertex, which is given by

Γ̂µ,a
S,ij(q, p, k) =

g3s
16π2

2CF T a
ij

pµ

pk

(
q2 Î2

(
q2
)
− p2 Î2

(
p2
))

, where qµ = pµ + kµ . (122)

As the vertex corrections in the background field method satisfy the naive Ward identities, their abelian contribution
cancels the self energies from diagrams of type (a) and (b), while the non-abelian component vanishes identically.
This provides the generalization of the soft-gluon result for diagrams of class A in Sec. 4.2 of Ref. [22].

In addition to the self energy, vacuum polarization and vertex correction, we obtain the factorizable one-loop
corrections in diagrams of type (c) and (e) of Fig. 14. They are quantum corrections to the production of the charged
scalars, times a leading-order current. The result for diagrams of type (c) is given by

Ih,f (Q2, t) = − g2s
16π2

T̂b
iT̂

b
k

((
2Q2 − t

)
Î2m3 (Q2, t) + Î2(Q2) − Î2(t)

)
. (123)

In the limit t → 0, the term in parentheses reduces to 2Q2 Î1m3 (Q2) + Î2(Q2), which yields the result for diagrams of
type (e).

2. Box-type contributions

To obtain a gauge invariant set of box-type diagrams, we combine the box and seagull diagrams in Fig. 14(a), (b)
and (d) and add the factorizable contributions in diagrams (c) and (e). In diagrams of type (e), the final-state gluon is
emitted off a color charged particle other than i or j, hence the result only depends on s and a leading-order current.

If (s, {p⃗ }) =
g3s

16π2
T̂b

iT̂
b
k

[
2s Î1m3 (s) + Î2(s)

] ∑
l ̸=i,k

T̂a
l

pµl
2plq1

ϵ∗µ(q1) . (124)
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(e)

a, q1

(d)

a, q1

po

k, pk

i, pi

k, pk
(a)

a, q1

i, pi

k, pk
(b)

a, q1

i, pi

k, pk
(c)

a, q1

i, pi

k, pk

i, pi

FIG. 14. Box-type diagrams contributing to the scalar-scalar interference at one loop.

We combine these terms with the factorized contribution −µ2εεµ(q)Jµ(q)|M(1)({p})⟩ in Eq. (117), which can be
derived from the hard vertex correction, Eq. (123), and the leading-order current in Eq. (3) [22]. Using the identity

2T̂a
i T̂

b
i = ifabc T̂c

i + {T̂a, T̂b}i, we separate the remainder into an abelian and a purely non-abelian part. The results
are

C(nab)(s, t, u) =
ig3s

16π2
fabc T̂b

iT̂
c
k

[
2s Î1m3 (s) + Î2(s)

](pµi
t

−
pµk
u

)
ϵ∗µ(p2) ,

C(ab)(s, t, u) =
g3s

16π2

{
T̂a, T̂b

}
i
T̂b

k

[
2s Î1m3 (s) + Î2(s)

] pµi
t
ϵ∗µ(q1) +

(pi ↔ pk
i↔ k

t↔ u

)
.

(125)

The sum of diagrams in Fig. 14 can be split into abelian and non-abelian corrections. The non-abelian part has a
dipole structure and factorizes onto the leading-order dipole matrix element. After subtracting off the non-abelian
counterterm in Eq. (125), it is given by the expression

I
(nab)
4 (s, t, u) = − ig3s

16π2
fabc T̂b

iT̂
c
k

[
Î2(Q2) − Î2(s) + 2t Î1m3 (t) + 2u Î1m3 (u)

− s t Î1m4 (s, t, u) − u s Î1m4 (u, s, t) + 2 t u Î1m4 (t, u, s)

](
pµi
t

−
pµk
u

)
ϵ∗µ(q1) .

(126)

In the soft limit, Eq. (126) reduces to a dipole contribution to the 1-loop soft current [22, 60, 61]

I
(nab)
4 (s, t, u)

q1→0→ g3s
16π2

fabc T̂b
iT̂

c
k

cΓ
ε2

4πε

sin(πε)

(
− µ2s

t u

)ε(
pµi
t

−
pµk
u

)
ϵ∗µ(q1) . (127)

For a single dipole, the color factor simplifies to −iT̂a
ik CA/2, and the result remains otherwise unchanged.

In the collinear limit, t → 0, s → z Q2 and u → (1 − z)Q2, we obtain

I
(nab)
4 (s, t, u)

t→0→ g3s
16π2

fabc T̂b
iT̂

c
k

cΓ
ε2

[
(1 − z−ε)

2 − 3ε

1 − 2ε

(
− µ2

Q2

)ε

+ 2

(
−µ2

t

)ε (
2(1 − z) 2F1(1, 1; 1 − ε; z) − z 2F1(1, 1; 1 − ε; 1 − z) + 1

)]pµi
t
ϵ∗µ(q1) ,

(128)

where the first term in the square bracket contributes a sub-leading pole due to the scale difference between the 1-loop
hard function in Eq. (123) and the counterterm in Eq. (125). A conversion to the functions defined in [58] is obtained
by using the following relation between hypergeometric functions

2F1(1, 1; 1 − ε; 1 − z) = Γ(1 − ε)Γ(1 + ε) z−1−ε(1 − z)ε +
1

z
− (1 − z)ε

z
2F1(ε, ε; 1 + ε; z) , (129)

which gives f1(z) = −2cΓ/ε
2
2F1(1, 1; 1− ε; 1− z). In the soft-collinear limit, z → 1, Eq. (128) simplifies to Eq. (127).

The entire non-factorizable contribution then comes from the term proportional to −2(1− z) 2F1(1, 1; 1− ε; z), which
can be written as (1 − z)f1(1 − z) ε2/cΓ. This agrees with the soft limit of Eqs. (4.2) and (4.18) in [58], up to color
factors. The collinear limit u → 0 of Eq. (126) is obtained from Eq. (128) by interchanging t and u.
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The abelian contribution is symmetric in the particle momenta and color indices, and it factorizes on the leading-
order current. After subtracting off the abelian counterterm in Eq. (125), we obtain

I
(ab)
4 (s, t, u) =

g3s
16π2

{
T̂b, T̂a

}
i
T̂b

k u− T̂b
i

{
T̂b, T̂a

}
k
t

u + t

[
Î2(Q2) − Î2(s)

](pµi
t

−
pµk
u

)
ϵ∗µ(q1)

+
g3s

16π2

{
T̂a, T̂b

}
i
T̂b

k

[
2Q2 Î1m3 (Q2) − 2s Î1m3 (s) − 2t Î1m3 (t) + s t Î1m4 (s, t, u)

](
pµi
t

−
pµk
u

)
ϵ∗µ(q1)

− g3s
16π2

T̂b
i

{
T̂a, T̂b

}
k

[
2Q2 Î2m3 (Q2) − 2s Î1m3 (s) − 2u Î1m3 (u) + u s Î1m4 (u, s, t)

](
pµi
t

−
pµk
u

)
ϵ∗µ(q1) .

(130)

In the soft limit, Eq. (130) vanishes, in agreement with the non-abelian structure of the soft-gluon current at 1-loop
order [22]. In the t → 0, s → z Q2, u → (1 − z)Q2 limit, Eq. (130) gives

I
(ab)
4 (s, t, u)

t→0→ ig3s
16π2

cΓ
ε2
{
T̂a, T̂b

}
i
T̂b

k

×
[

2

(
−µ2

t

)ε (
z 2F1(1, 1; 1 − ε; 1 − z) − 1

)
+ (1 − z−ε)

2 − 3ε

1 − 2ε

(
− µ2

Q2

)ε ]
pµi
t
ϵ∗µ(q1) .

(131)

Again, this can be converted to the conventions used in [58] by means of Eq. (129).

3. Other contributions

In scalar QCD, there are also corrections to the scalar-scalar interference, which involve an s-channel gluon decaying
into the two final-state scalars. These corrections factorize on the two-gluon production process and are individually
gauge invariant. They do not appear in a spin decomposition of the one-loop splitting amplitudes. The bubble-type
corrections to a color conserving hard function are individually gauge invariant as well and vanish identically. We
therefore find that Eqs. (120), (121), (126) and (130) are the only relevant corrections to the dipole radiators at
one-loop level.

C. Composition of one-loop splitting functions

In order to match the splitting functions derived in Sec. IV A onto the scalar radiators in Sec. IV B, we can use the
expressions for a dipole and assume color conservation. The abelian and non-abelian one-loop scalar currents in the
collinear limit are given by Eq. (128) and (131). After subtracting the contributions due to the hard vertex correction,
and the counterterms in Eq. (125), we find

I4,f (s, t, u)
t→0→ g3s

16π2
CA T a

ik

[
(1 − z) f1(1 − z) − 1

N2
C

(
z f1(z) − 2f2

)](
−µ2

t

)ε
pµi
t
ϵ∗µ(q1) , (132)

for color triplet scalars, and

I4,a(s, t, u)
t→0→ g3s

16π2
CA F a

ik

[
(1 − z) f1(1 − z) + z f1(z) − 2f2

](
−µ2

t

)ε
pµi
t
ϵ∗µ(q1) , (133)

for color octet scalars. These correspond to the scalar components of Eqs. (95) and (113), which are given in Eqs. (100)
and (115) respectively. In particular, we find the following relation which makes the correspondence between the
collinear limit of the multipole radiator and the splitting amplitude in the axial gauge manifest [59].

lim
t→0

I4,f
(
zQ2, t, (1 − z)Q2

)
=

1

t
P(1)
q̃→q̃g(pi, q1) ,

lim
t→0

I4,a
(
zQ2, t, (1 − z)Q2

)
=

1

t
P(1),sc
g→gg(pi, q1) .

(134)
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1. Quark initial state

The full one-loop quark splitting function is determined by the product of Eq. (95) and the tree-level quark splitting
amplitude in Eq. (91), in analogy to Eq. (14),

P (1) ss′

q→q = 2Re

{
δss

′ ∑
pol

P(1)
q→qg(p1, p2)P(0) ∗

q→qg(p1, p2)

}(
16π2

g4s

)
. (135)

The spin-averaged unrenormalized one-loop quark splitting function therefore reads

⟨P (1)
q→q(p1, p2)⟩ = P

(1)
q̃→q̃(p1, p2) + ⟨P (1,p)

q→q (p1, p2)⟩ , (136)

where the scalar one-loop splitting function is given by the product of Eq. (100) and a tree-level splitting amplitude,
c.f. Eq. (15) (note that p21 = p22 = 0):

P
(1)
q̃→q̃(p1, p2) = CA

(
− µ2

s12

)ε [
(1 − z)f1(1 − z) − 1

N2
C

(zf1(z) − 2f2))

]
Pq̃→q̃(p1, p2) . (137)

The spin-dependent remainder is given by

⟨P (1,p)
q→q (p1, p2)⟩ = + CA

(
− µ2

s12

)ε [
(1 − z)f1(1 − z) − 1

N2
C

(zf1(z) − 2f2))

]
⟨P (f)

q→q(p1, p2)⟩

− CA

(
1 +

1

N2
C

) (
− µ2

s12

)ε
ε2

1 − 2ε
f2 ⟨P (f,1)

q→q (p1, p2)⟩ ,
(138)

which consists of two terms, one proportional to the purely fermionic tree-level contribution of the tree-level splitting
function given in Eq. (15) and a second, new spin structure first appearing at one loop,

⟨P (f,1)
q→q (p1, p2)⟩ = ⟨Pq→q(p1, p2)⟩ − CF

(1 + z)z

1 − z
= CF

(
1 − ε(1 − z)

)
. (139)

Hence, only the first term in the one-loop quark splitting function accounts for the semi-classical radiation pattern. As
expected, this includes the leading contribution in terms of combined explicit 1/ε, and implicit 1/(1− z) singularities.
All other terms constitute the purely fermionic contribution.

2. Gluon initial state

The full one-loop gluon splitting tensors are determined from the polarization sum over the product of a one-loop
splitting amplitude with the respective tree-level amplitude, in analogy to the tree-level case discussed in Eq. (18),

P
(1)µν
g→X (p1, p2) = 2Re

{∑
pol

(
ε∗µ(p12)P(1)

g→X(p1, p2)
)(
P(0) ∗
g→X(p1, p2)εν(p12)

)}(16π2

g4s

)
. (140)

Averaging over the polarizations of the initial-state gluon in the polarization sum over the product of Eq. (113) with
the tree-level splitting amplitude in Eq. (108) then yields the complete unrenormalized spin-averaged gluon-to-gluon
splitting function,

⟨P (1)
g→g(p1, p2)⟩ = P (1,sc)

g→g (p1, p2) + P (1,sc)
g→g (p2, p1) + ⟨P (1,p)

g→g (p1, p2)⟩ , (141)

where the adjoint scalar and vector tree-level splitting functions are defined in Eq. (33). The adjoint scalar one-loop
splitting function is given by the product of Eq. (115) and the tree-level adjoint scalar splitting amplitude as,

P (1,sc)
g→g (p1, p2) = CA

(
− µ2

s12

)ε [
(1 − z)f1(1 − z) + zf1(z) − 2f2)

]
P (sc)
g→g(p1, p2) . (142)

The remainder function is given by

⟨P (1,p)
g→g (p1, p2)⟩ = CA

(
− µ2

s12

)ε [
(1 − z)f1(1 − z) + zf1(z) − 2f2

]
⟨P (v)

g→g(p1, p2)⟩

+

(
CA − TRnf

1 − ε

) (
− µ2

s12

)ε
2ε2

(1 − 2ε)(3 − 2ε)
f2 ⟨P (v,1)

g→g (p1, p2) ,

(143)
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Function Definition Scaling behavior for λ → 0

×s−1
12 p̃2 → λp̃2 p̃1 → λp̃1

P
(1)
q̃→q̃ Eq. (137) ∝ λ−2−2ε/ε2 ∝ λ−ε/ε2

P
(1,sc)
g→g Eq. (142) ∝ λ−2−2ε/ε2 ∝ λ−2ε/ε2

⟨P (1)
q→q⟩ Eq. (136) ∝ λ−2−2ε/ε2 ∝ λ−1−ε/ε2

⟨P (1,p)
q→q ⟩ Eq. (138) ∝ λ−2ε/ε2 ∝ λ−1−ε/ε2

⟨P (1)
g→g⟩ Eq. (141) ∝ λ−2−2ε/ε2

⟨P (1,p)
g→g ⟩ Eq. (143) ∝ λ−2ε/ε2

⟨P (1)
g→q⟩ Eq. (145) ∝ λ−1−ε/ε2

TABLE II. Limits of the various one-loop splitting functions and their pure components. See the main text for details.

where we have introduced the purely spin-dependent component first appearing at one loop,

⟨P (v,1)
g→g (p1, p2)⟩ = −CA

1 − 2εz(1 − z)

1 − ε
. (144)

The complete spin-averaged one-loop gluon-to-quark splitting tensor is determined from averaging over the polar-
izations of the initial-state gluon in the polarization sum of the product of Eq. (107) with the tree-level splitting
amplitude of Eq. (104). It fully factorizes onto the tree-level splitting function in Eq. (22) and does not contain a
scalar contribution. It reads

⟨P (1)
g→q(p1, p2)⟩ = CA

(
− µ2

s12

)ε
[(

zf1(z) + (1 − z)f1(1 − z) −
(

2 +
3(2 − ε)

(1 − 2ε)(3 − 2ε)

)
f2

)

− 1

N2
C

(
2

1 − 2ε
− ε

)
f2 +

TRnf

NC

4(1 − ε)ε

(1 − 2ε)(3 − 2ε)
f2

]
⟨Pg→q(p1, p2)⟩ .

(145)

3. Singularity structure of the remainder functions

Here we summarize the singularity structure of the various one-loop splitting functions introduced in Secs. IV A
and IV C. The kinematical limit where particle i becomes soft is parametrized as pi → λpi. We can use the relation

2F1(1, 1; 1 − ε; z) = (1 − z)−1−ε
2F1(−ε,−ε; 1 − ε; z) = (1 − z)−1−ε

(
1 + ε2Li2(z) + O(ε3)

)
(146)

to convert the hypergeometric functions in f1 to powers of z and 1 − z, times a remainder that is finite for all values
of z and does not contribute sub-leading poles. This allows the dominant scaling behavior in the soft limit to be
extracted. The results are given in Tab. II. Here we identify only the leading singular structure in terms of combined
explicit and implicit poles.

V. OUTLOOK

In this work we re-examined the tree-level and one-loop splitting functions used to capture the infrared singular
behavior of QCD scattering amplitudes in next-to-to-next-to-leading order QCD calculations and next-to-next-to-
leading logarithmic resummation. We made use of the fact that variants of scalar QCD are minimal extensions of the
semi-classical approximation, and avoided any kinematical approximations. We demonstrated that all QCD splitting
functions can be obtained from dipole radiator functions computed in scalar QCD, combined with spin-dependent
remainders that exist only in splitting configurations and have (sub-)sub-leading singularities in the kinematical limits.
Using the background field method to construct a dipole approximation to scalar multipole radiators, we have achieved
the same decomposition at one loop order.

The significance of this result is twofold. On the one hand, we are able to show that neither the soft nor the collinear
kinematical limit is needed in order to derive universally applicable subtraction terms for higher-order calculations.
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This is ultimately due to the fact that a classical limit of the theory must exist. On the other hand, we anticipate
that the results presented here will be used to devise a subtraction or resummation scheme which does not suffer
from overlaps between soft and collinear sectors, as well as overlaps between single- and double-unresolved limits.
Such a scheme is urgently needed for example to construct a fully differential parton shower at next-to-next-to leading
logarithmic precision. For fixed-order calculations, the reorganization and classification of infrared singularities should
aid the construction of a generic subtraction scheme at NNLO precision that will have an improved convergence
compared to existing methods based on leading power approximations in the soft regions.
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Appendix A: Tree-level recursion

In this appendix, we show how the Berends-Giele recursion can be reformulated in terms of expressions for a scalar
theory, and a spin-dependent remainder. Note that this does not directly translate into a separation of scalar and
remainder components at the amplitude squared level.

1. The quark current at tree level

We begin the general discussion by deriving the structure of the quark-gluon vertex in terms of scalar and magnetic
interactions. A similar approach was presented in [99]. Here we focus in particular on a suitable formulation in terms
of building blocks for higher-order scattering matrix elements.

We use the color-dressed [68] Berends-Giele recursion [65–67] to describe an off-shell (anti-)quark of momentum pα
by a current which is obtained from the propagator times vertex for the interaction of a fermion of momentum pβ
with a gluon of momentum pγ . We sum over all partitions {β, γ} of the set of indices, α, into two disjoint subsets.4

The set of all possible partitions is denoted by P (α, 2).

Ψi(pα,±m) = i
/pα ±m

p2α −m2

∑
{β,γ}∈
P (α,2)

(−igsT
a
ijγ

µ) Ja
µ(pγ)Ψj(pβ ,±m)

=
gsT

a
ij

p2α −m2

∑
{β,γ}∈
P (α,2)

[
(pα + pβ)µJa

µ(pγ) + iσµνJa
µ(pγ)pγ,ν − γµJa

µ(pγ)(/pβ ∓m)

]
Ψj(pβ ,±m) .

(A1)

Here, Ψ is the (anti-)quark current, and Jµ is a gluon current. These currents can be either on-shell or off-shell. The
first term in the square bracket on the right-hand side describes the interaction of the gluon field with the scalar
current while the second term represents the magnetic interaction. The third term plays a special role. If Ψj(p,±m)
is an external wave function, we can use the equation of motion to show that it vanishes, i.e. (/p∓m)Ψj(p,±m) = 0.
If Ψj(p,±m) is itself an off-shell current, it is obtained as a sum of terms of the form of Eq. (A1). We can simplify
the combined expression as follows

−
∑

{β,γ}∈
P (α,2)

gsT
a
ijγ

µJa
µ(pγ) (/pβ ∓m)Ψj(pβ ,±m) = − g2sT

a
ikT

b
kj

∑
{β,γ}∈
P (α,2)

∑
{δ,ϵ}∈
P (γ,2)

γµγν Ja
µ(pδ)Jb

ν(pϵ)Ψj(pβ ,±m) .
(A2)

4 For details on the notation, see Ref. [68].
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The factor γµγν on the right-hand side of this equation can be decomposed into two types of four-point vertices, by
using the relation γµγν = gµν − iσµν . The first term gives the seagull vertex of the scalar theory for which Eq. (2)
describes the single-emission current. It is needed in order for this theory to satisfy the Ward identities. The second
term vanishes in the complete sum over partitions due to its antisymmetry. Using this methodology, we can separate
the recursive formula into a scalar piece and a spin-dependent remainder.

Ψi(pα) =
igµν

p2α −m2

∑
{β,γ}∈
P (α,2)

[
− igsT

a
ij(pβ + pα)νJ

a
µ(pγ) +

∑
{δ,ϵ}∈
OP (γ,2)

ig2s
{
T a, T b

}
ij
Ja
µ(pδ)Jb

ν(pϵ)

]
Ψj(pβ)

+
σµν

p2α −m2

∑
{β,γ}∈
P (α,2)

(−igsT
a
ij) (pβ − pα)νJ

a
µ(pγ)Ψj(pβ) .

(A3)

We have made use of the Bose symmetry in the gluon fields to rewrite the sum over unordered gluon currents in the
square brackets into a sum over ordered partitions of the set γ into two disjoint subsets. The complete set of such
partitions is denoted by OP (γ, 2). In an abelian theory, this rearrangement would induce a simple symmetry factor
in the seagull vertex, consistent with the Feynman rules of scalar QED. Note that there is no seagull vertex for the
magnetic interaction, which is a consequence of the antisymmetry of σµν .

2. The gluon current at tree level

Next we analyze the gluon current in the color-dressed Berends-Giele approach. It can be written as

Ja
µ(pα) = J̄a

µ(pα) + J̃a
µ(pα) . (A4)

where the gluon-induced contribution, J̃µ, arises from triple and quartic gluon interactions and is given by

J̃a
µ(pα) = i

dµν(pα)

p2α

∑
{β,γ}∈
OP (α,2)

(−gsf
abc)

[
gρσ(pβ − pγ)ν + gσν(2pγ + pβ)ρ − gνρ(2pβ + pγ)σ

]
Jb
ρ(pβ)Jc

σ(pγ)

+ i
dµν(pα)

p2α

∑
{β,γ}∈
OP (α,2)

∑
{δ,ϵ}∈
OP (γ,2)

ig2s

[
fabefecd

(
gντgρσ − gνσgτρ

)
+ facefedb

(
gνρgστ − gντgρσ

)
+ fadefebc

(
gνσgτρ − gνρgστ

) ]
Jb
ρ(pβ)Jc

σ(pδ)Jd
τ (pϵ) .

(A5)

By summing over all partitions and relabeling gluon momenta, we can reduce this expression to the simple form

J̃a
µ(pα) = i

dµν(pα)

p2α

∑
{β,γ}∈
P (α,2)

(−gsf
acb)

[
gνρ(2pβ + pγ)σ − 1

2
gρσ(pβ − pγ)ν

]
Jb
ρ(pβ)Jc

σ(pγ)

+ i
dµν(pα)

p2α

∑
{β,γ}∈
P (α,2)

∑
{δ,ϵ}∈
P (γ,2)

ig2sf
acefedbgνρgστ Jb

ρ(pβ)Jc
σ(pδ)Jd

τ (pϵ)

=
igστ

p2α

∑
{β,γ}∈
P (α,2)

[
− igsF

c
ab(pβ + pα)τJ

c
σ(pγ) +

∑
{δ,ϵ}∈
OP (γ,2)

ig2s
{
F c, F d

}
ab

Jc
σ(pδ)Jd

τ (pϵ)

]
(−d ρ

µ (pα))Jb
ρ(pβ)

− i
dµν(pα)

p2α

∑
{β,γ}∈
OP (α,2)

gsf
abc(pβ − pγ)ν gρσJb

ρ(pβ)Jc
σ(pγ) .

(A6)
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We have defined F c
ab = ifacb to make the radiation pattern explicit. The quark-induced contribution to the gluon

current, J̄µ, is given by

J̄a
µ(pα) = i

dµν(pα)

p2α

∑
{β,γ}∈
P (α,2)

Ψ̄i(pγ ,±m)(−igsT
a
ijγ

ν)Ψj(pβ ,±m) .
(A7)

We use the identity {/p, /n}/(2pn) = 1, with n an auxiliary vector, to rewrite this in the following form

J̄a
µ(pα) = i

dµν(pα)

p2α

∑
{β,γ}∈
P (α,2)

Ψ̄i(pγ ,±m)(−igsT
a
ij)

1

2

[
γν/pα/n + γν/n/pα

2pαn
+

/pα/nγ
ν + /n/pαγ

ν

2pαn

]
Ψj(pβ ,±m) .

(A8)

Using γµ/n + /nγµ = 2nµ, and working in an axial gauge (see the discussion in Sec. II), this expression simplifies to a
purely magnetic interaction term. The complete gluon current then reads

Ja
µ(pα, n) =

igστ

p2α

∑
{β,γ}∈
P (α,2)

[
− igsF

c
ab(pβ + pα)τJ

c
σ(pγ , n)

+
∑

{δ,ϵ}∈
OP (γ,2)

ig2s{F c, F d}ab Jc
σ(pδ, n)Jd

τ (pϵ, n)

]
(−d ρ

µ (pα, n))Jb
ρ(pβ , n)

+ i
dµν(pα, n)

p2α

∑
{β,γ}∈
P (α,2)

[
− igs

F a
bc

2
(pβ − pγ)νgρσJb

ρ(pβ , n)Jc
σ(pγ , n)

− igsT
a
ij (pβ + pγ)ρΨ̄i(pγ)

/niσρν + iσνρ/n

2(pβ + pγ)n
Ψj(pβ)

]
.

(A9)

The scalar parts of Eq. (A3) and (A9) are similar to the eikonal interaction Hamiltonians obtained, for example
in [100, 101], but they include effects of kinematical recoil, which is essential when computing higher-point splitting
functions.

Appendix B: One-loop integrals

In this section we collect the one-loop integrals required to perform the calculations in the main text. Note that we
have extracted an overall factor in Eq. (90) that differs from some of the previous literature by a factor of 1/(4π)2,
leading to the appearance of the same factor in the definitions below.

1. Scalar basis integrals

The standard scalar bubble and triangle integrals used in Sec. IV are given by [102]

Î2(s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

1

k2(k − p1 − p2)2
=

icΓ
ε(1 − 2ε)

(
− µ2

s12

)ε

= − iε

1 − 2ε

(
− µ2

s12

)ε

f2 , (B1)

Î1m3 (s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

1

k2(k − p1)2(k − p1 − p2)2
=

icΓ
ε2

1

s12

(
− µ2

s12

)ε

= − i

s12

(
− µ2

s12

)ε

f2 . (B2)

The corresponding integrals needed for the computation in light-like axial gauge are given by [58]

Ĵ2(s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

1

k2(k − p1 − p2)2(kn)
=

i

n(p1 + p2)

(
− µ2

s12

)ε

f2 , (B3)

Ĵ1(s12, z) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

1

k2(k − p1)2(k − p1 − p2)2(kn)
= − i

n(p1 + p2)s12

(
− µ2

s12

)ε

f1(z) . (B4)
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In addition, we need the two-mass triangle and one-mass box integrals [102]

Î2m3 (s, t) =
icΓ
ε2

1

s− t

[(
− µ2

s

)ε

−
(
− µ2

t

)ε ]
, (B5)

Î1m4 (s, t, u) =
2icΓ
ε2

1

s t

[(
− s + u

s t/µ2

)ε

2F1

(
− ε,−ε; 1 − ε; 1 − s

s + u

)
+

(
− t + u

s t/µ2

)ε

2F1

(
− ε,−ε; 1 − ε; 1 − t

t + u

)
−
(
− (s + u)(t + u)

s t (s + t + u)/µ2

)ε

2F1

(
− ε,−ε; 1 − ε; 1 − s t

(s + u)(t + u)

)]
.

(B6)

2. Tensor integrals

The tensor one-loop integrals needed for the computation of the splitting functions in Sec. IV A are given by [58]

Îµ2a(s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kµ

k2(k − p1 − p2)2
= − iε

2(1 − 2ε)

(
− µ2

s12

)ε

f2 (p1 + p2)µ , (B7)

Îµν2b (s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kµkν

k2(k − p1 − p2)2

=
iε

2(3 − 2ε)(1 − 2ε)

(
− µ2

s12

)ε

f2

(s12
2

gµν − (2 − ε)(p1 + p2)µ(p1 + p2)ν
)
.

(B8)

and

Îµ3a(s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kµ

k2(k − p1)2(k − p1 − p2)2
= − i

s12

(
− µ2

s12

)ε

f2

[
1 − ε

1 − 2ε
pµ1 − ε

1 − 2ε
pµ2

]
, (B9)

Îµν3b (s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kµkν

k2(k − p1)2(k − p1 − p2)2

= − i

s12

(
− µ2

s12

)ε

f2

[
s12

ε

4(1 − ε)(1 − 2ε)
gµν +

2 − ε

2(1 − 2ε)
pµ1p

ν
1

− ε

2(1 − 2ε)
pµ2p

ν
2 − ε(2 − ε)

2(1 − ε)(1 − 2ε)
(pµ1p

ν
2 + pµ2p

ν
1)

]
,

(B10)

Îκµν3c (s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kκkµkν

k2(k − p1)2(k − p1 − p2)2

= − i

s12

(
− µ2

s12

)ε

f2

[
(2 − ε)(3 − ε)

2(1 − 2ε)(3 − 2ε)
pκ1p

µ
1p

ν
1 − (2 − ε)ε

2(1 − 2ε)(3 − 2ε)
pκ2p

µ
2p

ν
2

− (3 − ε)ε

2(1 − 2ε)(3 − 2ε)
(pκ1p

µ
2p

ν
2 + pµ1p

ν
2p

κ
2 + pν1p

κ
2p

µ
2 )

− (2 − ε)(3 − ε)ε

2(1 − ε)(1 − 2ε)(3 − 2ε)
(pκ2p

µ
1p

ν
1 + pµ2p

ν
1p

κ
1 + pν2p

κ
1p

µ
1 )

+ s12
(2 − ε)ε

4(1 − ε)(1 − 2ε)(3 − 2ε)
(pκ1g

µν + pµ1g
νκ + pν1g

κµ)

+ s12
ε

4(1 − 2ε)(3 − 2ε)
(pκ2g

µν + pµ2g
νκ + pν2g

κµ)

]
.

(B11)
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The required light-cone bubble integrals read

Ĵµ
4 (s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kµ

k2(k − p1 − p2)2(kn)

=
i

n(p1 + p2)

(
− µ2

s12

)ε

f2

[
− ε

1 − 2ε
(p1 + p2)µ +

s12
2n(p1 + p2)

1

1 − 2ε
nµ

]
,

(B12)

Ĵµν
6 (s12) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kµkν

k2(k − p1 − p2)2(kn)

=
i

n(p1 + p2)

(
− µ2

s12

)ε

f2

[
s12

ε

4(1 − ε)(1 − 2ε)
gµν − ε

2(1 − 2ε)
(p1 + p2)µ(p1 + p2)ν

+

(
s12

n(p1 + p2)

)2
1

4(1 − ε)(1 − 2ε)
nµnν

− s12
n(p1 + p2)

ε

4(1 − ε)(1 − 2ε)

(
(p1 + p2)µnν + (p1 + p2)νnµ

)]
.

(B13)

The required light-cone triangle integrals are (note that there is a typo in Eq. (3.15) of [58])

Ĵµ
3 (s12, z) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kµ

k2(k − p1)2(k − p1 − p2)2(kn)

= − i

2n(p1 + p2)s12

(
− µ2

s12

)ε
[
f1(z) pµ1 +

2f2 − zf1(z)

1 − z
pµ2 − s12

2n(p1 + p2)

2f2 − f1(z)

1 − z
nµ

] (B14)

Ĵµν
5 (s12, z) = 16π2µ2ε

∫
d4−2εk

(2π)4−2ε

kµkν

k2(k − p1)2(k − p1 − p2)2(kn)

= − i

n(p1 + p2)s12

(
− µ2

s12

)ε
[
C5g g

µν + C511 p
µ
1p

ν
1 + C522 p

µ
2p

ν
2 + C512 (pµ1p

ν
2 + pν1p

µ
2 )

+ C51n (pµ1n
ν + pν1n

µ) + C52n (pµ2n
ν + pν2n

µ) + C5n n
µnν

] (B15)

with the coefficients

C5g = s12

(
z

4(1 − 2ε)(1 − z)
f1(z) − 1

2(1 − 2ε)(1 − z)
f2

)
,

C511 =
1 − ε

2(1 − 2ε)
f1(z) ,

C522 =
(1 − ε)z2

2(1 − 2ε)(1 − z)2
f1(z) − ε + (1 − 2ε)z

(1 − 2ε)(1 − z)2
f2 ,

C512 = − (1 − ε)z

2(1 − 2ε)(1 − z)
f1(z) +

1 − ε

(1 − 2ε)(1 − z)
f2 ,

C51n =
s12

2n(p1 + p2)

(
− ε

2(1 − 2ε)(1 − z)
f1(z) +

ε

(1 − 2ε)(1 − z)
f2

)
,

C52n =
s12

2n(p1 + p2)

(
− (1 − ε)z

2(1 − 2ε)(1 − z)2
f1(z) +

1 − εz

(1 − 2ε)(1 − z)2
f2

)
,

C5n =

(
s12

2n(p1 + p2)

)2(
1 − ε

2(1 − 2ε)(1 − z)2
f1(z) − 2 − ε− z

(1 − 2ε)(1 − z)2
f2

)
.

(B16)
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Appendix C: Explicitly gauge dependent parts of three-particle off-shell currents

The one-to-three gluon-to-quark splitting tensor is given by Eq. (46). Its explicitly n̄-dependent component reads

P
µν (nab,n̄)
g→gqq̄ (p1, p2, p3) =

CATR

2

s123
s23

{
p̃µ1,23n̄

ν + p̃ν1,23n̄
µ

(z2 + z3) p123n̄

[
s123
s13

z3
z1

− s23
s13

z2
1 − z1

− 1

]
−

p̃µ2,3n̄
ν + p̃ν2,3n̄

µ

(z2 + z3) p123n̄

[
2s123
s23

z3
z1

+
2s12
s23

1 − z1
z1

+
s23
s12

]
− s123

z1(1 − z1)

n̄µn̄ν

(p123n̄)2
+ (2 ↔ 3)

}
.

(C1)

The one-to-three all-gluon splitting tensor is given by Eq. (47) Its explicitly n̄-dependent component is given by

Pµν (n̄)
g→ggg(p1, p2, p3) = C2

A

{
−

p̃µ1,2n̄
ν + p̃ν1,2n̄

µ

p123n̄

1 − ε

2z3

s123 t12,3
s212

+
p̃µ1,23n̄

ν + p̃ν1,23n̄
µ

p123n̄

[
s123s12
s23s13

(
1 − 4z1(1 − z1)

2(1 − z1)(1 − z2)
+

(1 − z1)(1 − 2z1)

2z1z2
− z3(2 − 3z1)

z1(1 − z1)
+

1 − 2z1
2(1 − z1)

)
+

s123
s23z1

(
1 − 4z1(1 − z1)

2(1 − z1)(1 − z2)
+

z3(1 − 2z1)

z2
+

z1(2 − 3z1)

2(1 − z1)

)
− s123s23

s13s12

(
(1 − z3 + z2z3)(1 − 2z3)

2z2(1 − z2)(1 − z3)
− 2z1

1 − z2

)
+

s123
s13

(
1 − z2(1 − 2z2)

2z2(1 − z2)(1 − z3)
+

2 − 5z2 + 6z22
2z1z2

+
z2(3 − 2z2)

2(1 − z1)(1 − z2)
− 3 − 5z2 + 7z22

z2(1 − z2)
− 1 − 2z2

z3

)]
(C2)

− 1

z1(1 − z1)

1

z3

n̄µn̄ν

(p123n̄)2

[
s313

4s12s23

z2 + 2z1z3
1 − z3

+ s23

(
9(1 − z2) +

1 + 6z2z3
1 − z2
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