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Abstract. We present the first joint analysis of the power spectrum and bispectrum using
the Data Release 1 (DR1) of the Dark Energy Spectroscopic Instrument (DESI), focusing on
Luminous Red Galaxies (LRGs) and quasars (QSOs) across a redshift range of 0.4 ≤ z ≤ 2.1.
By combining the two- and three-point statistics, we are able to partially break the degen-
eracy between the logarithmic growth rate, f(z), and the amplitude of dark matter fluctua-
tions, σs8(z), which cannot be measured separately in analyses that only involve the power
spectrum. In comparison with the (fiducial) Planck ΛCDM cosmology we obtain f/ffid =
{0.888+0.186

−0.089, 0.977
+0.182
−0.220, 1.030

+0.368
−0.085}, σs8/σfid

s8 = {1.224+0.091
−0.133, 1.071

+0.278
−0.163, 1.000

+0.088
−0.223} respec-

tively for the three LRG redshift bins, corresponding to a cumulative 10.1% constraint on
f , and of 8.4% on σs8, including the systematic error budget. Additionally, we obtain con-
straints for the ShapeFit compressed parameters describing the isotropic scaling parameter,
αiso(z), the Alcock-Paczyński parameter, αAP(z), the combined growth of structure parameter
fσs8(z), and the combined shape parameter m(z) + n(z). Their cumulative constraints from
our joint power spectrum-bispectrum analysis are respectively σαiso = 0.9% (9% improvement
with respect to our power spectrum-only analysis); σαAP = 2.3% (no improvement with re-
spect to power spectrum-only analysis, which is expected given that the bispectrum monopole
has no significant anisotropic signal); σfσs8 = 5.1% (9% improvement); σm+n = 2.3% (11%
improvement). These results are fully consistent with the main DESI power spectrum analy-
sis, demonstrating the robustness of the DESI cosmological constraints, and compatible with
Planck ΛCDM cosmology.
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1 Introduction

Cosmology is in its precision era, with increasingly larger datasets providing us with huge
statistical power to test our cosmological models of the Universe. The Λ-Cold Dark Matter
(ΛCDM) model has proven remarkably successful in explaining observations across a broad
range of epochs. However, fundamental questions persist about the nature of the dark com-
ponent of the universe (dark matter and dark energy), which constitutes the majority of the
Universe’s energy density. In addition, several tensions, such as the Hubble tension [1], persist
between early and late Universe observations, thus suggesting that further investigation of
the possible inconsistencies of ΛCDM is necessary.

Galaxy redshift surveys have been instrumental in probing the large-scale structure (LSS)
of the Universe. Surveys such as the Sloan Digital Sky Survey (SDSS) [2], the 2-degree Field
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Galaxy Redshift Survey (2dFGRS) [3], the Baryon Oscillation Spectroscopic Survey (BOSS)
[4] and extended BOSS (eBOSS) [5] have allowed the cosmology community to, sequentially,
lay the foundations, develop the methodology, and obtain precise constraints on the baryon
acoustic oscillation (BAO) feature and the growth of structure.

The Dark Energy Spectroscopic Instrument (DESI) [6–21] builds on this legacy, target-
ing over 40 million objects, including galaxies, quasars, and Lyα absorbers, thus mapping
the cosmic web across a wide range of redshifts (z ∼ 0 to z ∼ 4). This dataset spans a
volume several times larger than previous surveys with enough signal to go beyond two-point
statistics, the primary workhorse of cosmology analyses to date. During the course of five
years of observations, DESI will cover an effective volume of Veff ∼ 50− 60Gpc.

The bispectrum, which is the natural next-order statistic, quantifies the correlations
among triplets of points (in an analogous way as the power spectrum is obtained by correla-
tions of pairs). Given that it is a higher-order statistic, the bispectrum encloses information
about the non-Gaussian features of the matter distribution, probing non-linear structure for-
mation, non-linear galaxy bias, and also potential signatures of primordial non-Gaussianities
[22–24]. Hence the bispectrum complements the power spectrum by helping to break degen-
eracies among cosmological parameters [25–43], as will be discussed in what follows.

Application to real data is however challenging and computationally intensive: the bis-
pectrum data-vector is large, with correlations between elements, its signal-to-noise is low, the
covariance matrix is non-diagonal. Additionally, the modelling of the signal and the potential
systematics is highly complex. This is why, compared to the extensive theoretical efforts,
application of the bispectrum to real data to constrain cosmology has been somewhat limited
to date, with few attempts by very few research groups [42, 44–57].

In this work, we perform the first joint power spectrum-bispectrum analysis using the
DESI Data Release 1 (DR1) [58], for both the Luminous Red Galaxy (LRG) and the quasar
(QSO) samples. These samples span across the redshift range 0.4 ≤ z ≤ 2.1, thus probing
both early and intermediate epochs of structure formation. We model the bispectrum signal
employing the GEO-FPT model, which has been calibrated and validated using a broad
range of simulations [59], while our power spectrum analysis is based on the renormalized
perturbation theory model (RPT, [60]) and resembles the one employed in the BOSS and
eBOSS analyses [61, 62]. To accurately quantify both our statistical and systematic errors,
we employ sets of realistic mock catalogues that allow us to estimate the covariance matrix
and quantify observational and theoretical systematics.

We derive constraints on cosmological parameters within the template-based ShapeFit
approach of [63]. This approach is referred to as a type of Full-Shape analyses in the DESI
papers [64], as it exploits information on the shape of the power spectrum (and bispectrum).
Other Full-Shape approaches, such as the Full Modelling (also known as direct fit) employed
in other DESI papers are not considered in this work. Within ShapeFit, the shape parameters
m and n, enclosing information about the shape of the matter power spectrum, are added
to the standard parameters of interest in template-based methods: the dilation parameters
along and across the line-of-sight, α∥, α⊥, the logarithmic growth rate of structure, f , and
the amplitude of matter fluctuations, σs8.

As already noted in [63], the shape parameters m and n are very degenerate and we
are unable to constrain them independently, thus we only constrain their combination m+n.
Analogously, in analyses only involving two-point statistics, the parameters f and σs8 have
a very strong degeneracy, which is why it is common to only consider their product, fσs8.
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However, the inclusion of the bispectrum breaks the degeneracy1 and f and σs8 can be inferred
separately [55, 59].

The structure of this paper is as follows. In Section 2 we review the main aspects of
the DESI DR1 data and mock catalogues. In Section 3 we describe our adopted modelling
and baseline choice for the power spectrum and bispectrum analysis and compare it with the
standard approach from the DESI collaboration. In Section 4 we quantify the impact of the
main sources of systematic errors. In Section 5 we present our results, which we also compare
with the official DESI full-shape power spectrum analysis of [64]. We conclude in Section 6.

2 Overview of the DESI DR1 catalogues and mocks

The DESI DR1 galaxy data [58] encompasses spectroscopic observations made by the DESI
telescope in the time period between May 14, 2021 and June 14, 2022. One of the main
improvements of the DESI telescope with respect to previous experiments is its structure into
ten ‘petals’, that in total comprise 5000 fibres, each guided by a robotic positioner. According
to observing conditions, each fibre gets assigned a target, whose light is redirected to one of
the ten spectrographs. This improvement has resulted in that the first year of observations (of
total effective volume 19.5 Gpc3) has a statistical power which surpasses that of two decades
of the Sloan telescope observations at Apache Point [65].

There are four main observed objects: Bright Galaxy Survey (BGS) [66], Luminous Red
Galaxies (LRG, divided into three redshift bins LRG1, LRG2, LRG3) [67], Emission Line
Galaxies (ELG) [68] and quasars (QSO) [69]. In all cases, the observations are divided into
the North Galactic Cap (NGC) and the South Galactic Cap (SGC). Since both regions have
been tested to be compatible, as expected, we consider the joint NGC+SGC data in all cases
in this paper, as is also done in the DESI main analyses [17, 20, 64, 70]. We use the three
LRG redshift bins, which have the most signal-to-noise [14], and the QSOs2. The ELG sample
features large imaging systematics [64, 71], which are not easily treated within our pipeline,
so we do not use these samples in this work. The details of the different samples are shown in
Table 1. The mathematical definitions used for the quoted quantities zeff, Veff in Table 1 are

zeff =

∑
i>j wiwj(zi + zj)/2∑

i>j wiwj
[62]; Veff =

∫ [
n̄(r)P (k)

1 + n̄(r)P (k)

]2
d3r [72], (2.1)

where, respectively wi, wj are the galaxy weights, and n̄ is the density of the sample.
In order to account for the effect of the survey geometry, a set of random catalogues

are produced, consisting of a Poissonian distribution covering the same survey footprint as
the data (both angular and radial), but with no structure. As it is standard practice, these
random catalogues are combined with the data, following the FKP estimator approach [73].
For both data and mocks, the power spectra and bispectra measurements are obtained with
the Rustico code3 [62], taking into account both the observational systematics weights and
the so-called FKP weights [73].4 Figure 1 shows the measurements of the power spectrum

1This is because f and the bias parameters b1, b2, all degenerate with σs8 in the power spectrum, are related
differently in the power spectrum than in the bispectrum, as is seen in Appendix A.

2We do not include the BGS sample due to its lower signal.
3https://github.com/hectorgil/Rustico
4The FKP weights ensure the minimum variance of the power spectrum at a certain chosen scale of

reference, 0.14hMpc−1, by balancing contributions between regions with different number densities.
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Tracer Redshift range Ntracer zeff P0 [(Mpch−1)3] Veff [Gpc3] Used in this work
BGS 0.1− 0.4 300,017 0.295 ∼ 9.2× 103 1.7 No
LRG1 0.4− 0.6 506,905 0.510 ∼ 8.9× 103 2.6 Yes
LRG2 0.6− 0.8 771,875 0.706 ∼ 8.9× 103 4.0 Yes
LRG3 0.8− 1.1 859,824 0.920 ∼ 8.4× 103 5.0 Yes
ELG1 0.8− 1.1 1,016,340 0.955 ∼ 2.6× 103 2.0 No
ELG2 1.1− 1.6 1,415,687 1.317 ∼ 2.9× 103 2.7 No
QSO 0.8− 2.1 856,652 1.491 ∼ 5.0× 103 1.5 Yes

Table 1. Summary of the DESI DR1 tracers main properties, including redshift ranges, tracer counts,
effective redshift zeff, power spectrum monopole amplitude at the reference scale of k = 0.14hMpc−1,
P0, and effective volume Veff. The effective redshift and volume, zeff, Veff are defined in Equation 2.1.
In this work, we do not consider the BGS nor the ELG samples, focusing only on the three LRG
redshift bins together with the QSO redshift bin.

and bispectrum multipoles of our baseline analysis (for details and motivation see Appendix
B), together with the ratio between the model best fit and the measurements.

Additionally, we adopt the blinding policy of the DESI key projects, according to which
we only analyse the data once all analysis choices (e.g., modelling, range of scales, choice of
tracers) are set and ‘frozen’. Until then, we only consider the mocks of the tracers of interest
–presented in Section 2.1 below– and the blinded data. The blinding algorithm [74] has
two components, which shift the position of the BAO peak (and thus the recovered dilation
parameters α∥, α⊥) and the growth rate parameter f respectively. Additionally, there is
a third component of the blinding in DESI, affecting the signature of the local primordial
non-Gaussianity parametrised by fnl [75]. In the context of our present analysis, where we
kept fixed the fnl term to 0 in our modelling, the fnl blinding that is part of the blinded
DR1 catalogues causes a shift in the ShapeFit m + n parameter as these two parameters
are very degenerate [76]. Refs. [74, 77] validated the blinding scheme, demonstrating how
the recovered BAO and redshift-space distortions (RSD) parameters are shifted coherently
with the expected blinding shift. This study was also extended for the power spectrum and
bispectrum RSD analysis in [78], validating this catalogue blinding scheme also for bispectrum
analyses.

2.1 Mocks

We have two main needs for using mock catalogues: 1) to assess and quantify the importance
of the various systematic errors in the analysis, and 2) to estimate the covariance matrix of
the data. Since there is a trade-off between accuracy and computational cost in producing
simulations, two distinct sets of mocks have been generated within the DESI collaboration to
address these two separate needs.

- AbacusSummit: A suite of high-resolution N-body gravity simulations produced with
the Abacus N-body code [79], each containing 69123 in a physical volume of Vbox =
8 (Gpc/h)3. Although there are a total of 97 cosmologies in the AbacusSummit suite,
we only employ the 25 so-called ‘base’ realisations in all tests. The halos are identified
using the CompasSO halo finder, and they are populated with the appropriate tracers
according to a halo occupation distribution (HOD) [80, 81]. These mocks, which we
hereafter refer to as Abacus, represent the expected clustering of DESI tracers with high
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Figure 1. Power spectrum (top section) and bispectrum (bottom section) measurements and com-
parison with the respective model best fit. Each column corresponds to a tracer. First row: In each
panel, power spectrum monopole (top line), quadrupole (middle) and hexadecapole (bottom). The
points and the shaded region are the measurements with their associated error, while the solid lines
show the best fit of our joint P +B analysis (Section 5.1). The hexadecapole of the QSO is not used
in this analysis as discussed in Appendix B); Middle three rows: offset between the best fit of our
P +B analysis and the respective measurement, divided by the error bar of the measurement (shaded
areas enclose the 2.5σ region). Bottom panels: bispectrum monopole, and using the same convention
as above.

fidelity. Hence, we use them to perform tests in order to obtain the systematic error
budget (see Section 4) and specify the analysis set-up choices (see Section 3).
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- EZmocks: These approximate mocks, which need to be calibrated to the Abacus mocks,
directly generate the density field using the Zel’dovich approximation instead of per-
forming the full N-body evolution. After that, the density field is populated by the cor-
responding tracers using an effective bias model. Since they can be obtained at a much
reduced computational cost, a set of 1000 such realisations of volume Vbox = 63 (Gpc/h)3

is produced for each galaxy sample, which are used to estimate covariance matrices. As
explained in detail in [64] and seen in Figure 2, the EZmocks do not fully reproduce the
statistics of the DESI DR1 data, which, if unaccounted for, results in an underestimate
of the errors. To correct for this, as prescribed by [64], we rescale the covariance matrix
of each redshift sample by the factors in Table 3 of [64].

In both cases, there are two main versions of the mocks, usually labelled as respectively
first and second generation mocks. We use the second generation mocks, whose HOD was
calibrated with the full DESI Early Data Release (EDR) sample [82].

The cosmology of both sets of mocks corresponds to the Planck 2018 best fit, which we
may denote as ‘base’ or c000 (following the nomenclature from [79]) throughout this paper:
the densities of cold dark matter and baryonic matter being respectively Ωcdmh2 = 0.12 and
Ωbh

2 = 0.02237; the amplitude of the dark matter fluctuations at z = 0 and the slope of the
primordial power spectrum take the values of σs8 = 0.81135 and ns = 0.9649, respectively;
the dimensionless Hubble parameter is h = 0.6736, and the dark energy equation of state
corresponds to a cosmological constant, so w0 = −1 and wa = 0. This is also the fiducial
cosmology in our analysis.

Then, the periodic boxes (both Abacus and EZmocks) are transformed into samples that
account for the observed survey geometry, which we refer to as cutsky samples. In this process
the Cartesian coordinates are transformed first into sky coordinates (redshift, right ascension
and declination) and then the tracers are filtered so as to obtain a density matching the DESI
footprint and radial selection;5 finally, the process of fibre assignment of the DESI instrument
is simulated by running the fibreassign pipeline. This last step reproduces the effect of
missing galaxies during the DESI observing strategy, which is caused by the limitation of
placing the robotic fibre positioners on two objects which are angularly very close [19].

Depending on how the fibre assignment is simulated, three types of mocks are produced,
which serve various purposes:

- Complete: Without fibre assignment incompleteness, so these can be considered ‘un-
contaminated’ mocks.

- AltMTL [83]: The fibre assignment is implemented in the mocks using the same strategy
as in the observed data. Although it is the most realistic approach, the computational
cost associated only allows the AltMTL pipeline to be used with the sets of 25 Abacus
mocks.

- Fast-fibreassign (FFA): This approach approximates the fibre assignment procedure,
using averaged targeting probabilities from the data. Given that this procedure is

5This leads to the radial integral constraint effect, described and studied in [19] for two-point statistics.
As seen in [40, 59], most of the added information from the bispectrum statistic comes from linear to mildly
non-linear scales, so small shifts on scales of k ∼ 0.02hMpc−1 produce a negligible effect in our analysis. This
is also seen in Figure 7, where the mode correction term does not produce a significant change in the joint
power spectrum-bispectrum cosmological parameters posteriors.
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significantly faster than the AltMTL pipeline, the FFA code is used to obtain the sets
of 1000 EZmocks with fibre assignment effects.

For both AltMTL and FFA mocks, the clustering and the associated randoms are run through
the corresponding fibre assignment pipeline. We plot in Figure 2 the comparison between the
mean data-vectors of the Abacus AltMTL, Complete, and EZmocks FFA for the LRG2 bin,
together with the corresponding DESI DR1 measurement.
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Figure 2. Power spectrum and bispectrum as measured from the LRG2 main mocks (EZmocks FFA,
Abacus AltMTL and complete), together with the DESI DR1 measurement from the same sample.
We show the three power spectrum multipoles in the upper panel and the bispectrum monopole in
the lower panel. For the mocks, we plot the mean of each data-vector across all available realisations
(25 for Abacus and 1000 for EZmocks). Note that the normalisation of each of these displayed power
spectra and bispectra is an arbitrary quantity that is only required (for unbiased measurements) to be
consistent between each of these datasets and their corresponding window matrix. This means that
across samples each normalization is in principle arbitrary and unrelated. For an insightful compar-
ison, in this figure we (arbitrarily) choose to display all power spectra and bispectra normalization
relative to the one of the AltMTL mocks.

As we will show in Section 4, we employ the complete mocks to assess the error associated
with the modelling, while we can quantify the systematics originated by the fibre assignment
process from the difference between the parameters recovered from the complete vs AltMTL
mocks.
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3 Baseline Analysis

In this work we opt to perform a full-shape analysis of the DESI DR1 power spectrum and
bispectrum data using the compression technique of ShapeFit. This approach allows us to
compress all the information contained in the power spectrum and bispectrum, in a given
redshift bin, into a set of parameters that do not depend on the specific choice of cosmolog-
ical model (ΛCDM, wCDM, kCDM, etc.). In the companion paper [84] these compressed
parameters are interpreted in the light of multiple models, bypassing the lengthy process of
refitting again the power spectrum and bispectrum. This approach is complementary to the
direct fit approach where the parameters of a given model are directly fitted to the summary
statistics. We refer the reader to section 4.2 of [64] (and references therein) for a detailed
description of these two methodologies.

Our baseline choice for the analysis is the combination of the power spectrum multipoles
and the bispectrum monopole of LRGs and QSO samples as follows. For the LRG samples
we consider the first three non-zero multipoles: monopole, quadrupole and hexadecapole in
combination with the bispectrum monopole, P024 +B0; whereas for the QSO sample we only
consider the power spectrum monopole and quadrupole in combination with the bispectrum
monopole, P02+B0. This choice is guided by the rationale of minimising the statistical errors
while keeping the systematics (as quantified on mocks) under control, see Appendix B for
more details.

3.1 Standard compression and ShapeFit

As described in [63, 85, 86], the ShapeFit compression approach increases the information
extracted from summary statistics with respect to the ‘standard compression’ technique used
previously in BOSS and eBOSS analyses [61, 62, 87–94].

The standard compression approach encapsulates the information content of the data
into three main parameters: the dilation parameters along and across the line of sight, α∥
and α⊥, respectively; and fσs8, the product of the (smoothed) amplitude of dark matter
fluctuations (σs8) and the logarithmic growth rate (f ). The parameters α∥, α⊥ describe the
distance dilation distortions caused by the use of a fixed fiducial cosmology when constructing
the catalogue, and the isotropic shift of the BAO peak through the value of the sound horizon
scale on the fixed-template fiducial cosmology:

α∥(z) =
DH(z)r

fid
d

Dfid
H (z)rd

; α⊥(z) =
DM(z)rfid

d
Dfid

M (z)rd
, (3.1)

where DH is the Hubble distance, DH(z) ≡ c/H(z), where H(z) is the Hubble expansion
history, and DM is the comoving angular diameter distance. Here rd denotes the sound
horizon scale at radiation drag and the superscript ‘fid’ stands for the fiducial cosmology
chosen for creating the catalogue (through the redshift-to-distance transformation) and for
the fixed-template cosmology. In Section 5 the main results will be presented in terms of an
alternative re-parametrization of these dilation parameters,

αiso(z) ≡
[
α∥(z)α⊥(z)

2
]1/3

=
DV(z)r

fid
d

Dfid
V (z)rd

, αAP(z) ≡
α∥(z)

α⊥(z)
=

DH(z)D
fid
M (z)

Dfid
H (z)DM(z)

, (3.2)

where DV(z) ≡
[
zDH(z)DM(z)2

]1/3 is sometimes referred as the isotropic BAO distance.
In this form, the effect of the absolute size of the BAO peak position in the fixed-template
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approach, ∝ rd/r
fid
d , which only enters into the isotropic dilation scale, is separate from a

purely anisotropic component, αAP, known as the Alcock-Paczyński parameter [95].6

The fσs8 parameter quantifies the growth of structure and RSD and it is the natural
parameter combination constrained by the two-point statistics: there is a strong degeneracy
between f and σs8. Hence, when only the power spectrum multipoles are employed, we fit
for f with σs8 fixed at its fiducial value, σfid

s8 , and later re-interpret the fit of f as fσs8.
As detailed in [63], we adopt σs8 (rather than the more common parameter σ8) for

parametrising the smoothed amplitude of matter fluctuations. The essential difference is that
σ8 smooths the fluctuations on the fixed scale of 8h−1Mpc (thus σ8 varies with the change
of scales via α∥, α⊥) while σs8 defines the smoothing scale as to be independent of changes in
scale because it takes a fixed smoothing scale at the template cosmology, s ≡ rd/r

fid
d :

σs8 ≡ σ(R = s · 8h−1Mpc), (3.3)

with s depending on the cosmology at each step of the fitting process. This change in definition
does not alter the fitting part of the analysis, only the interpretation of results. In the case
where the best-fit dilation parameters α∥, α⊥ are equal to 1 and the true sound horizon scale
is equal to the fiducial sound horizon scale, σs8 coincides with σ8.

Furthermore, adding a three-point statistic such as the bispectrum might allow the
fσs8 degeneracy to be lifted. Therefore, in this work, cosmological constraints involving the
bispectrum consider f and σs8 separately in all the LRG redshift bins. The QSO sample,
however, has a weak signal and thus we instead use the joint parameter fσs8 for the QSO
tracers.

Additionally to the set of parameters {αiso, αAP, f, σs8}, the ShapeFit approach used
in both this work and in the full-shape DESI power spectrum analysis [63, 64], includes a
further parameter governing the combined shape parameter: m+n. The purpose of m+n is to
capture information on the matter-radiation equality present in the power spectrum (through
m), but also to account for variations of the primordial spectral index (through n). It does
so by modifying the linear power spectrum PL as,

PL(k) −→ PL(k) exp

{
m

a
tanh

[
a ln

(
k

kp

)]
+ n ln

(
k

kp

)}
, (3.4)

with kp and a set as kp = π/rfid
d ; a = 0.6, as justified in [63]. Due to the strong degen-

eracy between m and n [63, 96], we opt to define the variables m′ ≡ m|n=0, n
′ ≡ n|m=0,

which satisfies m′ ≈ n′ ≈ m + n, to which we refer as the combined shape parameter. For
this reason we fix m, and only vary n. In the interpretation step, this n-at-a-fixed-m pa-
rameter is equivalent to the combination m + n, to which we refer as the combined shape
parameter. This re-interpretation of the fit can also be seen as the linear re-parametrization
{m, n} → {m + n, m − n}, where m + n is well-constrained, whereas m − n is a poorly
constrained parameter that we decide to fix to a fiducial choice mfid − nfid ≡ 0.
Indeed, we have checked that performing parameter inference by fitting either n′ or m′ pro-
duces indistinguishable results.

The variation of m+ n in the fit modifies the σs8 parameter such that

σs8 = σfid
s8 A

1/2 exp

(
m+ n

2a
tanh

[
a ln

(
rfid
d

8h−1Mpc

)])
, (3.5)

6Note however, that even when considering the isotropic dilation parameter at different redshifts, the ratio
between αiso at different redshifts is independent of rd/rfidd .
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with σfid
s8 ≡ σfid

8 , and A = Asp/A
fid
sp , where

Asp =

(
rfid
d
rd

)3

PL, nw

(
kp

rfid
d
rd

)
, (3.6)

with PL, nw being the broadband (without BAO) linear dark matter power spectrum.
In addition to the cosmological parameters of interest, {αiso, αAP, f, σs8, m + n}, we

consider the following nuisance parameters: the first and second-order bias parameters b1 and
b2; the deviations from Poissonian shot-noise for the power spectrum and bispectrum, respec-
tively AP, AB [46, 62]; and the Fingers-of-God damping factors, also varied independently for
the power spectrum (σP) and bispectrum (σB). The remaining non-linear bias parameters of
the two-loop bias expansion are fixed according to the hypothesis of local Lagrangian bias: the
tidal bias bs2 and third-order bias b3nl are set as functions of b1, respectively bs2 = −4

7(b1−1)
and b3nl = 32/315(b1 − 1) [85, 97, 98]. This choice of bias expansion, compatible with the
official analysis of BOSS and eBOSS [61, 62], is different than the one used in the main DESI
collaboration for full-shape power spectrum. The main DESI collaboration analysis [64] in-
cludes counter-terms and stochastic parameters through the effective field theory formalism
(EFTofLSS), which modify the impact of b3nl and bs2 on the shape of the power spectrum.

We comment on the details of our modelling and analysis choices of the power spectrum
and bispectrum in the following two subsections.

3.2 Power spectrum modelling

We model the power spectrum, (both for matter, PNL, and for galaxies, Pg) at two-loop
in renormalized perturbation theory (RPT)7, following [47, 99], which closely resembles the
approach taken by the eBOSS collaboration to model LRGs in Fourier space [62]. In Ap-
pendix A we provide a brief review, referencing the original sources of this formalism. This
model, based on standard perturbation theory (SPT hereafter), differs from the main mod-
elling choices of the DESI collaboration [64, 96, 100–103], which are based on the EFTofLSS
framework.

We consider in all cases two different sets of power spectrum multipoles: the monopole
and quadrupole, P02 = {P0, P2} (as in the official DESI analysis [64]), and the additional
inclusion of the hexadecapole, P024 = {P0, P2, P4}. In Appendix B we test the effect of
adding the hexadecapole, both on the constraints and on the systematic error budget. Based
on those findings, we decide (before unblinding the data) to include the power spectrum
hexadecapole as our baseline model in the three LRG bins8, but not in the QSO bin (see
Appendix B).

The effect of the survey window function is modelled as in [62, 87, 104]. This approach,
which follows that of the BOSS and eBOSS collaborations, has some differences with the
DESI official pipeline: the DESI collaboration implements a cut in the contribution of galaxy
pairs separated by less than 0.05 deg (in a procedure labelled as θ-cut), and a rotation of the
data-vector, window matrix and covariance to better handle the resulting mode coupling [64].
The θ-cut method [105] mitigates fibre assignment systematic errors (which will be described

7The implementation of this code can be found in https://github.com/hectorgil/PTcool.
8The power spectrum hexadecapole has not been included in the official DESI power spectrum analysis

due to its contribution to projection effects, and to the fact that within ΛCDM the information gain provided
by P4 is small. In the case of our power spectrum model, we proceed as in its previous application to BOSS
and eBOSS [61, 62] and include the hexadecapole for the LRG tracers, which does not worsen the projection
effects nor the systematic error with respect to the analysis without P4, as seen in Appendix B.
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in Section 4.2), and is increasingly necessary when small scales are included in the analysis, as
in the official DESI full-shape analysis, which has 0.02 < k [hMpc−1] < 0.20. In our analysis
we consider larger scales (k < 0.15 [hMpc−1] for the power spectrum and k < 0.12 [hMpc−1]
for the bispectrum), so we opt to not use the θ-cut correction. We quantify the residual effects
of unmitigated fibre assignment systematics in Section 4.2.

3.2.1 Comparison of the performance of power spectrum models: RPT vs EFT

For completeness, we display here a direct comparison of the recovered parameters, from the
power spectrum monopole and quadrupole only, for the two-loop RPT model used in this
paper and Folps, which is an implementation of one of the EFTofLSS codes used in the DESI
full-shape analysis [64, 96]. The left panel of Figure 3 displays the posteriors of the ShapeFit
parameters obtained by performing a power spectrum monopole and quadrupole fit to the
mean of the 25 Abacus LRG cubic mocks at z = 0.89, with the covariance rescaled to the
total of the 25 mocks (volume of 200 [Gpch−1]3). In this comparison, we do not employ the
hexadecapole signal to match the setup baseline choice of the main DESI full-shape analysis.

The figure displays two setup variations of Folps, one with the so-called ‘maximal
freedom’ (empty contours in light orange), and ‘minimal freedom’ (filled contours in red).
As described in [96], the maximal freedom leaves the bias parameters bs2 and b3nl free, and
the minimal freedom sets them to the Local Lagrangian predictions (or co-evolution relations,
see Eq. A.2). In both cases, the range of fitted scales is 0.02 < k [hMpc−1] < 0.18. Our RPT
model is displayed in blue, with the setup employed in this paper (except for not including
the hexadecapole), with the local Lagrangian bias relations of Eq. A.2 and fitted scales of
0.02 < k [hMpc−1] < 0.15. The horizontal and vertical dotted lines mark the expected values
of the ShapeFit parameters. In the right panel of Figure 3 we show the corresponding best-
fit power spectrum multipoles (solid red and dotted blue lines) to the mean of the same 25
Abacus cubic mocks. The two models, which have been fitted with different binning and range
of k, are almost indistinguishable, as expected. The figure highlights the excellent agreement
between two-loop RPT and Folps with the minimal freedom setup, as well as their ability to
recover unbiased values of the parameters. Both cases show minimal difference, well within
the 1σ statistical error associated with a volume of 200 [Gpch−1]3.

We note that for the combination of parameters m + n the Folps minimal freedom
setup has a ∼ 30% larger errorbars than the measurements from the RPT. This difference
is due to the extra nuisance parameters that Folps considers (2 counter-terms and 1 extra
stochastic term) that allow more freedom in the shape of the power spectrum. Nevertheless,
the agreement between these two models in the best-fit value of the combined shape parameter
is remarkable. The Folps maximal freedom setup presents larger errorbars, especially for the
m + n parameter due to the strong degeneracy between the b3nl and the shape parameters,
as discussed already in [96].

These results indicate that both EFTofLSS and RPT models are able to reproduce
with the same level of accuracy the ShapeFit cosmological constraints when the setup of
nuisance parameters is set to be the same, reinforcing the robustness of the findings to different
modeling choices: both types of approaches can be indistinctly employed to retrieve the

9Only for this plot we employ a slightly different version of the Abacus mocks, with a different HOD
parametrization than those mocks described in section 2.1. The reason is that we aim to reproduce the results
presented in the first batch of DESI full-shape comparison papers released in April 2024 [96, 101–103, 106]
before the creation of the new set of Abacus mocks used in the rest of the paper.
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Figure 3. Left panel: posteriors of the ShapeFit parameters obtained by fitting the power spectrum
monopole and quadrupole of the 25 Abacus mocks for the LRG sample at z = 0.8, with a covari-
ance corresponding to a volume of 200 [Gpch−1]3. The light orange and red contours display the
performance of the EFTofLSS code Folps [96] in the range 0.02 < k [hMpc−1] < 0.18, for two types
of galaxy bias setup: minimal freedom in filled contours and maximal freedom in empty contours,
as labelled. The blue posteriors display the performance for the RPT model, which is used in this
work for describing the power spectrum signal, and that has encoded a similar setup as the ‘minimal
freedom’ for Folps, but with 0.02 < k [hMpc−1] < 0.15. The horizontal and vertical black dotted
lines mark the expected values for each parameter given the true cosmology. Right panel: The upper
and bottom sub-panels display the power spectrum monopole and quadrupole, respectively, for the
Folps minimal freedom and RPT best-fitting models to the measurements of the 25 Abacus cubic
mocks (not displayed for clarity) The grey dashed region is the error associated with one Abacus
mock, corresponding to a volume of 8 [Gpch−1]3.

cosmological constraints from DESI data. For this paper, we choose to use the RPT model
as our baseline choice for describing the power spectrum multipoles.

3.3 Bispectrum modelling

Our bispectrum model has its foundations in the standard perturbation theory (SPT) for-
malism at tree-level, which has the form

BSPT(k1,k2) = DB
FoG(k1,k2)

[
2ZSPT

1 (k1)Z
SPT
1 (k2)Z

SPT
2 (k1,k2)PL(k1)PL(k2) + 2perm.

]
,

(3.7)
where ‘perm’ refers to cyclic permutations of the k1,k2,k3 vectors. All terms are detailed in
Appendix A.

The GEO-FPT model was developed in [59] to increase the range of scales of validity of
the tree-level bispectrum model, and thus extract additional non-linear information. In GEO-
FPT, the linear matter power spectrum, PL, of Equation 3.7 is promoted to the non-linear
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matter power spectrum, PNL. Furthermore, the perturbation theory ZSPT
2 kernel is modified

as follows:

ZGEO
2 = ZSPT

2 ×
[
f1 + f2

cos(θmed)

cos(θmax)
+ f3

cos(θmin)

cos(θmax)
+ f4

A

Anorm
+ f5

A2

A2
norm

]
(3.8)

where the coefficients f1, ..., f5 were calibrated on N-body simulations. This specific parametri-
sation was proposed after observing, in Figure 1 of [59], that the SPT bispectrum residuals
had a clear quadratic dependence on the area of the triangle, and a mild dependence on the
flatness of the triangle (which can be obtained as combinations between cosines of the min-
imum, intermediate and maximum external angles of the triangle). Refs. [59, 78] show that
this model, with the coefficients f1, ..., f5 fixed to the values obtained in their initial fit, is
robust against change in the underlying cosmology. Therefore, these coefficients are not free
parameters in our analysis, which results in a model for the galaxy bispectrum of the form:

BGEO
gal (k1,k2) = PNL(k1)PNL(k2)Z(k1,k2) + 2perm., (3.9)

where Z(ki,kj) ≡ DB
FoG(ki,kj)Z

SPT
1 (ki)Z

SPT
1 (kj)Z

GEO
2 (ki,kj) and DB

FoG is the Fingers-of-
God damping factor for the bispectrum. More detail on these terms can be found in Appendix
A.

The non-linear matter power spectrum PNL is rescaled through the linear power spectrum
scaling of Equation 3.4. This accounts for the dependence of the bispectrum on the combined
shape parameter m+ n.

As for the other cosmological parameters α∥, α⊥, f , they modify the bispectrum model
signal through Equations A.5, A.10, A.12 in Appendix A and Equation 2.11 in [59], while
the σs8 parameter enters as a rescaling of the different terms of the 2-loop power spectrum
model, scaling as σ2

s8 ∝ PL.
The adopted range of scales for the bispectrum in all redshift bins matches the range in

which the bispectrum model has been validated: 0.02 < kB [hMpc−1] < 0.12. The binning is
the same as for the power spectrum, ∆k = 0.01hMpc−1.

For modelling the convolution effect of the survey geometry, we make use of the approx-
imation of [46, 49], where the bispectrum kernels are not affected by the window.

In this approximation, only the power spectrum part of the bispectrum model Equa-
tion 3.9 (i.e. PNL) is affected by the window while the other terms are left unchanged. We
obtain the windowed non-linear power spectrum PW

NL as in [87, 104], and compute the con-
volved bispectrum monopole BW

0 as

BW
0 (k1, k2, k3) =

∫ 1

−1
dµ1

∫ 2π

0
dϕZ(k1,k2)P

W
NL(k1)P

W
NL(k2) + 2perm. (3.10)

In the above expression, µ, θ, ϕ are the standard choice of angles in the multipole expansion
that we use [107], which are detailed in Appendix A.

Equation 3.10 is only valid for the bispectrum monopole. A generalization to bispectrum
multipoles with the effect of a window should not follow this form, and a more careful treat-
ment is needed.10 Consequently, in this paper we only consider the bispectrum monopole.

10In our work we employ the bispectrum multipole expansion defined in [107]. In the case of the alternative
base expansion presented in [108], valuable progress has been made in [109, 110] towards modelling the
bispectrum window convolution. However, since the multipole-expansion bases of [107] and [108] do not have
a direct correspondence between them, the work presented in [109] for the base of [108] is not necessarily
applicable in our framework.
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This has limitations, since [59] showed that, in this particular model, the inclusion of the
bispectrum quadrupoles results in a gain in both precision and accuracy on most cosmo-
logical parameters. We leave the development of an appropriate window treatment for the
bispectrum quadrupoles, and thus the analysis of DESI data with bispectrum monopole and
quadrupoles, for future work [84].

3.4 Likelihood and covariance estimation

We sample the parameters posteriors via Markov chain Monte Carlo (MCMC), using the
Brass11 [62, 86] code, which follows the Metropolis-Hastings algorithm [111, 112]. We set
the Gelman-Rubin convergence criterion to be R−1 < 0.01.12 As shown in Table 2, we specify
broad, uniform priors in all parameters except for the deviations from Poissonian shot-noise,
which we set to a normal prior centred at Poisson value, N (1, 0.32). As motivated by [113], we
estimate the full covariance matrix, including all off-diagonal terms. For each redshift bin and
data-vector, the covariance is obtained from the 1000 independent realisations of the EZmock
samples. Each power spectrum multipole data-vector has 13 elements, while the bispectrum
monopole has 150 elements. Therefore, our largest data-vector, P024 + B0, has a size of 189
elements, which corresponds to less than 20% of the number of simulations used to estimate
the covariance matrix, resulting in a Hartlap factor [114] of ∼ 0.8.

As reported in [19, 64], the Fourier-space covariance estimated from the 1000 EZmock
has some potential inaccuracies. Because of this, Refs. [19, 64] suggest to rescale the
overall amplitude of the mock-estimated covariance by the factors displayed in Table 3 of
[64]. These factors were necessary to account for the mismatch between the EZmock and the
DR1 covariances seen in configuration space. In this work, we assume the same rescaling
factor that has been studied and validated for the power spectrum works as well for the
bispectrum analysis. As we will discuss in Section 5.2, we find these rescaling values to be
valid for our analysis as well, with a potential systematic error involved with a mis-estimation
of the covariance matrix accounting for less than ∼ 20% of the statistical DR1 errors.

We consider the log-likelihood, logL, to be Gaussian, and apply the Sellentin-Heavens
correction [115] to account for the error in the covariance introduced by estimating it from
n = 1000 realisations,

logL = −n

2
log

(
1 +

(Dmeas. −Dmodel)Cov−1
mocks(Dmeas. −Dmodel)

T

n− 1

)
, (3.11)

where D is the data-vector in each case, obtained either from measurements (meas.) or
from the modelling (model); n is the number of sample realisations used for estimating the
covariance matrix, Cov.

4 Systematic error budget

In this section, we present the potential main sources of systematic error we have identified,
and quantify their effect on parameter inference, by performing various tests and analyses of

11https://github.com/hectorgil/Brass
12In all the MCMC runs, we first obtain a proposal parameter covariance through iterative runs where we

sequentially increase the step size. The last run, with a step size of 1.9, has a burn-in of 10,000 steps for
each walker (chain), and a total of 50,000 steps per walker. At that point, the code checks for convergence
according to the Gelman-Rubin criterion, and in all cases it was found to be converged. With these settings,
we found convergence to be obtained irrespective of the number of walkers, and in particular for the LRG
redshift bins we used 4 walkers, while for the QSO we used 18 walkers.
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Cosmological parameters Prior range

αiso U(0.7, 1.3)
αAP U(0.7, 1.3)
f U(0.0, 20)
σs8 U(0.0, 10)

m+ n U(−1.0, 1.0)

Nuisance parameters Priors

b1 U(0, 10)
b2 U(−20, 20)

AP N (1, 0.3)

AB N (1, 0.3)

σP U(0, 10)
σB U(0, 10)

Table 2. Priors for both the cosmological and nuisance parameters. We note as U(xmin, xmax) an
uniform distribution between xmin and xmax, and as N (µ, σ2) as a Gaussian distribution with mean
µ and standard deviation σ. In all cases (except from the parameters AP, AB, which have a Gaussian
prior centred at 1 with σ = 0.3), the MCMC sampling is not affected by the boundaries of the priors
on the remaining parameters thus being effectively improper priors.

the Abacus mocks.
We categorise systematic errors as originating from the inaccuracies in the theoretical

modelling (Section 4.1), from the fibre assignment procedure (Section 4.2), from the impact
of the HOD (Section 4.3), and from the choice of fiducial cosmology (Section 4.4).13

As in [64], we take into account a systematic error for a parameter once it is large enough
to be correctly quantified on the mocks, which for DR1 translates into when the systematic
shift is 20% or more of the DR1 statistical error. Following [64] the systematics are combined
quadratically into a final (statistical plus systematic) error bar.

4.1 Theoretical systematics

For each redshift bin and galaxy sample, we consider the mean of the power spectrum and
bispectrum measurements for all the 25 corresponding ‘complete’ Abacus mocks (see Section
2.1), corresponding to the signal of a volume of 25 times the volume of DESI DR1. Conse-
quently, we rescale the covariance matrix (obtained with the corresponding set of EZmocks) by
a factor of 25. For all the data-vectors of interest in this work, {P02, P024, P02+B0, P024+B0},
we run the pipeline presented in Section 3 on the mocks in the same way as we would do on
the data.

Since they do not include any effects from observational sources of error, the ‘complete’
mocks can be seen as idealised simulations and we consider them as reference to assess the

13The systematic error associated with the covariance matrix estimation is addressed by rescaling the
covariance matrices by the factors given by table 3 of [64], which we check to be a valid approach in Section
5.2.
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Figure 4. Recovered cosmological parameters {df, dσs8, αiso, αAP,m + n} posteriors (68 and 95%
joint confidence levels C.L.) for the joint power spectrum-bispectrum data-vector P024 + B0 =
{P0, P2, P4, B0} from the mean of 25 AbacusSummit LRG complete mocks, and P02 + B0 =
{P0, P2, B0} from the mean of 25 AbacusSummit QSO complete mocks, which correspond to our
baseline choice of multipoles. The panels of the figure display the posteriors for the four redshift bins
considered. The employed covariance has been normalised by 25 in order to match the volume of the
sample. Thus, the displayed posteriors correspond to ∼ 25 times the DESI DR1 volume for each of
the samples. We quantify the theoretical systematic error as the discrepancy between the maximum
a posteriori values (MAP) and the truth for each parameter and galaxy sample.

theoretical model systematics. These include both possible limitations or inaccuracies of the
power spectrum and bispectrum models, as well as effects of the analysis choices such as
scale cuts, and the approximation introduced by the window convolution procedure. For each
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sample and cosmological parameter, the effect of the theoretical model systematics is given
by the absolute difference between the true and the recovered values.14

In Figure 4 we show the recovered parameter constraints from the complete Abacus
mocks in the four redshift bins of study, compared with the true expected values (black dotted
lines), for our baseline data-vector choices, P024 + B0 for the LRG sample, and P02 + B0 for
the QSO sample. Instead of f and σs8, to facilitate visualization, we display the posteriors in
terms of df ≡ f/f true, dσs8 ≡ σs8/σ

true
s8 . We quantify the residuals between the MAP values

of each posterior and the underlying true values for the four parameters of interest in the
rows labelled as ‘Modelling’ in Tables 4, 5, 9, 10, for all data-vector combinations (not all of
them are displayed in Figure 4).

4.2 Fibre assignment and imaging systematics

The DESI survey has two observational effects that can impact the clustering analysis: the
fibre incompleteness and the photometric angular density fluctuations. Fibre incompleteness
is caused by the inability of DESI to observe close pairs of objects within the patrol radius
of a positioner. This is mitigated by performing several passes over the same area during the
whole period of five years of observations. For this reason, this effect will be less important
at the end of the five-year programme than for DR1. The angular density fluctuations are
already present in the imaging maps, and are mitigated by the use of imaging weights in the
measurement of the power spectra and bispectra, denoted imaging systematics. A thorough
description of these can be found in Refs. [19, 71, 116].

As for the imaging systematics, Refs. [64, 71] found that in all LRG redshift bins the
default linear imaging weights prescription is sufficient to capture the effect of observational
conditions, whereas the QSO sample only suffers from a mild dependence on the systematic
weights. The sample most affected by this effect is the ELG sample, which is the main reason
not to include it in this work. For the QSO sample, we show in Figure 6 the discrepancy
(averaged over the 25 QSO AltMTL Abacus mocks) between the measurements with imaging
weights included (e.g. Pℓ,weight) and without them (e.g. Pℓ,noweight), for all power spectrum
multipoles and the bispectrum monopole. We observe the same trends as in Figure 9 of [64]
(which displays the results for ELG tracers) and that these results are consistent with the
QSO imaging shifts quantified in [64, 71]. In [64] the correction is applied by modifying the
theoretical power spectrum model P theory

ℓ (k) to become an effective power spectrum P eff
ℓ (k):

P eff
ℓ (k) =P theory

ℓ (k) + spPoly[(P data
ℓ,weight − P data

ℓ,noweight)− (Pmock
ℓ,weight − Pmock

ℓ,noweight)]+

+ Poly[Pmock
ℓ,weight − Pmock

ℓ,noweight], (4.1)

and similarly for the bispectrum, where ‘Poly’ refers to a 3rd degree polynomial fit of the
data points.15 The first correction term (varied with a nuisance parameter sp) marginalises
over the difference between imaging weights in mocks and in the DR1 data. The last term is
a constant angular mode removal term.

14We consider the maximum a posteriori (MAP) from the MCMC output as the recovered parameter
value instead of the central value of the posterior distribution. The MAP represents the set of cosmological
and nuisance parameters that maximise the posterior distribution. However, in most cases in our analysis
(especially when fitting the mean of 25 mocks), the MAP and central value are very close.

15This polynomial fit is used instead of the data points to reduce the noise associated with the data, although
its effect is minor. In the case of the bispectrum, due to its complexity, we do not use any polynomial fits to
the data.
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Figure 5. Comparison of the MAP values for the cosmological parameters inferred from the complete
and AltMTL mocks for all the tracers we consider in this work and for the choice of data-vectors of our
baseline analysis. The dashed orange area is the 1−2σ region of the DESI DR1 analysis, that we have
obtained from the blinded measurements in Appendix B, while the individual error bars correspond
to the parameter inference with the mean of the 25 mocks (thus rescaling the associated errors by
25). For the QSO sample we only report the product dfσs8 as for this sample this degeneracy is not
lifted (see Section 3).

Ref. [71] shows that the QSO sample is only mildly affected by the mode removal term,
and marginalizing over the first term has no significant effect on the recovered constraints.
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Figure 6. Mode removal residuals for the QSO sample for all data-vectors considered in this work.
In the top row and lower left panel we show respectively the shifts for the power spectrum monopole,
quadrupole and hexadecapole, with errorbars correspondent to the volume spanned by 25 Abacus
cubic mocks, V = 200 (Gpc/h)3. In the lower right plot we show the mode removal correction for the
bispectrum, normalized by the measurement error bars corresponding to 25 Abacus mocks. Note that
the volume considered in these mocks is significantly larger than the actual DESI DR1 dataset, which
makes the mode-removal effect to barely affect the ShapeFit parameters inferred from the data, as
shown in Figure 7.

The shifts presented in Figure 6, denoted as ‘mode removal’ correction, correspond to the last
term of Equation 4.1. Therefore we do not include the marginalisation over the non-linearities
of the imaging weights (the term modulated by sp in Equation 4.1). We leave for future work
an implementation of this marginalization, which will enable us to include the bispectrum
clustering of the ELG sample.

In Figure 7 we show the effect of the mode removal correction in the blinded DR1 QSO
data, by comparing the recovered constraints with and without the correction computed with
the last term of Equation 4.1. The effect of this correction is extremely small, both for the
case shown in the Figure (P02 + B0) as for the other data-vector combinations. In all cases,
the shifts in the posteriors are less than 20% of the corresponding DR1 errors, with part of
the shift being absorbed by the b2 and σB parameters. In our analysis, we will model the QSO
theoretical model with the mode removal correction applied, and leave the LRG tracers (which
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Figure 7. Cosmological parameters posteriors recovered from the blinded DR1 QSO catalogue, using
the combination of data-vectors P02+B0, with (in purple) and without (in orange) the mode removal
correction defined in Equation 4.1. The effect of this correction is very mild, with the contours being
effectively indistinguishable for DR1 statistical error bars.

reported a smaller imaging systematic weight dependence than QSO in [64, 71]) uncorrected.
As for the fibre assignment systematic, we quantify it as the discrepancy between the

recovered maximum a posteriori (MAP) values from the complete and AltMTL sets of 25
Abacus mocks. We present the shifts between the complete and AltMTL MAPs in the rows
labelled as ‘Fibre assignment’ in Tables 4, 5, 9, 10, for each of the four data-vector combina-
tions considered in this work.

In Figure 5, for the baseline choice of data-vector combination as labelled in the x-axis,
we display the MAP values for all cosmological parameters of interest and the four samples,
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together with their recovered error (corresponding to the volume of the 25 simulations),
compared with the DESI DR1 1-2σ error bars (obtained from the blinded data, which is
shown in Appendix B). We include the parameter combination fσs8, for easier comparison to
the QSO sample results (see Section 3).

4.3 HOD systematics

The systematic errors related to the HOD originate from the limitation of the bias model
considered here (two-free parameters b1 and b2 with local-Lagrangian values for bs2 and b3nl),
to describe the matter-halo-galaxy connection.

We start by considering a set of Abacus galaxy mocks with variations of the DESI HOD
baseline, for both LRG and QSO samples. These alternative-HOD mocks were generated
by the DESI collaboration by considering variations about a baseline HOD chosen for the
so-called second-generation mocks, which were calibrated with the DESI Early Data Release
[82].

We perform our analysis on cubic box simulations spanning the baseline (standard) and
the alternatives to the standard DESI HOD, which consist in variations in the modelling
of velocity bias, environment-based bias and the masses of the halos hosting the central and
satellite galaxies. We employ the same notation as in Ref. [64, 117, 118] and refer the reader to
Section 2 in [117] for their description. As in these works, we consider seven alternatives (A1,
A2, A3, B0, B1, B2, B3) to the standard (A0) HOD for LRG tracers, and 3 alternatives to the
standard (QSO0) HOD (QSO1,QSO2,QSO3) for QSOs. We display the recovered posteriors
of the LRG galaxies at z = 0.8 in Figure 8, where the different colours correspond to different
variations of HOD.16

We then estimate the contribution from the HOD systematic as the mean across HOD
variations of the offset between their inferred MAP parameters and the MAP obtained from
the standard HOD simulations (labelled as A0 in Figure 8). We see in Figure 8 that the
αiso, αAP, m+ n parameters do not suffer significantly from HOD-related systematics in the
LRG tracers, while there is a small error budget contribution for the f and σs8 parameters.
The values for these systematic offsets, for both the LRG tracers and the QSO are listed in
the row labelled as ‘HOD’ in Tables 4, 5, 9, 10, for each of the four data-vector combinations
considered.

4.4 Systematics due to fiducial cosmology assumption

The last source of systematic error that we explore is the effect of choice of fiducial cosmology.
The fiducial cosmology that we use in our analysis, which is the one corresponding to the
Abacus base simulations (c000, detailed in Section 2.1, first line of table 3) is assumed in two
different steps:

1) In the conversion from redshifts into distances in our galaxy and quasar catalogues.

2) In the calculation of our power spectrum linear matter template.

We keep fixed the power spectrum template, for which we pre-compute the perturbation
theory integral terms through the PTcool17 code [46, 60], where the dependence on σs8 and
m+n is factorised out of the integrals. This approximation, which was validated in Appendix

16The comparison of constraints for the QSO alternative HODs is qualitatively similar to the LRGs displayed
in Figure 8, hence we do not explicitly show the analogous plot for QSOs.

17https://github.com/hectorgil/PTcool
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Figure 8. Recovered posteriors (68 and 95 % joint C.L.) of cosmological parameters {αiso, αAP,m+
n, df, dσs8} for the 8 alternative HOD variations (see [117] for a description), compared to the baseline
HOD, noted as A0. The P024+B0 data-vector is obtained from each set of 25 Abacus HOD simulations,
in cubic boxes describing LRG galaxies at z = 0.8, so the covariance is normalised by 25.

D of [63], saves significant time and resources by eliminating the need to re-compute the
perturbation theory integrals in each step of the MCMC.

Consequently, we need to quantify the effect of assuming a fiducial cosmology that could
be different from the true cosmology. In this work, we only focus on the systematic error
coming from the choice of fiducial cosmology in the template (i.e., in point 2). We neglect
the impact of the fiducial cosmology in the catalogue creation, which has been estimated to
be negligible in [119, 120].

Following the approach taken by the DESI collaboration in the main BAO and Full-
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Figure 9. Similar as Figure 8 but showing the differences between the parameter constraints (for
P024+B0 of Abacus LRGs at z=0.8) while assuming a template based on each of the alternative fiducial
cosmologies: c001, c002, c003, c004. Given that these fiducial cosmologies differ from the true one
of the simulations, ∆ indicates the discrepancy between the recovered and expected parameters. The
posteriors have been obtained from the mean of the 25 LRG Abacus cubic boxes at z = 0.8.

Shape ShapeFit analyses [119, 121], we consider four alternative fiducial cosmologies, which
are summarised in Table 3. They correspond to the first four alternative cosmologies of the
Abacus suite of simulations, which are: c001 (low-Ωm), c002 (thawing dark energy), c003
(high-Neff), c004 (low-σ8).

The dilation parameters, α∥, α⊥, and the shape parameter m+ n, are sensitive to mis-
matches between fiducial and true cosmology. This means that when the fiducial cosmology
is different from the true one, we expect α∥, α⊥ to differ from 1, and m + n to be non-zero,
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Name ωb ωcdm h 109As ns Nur w0 wa

Planck ΛCDM – c000 0.02237 0.1200 0.6736 2.0830 0.9649 2.0328 −1 0

Low-Ωm – c001 0.02237 0.1134 0.7030 2.0376 0.9638 2.0328 −1 0

Thawing DE – c002 0.02237 0.1200 0.6278 2.3140 0.9649 2.0328 −0.7 −0.5

High-Neff – c003 0.02260 0.1291 0.7160 2.2438 0.9876 2.6868 −1 0

Low-σ8 – c004 0.02237 0.1200 0.6736 1.7949 0.9649 2.0328 −1 0

Table 3. Summary of the cosmologies considered to test the systematic error associated with the
choice of fiducial cosmology (analogously as in [119, 121]). c000 is the baseline fiducial cosmology.

but knowing the two cosmologies we can compute their expected values.
For a given parameter x, we define the variable ∆x = x−xexp as the shift of the obtained

parameter with respect to its expected value given the true and fiducial cosmologies. For f, σs8
and fσs8 we report their obtained value, since these parameters are not expected to depend
on the choice of template.

In Figure 9 we display the residuals between the recovered cosmological parameters and
their expected values, when using the power spectrum templates for each of the alternative
fiducial cosmologies, for LRG tracers in the average of the 25 respective cubic boxes at z = 0.8.
If there was no systematic error induced by the choice of fiducial cosmology, all the posterior
distributions in Figure 9 would be coincident. The effect of the fiducial cosmology systematics
is quantified as the mean across samples of the shifts between these residuals. As seen in the
row labelled as ‘Fiducial’ in Tables 4, 5, 9 and 10, the contribution of the choice of fiducial
cosmology to the systematic error budget is generally minor: the main sources of systematic
error come from the fibre assignment and modelling parts of the analysis.

5 Results

While this analysis is not required by the DESI collaboration rules to adhere to the DESI
blinding procedure (the data has been unblinded for several months at the time of writing
this paper), we opt to work with blinded data (as explained in Section 3) until we freeze the
analysis choices and obtain our systematic error budget, similarly as is done in the DESI key
papers [17, 64, 70]. We perform all of the tests that involve data on the official blinded data
of DR1 (see Section 2 and references therein). We report the results for the blinded data in
Appendix B, and for the true, unblinded data in Section 5.1.

Considering the associated errors (as quantified on the mocks, Section 4) and projection
effects in blinded data (presented in Appendix B) we choose our bispectrum baseline analysis
to consist of the data-vector P024+B0 for the LRG1, LRG2, LRG3 redshift bins, and P02+B0

for the QSOs. In fact, Tables 4, 5, 9, 10 and Appendix B show that the inclusion of the
power spectrum hexadecapole for the LRGs reduces the statistical errors without introducing
additional systematics, but the inclusion of the power spectrum hexadecapole for the QSO
increases notably the systematic error budget without reducing the statistical errors in any
appreciable way. Hereafter this baseline combination is referred to as P +B.

The multipole combination for the power spectrum represents another difference with
the official DESI analysis, [64], where the power spectrum hexadecapole is not included. For
comparison, we also present power spectrum only results, where the data-vectors involved are
P024 for the LRG1, LRG2, LRG3 redshift bins, and P02 for the QSOs.
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[%σDR1] P024 +B0 σαiso σαAP σfσs8 σm+n σf σσs8

Modelling
LRG1 < 20 < 20 ∼ 20 ∼ 50 < 20 < 10
LRG2 < 10 ∼ 20 ∼ 50 ∼ 50 ∼ 40 ∼ 90
LRG3 ∼ 20 < 20 < 20 ∼ 50 ∼ 40 ∼ 40
QSO ∼ 20 < 10 ∼ 40 < 20 - -

Fibre assignment
LRG1 < 20 < 20 < 20 < 10 < 20 ∼ 30
LRG2 < 10 < 20 < 20 ∼ 30 ∼ 50 ∼ 70
LRG3 < 20 ∼ 50 ∼ 60 < 10 < 10 ∼ 50
QSO ∼ 40 ∼ 40 ∼ 90 < 20 - -

HOD
LRG1 < 10 < 10 < 10 < 10 < 10 < 20
LRG2 < 10 < 10 < 10 < 10 < 10 < 20
LRG3 < 10 < 10 < 10 < 10 < 10 < 20
QSO < 10 < 10 < 20 < 20 - -

Fiducial
LRG1 < 10 < 10 < 20 < 20 ∼ 30 ∼ 30
LRG2 < 10 < 10 < 20 < 20 ∼ 30 ∼ 20
LRG3 < 10 < 10 < 20 < 20 ∼ 20 ∼ 30
QSO < 10 < 10 ∼ 30 < 20 - -

Total
LRG1 < 20 < 20 ∼ 20 ∼ 50 ∼ 30 ∼ 42
LRG2 < 20 ∼ 20 ∼ 50 ∼ 58 ∼ 71 ∼ 116
LRG3 ∼ 20 ∼ 50 ∼ 60 ∼ 50 ∼ 45 ∼ 71
QSO ∼ 45 ∼ 40 ∼ 103 < 20 - -

Table 4. Contributions to the systematic error budget for each parameter and redshift bin, for the
combination of summary statistics of P024 + B0, i.e. the power spectrum monopole, quadrupole and
hexadecapole, plus the bispectrum monopole. All errors are expressed here as percentage of the DR1
1σ statistical error. The threshold to propagate a specific contribution to the systematic error budget
is 20% of the corresponding DR1 1σ statistical error (see text for more details). The last row shows
the quadratic sum of all the contributing systematic sources, which is to be added in quadrature to
the statistical error bars obtained from the corresponding cosmological parameter posteriors.

5.1 Unblinded data

After having frozen the pipeline, analyses choices and combinations of data-vectors, we per-
form the analysis on the measurements of the unblinded power spectra and bispectra baseline
combination P +B.

Figure 10 presents the results for the baseline P + B combination on the DESI DR1
data (see Appendix B for detailed justification of the choice). To highlight the role of the
bispectrum, the figure also displays the power spectrum-only results (P024 for the LRG bins,
and P02 for the QSO, labelled as P ), in addition to the official DESI results presented in
Ref. [64], in terms of ShapeFit parametrization labelled as ‘DESI SF’. All constraints are
highly compatible.

Despite the analysis differences (sample, selection, k-cuts, multipoles considered, differ-
ent theoretical modelling), the P results presented here are very consistent with the official
DESI ones, highlighting the robustness of the analyses. Compared to P only, the full P +B
analysis provides mild improvements on the size of the errors for the αiso (9% improvement),
fσs8 (9% improvement) and m + n (11% improvement) parameters. As expected, since the
bispectrum monopole has no significant anisotropic signal, there is no change in the size of the
constraints for the parameter αAP. The detailed values of the maximum a posteriori (MAP)
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[%σDR1] P02 +B0 σαiso σαAP σfσs8 σm+n σf σσs8

Modelling
LRG1 < 20 < 20 ∼ 20 ∼ 50 < 20 < 20
LRG2 < 10 < 10 ∼ 30 ∼ 50 ∼ 70 ∼ 70
LRG3 ∼ 20 < 20 ∼ 30 ∼ 50 ∼ 90 ∼ 70
QSO ∼ 30 < 20 < 10 < 20 - -

Observational
LRG1 < 20 < 20 < 10 < 10 < 20 ∼ 40
LRG2 < 20 < 10 < 10 ∼ 40 ∼ 60 ∼ 50
LRG3 < 20 < 10 ∼ 30 < 10 ∼ 60 ∼ 90
QSO ∼ 40 < 20 ∼ 50 < 20 - -

HOD
LRG1 < 10 < 10 < 10 < 10 < 10 < 10
LRG2 < 10 < 10 < 10 < 10 < 20 < 10
LRG3 < 10 < 10 < 10 < 10 < 10 < 20
QSO < 10 < 10 < 20 < 10 - -

Fiducial
LRG1 < 10 < 10 < 20 < 20 ∼ 30 ∼ 30
LRG2 < 10 < 10 < 20 < 20 ∼ 30 ∼ 20
LRG3 < 10 < 10 < 20 < 20 ∼ 30 ∼ 30
QSO < 10 < 10 ∼ 20 < 20 - -

Total
LRG1 < 20 < 20 ∼ 20 ∼ 50 ∼ 30 ∼ 50
LRG2 < 20 < 20 ∼ 30 ∼ 64 ∼ 97 ∼ 88
LRG3 ∼ 20 < 20 ∼ 42 ∼ 50 ∼ 112 ∼ 118
QSO ∼ 50 < 20 ∼ 54 < 20 - -

Table 5. Same as Table 4, but for the power spectrum monopole and quadrupole, plus the bispectrum
monopole (P02 +B0).

and the total error budget (including statistical and systematic contributions) are reported
in Table 6. The corresponding nuisance parameters are reported in Appendix C.

Notably, the inclusion of the bispectrum monopole breaks the f -σs8 degeneracy. We
denote with the prefix ‘d’ the ratio of f or σs8 with respect to its fiducial (c000 cosmology)
value at any effective redshift. The fiducial values are: ffid = {0.763, 0.817, 0.870, 0.928} and
σfid

s8 = {0.621, 0.565, 0.501, 0.401}, corresponding to LRG1, LRG2, LRG3 and QSO. We ob-
tain df = {0.888+0.186

−0.089, 0.977
+0.182
−0.220, 1.030

+0.368
−0.085}, dσs8 = {1.224+0.091

−0.133, 1.071
+0.278
−0.163, 1.000

+0.088
−0.223}

respectively for the LRG1, LRG2, LRG3 bins. This is the main result of this work.
The combination of all the redshift bins yield a cumulative 10.1% constraint on f (with

less than 10% of the contribution to the total error bar coming from the systematic errors),
and of 8.4% on σs8 (27% of the total error bars is the contribution from systematics). For
the other compressed parameters the cumulative errors are σαiso = 0.9% (9% improvement
with respect to our power spectrum-only analysis); σαAP = 2.3% (no improvement with
respect to power spectrum-only analysis); σfσs8 = 5.1% (9% improvement); σm+n = 2.3%
(11% improvement). For these parameters, the contribution to the cumulative error from the
systematics is always below 11% of the total–for the α parameters is below 3%. A discussion
on the χ2 values can be found in sec. 5.2.

Figure 11 provides an alternative visualization of the P + B results (solid contours) as
well as the P -only results (dashed contours), expressed in terms of the evolution across the
samples (in different colours as labelled) of the angular diameter distance DM/rd and Hubble
distance DH/rd, together with the fσs8 and m+ n combined shape parameter.

It is interesting to compare Figure 11 with figure 2 of Reference [86], which displays
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Figure 10. Constraints (68% C.L.) on the parameters {αiso, αAP, dfσs8,m + n, df, dσs8} for the
unblinded DESI data in the four redshift bins (LRG1, LRG2, LRG3, QSO) as indicated in abscissa.
The different colours correspond to the baseline P + B (orange), P only (purple) and the official
DESI SF (ShapeFit) analysis [64] results (blue). The dashed line marks the fiducial, c000, cosmology,
and df , dσs8, and dfσs8 are computed with respect to the fiducial model (i.e., f/fc000, σs8/σ

c000
s8 ).

Despite the analysis differences, the P results presented here are very consistent with the official DESI
ones. The addition of the bispectrum breaks the fσs8 degeneracy, in addition it tightens the error
bars especially on the dfσs8, αiso and m + n parameters. A rigorous interpretation of the ShapeFit
constraints in terms of ΛCDM and extensions of it will be provided in [84].
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Figure 11. Posterior distributions (68 and 95% C.L.) for the parameters {DH(zeff)/rd, DM(zeff)/rd,
fσs8(zeff),m(zeff)+n(zeff)} in the four redshift bins for the baseline analysis (P +B). The theoretical
evolution of the cosmological parameters according to Planck 2018 ΛCDM (corresponding to the
fiducial c000 cosmology) is shown as a black line. The 2D dashed contours represent the power
spectrum-only analysis highlighting how the inclusion of the bispectrum improves significantly the
constraints on the m(z) + n(z) combined shape parameter. The effective redshift, zeff, is defined in
Equation 2.1.

the analogous constraints for BOSS and eBOSS when only employing the power spectrum
multipoles of the LRG and QSO samples; and also including the BAO-only Lyα results (which
we do not consider in this work). It is remarkable that, with only one year of observations,
DESI data yield comparable constraints. Subsequent DESI data releases are expected to
provide significant improvements.
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Within the considered redshift bins, our baseline P + B analysis shows an average
improvement with respect to the DESI SF results [64] of ∼ 10% for αAP; of ∼ 20% for fσs8;
and of ∼ 30% for m+n. We obtain ∼ 5% larger constraints than DESI SF for the parameter
αiso. Analogously, our P -only analysis results in an average improvement in the coincident
redshift bins (LRG1, LRG2, LRG3, QSO) with respect to DESI SF [64] of ∼ 9% for αAP; of
∼ 4% for fσs8; of ∼ 15% for m+ n; and ∼ 15% larger constraints than DESI SF for αiso.

The interpretation of the ShapeFit compressed parameters presented in this work in
terms of constraints on cosmological parameters of a specific model, such as the primordial
size of fluctuations, As, the matter density, Ωm, and the expansion parameter H0; as well as
the comparison with CMB data will be reported in Ref. [84].

Sample αiso αAP dfσs8 m+ n df dσs8 χ2/dof

P +B

LRG1 0.989+0.031
−0.007 1.025+0.044

−0.043 1.087+0.133
−0.075 −0.025+0.044

−0.053 0.888+0.186
−0.089 1.224+0.091

−0.133 241/178
LRG2 0.962+0.025

−0.012 1.012+0.052
−0.038 1.047+0.099

−0.095 0.042+0.023
−0.070 0.977+0.182

−0.220 1.071+0.278
−0.163 291/178

LRG3 0.990+0.025
−0.006 0.967+0.046

−0.036 1.029+0.137
−0.062 0.032+0.024

−0.068 1.030+0.368
−0.085 1.000+0.088

−0.223 253/178
QSO 1.020+0.021

−0.025 1.000+0.082
−0.053 1.113+0.086

−0.126 0.065+0.035
−0.046 - - 193/166

P

LRG1 0.964+0.027
−0.013 1.024+0.059

−0.030 1.001+0.136
−0.066 0.003+0.020

−0.084 - - 33/31
LRG2 0.955+0.012

−0.023 1.012+0.049
−0.035 1.010+0.128

−0.073 0.041+0.016
−0.093 - - 37/31

LRG3 0.988+0.020
−0.019 0.935+0.045

−0.035 1.111+0.146
−0.095 −0.004+0.040

−0.073 - - 31/31
QSO 1.006+0.031

−0.022 1.010+0.081
−0.061 1.105+0.174

−0.088 0.067+0.021
−0.069 - - 20/18

Table 6. Results from our two main analyses, P+B (including the bispectrum monopole) and P (only
power spectrum), for the LRG and QSO redshift bins. In each case, we show the maximum a posteriori
(MAP), together with the 1σ region (which accounts for both statistical and systematic errors) centred
in the MAP value, for the ShapeFit parameters αiso, αAP, fσs8,m+ n, together with the parameters
f and σs8. The prefix ‘d’ in a parameter indicates its ratio with respect to its fiducial value at the
effective redshift of the bin. The corresponding fiducial values are: ffid = {0.763, 0.817, 0.870, 0.928}
and σfid

s8 = {0.621, 0.565, 0.501, 0.401}, for respectively LRG1, LRG2, LRG3 and QSO. We additionally
report the corresponding values for χ2 over the degrees of freedom for each case (see Sec. 5.2 for
discussion).

5.2 Statistical error validation

We aim to validate the statistical errors component obtained on the unblinded data with the
results obtained from Abacus AltMTL mocks. The reasons are two-fold.

1. To check whether the DESI DR1 data catalogues have similar statistical properties to
the Abacus mocks used to validate the modelling and to test for potential systematic
errors.

2. To understand the reason for the high minimum-χ2 values found when fitting the power
spectrum and bispectrum from the LRG data (reported in Table 6); and to quantify the
potential impact of this high minimum χ2 values on the determination of the statistical
error component.

3. To validate that the rescaling of the covariance that we have applied, based on section
5.7 of Ref. [64] is still applicable within our analysis involving the power spectrum
hexadecapole and the bispectrum monopole signals.

In order to do so, we perform the fit on the 25 individual realisations of the LRG and
QSO Abacus AltMTL mocks, which contain the DESI DR1 data survey geometry and mimic

– 29 –



0.02

0.04

σ
α
⊥

1.50 1.75

χ2/dof

0.04

0.05

0.06

σ
f
σ

s8

0.03 0.04 0.05
σα‖

0.040

0.045

0.050

0.055

σ
m

+
n

0.025 0.050

σα⊥

0.05 0.06
σfσs8

LRG1
0.02

0.03

σ
α
⊥

1.0 1.5

χ2/dof

0.04

0.05

σ
f
σ

s8

0.03 0.04
σα‖

0.040

0.045

0.050

σ
m

+
n

0.02 0.03

σα⊥

0.04 0.05
σfσs8

LRG2

0.0150

0.0175

0.0200

0.0225

σ
α
⊥

1.25 1.50 1.75

χ2/dof

0.030

0.035

0.040

σ
f
σ

s8

0.02 0.03
σα‖

0.035

0.040

0.045

σ
m

+
n

0.015 0.020

σα⊥

0.03 0.04
σfσs8

LRG3

0.02

0.03

0.04

0.05

σ
α
⊥

0.75 1.00 1.25

χ2/dof

0.03

0.04

0.05

σ
f
σ

s8

0.04 0.06
σα‖

0.030

0.035

0.040

σ
m

+
n

0.02 0.04

σα⊥

0.03 0.04 0.05
σfσs8

QSO

Abacus AltMTL DR1 Data rms of median values 1-2σ region

Figure 12. Scatter of the 1σ statistical errors for the baseline P+B analysis choice on the parameters
of interest, {α∥, α⊥, fσs8, m + n} as well as the histogram for the χ2 distribution normalized by
the number of degrees of freedom (χ2/dof). The performance for the 25 Abacus AltMTL mocks is
displayed in blue circles, whereas the red cross displays the actual DESI DR1 data performance. The
orange points with error bars are the errors obtained as the standard deviation of the medians of the
25 individual fits (the error bars corresponding to the error on the standard deviation, estimated as
σ/

√
2N − 2, with N = 25). The green curves delimit the approximated 1 − 2σ regions of the error

distribution, estimated from the scatter of the blue data-points. The four main panels represent the
redshift bins studied in this paper, as labelled. The reported errors do not contain any systematic error
budget, but the EZmock-derived covariance does contain the correcting factors of Table 3 of Ref. [64].
The errors reported for the DESI data are consistent with those of the Abacus AltMTL mocks, and
with the error derived from the medians of the 25 realisations. Only for the LRG3 and QSO redshift
bins, the error on the m + n parameter is on the upper side of the distribution of errors, showing a
typical ∼ 2σ offset from the overall distribution. The larger-than-mocks best-fitting χ2 reported on
the data for the LRG2 bin does not have a noticeable effect on the errors of the parameters of interest
compared to what is found on the Abacus mocks.
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the fibre assignment effect. We employ the same covariance used for fitting the DR1 data,
derived from the 1000 FFA EZmocks realisations, including the correction factors of Table 3 of
Ref. [64] as explained in Section 2.1. We do not include any extra systematic contribution, as
here we are only interested in testing the relative statistical properties of the data compared
to the mocks.

In Figure 12 we display the distribution of the 1σ (or 68% CL) errors for the four pa-
rameters of interest, {α∥, α⊥, fσs8, m + n}, for the four redshift bins studied in this work:
top-left panel for the LRG1; top-right panel for the LRG2; bottom-left panel for the LRG3;
bottom-right panel for the QSO, as labelled. For each of these panels, the blue dots display
the statistical errors of the 25 individual AltMTL Abacus mocks. The statistical errors corre-
sponding to the DESI DR1 data are shown as the red crosses. We compare the distribution of
statistical errors with the standard deviation computed from the medians of the 25 individual
posteriors, shown in orange. 18 In addition, the histogram of the best-fitting χ2 per number
of degrees of freedom (dof) is also shown for each of the LRG and QSO samples, where the
red vertical line represents the minimum χ2 found for the data (and reported in Table 6), and
the blue histogram is from the 25 mocks.

Figure 12 shows that the errors obtained from the data are in general very consistent
with the typical errors we obtain from the 25 mocks. Only for the m+ n parameter, for the
LRG3 and QSO bins, we find that the error of the data is at the high end of the distribution of
errors from the mocks. We do not consider this outlier as something statistically worrisome,
as we estimate that such outliers sit in a region of ∼ 2σ from the typical size of errors.

We also notice that for the LRG1 and the LRG3 bins, the distribution of χ2/dof of
the Abacus AltMTL mocks is centred around values ∼ 1.4 to 1.5 while for LRG2 and QSO
samples it is centred closer to the expected value of 1.0. One possible explanation is that
the model is not able to accurately describe the mocks. In some cases (see Table 4 for the
LRGs and Table 5 for the QSO) we have reported modelling systematic errors of 20% to
50% of the total statistical error budget, that could explain the high χ2 values in some of
these bins. Another possibility is that the mock-based covariance we are employing is slightly
underestimating the true covariance of the mocks, even after the correction term of Table 3
of Ref. [64]. We leave for future work a more thorough exploration of the covariance of the
bispectrum, as it requires the development of more realistic mocks and more sophisticated
techniques for an analytical-based covariance, which goes beyond the scope of this paper.

Finally, we also highlight that the minimum χ2 found for the data is broadly in agreement
with those obtained for the mocks, with maybe the only exception of the LRG2 bin, where
the highest χ2/dof found on a mock is of ∼ 1.4, whereas for the data is ∼ 1.6. However, this
difference in best-fitting χ2 values does not translate into a difference in the distribution of
the errors of the parameters of interest, and therefore it doesn’t impact the cosmology results.

We conclude that there is no evidence that the statistical errors are significantly un-
der/over estimated, and that the rescaling factors that we have applied (following table 3 of
Ref. [64]) are appropriate for our analysis settings. The high values for the minimum χ2 seen
in the data are also seen in the simulations and are possibly due to a combination of effects
including imperfections in the model of the bispectrum, imperfections in the calibration of
the covariance matrix and possibly the adoption of a Gaussian likelihood as an imperfect
approximation. Even if we were to rescale the covariance matrix by a constant factor as to

18In the limit of a large number of realisations, the two estimates should coincide for a Gaussian distribution:
within the limits of using only 25 mocks, there is compatibility within the error associated with the estimation
of the standard deviations.
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force the minimum χ2 per dof to be 1, this would not increase the errors by more than ∼ 20%.
This is below our minimal threshold to propagate systematics into the final results.

We conclude that the covariance matrix shortcomings we have seen here do not bias the
final results nor the reported size of the (statistical + systematic) error-bars in a significant
way.

6 Conclusions

We have presented the first joint analysis of the power spectrum and bispectrum signals
using DESI DR1 data catalogues, focusing on the LRG and QSO samples, and thus probing
the evolution of the universe through a redshift range of 0.4 ≤ z ≤ 2.1. The inclusion of
the bispectrum allows us to break parameter degeneracies, in particular, to obtain separate
constraints for the amplitude of perturbations (σs8) and growth rate (f) parameters, which
are usually constrained only in the combination fσs8.

We use a model and framework very similar to that of BOSS and eBOSS analyses [61, 62],
which differs from the official DESI pipeline [64] in several aspects:

• We work with the renormalized perturbation theory model (RPT) expansion at two-
loop, while [64] uses an EFT-based model at one-loop.

• In the three LRG bins we use the signal from the power spectrum monopole, quadrupole
and hexadecapole, while [64] uses only the power spectrum monopole and quadrupole.

• We consider a range of scales of k < 0.15hMpc−1, while [64] considers k < 0.20hMpc−1.

• We do not use all the systematic mitigation strategies that [64] uses, in particular the
θ-cut and the marginalization over the non-linearities of systematic weights (although
the latter is mostly relevant for ELG galaxies which we do not include).

• We do not use any ELG redshift bin, given that this tracer fails to pass some of our
systematic tests. We also do not use the BGS tracer.

• We include the bispectrum monopole.

Apart from these differences, our analysis closely matches that of the official DESI
pipeline: we use the same mocks (see Section 2.1), both for validation and covariance, the
same blinding procedure (Section 2), the same approach for the ShapeFit compression (Section
3.1), and the same treatment and characterization of systematic errors (Section 4).

The remarkable consistency between the P -only results presented here and the official
DESI one highlights the exquisite fidelity of DESI data and the astounding robustness of
cosmological constraints obtained from compressed-variable analyses of large-scale structure
data.

The inclusion of the bispectrum monopole represents the main novelty of this work.
We use the GEO-FPT bispectrum model presented in [59], for a range of scales of 0.02 ≤
k
[
hMpc−1

]
≤ 0.12. We limit ourselves to the bispectrum monopole (B0) as we lack of a

sufficiently accurate modelling of the effects of the survey window function for the bispectrum
multipoles. The adopted bispectrum monopole window convolution is the same as that used
in some BOSS and eBOSS analyses [46, 49].

We perform a suite of systematic tests, following closely Ref. [64], to determine the size of
the systematic error budget and to decide which summary statistics we use in each redshift bin
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before unblinding the data. The largest sources of systematics come from the modelling and
fibre assignment process, with σs8 being the most affected parameter in terms of percentage
of the DR1 statistical error bar. From the systematic error estimates and the cosmological
parameter constraints performed in blinded data, we choose to use as our baseline analysis
the combination P024 + B0 for the three LRG redshift bins, and only P02 + B0 for the QSO
tracer.

In this way (and assuming the different redshift bins are uncorrelated), we obtain cu-
mulative constraints of 10.1% and 8.4% for respectively f and σs8. Our constraints for the
parameters αiso, αAP, fσs8, m+n are consistent (and competitive) with the ones obtained in
the main DESI collaboration ShapeFit analysis [64]. In particular, the inclusion of the bispec-
trum monopole reduces the error bars of αiso, fσs8, m + n by respectively 9%, 9% and 11%
with respect to our power spectrum-only analysis.

We envision this to be a first milestone towards the promise of tight cosmological con-
straints (including f and σs8 when considered separately) with the combination of two-point
and higher-order statistics. In particular, the ability to consider parameter constraints on f
and σs8 separately will allow us to constrain modifications of general relativity (where the
relationship f = Ωγ

m with γ ≈ 6/11 no longer holds [122, 123]). Aside from the obvious
improvement in precision that will be possible with the upcoming DESI data releases, im-
provements will include strategies to mitigate the fibre assignment systematic errors and the
inclusion of the bispectrum quadrupoles in the analysis. This is a major challenge since the
window function treatment is highly non-trivial, but the extra anisotropic information present
may provide significant enhancement of the precision and accuracy in most cosmological pa-
rameters, as we saw in [59].

In a forthcoming work [84], we will provide the interpretation of the compressed param-
eter constraints presented here in terms of traditional cosmological parameters for the ΛCDM
model and its extensions.

Data Availability

All data from the tables and figures will be available in machine-readable format at 10.5281/zen-
odo.14944381 upon acceptance in compliance with the DESI data management plan.
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A Perturbation theory modelling of the power spectrum and bispectrum

In this section, we review the perturbation theory theoretical formalism underlying the mod-
elling used here for the power spectrum and bispectrum.

The redshift space galaxy power spectrum, Pg, is computed from the non-linear matter
power spectrum, Pg,δδ (also referred to as PNL in the main text and in Ref [59, 131]), the
density-velocity, Pg,δθ, and velocity-velocity, Pg,θθ, power spectra, according to the TNS model
[132, 133],

Pg(k, µ) = DP
FoG(k, µ, σP )

[
Pg,δδ(k) + 2fµ2Pg,δθ(k) + f2µ4Pθθ(k)

+ b21A
TNS(k, µ, f/b1) + b41B

TNS(k, µ, f/b1)
]
, (A.1)

where f denotes the logarithmic growth rate of perturbations, and d ln δ/d ln a and Pg,δδ, Pg,δθ

are computed as in [134] using the RPT terms of [60] for Pδδ, Pδθ, Pθθ. In doing so, we are
using the bias expansion {b1, b2, bs2 , b3nl} and assuming the Lagrangian local bias relations
[97, 98, 134, 135],

bs2 = −4

7
(b1 − 1); b3nl =

32

315
(b1 − 1). (A.2)

Additionally, the functions ATNS, BTNS are defined in [132], µ is the cosine of the angle of
k with the line of sight, and DP

FoG is a damping factor that accounts for the Fingers-of-God
(FoG) effect of redshift space distortions (RSD) [136]. We model the FoG damping factor for
the power spectrum as,

DP
FoG(k, µ, σ

P
FoG) =

1(
1 + k2µ2σ2

P /2
)2 , (A.3)

where σP is a free parameter to be constrained by the data.
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The tree-level redshift space bispectrum can then be written in the following way at
tree-level order:

BSPT(k1,k2,k3) = DB
FoG(k1,k2,k3)

[
2ZSPT

1 (k1)Z
SPT
1 (k2)Z

SPT
2 (k1,k2)PL(k1)PL(k2) + 2perm.

]
,

(A.4)
where the kernels ZSPT

1 , ZSPT
2 are computed as [25, 137, 138],

ZSPT
1 (k) = b1 + fµ2,

ZSPT
2 (k1,k2) = b1F

SPT
2 (k1,k2) + fµ2

12G
SPT
2 (k1,k2) +

b1f

2

(
µ2
1 + µ2

2 + µ1µ2

(
k1
k2

+
k2
k1

))
+ f2µ1µ2

(
µ1µ2 +

1

2

(
µ2
1

k1
k2

+ µ2
2

k2
k1

))
+

1

2

(
b2 + bs2S

SPT
2 (k1,k2)

)
, (A.5)

where µij ≡ (kiµi + kjµj)/|ki + kj |. The GSPT
2 and SSPT

2 kernels in Standard Perturbation
Theory (SPT) are given by,

GSPT
2 (k1,k2) =

3

7
+

1

2
cos(θ12)

(
k1
k2

+
k2
k1

)
+

4

7
cos2(θ12), (A.6)

SSPT
2 (k1,k2) = cos(θ12)

2 − 1

3
. (A.7)

Additionally, for the bispectrum, we parametrise the FoG damping factor as [25, 107],

DB
FoG(k1,k2,k3) = (1 +

[
k21µ

2
1 + k22µ

2
2 + k23µ

2
3

]2
σ4
B/2)

−2, (A.8)

again with σB being a free parameter.
We model the deviations from Poissonian shot-noise with the parameters AP, AB, which

modify the Poisson prediction as in [50, 139],

Pnoise = (1− AP

α∥α
2
⊥
)PPoisson, (A.9)

Bnoise(k1, k2, k3) = (1− AB

α2
∥α

4
⊥
)BPoisson(k1, k2, k3). (A.10)

The power spectrum and bispectrum redshift space multipoles are then obtained by
integrating the expansion of the power spectrum and bispectrum dependence on the angle
with respect to the line of sight in terms of Legendre polynomials Li, so that

Pℓ(k) =
2ℓ+ 1

2α∥α
2
⊥

∫ 1

−1
dµP (k, µ)Lℓ(µ), (A.11)

Bℓi(k1,k2,k3) =
2ℓ+ 1

4πα2
∥α

4
⊥

∫ 1

−1
dµ1

∫ 2π

0
dϕB(k1,k2,k3)Lℓ(µi), (A.12)

Here ϕ is defined as the angle fulfilling µ2 = µ1 cos θ12 −
√
(1− µ2

1)(1− cos θ212) cosϕ, and ℓi
refers to the multipole of order ℓ (ℓ = 0, 2 corresponding respectively to the monopole and
quadrupole). For the bispectrum quadrupoles (ℓ = 2), ℓi is the quadrupole corresponding
to integrating over the Legendre polynomial applied to the cosine of the i-th angle. In this
work, we only use the bispectrum monopole, due to the current limitations of the modelling
of the window function. The power spectrum multipole expansion of A.11 was proposed in
[140, 141], while the bispectrum expansion and choice of variables was first used in [107].
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B Blinded data

The blinded cosmological constraints for the parameters {αiso, αAP, fσs8,m + n, f, σs8} for
the four combinations of summary statistics that we consider in this work (P02, P024, P02 +
B0, P024 +B0) are shown together in Figure 13.

These results for the blinded data determine the combination of summary statistics to
use after unblinding. We aim at striking a balance between two aspects:

• Statistical errors: In general, adding more multipoles or the bispectrum to the data-
vector decreases the error bars

• Systematic errors: Some scales or summary statistics are more prone to systematic
errors than others. The systematic errors presented in Tables 4, 5, 9, 10 allow us to
quantify this.

We wish to select data-vectors which add significant information (and thus reduce the statis-
tical error bars) while not increasing the systematic error budget.

Figure 13 displays the constraints on the ShapeFit cosmological parameters for the dif-
ferent DESI redshift bins, and the different combinations of summary statistics considered
(symbols in different colours). The addition of the power spectrum hexadecapole, P4, sig-
nificantly enhances the LRG constraints for the anisotropic parameter αAP, and, to a lesser
extent, fσs8. The comparison of Tables 9 vs 10 and Tables 4 vs 5 shows that for LRGs the
inclusion of P4 does not increase the systematic error budget in any significant way.

Conversely, in the case of the QSO tracers, the inclusion of P4 does not reduce appre-
ciably the statistical errors but increases notably the systematic error budget (specifically for
the parameters fσs8 and αAP). This is not unexpected, since the QSO tracers may not have
sufficient number density for the signal-to-noise of the power spectrum hexadecapole to be
big enough.

The inclusion of the bispectrum, aside from breaking the fσs8 degeneracy, reduces the
error bars of the αiso and m + n parameters. Additionally, the P024 + B0 multipoles com-
bination features slightly less projection effects than the case without the power spectrum
hexadecapole, particularly in the αAP,m+ n, f and σs8 parameters.19

Taking all these points into account, we define our baseline set of multipoles as P024+B0

for the three LRG redshift bins, and P02+B0 for the QSOs. Our baseline power spectrum-only
analysis will likewise consist in P024 for the LRGs and P02 for QSOs.

C Nuisance Parameters

In this section, we report the MAP values for the nuisance parameters obtained from the
analysis described in section 5. Table 7 displays the results for the galaxy bias parameters,
the shot noise amplitudes and the Fingers-of-God parameters for both types of analysis, with
and without the bispectrum signal, as previously done in Table 6 for the ShapeFit cosmological
parameters. The baseline choices of those results are the same to those presented before in
section 5: for the LRG samples we vary σs8 and choose to report both {b1, b2}, as well as
the combination of parameters best-measured, {b1σs8, b2σ3

s8}. On the other hand, for the
19The presence of projection effects can be inferred from the displacement of the maximum a posteriori

(MAP) value from the centre of the error bars. When this shift is significant, it indicates that the data
provide weak constraints on the parameter, since the posterior distribution is skewed.
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Figure 13. Cosmological constraints obtained from the four blinded redshift bins (LRG1, LRG2,
LRG3, QSO), by using each of the four combinations of summary statistics that we consider in this
work: P02, P024, P02 +B0, P024 +B0. The parameters f and σs8 are not shown separately, neither for
the power spectrum, as usual, nor for the QSO redshift bin, where we saw that even in an analysis
including the bispectrum the two parameters were markedly degenerate.

QSO and for the LRG samples when only P is employed, we keep σs8 fixed, and re-interpret
the best-fitting bias values as a product of b1 and a power of σs8. We determine that the
combination that for the power spectrum and bispectrum that keeps bxσ

n
s8 uncorrelated with
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Figure 14. Posteriors obtained for the ShapeFit analysis of P +B for the nuisance parameters b1,
b2, AP , AB , σP and σB (units of σP,B are Mpch−1 ), for each sample as labelled. The cosmological
parameters are also varied in this fit (see Figure 11), but not shown for clarity. We also report
the galaxy bias results in terms of b1σs8 and b2σ

3
s8, as these are the effective combinations better

constrained for the P +B case. The MAPs values of these contours are reported in Table 7.

σs8 is n = 1 for b1 (as expected from the Kaiser limit at large scales), and n = 3 for b2,
as a resulting of combining the power spectrum and bispectrum. We then choose those
combination of variables to be reported here.

Figure 14 displays these same results in a triangle-plot style.
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Sample b1σs8 b2σ
3
s8 b1 b2 AP AB σP [Mpch−1] σB [Mpch−1] χ2/dof

P +B
LRG1 1.159+0.084

−0.024 0.213+0.090
−0.044 1.525+0.180

−0.074 0.484+0.356
−0.129 0.970+0.161

−0.082 0.884+0.265
−0.102 4.404+0.497

−0.386 0.521+2.506
+0.010 241/178

LRG2 1.140+0.040
−0.031 0.183+0.058

−0.069 1.882+0.169
−0.274 0.822+0.487

−0.489 0.724+0.203
+0.003 0.787+0.317

−0.066 4.253+0.335
−0.427 3.672+1.364

−2.598 291/178
LRG3 1.133+0.030

−0.026 0.233+0.060
−0.014 2.265+0.551

−0.106 1.863+2.251
−0.197 0.863+0.155

+0.001 0.998+0.153
−0.102 3.339+0.444

−0.355 4.511+0.163
−3.609 253/178

QSO 0.890+0.069
+0.007 0.058+0.052

−0.011 − − 0.981+0.118
−0.013 1.015+0.231

−0.040 4.563+0.769
−0.340 7.526+0.190

−5.530 193/166

P
LRG1 1.136−0.002

−0.078 0.260+0.500
−0.400 − − 0.772+0.427

+0.118 − 4.057−0.263
−1.192 − 33/31

LRG2 1.112+0.023
−0.054 0.621+0.139

−0.761 − − 0.696+0.503
+0.194 − 4.083−0.289

−1.218 − 37/31
LRG3 1.113−0.021

−0.055 0.429+0.331
−0.569 − − 0.911+0.288

−0.021 − 3.258+0.536
−0.392 − 31/31

QSO 0.904+0.026
−0.043 0.047+0.293

−0.213 − − 0.992+0.115
−0.031 − 4.731+0.973

−0.355 − 20/18

Table 7. Results for the nuisance parameters from our two main analyses, P +B and P , for the LRG
and QSO redshift bins, analogue to Table 6. Each row displays the maximum a posteriori (MAP),
together with the 1σ region (which in this case only accounts for the statistical errors, as there is no
systematic contribution calculated) centred in the MAP value. In the cases with significant projection
effects, the MAP may fall outside of the 1σ region. We additionally report the corresponding values
for χ2 over the degrees of freedom for each case.

D Covariances and additional tables

We will report here, upon acceptance, the covariance of the cosmological parameters for each
tracer.

We also report here some numerical details not included in the main text. The cosmolog-
ical parameter constraints for the non-baseline choices of data-vector (i.e. the ones involving
P024 in QSOs and P02 in LRGs, for both power spectrum and joint power spectrum-bispectrum
analyses), are shown in Table 8.

Sample αiso αAP dfσs8 m+ n df dσs8 χ2/dof

P02 +B
LRG1 0.998+0.018

−0.020 0.961+0.106
−0.036 1.137+0.131

−0.119 0.001+0.020
−0.0795 1.014+0.129

−0.217 1.121+0.197
−0.049 231/165

LRG2 0.967+0.029
−0.014 1.064+0.136

−0.093 0.993+0.134
−0.164 0.035+0.023

−0.072 0.745+0.379
−0.173 1.332+0.200

−0.431 271/165
LRG3 1.002+0.022

−0.014 1.093+0.085
−0.083 0.896+0.153

−0.111 0.036+0.009
−0.085 0.699+0.418

−0.024 1.281−0.042
−0.404 240/165

P024 +B QSO 1.019+0.026
−0.022 1.082+0.029

−0.053 1.016+0.093
−0.091 0.067+0.036

−0.046 - - 213/179

P02

LRG1 0.965+0.026
−0.016 1.042+0.085

−0.075 0.935+0.206
−0.047 0.009+0.010

−0.097 - - 24/18
LRG2 0.949+0.022

−0.015 1.035+0.078
−0.072 0.993+0.164

−0.089 0.016+0.032
−0.076 - - 20/18

LRG3 0.994+0.020
−0.019 1.056+0.096

−0.070 0.951+0.172
−0.127 −0.011+0.037

−0.067 - - 17/18
P024 QSO 1.006+0.031

−0.022 1.082+0.029
−0.053 1.016+0.093

−0.091 0.067+0.036
−0.046 - - 33/31

Table 8. Analogous to Table 6, in this case showing the combinations of statistics that are not a
part of our baseline analysis.

The systematic error tables for the power spectrum analysis (not including the bispec-
trum), analogous to Tables 4 and 5, are respectively Table 9 and 10.
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[%σDR1] P024 σαiso σαAP σfσs8 σm+n

Modelling
LRG1 < 20 < 20 < 10 < 20
LRG2 ∼ 30 ∼ 20 ∼ 30 ∼ 20
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QSO ∼ 40 < 10 ∼ 20 ∼ 20

Fibre assignment
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LRG2 < 10 < 10 < 20 < 20
LRG3 < 10 < 10 < 20 < 20
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Table 9. Same as Table 4, with the only difference that the summary statistics considered here are
the power spectrum monopole, quadrupole and hexadecapole (P024), without the bispectrum.
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[%σDR1] P02 σαiso σαAP σfσs8 σm+n

Modelling
LRG1 ∼ 20 < 20 < 10 < 10
LRG2 ∼ 30 < 10 < 20 < 20
LRG3 ∼ 40 < 20 ∼ 40 ∼ 40
QSO ∼ 50 < 20 < 10 < 20

Fibre assignment
LRG1 < 10 < 10 < 10 < 10
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Table 10. Same as Table 4, with the only difference that the summary statistics considered here are
the power spectrum monopole and quadrupole (P02) only.
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