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Abstract

A rotation in the field space of a complex scalar field corresponds to a Bose-Einstein condensation

of U(1) charges. We point out that fluctuations in this rotating condensate exhibit sound-wave

modes, which can be excited by cosmic perturbations and identified with axion fluctuations once

the U(1) charge condensate has been sufficiently diluted by cosmic expansion. We consider the

possibility that these axion fluctuations constitute dark matter and develop a formalism to com-

pute its abundance. We carefully account for the growth of fluctuations during the epoch where

the complex scalar field rotates on the body of the potential and possible nonlinear evolution when

the fluctuations become non-relativistic. We find that the resultant dark matter abundance can

exceed the conventional and kinetic misalignment contributions if the radial direction of the com-

plex scalar field is sufficiently heavy. The axion dark matter may also be warm enough to leave

imprints on structure formation. We discuss the implications of this novel dark matter produc-

tion mechanism—acoustic misalignment mechanism—for the axion rotation cosmology, including

kination domination and baryogenesis from axion rotation, as well as for axion searches.
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1. INTRODUCTION

Spontaneously broken symmetries play important roles in the solutions to a variety of

problems in the Standard Model (SM). Examples of such symmetries include Peccei-Quinn

(PQ) symmetry [1, 2] (a solution to the strong CP problem), lepton symmetry [3] (the

origin of neutrino masses), and flavor symmetry [4] (the origin of the pattern of the fermion

masses and mixings). If the symmetry is global, the spontaneous breaking is associated with

a Nambu-Goldstone boson (NGB). If the symmetry is explicitly broken, the NGB obtains a

nonzero mass. We refer to these pseudo Nambu-Goldstone bosons generically as “axions.”
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The axion is the angular direction of the complex scalar field whose radial vacuum ex-

pectation value (VEV) spontaneously breaks the global symmetry, which we call the PQ

symmetry. The complex scalar field, which we call the PQ field in this paper, may rotate

in its field space in the early universe, initiated by the Affleck-Dine mechanism [5]. The ro-

tation corresponds to a nonzero charge associated with the global symmetry, which we call

the PQ charge or PQ asymmetry. If the PQ charge density is large enough, the rotation is

stable against dissipation into thermal fluctuations, because it is free-energetically favorable

to keep the charges in the form of rotation, i.e., a Bose-Einstein condensate, rather than in

the form of a particle-antiparticle asymmetry in the bath [6, 7].

It is known that the axion rotation can explain both the dark matter abundance and

the matter-antimatter asymmetry of the universe. The kinetic energy associated with the

axion rotation may be converted into the axion dark matter abundance in the form of a

coherent axion oscillation [8] or axion fluctuations [9, 10] (see also [11, 12]). This is known

as the kinetic misalignment mechanism (KMM). In the early stages of the axion rotation, the

radial-mode oscillation can also produce axion dark matter via parametric resonance [13, 14].

The matter-antimatter asymmetry can be explained if a part of the PQ charge is transferred

into baryon asymmetry [6, 15–29], which is known as the axiogenesis mechanism.

The axion rotation follows an interesting equation of state. In its initial phase, when the

PQ field rotates on the body of the potential, the rotation behaves as matter or radiation,

depending on whether the potential of the PQ field is nearly quadratic or quartic. We will

call this phase the pre-kination phase. After the field reaches the bottom of the potential,

the rotation behaves as kination [6], henceforth referred to as the kination phase.

Like any other energy component of the universe, the axion rotation would have density

perturbations, which may be sourced by adiabatic perturbations that explain the observed

anisotropies in the cosmic microwave background, or are simply isocurvature perturbations of

the rotation. Since the PQ field is complex, the perturbations have two modes. We point out

that one of them is a phonon mode, i.e., sound waves of the PQ charge density, and may be

identified with axion fluctuations once the PQ charge density is diluted by cosmic expansion.

The schematic picture is shown in Fig. 1. Initially, the PQ charge density nθ is large and

there is a NGB mode associated with the spontaneous breaking of the PQ symmetry and

the time-translational symmetry into a diagonal subgroup, which is the sound-wave mode.

Sound waves of nθ can be produced by primordial perturbations. After nθ decreases due to
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Axion

Cosmic Expansion

FIG. 1. Sound waves of the PQ charge density nθ are produced by cosmic perturbations. After

the dilution of the charge density by cosmic expansion, sound waves become axions. The dotted

line shows the average charge density.

cosmic expansion, since the PQ symmetry is spontaneously broken also at the vacuum, the

sound waves smoothly become NGBs at the vacuum, i.e., axions.

The computation of the perturbations of the axion rotation has been developed in [30–

32] for the era when the PQ field rotates at the body and bottom of its potential, and

in [10, 33, 34] for the bottom of potential. In [34], it was pointed out that the second-

order perturbations of kination fluid behave as radiation and clarified why we may compute

the radiation abundance by the linear perturbation theory despite the second-order energy

perturbations eventually exceeding the zeroth-order kination energy. Ref. [34] also noted

the possibility that the radiation produced from cosmic perturbations could become dark

matter. However, the resultant dark matter abundance was not computed and the evolution

of the perturbations in the pre-kination phase was not considered. Ref. [14] discussed para-

metric resonance production of axion fluctuations from the radial excitation on the rotating

background rather than the production by primordial cosmic perturbations.

In this paper, we compute the axion dark matter abundance resulting from the cosmic

perturbations of the sound-wave mode of the axion rotation, which we call the Acoustic

Misalignment Mechanism (AMM). We take into account the evolution of fluctuations during

the pre-kination phase, which is important for the computation of the contribution from the
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FIG. 2. The acoustic misalignment mechanism (AMM) and the kinetic misalignment mechanism

(KMM) can explain the observed dark matter abundance in the orange-shaded region, with the

labels showing which mechanism can dominate. In the green-shaded region and on the sold green

line, the observed baryon asymmetry can also be explained by axiogenesis via the weak sphaleron

process. Further details are provided in Secs 4.5 and 4.6.

modes that enter the horizon during the pre-kination era. We find that the contribution

from those modes may dominate over the contribution from the modes that enter the horizon

during the kination phase if the axion rotation dominates the universe. Rotation domination

is necessary in certain regions of the parameter space in order to explain the observed dark

matter abundance. We discover possible nonlinear evolution if the fluctuations are too large

when they become non-relativistic. We compute the axion abundance from the AMM as a

function of the model parameters and find that the AMM contribution dominates over the
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KMM contribution when the PQ field mass is sufficiently large. We also find that axion

dark matter produced by the AMM may be warm enough to affect the structure formation

of the universe. These results have implications for the axiogenesis scenarios as well.

Fig. 2 summarizes the implications for the axion searches. The AMM and KMM can

explain the observed dark matter abundance in the orange-shaded region with the labels

showing which mechanism dominates. We see that the AMM and KMM predict larger axion

couplings than the conventional misalignment mechanism [35–37], shown by the gray dotted

line with the misalignment angle assumed to be unity. Inside the green-shaded region (along

the solid green line), the observed baryon asymmetry of the universe can be explained by

axiogenesis using the electroweak sphaleron process, along with the dark matter produced by

the AMM (KMM) mechanism. Current constraints and projections for future axion searches

are taken from [38].

This paper is structured as follows. Sec. 2 reviews the zero-mode evolution, the equation of

state of the axion rotation, and the constraints from the efficient thermalization of rotation.

In Sec. 3, we analyze the evolution of the cosmic perturbations of the axion rotation. The

results are then used in Sec. 4 to compute the axion abundance from the AMM, which is

compared to the KMM contribution. Sec. 4 also discusses implications for the axiogenesis

scenarios. Sec. 5 provides a summary of our findings and discussion. Appendix A derives the

dispersion relation of two perturbation modes around the rotating background and explicitly

shows the existence of sound-wave modes. Appendix B provides extra figures.

2. ZERO-MODE EVOLUTION OF AXION ROTATION

In this section, we describe the evolution of the zero mode of the axion rotation. We

discuss how the rotation is initiated and becomes circular by thermalization, and how the

equation of state of the rotation evolves.

The axion field a is the angular direction of a complex scalar field P , which can be

decomposed as

P =
1√
2
reiθ =

1√
2
reiθa/NDW . (2.1)

The radial mode obtains a VEV of r = faNDW with fa the decay constant and NDW the do-

main wall number. In the first equality, we decomposed P simply into the radial component

r and the angular component θ. In the second equality, we normalized the angular variable
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θa = a/fa so that the periodicity of its dominant vacuum potential ∝ cos(NDW θ) is 2π.

2.1. Initiation of rotation

Throughout this work, we focus on the case where the complex field P undergoes a rota-

tional motion in the field space. This dynamics is well-motivated in the early universe and

can be triggered as follows. As pointed out in the Affleck-Dine baryogenesis mechanism [5],

if a complex scalar field starts with a large displacement from the origin, higher-dimensional

operators that explicitly break the U(1) symmetry can be sizable and generate a “kick” in

the angular direction, initiating a rotation, when the Hubble scale drops below the mass of

the radial mode. The large initial field value can be a result of a mere initial condition during

inflation or of a negative Hubble-induced mass during inflation. See [39–41] for the detail of

the dynamics involving a Hubble induced mass. Once the rotation begins, the radius of the

motion decreases due to redshift and the higher-dimensional operators become suppressed

and irrelevant. The rotation then corresponds to a nonzero conserved U(1) charge, whose

yield is given by

Yθ =
nθ
s

=


θ̇af2a
s

r ≃ NDWfa

mrr2/NDW

s
r ≫ NDWfa,

(2.2)

where s is entropy density, θ̇a = dθa/dt is the angular velocity, and mr(r) is the local

curvature (mass) of the potential of the radial direction.

For the initial field value ri at the start of rotation, Yθ is given by

Yθ ≃ ϵ
mr(ri)r

2
i

NDWs

∣∣∣∣
mr(ri)=3H

≃ 600× ϵ

NDW

( ri
1016GeV

)2( TeV

mr(ri)

)1/2(
106.75

g∗

)1/4

, (2.3)

where ϵ ∼ (∂V/∂θ)/(r∂V/∂r) parametrizes the strength of the kick and g∗ captures effective

degrees of freedom of the thermal bath. As we will see in Sec. 4, for the rotation to explain

the observed dark matter abundance, Yθ ≫ 1 is typically required. To obtain such large Yθ,

we need mr(ri) ≪ ri at large ri, which requires a flat potential of r. For the model with

a positive quartic and negative quadratic term in the potential, a small quartic coupling is

required. In supersymmetric theories, a flat potential can be naturally obtained. In fact,

the converse of the theorem in [42] tells us that in supersymmetric theories, as long as the

PQ-breaking sector does not spontaneously break supersymmetry, there should be a flat

direction that corresponds to the extension of the U(1) symmetry transformation parameter
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into the complex plane. Couplings with supersymmetry breaking lift the flatness, but as

long as the PQ symmetry breaking scale is much larger than the soft mass scale, the flatness

is lifted only by the soft supersymmetry-breaking mass of P . Two types of supersymmetric

models are introduced in the next subsection.

When the motion is initiated, the P field receives a kick not only in the angular direction

but also in the radial direction. This implies that the motion is initially elliptical, and

there is energy associated with the radial-mode oscillations. To avoid a moduli problem, the

radial mode r should dissipate via interactions with the thermal bath. After thermalization,

U(1) charge conservation dictates that P must follow the motion with the least energy for

a fixed charge, which is circular. While a part of the U(1) charge can be transferred into

particle-antiparticle asymmetry in the thermal bath, it is still free-energetically favored to

keep the majority of charges in the rotation as long as Yθ ≫ mr/T [6].

2.2. Equation of state of rotation

The evolution of the energy density of the circular rotation depends on the form of the

radial potential. For a model with a negative quadratic term and a positive quartic term

(referred to as the “quartic model” henceforth),

V (P ) = λ

(
|P |2 − 1

2
N2

DWf
2
a

)2

, (2.4)

the potential is nearly quartic for r ≫ NDWfa. The energy of the rotation redshifts as

radiation, ρθ ∝ R−4, where R is the scale factor of the universe. Once r reaches the

minimum NDWfa, the energy of the rotation is dominated by the kinetic energy and hence

redshifts as kination, ρθ ∝ R−6.

In supersymmetric theories, V (P ) at r ≫ NDWfa can be nearly quadratic. One super-

symmetric model is the PQ breaking by dimension transmutation with the potential [43]

V (P ) =
1

2
m2
r|P |2

(
ln

2|P |2

f 2
aN

2
DW

− 1

)
, (2.5)

where mr is the soft mass of the radial mode, and the logarithmic factor arises from a

radiative correction from a Yukawa coupling of P with PQ-charged fields, such as the heavy

Kim-Shifman-Vainshtein-Zakharov [44, 45] (KSVZ) quarks. We call this model “the log-

potential model.”
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Another type of model is the PQ breaking by two PQ-charged complex fields, where the

superpotential and the soft supersymmetry-breaking potential read

W = λX(PP̄ − v2PQ), Vsoft(P ) = m2
P |P |2 +m2

P̄ |P̄ |
2. (2.6)

The F -term of the chiral multiplet X generates a moduli space along which PP̄ = v2PQ

and the PQ symmetry is spontaneously broken. We identify P as the one that takes the

large initial field value we assume in this work. Then P̄ can be integrated out by replacing

P̄ = v2PQ/P , giving an effective potential of P as

V (P ) ≃ m2
P |P 2|

(
1 + r2P

v4PQ
|P 4|

)
, (2.7)

with rP ≡ mP̄/mP the ratio of the soft masses of the two fields. We call this model “the

two-field model.”

In both the log-potential model and the two-field model, the potential of r is indeed nearly

quadratic for r ≫ NDWfa. Then the rotation behaves as matter, ρθ ∝ R−3. After r reaches

the minimum, ρθ ∝ R−6. In Fig. 3, we show a schematic of the scaling of the radiation energy

density and the rotation energy density for the nearly quadratic potential of r. Because of

the initial matter scaling, the rotation can dominate the universe. We call the transition

point from radiation domination to matter domination RM, from matter domination to

kination domination MK, and from kination domination to radiation domination KR. Even

when the rotation does not dominate the universe, we call the transition point of the energy

scaling of the rotation from matter to kination MK.

2.3. Thermalization constraints

A larger initial field value ri leads to a larger yield Yθ but also a smaller interaction rate

between the PQ field and the thermal bath at a given temperature. We discuss in this

subsection the constraint on the maximal values of Yθ allowed by successful thermalization.

These constraints will be used in Sec. 4.5 to derive the left boundary of the orange-shaded

region in Fig. 2. The dashed green lines are the extensions of the allowed regions if there

exist more efficient thermalization channels than those considered in this work.

In the case of the QCD axion, the PQ field can interact with the gluons via one-loop
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FIG. 3. A schematic showing post-inflationary cosmology in nearly quadratic models. The energy

density in the rotating axion (orange line) scales as matter initially and transitions to kination

when the radius of rotation reaches the potential minimum. This may lead to a period of axion

domination in the early universe. The sound-wave mode of the fluctuations (yellow line) around the

rotating zero mode is produced from cosmic perturbations and evolves. The sound waves become

axion fluctuations at the bottom of the potential. The energy density of the axion fluctuations

initially dilutes like radiation, and becomes non-relativistic as the mass of the axion becomes

important. The axion fluctuations then transition to matter-like behavior and can make up the

entirety of dark matter today. There can be nonlinear evolution of the axion fluctuations around

this transition as discussed in Sec. 4.4.

corrections, with the interaction rate given by [46–48]

Γg =
bN2

DWT
3

r2
, (2.8)

where b ≃ 10−2α2
3 ≃ 10−5. This interaction rate decreases slower (faster) than the Hubble

scale when r > NDWfa (after r reaches NDWfa). Therefore, successful thermalization must

occur before r reaches NDWfa. This gives an upper bound on the yield

Yθ ≲ 400N−1
DW

(
b

10−5

)3 ( mr

GeV

)(108 GeV

fa

)4(
g∗

gMSSM

)5/2

. (2.9)

If the energy is dominated by the P field, the thermalization of the radial mode reheats

the universe and creates entropy. In this case, the maximum possible yield is achieved and
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is given by Yθ = ρth/(mrs(Tth)) = 3Tth/4mr. Here, we assume that the rotational energy is

comparable to that of the radial mode, i.e., an ellipticity of order unity. The thermalization

temperature Tth is calculated by solving Γg = 3H and ρth = m2
rr

2
th = π2g∗T

4
th/30. The

resultant upper bound on the yield is

Yθ ≲ 200N
−1/3
DW

(
b

10−5

)1/3(
TeV

mr

)1/3(
gMSSM

g∗

)1/2

. (2.10)

More efficient thermalization can result from additional couplings. For example, if there

exists a coupling between P and heavy fermions, yPψψ̄, the thermalization rate is

Γψ = bψy
2T, (2.11)

where bψ ≃ 0.1. At a given temperature, such a thermalization channel is possible only if

the fermions ψψ̄ are in the bath, i.e., mψ = yr ≲ T , which leads to an upper bound on the

thermalization rate

Γψ ≲
bψT

3

r2
. (2.12)

The maximum possible rate gives an upper bound on the allowed yield equivalent to that

given by Eqs. (2.9) and (2.10) but with b ≃ 10−5 replaced by bψ ≃ 0.1.

We will impose these upper bounds on Yθ when we consider the dark matter abundance

from the AMM in Sec. 4.

3. FLUCTUATIONS OF AXION ROTATION

In this section, we discuss the evolution of the fluctuations of the rotating field. We show

the equation of motion of the field perturbations as well as the perturbations of fluids using

the formulation developed in [10, 30–34].

3.1. Field and fluid perturbations

To compute the evolution of perturbations, we use the conformal time η with the confor-

mal Newtonian gauge,

ds2 = R2
(
− (1 + 2Ψ) dη2 + (1 + 2Φ) δijdx

idxj
)
. (3.1)
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We decompose the PQ field into the zero mode (r0, θ0) and fluctuations (δr, δθ),

P =
r√
2
eiθ =

r0 + δr√
2

ei(θ0+δθ). (3.2)

The equations of motion for the zero mode and fluctuations generically contain two modes

that couple with each other. However, after the thermalization of the rotation and in the

limit where the mass of the radial direction is much larger than the Hubble expansion rate,

we may integrate out the heavier mode [30], which is not associated with the conserved

charge and is dissipated. We obtain the following relations [32],1

1

R2
θ′0

2
=
Vr(r0)

r0
, (3.3)

δr

r0
= g(r0)×

(
δθ′

θ′0
−Ψ

)
, g(r0) ≡

2Vr(r0)/r0
Vrr(r0)− Vr(r0)/r0

. (3.4)

Here prime denotes derivative with respect to η and the subscript r denotes that with respect

to r. The remaining mode corresponds to the charge density and a phonon mode, i.e., sound

waves in the superfluid; see Sec. 3.2. The equation of motions of them take the form of the

equation for current conservation,

n′ = −3Hn, (3.5)

δn′ = −3Hδn+ ∂iji, (3.6)

where

n =
1

R
θ′0r

2
0, (3.7)

δn =n

(
2
δr

r0
+
δθ′

θ′0
−Ψ+ 3Φ

)
, (3.8)

ji =
1

R
r20∂iδθ. (3.9)

For the two-field model and the log-potential model, the potential is nearly quadratic for

r0 ≫ NDWfa, and hence, g(r0) ≫ 1, indicating that the fluctuation is dominantly in δr/r0.

The fluctuations of the rotation are expected to behave as those of a matter fluid at first

order in perturbations. On the other hand, around the bottom of the potential, g(r0 ≈

1 For the two-field model, P does not have a canonical kinetic term. r used here is the field after the change

of the variable such that the kinetic term of θ is θ̇r2/2. See [32] for the expression for the potential in the

two-field model, where r here is called F . See [31] for the expressions for non-canonical kinetic terms.
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NDWfa) ≪ 1, which means that the fluctuation in δr/r0 is negligible. The fluctuations of

the rotation are expected to behave as those of a kination fluid at first order in perturbations.

We can confirm the intuition above by obtaining fluid equations from field equations.

In particular, we compute the energy density ρ, the pressure p, and the divergence of the

fluid velocity Θ as a function of r and θ′ and use the equations of motions of the fields in

Eqs. (3.5) and (3.6) along with the relations in Eqs. (3.3) and (3.4) to find

w ≡ p

ρ
=
r0Vr − 2V

r0Vr + 2V
(3.10)

for the zero mode and

δ′ =
w′

1 + w
δ − 3(1 + w)Φ′ − (1 + w)Θ, (3.11)

Θ′ = −H
(
1− 3c2s

)
Θ− ∂2iΨ− c2s

1 + w
∂2i δ, (3.12)

w′ = 3H(1 + w)

(
w − 1

1 + 2g

)
, (3.13)

c2s = w − w′

3H(1 + w)
=

1

1 + 2g
(3.14)

for the perturbations [32], where δ = δρ/ρ. To compute w, a constant term should be

added to V so that it nearly vanishes at the minimum of the potential. The perturbation

equations are nothing but those of an adiabatic fluid with an equation of state parameter

w, its time derivative w′, with the adiabatic speed of sound cs given by a combination of

them. Note that the fluid equations are obtained without averaging over cycles of periodic

motion, unlike the case for oscillating scalar fields.

In Fig. 4, we show w and cs as a function of R for the log-potential model, the two-field

model with different values of rP , and the quartic model. We define R1/2 as the scale factor

when w = 1/2. For R ≪ R1/2 where r0 ≫ NDWfa, the log-potential and two-field models

have w ∼ c2s ∼ 0, and the fluctuations indeed behave as those of matter. The possible

growth of fluctuations during the matter-like phase may affect the production of axion dark

matter through the AMM. The quartic model has w ≃ c2s ≃ 1/3 for R ≪ R1/2 and the

perturbations behave as those of radiation. In all models, w ≃ c2s ≃ 1 for R ≫ R1/2 and the

perturbations behave as those of kination.
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log potential, and for the quartic potential. The scale factor R1/2 is defined when the equation of

state is w = 1/2.

3.2. Perturbations as superfluid sound waves

The nature of the fluctuations in the axion rotation can be understood by spontaneous

symmetry breaking involving the time-translational symmetry. The rotation background

with θ̇ = ω ̸= 0 spontaneously breaks the U(1) symmetry and the time translational sym-

metry into a diagonal U(1) subgroup,

θ → θ + α, t→ t− α

ω
, α ∼ α + 2π. (3.15)

The perturbations around the rotation background can be understood as the NGB associated

with this symmetry breaking, which is a sound wave of the PQ charge density fluctuations.

In Appendix A, we present a derivation of the dispersion relation including both the phonon

and gapped modes, which is shown in Fig. 5 for the log-potential model.

At low momenta, the dispersion relation of the phonon obeys E = cs|k|, where

c2s =
Vrr − Vr/r

Vrr + 3Vr/r
=

1

1 + 2g(r)
. (3.16)

Because of the involvement of the time-translational symmetry in the symmetry breaking,
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FIG. 5. The dispersion relations of the two perturbation modes around the rotating background

for the log-potential model. The solid lines correspond to r = 103NDWfa (nonzero U(1) charges),

while the dashed lines are for r = NDWfa (no U(1) charges). In both cases, there is a gapless mode

corresponding to phonons shown in blue, and the massive radial excitation mode is shown in red.

the dispersion relation deviates from that of a relativistic NGB and hence cs < 1. When

the rotation occurs at the body of the potential, |θ̇| =
√
Vr/r is as large as the typical mass

scale of the theory mr ∼ V
1/2
rr , and the deviation of cs from 1 should be significant, which

can be confirmed from Eq. (3.16) and Fig. 4. For the two-field model, cs is even close to 0.

When the rotation occurs at the bottom, on the other hand, |θ̇| ≪ mr and we expect that

the involvement of time-translational symmetry is not important and cs ≃ 1, which can be

also confirmed from Eq. (3.16) and Fig. 4.

From the sound-wave picture, it is clear that the interaction of the fluctuations with

the thermal bath is suppressed by the smallness of their momentum comparable to the

cosmological scale, and the fluctuations will not be affected by the interaction with the

thermal bath at any stage in the early universe, including the pre-kination phase.

In order for stable sound-wave modes to exist, c2s ≥ 0, i.e., Vrr − Vr/r ≥ 0 is necessary.

This means that P should have repulsive self interaction and the BEC of the PQ charges is

a superfluid. We note that c2s may become negative if the non-quadratic part of the ther-

mal potential dominates over that of the zero-temperature potential. We assume that c2s
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is determined by the zero-temperature potential at RM and afterward, and is positive. If

c2s < 0, fluctuations are exponentially enhanced by tachyonic instability and Q-balls can be

formed [49, 50]. Although the Q-balls eventually decay [51, 52] as the zero-temperature po-

tential does not admit Q-ball solutions, the enhanced fluctuations as well as the decay of the

Q-balls can produce axion dark matter [8, 52]. The exponentially enhanced fluctuations may

also cause the domain wall problem for the log-potential model with NDW > 1 [23], although

whether or not domain walls actually form needs to be checked via lattice simulations.

3.3. Perturbations as axion dark matter

During the kination phase, where r0 is at the bottom of the potential, δr/r0 is negligible,

and the equation of motion of δθ is given by

δθ′′ + 2Hδθ′ − ∂2i δθ + θ′(−Ψ′ + 3Φ′) = 0. (3.17)

Because of the rapid decrease of θ′ and the decrease of the metric perturbations far inside

the horizon, the fourth term becomes negligible, and the comoving wavenumber k ≫ H, so

δθ follows the equation motion of a free massless scalar in an expanding universe. Therefore,

the second-order perturbations of the kination fluid, which contain the kinetic and gradient

terms of δθ, behave as radiation. The axion radiation energy density ∝ R−4 eventually

exceeds the kination energy density ∝ R−6, after which the axions should not be considered

as the fluctuations of the kination fluid. Since δθ simply follows the equation of motion of

a free massless scalar, we may continue to use the radiation scaling of the fluctuations, as

elucidated in [34].

The fluctuation of the axion field δθ̇a = NDWδθ̇ is given by

δθ̇a =
1

2
θ̇aδ (3.18)

during the kination phase. The energy and number densities of the axion radiation are

ρa =f
2
a (

˙δθa)
2 =

1

4
θ̇2af

2
a

∫
dk

k
Pδ(k), (3.19)

na =
1

4
θ̇2af

2
a

∫
dk

k

1

k/R
Pδ(k) ≡

∫
dk

k

dna
dlnk

(k), (3.20)

respectively, where k/R is the physical momentum. Note that Pδ ∝ R2 during the kination

phase and hence ρa ∝ R−4 and na ∝ R−3. Once the axion mass becomes larger than the
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physical wavenumber of the fluctuations, the axions become non-relativistic and behave as

dark matter, as shown by the yellow line in Fig. 3. The possibility of axion dark matter from

cosmic perturbations is noted in [33, 34], which discuss the evolution of axion field pertur-

bations during the kination phase, although the dark matter abundance is not estimated.

To estimate the resultant dark matter abundance, it is crucial to compute the evolution of

δ before the kination phase, which is discussed in Sec. 3.4.

3.4. Evolution of perturbations

We assume a tightly coupled radiation bath, which is justified when T ≫ MeV, and work

in the regime where the second-order perturbations of the axion field are negligible. Then

the anisotropic stress tensor may be neglected and Ψ = −Φ. The evolution equations to be

solved are given by

δ′ =
ω′

1 + ω
δ − 3(1 + ω)Φ′ − (1 + ω)Θ, (3.21)

Θ′ =−H
(
1− 3c2s

)
Θ+ ∂2iΦ− c2s

1 + ω
∂2i δ, (3.22)

δ′γ =− 4Φ′ − 4

3
Θγ, (3.23)

Θ′
γ = ∂2iΦ− 1

4
∂2i δγ, (3.24)

3H (Φ′ +HΦ) = ∂2iΦ + 4πGR2 (ρδ + ργδγ) , (3.25)

where ργ, δγ, and Θγ are the energy density, its fluctuations, and the divergence of the fluid

velocity of the radiation, respectively. Similarly, ρ, δ, and Θ are those of the rotation. For

our computation, it is more convenient to use the scale factor R as a time variable. Going

to the Fourier space, we find

∂δ

∂R
=
∂ω/∂R

1 + ω
δ − 3(1 + ω)

∂Φ

∂R
− 1 + ω

R2H
Θ, (3.26)

∂Θ

∂R
=− 1

R

(
1− 3c2s

)
Θ− k2

R2H
Φ +

c2s
(1 + ω)R2H

k2δ, (3.27)

∂δγ
∂R

=− 4
∂Φ

∂R
− 4

3R2H
Θγ, (3.28)

∂Θγ

∂R
=− k2

R2H
Φ +

k2

4R2H
δγ, (3.29)

3R
∂Φ

∂R
=− Φ

((
k

RH

)2

+ 3

)
+

3

2

(
ρδ

ρ+ ργ
+

ργδγ
ρ+ ργ

)
. (3.30)
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For the log-potential model, w and cs are given by

w =

(
r

NDWfa

)2
− 1

4
(

r
NDWfa

)2
ln
(

r
NDWfa

)
+ 1−

(
r

NDWfa

)2 , c2s =
1

1 + 4 ln
(

r
NDWfa

) . (3.31)

For a large range of values of r ≫ NDWfa, w
1/2 ≃ cs ∼ 0.1 with a slow evolution because

of the logarithmic dependence on r. Given the smallness of w in the majority of the pre-

kination phase, the background evolution is fairly close to matter. However, an important

consequence of the nonzero cs is a nonzero Jeans scale, which stops the growth of perturba-

tions before the end of the matter-like phase. The scale factor at which this occurs, denoted

by Rs(k), can be estimated using

k2 =
R2
sH

2
s

c2s(Rs)
→ c2s(Rs) ≈

Rk

Rs(k)
, (3.32)

where Rk is the scale factor when the mode k enters the horizon. For R > Rs(k), the mode

starts oscillating. From the Poisson equation deep inside the horizon, we obtain [53]

δ ≈
(

k

RH

)2

Φ, Φ ∝ 1

(cskη)5/2
J5/2(cskη)

cskη≫1−−−−→ 1

(cskη)3
sin(cskη). (3.33)

Therefore,

δ ∝ 1

c3sR
1/2

∝ 1

R1/2
. (3.34)

Here we have used the fact that cs is a slowly changing function of R for most of the

matter-like phase.2 Then we can estimate the overall growth of the fluctuations during the

matter-like phase to be

δ(k,RMK)

δi(k)
≈ Rs(k)

Rk

R
1/2
s (k)

R
1/2
MK

k=kRM−−−−→
(
RRM

RMK

)1/2
1

c3s(Rs(kRM))
. (3.35)

For example, for RKR/RRM = 106, using Eq. (3.31) we get c−2
s (Rs(kRM)) ≈ 35, giving an

enhancement in the mode re-entering at RM to be δ(kRM,RMK)
δi(kRM)

≈ 2. This is consistent with

the numerical results that we show in Fig. 6. In conclusion, the growth of perturbations

during the matter-like phase is fairly modest in the log-potential model.

2 More precisely, δ ∝ R−(1−3w)/2. Before the MK transition, w ∼ 0.1, which would result in a reduced

suppression in δ compared to our estimate using w = 0. The reduced suppression, however, does not

change our estimation of the axion dark matter abundance.
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FIG. 6. The evolution of the density perturbations of the axion rotation for the mode that enters the

horizon at the transition from the radiation to matter domination (RM). We take RKR/RRM = 106.

The pink line shows the evolution for the log-potential, and the blue, gray, and red lines show that

of the two-field model with rP = 1.001, 1.1, and 3, respectively. rP = 1.001 exhibits the maximal

possible growth RMK/RRM ≃ 104 during the matter phase, while the growth for other cases is less.

In the two-field model, on the other hand, cs ≪ 1, and we expect efficient growth of

the perturbations inside the horizon during the matter phase if the rotation dominates.

However, finite cs for rP > 1 can still suppress the growth to some extent. The quartic

model has cs = 1/3 before the kination phase and there is no growth of δ.

We solve the evolution equations numerically taking the adiabatic initial condition where

δi = 3Φi/2 and δγi = Φi. The qualitative results are the same for isocurvature modes.

In Fig. 6, we show the evolution of δ for the mode that enters the horizon at RM for

RKR/RRM = 106, for which RMK/RRM ≃ 104. In the log-potential model, the perturbation

exhibits growth after entering the horizon, but soon after, it begins to oscillate and is

suppressed due to cs ∼ 0.1. The scaling of δ inside the sound horizon and the overall growth

is consistent with the analytical estimate given above. The two-field model exhibits more

efficient growth, but unless rP − 1 < 10−3 the perturbation begins to oscillate rapidly and

is suppressed before MK.3 For larger RKR/RRM, even rP = 1.001 does not exhibit maximal

3 The rapid oscillations after the growth produce gravitational waves [31, 54].
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growth for kRM. This is because
∫
dηcskRM becomes larger than one just before MK, and

the resultant rapid oscillations lead to suppression. In all models, δ grows linearly during

the kination phase, which can be seen for R/RRM ≳ 104 in Fig. 6. These results are used in

Sec. 4 to compute the axion dark matter abundance.

4. AXION DARK MATTER FROM FLUCTUATIONS

In this section, we compute the dark matter abundance produced from the fluctuations

of the axion rotation and discuss implications for the parameter space of axion models. We

focus on the case with nearly quadratic potentials, for which axion rotation may dominate

the universe. The axion abundance for the quartic model is the same as that for the quadratic

case without axion domination (discussed in Sec. 4.1), with MK interpreted as the moment

when the scaling of the rotation energy transitions from radiation-like to kination-like.

The axion abundance can be estimated following the procedure laid out in Sec. 3.3. The

number density spectrum is given by

dna
dlnk

(k) =
1

4
θ̇2af

2
a

1

k/R
Pδ(k) =Pδi(k)

θ̇2a,MKf
2
a

4HMK

× Pδ(k)
Pδi(k)

HMK

k/RMK

(
RMK

R

)5

(4.1)

=Pδi(k)
θ̇2a,MKf

2
a

4HMK

× F (k)× R3
MK

R3
,

where Pδi is the initial power spectrum of δ far outside the horizon and

F (k) ≡Pδ(k)R≫RMK

Pδi(k)
R2

MK

R2

HMK

k/RMK

. (4.2)

Note that F (k) becomes constant far inside the horizon during the kination phase since

Pδ(k)R≫RMK
∝ R2. The mode that enters the horizon at MK, where k = RMKHMK ≡ kMK,

has F = 1, so the factor F indicates the importance of the mode k in comparison with the

mode that enters the horizon at MK.

The modes that enter the horizon after MK have

Pδ(k ≪ kMK)R≫RMK
= Pδi(k)×

(
R

Rk

)2

. (4.3)

The number density spectrum is thus given by

dna
dlnk

(k ≪ kMK) = Pδi(k)
θ̇2a,MKf

2
a

4HMK

HMK

k/RMK

R2
MK

R2
k

× R3
MK

R3
. (4.4)
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FIG. 7. A schematic figure of the axion number density spectrum dna/dlnk as a function of

wavenumber k in log-log scale. The gray (magenta) line is for the two-field model (log-potential

model) in the case where the axion rotation dominates the energy density of the universe. The

case of no domination by the axion rotation is shown by the black dashed line, which is applicable

to all models.

The modes that enter the horizon before MK can experience non-trivial evolution before

MK and hence F needs to be in general computed numerically.

In the following, we consider both cases where the axion rotation does not and does

dominate the energy density of the universe. We assume that the primordial perturbation

is approximately flat for the modes that we are interested in and take Pδi(k) = Pδi . A

schematic picture summarizing the spectrum of the axion number is shown in Fig. 7.

4.1. Subdominant axion rotation

When the rotation is subdominant, the growth of the fluctuation during the matter phase

is at the most logarithmic. Therefore, the contribution to the axion abundance from the

modes that enter the horizon before MK in Eq. (4.1) is the largest at the smallest k, i.e.,
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kMK = RMKHMK, and we obtain

na = Pδi
θ̇2a,MKf

2
a

4HMK

× R3
MK

R3
. (4.5)

The contribution to the axion abundance from the modes that enter the horizon after MK in

Eq. (4.4) is the largest at the largest k, i.e., kMK, since k ∝ R−1
k during radiation domination.

The resultant abundance is also given by Eq. (4.5). The number density spectrum of the

axion is shown by the black dashed line in Fig. 7.

4.2. Axion rotation domination

When the rotation dominates the universe, the axion abundance is model-dependent. Let

us first discuss model-independent contributions. The modes that enter the horizon during

kination domination follow the scaling k ∝ R−2
k , so the axion number density in Eq. (4.4) is

the same for any k that enters the horizon during kination domination, which corresponds

to the flat part of the gray and pink lines in Fig. 7. The axion abundance produced during

the kination phase receives a mild log enhancement,

na,kin = Pδi
θ̇2a,MKf

2
a

4HMK

ln

(
RKR

RMK

)2

× R3
MK

R3
. (4.6)

After KR, k ∝ R−1
k , so the axion production from the modes that enter the horizon after

KR is subdominant.

We next discuss model-dependent contributions. δ can grow during the matter-dominated

phase. The contribution to the number density of the axion from the modes that enter the

horizon before MK can be estimated by finding k that maximizes F (k) in Eq. (4.2).

In the two-field model with rP ≃ 1, δ grows linearly during the matter domination. Using

k = kMK(RMK/Rk)
1/2 and the linear growth of δ after entering the horizon for Rk > RRM,

we find that F is maximized for the mode that enters the horizon at RM and is given by

na,rP≃1 =Pδi
(
RMK

RRM

)3/2 θ̇2a,MKf
2
a

4HMK

× R3
MK

R3
(4.7)

=Pδi
RKR

RRM

θ̇2a,MKf
2
a

4HMK

× R3
MK

R3
.

The axion number density spectrum is illustrated by the gray line in Fig. 7.

For the log-potential model or the two-field model with rP > 1, F (k) needs to be com-

puted numerically. In Fig. 8, we show F (k) as a function of k/kRM for RKR/RRM = 106
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for the log-potential model and the two-field model with rP = 1.1 or 3. The mode that

enters the horizon at MK corresponds to k/kRM ≃ 0.01. For the log-potential model, F (k)

at k/kRM > 0.01 is suppressed for the following reason. Although the modes that enter

the horizon before MK can grow, because of the finiteness of cs ∼ 0.1, the perturbation

stops growing shortly after entering the horizon and begins to be suppressed, as shown in

Fig. 6. The number density is then suppressed by the largeness of their wavenumbers from

F (k) ∝ 1/k. The flatness of F (k) for k/kRM < 0.01 is consistent with the argument on the

kination-dominated phase described above. The axion number density for the log-potential

model is therefore given by Eq. (4.6), with the spectrum given by the magenta line in Fig. 7.

F of the two-field model is peaked at the mode that enters the horizon at RM because of

the linear growth during the matter phase. However, because of the suppression just before

MK, F does not reach the maximal possible value RKR/RRM = 106 for rp > 1. In Fig. 9,

we show F (kRM) as a function of RKR/RRM for rP = 1.1 and 3. F (kRM) is smaller than the

maximal possible value shown by the dashed line, but is still much larger than 1, showing

the importance of the matter phase. For larger rP , we find that F is smaller but only by a

few ten percents. F for rP > few can be fitted by

F (kRM) ≃ 1.5×
(
RKR

RRM

)0.41

, (4.8)

which is shown by the red line in Fig. 9. The corresponding axion number density is

na,rP>few ≃ 1.5

(
RKR

RRM

)0.41

Pδi
θ̇2a,MKf

2
a

4HMK

× R3
MK

R3
. (4.9)

The spectrum follows the gray line in Fig. 7.

4.3. Axion dark matter density

We now compute the axion abundance as a function of the model parameters. The free

parameters of the theory are Yθ, fa, and NDWmr. We can trade the last one for d ≡ ρθ
ρrad

∣∣∣
MK

using the relation

d ≡ ρθ
ρrad

∣∣∣∣
MK

=

(√
128π2g

1/2
∗ NDWmrY

2
θ√

1215fa

)2/3

≃

(
g
1/2
∗ NDWmrY

2
θ

fa

)2/3

. (4.10)
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FIG. 8. The factor F (k) that indicates the importance of the mode k in comparison with the mode

that enters the horizon at MK. We take RKR/RRM = 106, so kMK/kRM ≃ 0.01 and RMK/RRM ≃

104. kRM is the comoving wavenumber of the mode that enters the horizon at RM. The magenta

dots show F (k) for the log-potential model, while the gray (red) dots show it for the two-field

model with rP = 1.1 (rP = 3).

Key quantities to compute the axion abundance are given by

ρθ,MK =θ̇2MKf
2
a =

1215d3f 4
a

128π2g∗Y 4
θ

≃ 0.96
d3f 4

a

g∗Y 4
θ

, (4.11)

ρrad,MK =
1215d2f 4

a

128π2g∗Y 4
θ

≃ 0.96
d2f 4

a

g∗Y 4
θ

, (4.12)

sMK =

√
1215

128π2

d3/2f 3
a

g
1/2
∗ Y 3

θ

≃ 0.98
d3/2f 3

a

g
1/2
∗ Y 3

θ

, (4.13)

HMK =

√
405

128π2

d(1 + d)1/2f 2
a

g
1/2
∗ Y 2

θ MPl

≃ 0.57
d(1 + d)1/2f 2

a

g
1/2
∗ Y 2

θ MPl

, (4.14)

RKR

RMK

=d1/2, (4.15)

RMK

RRM

≃d, (4.16)

where the last equation approximately holds for the two-field model or the log model with

a long duration of rotation domination.
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FIG. 9. The factor F for the mode that enters the horizon at RM as a function of RKR/RRM for

the two-field model with rP = 1.1 and 3. The result for larger rP is similar to rP = 3.

4.3.1. Subdominant Rotation

When the axion rotation does not dominate (d < 1), the number density of the axion is

given by Eq. (4.5). Normalized by the entropy density s, we obtain

Ya ≡
na
s

≃ Pδi
(θ̇a,MK)

2f 2
a

4sMKHMK

= Pδi

√
3MPl

4fa

√
d

1 + d
× Yθ. (4.17)

The physical momentum of the axions normalized by the entropy density is

yk ≡
k/R

s1/3
k=kMK−−−−→ HMK

s
1/3
MK

≃ 0.57

√
d(1 + d)fa

g
1/3
∗ MPlYθ

, (4.18)

where in the second part of the expression above, we have focused on kMK mode that

dominates the axion abundance. The axion becomes non-relativistic when k/RNR ∼ ma.

The corresponding temperature can be given as

TNR =

(
45

2π2g∗(TNR)

)1/3
ma

yk
=

4√
3

maMPlYθ√
d(1 + d)fa

(
g∗(TMK)

g∗(TNR)

)1/3

, (4.19)

which is required to be larger than about 5 keV to satisfy the warmness constraint [55, 56].

In setting the constraint it is assumed that the mass is constant at T = TNR, which may not

be the case for the QCD axion whose mass depends on the temperature at T > 100 MeV.
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However, the constraint is relevant only if TNR ≪ 100 MeV and we may safely assume a

constant ma in setting the warmness constraint.

4.3.2. Dominant Rotation

When the axion rotation dominates, the axion abundance can be further enhanced. For

the two-field model with rP ≃ 1 and rP > few, the abundance is given by Eqs. (4.7) and

(4.9), and we obtain

Ya ≃ Pδi

√
3MPl

4fa
Yθ ×

d
3/2 rP ≃ 1

d0.61 rP > few
. (4.20)

The physical momentum of axions normalized by the entropy density is

yk ≡
k/R

s1/3
k=kMK−−−−→ HMK

s
1/3
MK

d1/2 ≃ 0.57
d
√

(1 + d)fa

g
1/3
∗ MPlYθ

. (4.21)

The axion becomes non-relativistic at a temperature

TNR =

(
45

2π2g∗(TNR)

)1/3
ma

yk
=

4√
3

maMPlYθ

d
√
1 + dfa

(
g∗(TMK)

g∗(TNR)

)1/3

. (4.22)

For the log model, the axion number density is given by Eq. (4.6), and we obtain

Ya ≃ Pδi

√
3MPl

4fa
Yθ × ln d. (4.23)

Since the production of the dark matter is dominated during the era of matter-kination tran-

sition, just as in the case where rotation is subdominant, the axion becomes non-relativistic

at the same temperature as in Eq. (4.19).

4.3.3. Comparison with the KMM

Let us compare the abundance with the KMM contribution [8–10],

Ya,KMM ≃ Yθ. (4.24)

The number density of the AMM contribution is larger than the KMM contribution if

fa ≲ 2× 109GeV × Pδi
2× 10−9

×

(ln d, d3/2, d0.61) dominant rotation

d1/2 subdominant rotation
, (4.25)
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where the d dependence for the domination case is shown for the models: (log, two-field

rP → 1, two-field rP ≫ 1). The result is universal for the subdominant case. The range

of fa in Eq. (4.25) is consistent with the typical lower bound on the decay constant of the

QCD axion, which is fa ≳ 4 × 108 GeV from the neutron star observations for the KSVZ

model [57, 58] and fa ≳ 109 GeV from the red giant observations for the DFSZ model [59, 60].

This shows that the AMM can indeed be more important than KMM in a certain part of

the parameter space of the QCD axion. This will be further illustrated in Fig. 10.

4.4. Large fluctuations and nonlinear evolution

In estimating the number density of axions so far, we implicitly assumed that δθa ≲ 1

when the physical momentum of the axions becomes smaller than the axion mass, so that the

axion fluctuations simply oscillate around a single minimum of the potential after becoming

non-relativistic. If δθa ≫ 1, the axion fluctuations spread over multiple periods of the

potential and the estimation changes. This occurs if

(δθ2a)NR =
YasNR

ma(TNR)f 2
a

=
Yama(TNR)

2

y3kf
2
a

≫ 1, (4.26)

where in the first equality we used na ≃ δθ2af
2
ak/R = δθ2af

2
ama at T = TNR.

After the momentum becomes smaller than ma, initially δθa (k/R) > ma, and the dynam-

ics of the axion fluctuations is determined by the kinetic and gradient terms. Therefore, the

axion fluctuations continue to behave as radiation even though k/R < ma, and δθa (k/R)

decreases in proportion to R−2. Below a temperature T∗ defined by

m2
a(T∗) = (δθa)

2 k
2

R2
= Yayk

s
4/3
∗

f 2
a

, (4.27)

the dynamics of the fluctuations is governed by the potential energy. Since δθa ≫ 1, the

axion fluctuations spread over multiple periods of the potential; small, closed, and boundary-

less domain walls can be produced, but they decay immediately. Because of the nonlinear

dynamics the axion number density will not be conserved around T∗, but for T < T∗ the

number density is conserved again. (This dynamics is similar to what is described in Ap-

pendix E of [61].) The energy density of the axion fluctuations at T = T∗ is about m2
af

2
a
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and the energy per quantum is ma, so the number density of axions is given by

Ya,δθa,NR≫1 =
ma(T∗)f

2
a

s∗
=(Yayk)

3/4 f
1/2
a

m
1/2
a (T∗)

=Ya ×
(

ma(TNR)

δθa,NRma(T∗)

)1/2

, (4.28)

where Ya on the right-hand side matches the estimate given in Sec. 4.3. The reduction in

the number density can be attributed to the nonlinear evolution around T∗ that may violate

the number density conservation.

The warmness of the axions can also be altered. We expect that the momentum of axions

at T = T∗ is about ma, and

yk,δθa,NR≫1 =
ma(T∗)

s
1/3
∗

=(Yayk)
1/4m

1/2
a (T∗)

f
1/2
a

=yk ×
Ya

Ya,δθa,NR≫1

. (4.29)

The axions become warmer due to nonlinear evolution.

4.5. Implications for axion parameter space

We now discuss the implication of the new axion dark matter production mechanism, the

AMM, for the parameter space of the axion rotation. We focus on the log-potential model

and two field models, where the flatness of the potential of r is naturally understood. For

adiabatic perturbations, the primordial perturbation is given by

Pδi = Pζ . (4.30)

We assume a nearly scale-invariant spectrum from the CMB scale to the scale we are inter-

ested in and take Pζ ≃ 2× 10−9 [62] in the following.

Let us first discuss the QCD axion, for which

ma ≃ 6 meV
109 GeV

fa
. (4.31)

In Fig. 10, we show constraints on the parameter space (mr, fa) for the log-potential model

and the two-field model with rP → 1. Here we require that the sum of the KMM and AMM

contributions explain the observed dark matter abundance. To the right of the black solid
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FIG. 10. Constraints on the mass of the radial direction mr and the decay constant fa for the

QCD axion in the log-potential model and the two-field model with rP → 1. The gray dotted

lines show the contours of the PQ charge yield Yθ required to explain the observed dark matter

abundance. To the left (right) of the black line, the KMM (the AMM) dominates the production

of axion dark matter. To the right of the magenta line, the axion rotation leads to the matter- and

kination-dominated eras. The green region (line) shows the upper bound on fa from the constraint

of thermalization of the radial mode via fermion (gluon) scattering processes. The brown region

(line) shows the upper bound on mr from overproduction of baryon asymmetry by chiral plasma

instability with c5 = 0.1 (c5 = 1). The red region is excluded because axion dark mater is too

warm, while 21-cm observations can probe regions above the red dashed line. The horizontal purple

lines show the exclusion by astrophysical constraints on the DFSZ/KSVZ axion. The yellow region

(line) is excluded by excessive ∆Neff from the decay of the thermalized radial mode for the DFSZ

(KSVZ) axion. The figure for rP ≫ 1 can be found in Appendix B.

line, the AMM contribution dominates over the KMM. The kink at the bottom part of the

line is due to δθa,NR > 1 that modifies the AMM contribution. The dotted contours show

the required Yθ. To the right of the magenta solid line, the axion rotation dominates the

universe and hence there exists a kination-dominated era. Inside the green-shaded region,

the thermalization is not efficient enough to obtain the required Yθ even if the scattering is via
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FIG. 11. Constraints on the mass of the radial direction mr and the decay constant fa for an

axion-like-particle with two representative masses in the two-field model with rP → 1. Various

regions and lines are explained in the caption of Fig. 10. The constraints for rP ≫ 1 and the

log-potential model can be found in Appendix B.

Yukawa couplings. The positively/negatively sloped boundary is determined by Eqs. (2.9)

and (2.10) with b = 0.1, respectively. The green solid line shows the constraint when the

thermalization occurs via a coupling with gluons. Inside the red-shaded region, the axion

dark matter is too warm. Future measurements of the 21 cm lines can probe above the

red dotted line [55]. Above the yellow line, a thermal abundance of the radial direction r

produced by the thermalization of the rotation decays into axions and creates too much

dark radiation ∆Neff > 0.4 [62]. If r couples to the electrons, as is the case in the DFSZ

model, r can be in thermal equilibrium with the SM bath when it becomes non-relativistic

and its energy density can be exponentially suppressed. Still, it can heat up the electrons

and photons after neutrinos decouple to create negative ∆Neff , excluding the yellow-shaded

region [63]. Below the horizontal light purple lines are constrained by the red-giant [59, 60]

and neutron-star [57, 58] cooling bounds for the DFSZ and KSVZ models, respectively.

The bounds can be relaxed in models where the couplings of the axion with nucleons and

electrons are suppressed [64–67]. The brown-shaded region will be explained in Sec. 4.6.

We next discuss an axion-like particle (ALP), where ma and fa are independent free
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parameters. In Fig. 11, we show the constraint on mr and fa for the two-field model with

rP → 1 and two representative masses of the ALP. The meanings of the shadings and lines

are the same as those of Fig. 10. In the left panel, the thermalization by a coupling with

gauge bosons is not effective enough inside the plotted region. The thick green line with a

label “ALP cogenesis” will be explained in Sec. 4.6.

The orange-shaded regions in Figs. 2 and 12 show the parameter regions in (ma, gaγγ)

where the AMM or KMM can explain the observed dark matter abundance and there exists

some range of mr that satisfies all constraints. Here we assume gaγγ = α/(2πfa). The left

boundary of the orange-shaded region is determined by the thermalization constraint. In the

regions labeled AMM or KMM, the AMM or KMM contribution dominates over the other

one, respectively. In the regions with both labels, either can dominate depending on mr.

Below the gray dotted line, the conventional misalignment mechanism overproduces axion

dark matter assuming an initial misalignment angle of order unity. The green line and the

green-shaded region will be explained in Sec. 4.6.

In the gravity-mediated supersymmetry breaking scenario, the mass of the PQ symmetry-

breaking field mr is expected to be of the same order as those of the scalar particles in

supersymmetric Standard Models. Then mr is expected to be above the TeV scale, for

which the AMM tends to dominate over the KMM both for the QCD axion and ALPs.

Furthermore, in the minimal supersymmetric Standard Model, the observed Higgs mass of

125 GeV requires that the scalar mass scale is larger than O(10)/O(100) TeV for tanβ ≫

1/tanβ = O(1) [68–71], for which the AMM is more likely to dominate. In the gauge-

mediated supersymmetry breaking scenario, on the other hand, mr may be much below the

TeV scale and the KMM may dominate.

4.6. Implications for axiogenesis scenarios

The AMM has implications for baryogenesis by axion rotation (axiogenesis). The angular

momentum of the axion rotation, namely, the PQ charge, can be converted into the asym-

metry of particles in the thermal bath, and their chemical potentials are O(0.1)θ̇a. With

baryon number violation, those asymmetries can be converted into baryon asymmetry [6].
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FIG. 12. Same as Fig. 2 but for the two-field model with rP ≫ 1 and the log-potential model.

4.6.1. Minimal axiogenesis

Due to the efficient baryon number violation by the weak sphaleron process, the baryon

number density is given by the thermal equilibrium value cB θ̇aT
2, where cB a model-

dependent coefficient that is typically O(0.1) [6]. The baryon asymmetry is frozen at the

electroweak phase transition and is given by

nB
s

= cBYθ ×
T 2
sp

f 2
a

≃ 8× 10−11 cB
0.05

(
109 GeV

fa

)2(
Tsp

130 GeV

)2
Yθ
105

, (4.32)

where Tsp is the temperature below which the electroweak sphaleron process becomes inef-

ficient, which is about 130 GeV in the SM [72]. For the QCD axion, if the parameters are

fixed such that the observed baryon abundance is explained by axion rotation, the KMM

overproduces axion dark matter unless fa ≲ 107 GeV, the electroweak phase transition

temperature is raised, or the coupling of the QCD axion to gluons is much weaker than

that to another SM particle. Extra contributions from the AMM only make this minimal

axiogenesis scenario even harder to realize.

For ALPs, on the other hand, we may explain the observed baryon asymmetry without

overproducing axion dark matter. On the thick green line in Fig. 11, such a cogenesis

scenario is possible. Here we take cB = 0.1. Assuming that the KMM dominates over the
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AMM, the prediction of cogenesis is [16]

fa ≃ 2× 109 GeV
( cB
0.1

)1
2

(
µeV

ma

)1
2
(

Tsp
130 GeV

)
, (4.33)

which corresponds to the horizontal segment of the green line. Once the AMM dominates,

smaller fa is predicted.

The prediction on the axion-photon coupling when the KMM dominates is shown by the

green line in Figs. 2 and 12. Here the coupling is given by

L = −
(gaγγ

4

)
a ϵµνρσFµνFρσ, (4.34)

and we assume gaγγ = α/(2πfa). In the dotted segment, thermalization of the rotation

by the process discussed in Sec. 2 with b = 0.1 makes it impossible to obtain the required

Yθ and a more efficient thermalization mechanism is required. In the green-shaded region,

the AMM dominates the production of axion dark matter while explaining the observed

baryon asymmetry. Fig. 13 provides a zoomed-in view of the cogenesis region. The blue

dot-dashed lines show the required mr. For a fixed mr, as ma increases, the AMM becomes

subdominant and the prediction converges to that of cogenesis by the KMM. Above the

green-shaded region, the process discussed in Sec. 4.6.2 overproduces baryon asymmetry.

To the left of the green-shaded region, thermalization of the rotation to obtain the required

Yθ by the process discussed in Sec. 2 is impossible. The predicted parameter region can be

probed by proposed experiments. If there exists a more efficient thermalization mechanism,

the green-shaded region can be extended to the region bounded by the green dashed line.

4.6.2. Magneto-axiogenesis

The rotation can also produce baryon asymmetry by the generation of hypermagnetic

fields and the electroweak anomaly of the baryon symmetry. The rotation, through its

direct coupling with the hypercharge gauge field or through the generation of asymmetry of

hypercharged fermions in the thermal bath, induces chiral plasma instability (CPI) of the

hypercharge gauge field [73, 74], producing helical hypermagnetic fields at a rate [24, 75, 76]

ΓCPI ≃
α2
Y c

2
5θ̇

2

100π2T
, (4.35)

where αY is the hypercharge fine structure constant and c5 is a model- and temperature-

dependent constant that is typically O(0.01 − 1) for the QCD axion and O(1) for ALPs
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that couple to photons [24].4 Via the inverse cascade process, the correlation length of

the helical hypermagnetic fields becomes much longer than the typical length scale of the

thermal bath ∼ T−1, and the helicity density is conserved without being washed out by

the interaction with the thermal bath [77]. The helical hypermagnetic field is converted

into a helical magnetic field around the electroweak phase transition, and the weak and

hypercharge anomaly of baryon symmetry produces baryon asymmetry [78–81]. Note that

ΓCPI/H is maximized at MK. If ΓCPI > O(10)H at MK, the CPI becomes fully effective,

and the resultant baryon asymmetry is [24]

nB
s

∼ cdecB Yθ
T 2
MK

f 2
a

, (4.36)

where cdecB is the conversion efficiency factor whose value is uncertain, but is O(10−3−1) [82].

We find that the resultant baryon asymmetry is always larger than the observed baryon

asymmetry when the AMM or KMM explains the observed dark matter abundance. We

thus require that the CPI does not become fully effective, i.e., ΓCPT < 10H at MK. The

constraint is shown by brown-shaded regions and brown lines in Figs. 10 and 11, which

exclude large mr. Here we take c5 = 0.1 and 1 as reference values for the brown-shaded

regions and brown lines, respectively. Around the boundary of the constrained region, the

CPI can be marginally efficient and the observed baryon asymmetry can be explained at

the expense of tuning the parameters of the theory. In such a parameter region, the AMM

contribution dominates over the KMM contribution. The upper boundary of the green-

shaded regions in Figs. 2, 12, and 13 are determined by the CPI bound with c5 = 1.

4.6.3. Lepto-axiogenesis

In lepto-axiogenesis, B − L is produced by the dimension-five Majorana neutrino mass

operator [17, 20, 23]. The baryon number produced per Hubble time is given by

∆nB
s

≃ 45

2π2g∗(T )
C(T )

m2
ν

v4EW

θ̇T 2

H2
, (4.37)

where C(T ) is a model-dependent constant that is O(10−2 − 10−3). See [23] for the com-

putation and exact values of C. From the scaling of θ̇, H, and T , one can see that the

4 The possibility of small c5 for the QCD axion comes from cancellation in SU(5) limit. If an ALP does not

have anomalous couplings to gauge bosons and has couplings with fermions smaller than 1/fa-suppressed

ones, c5 can be much smaller than 1.
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FIG. 13. Implications of ALP cogenesis for axion searches in the log-potential model and the

two-field model with rP → 1 and NDW = 1. The figure for rP ≫ 1 can be found in Appendix B.

In the green-shaded region, dark matter and baryon asymmetry of the universe can be explained

by the rotation of an ALP field in the field space.

production is dominated before RM, for which θ̇ = mr and the baryon asymmetry produced

per Hubble time is given by

∆nB
s

≃ 8× 10−11 mr

100 TeV

( mν

50 meV

)2 C

0.02

(
106.75

g∗

)3/2

. (4.38)

From this equation, one can see that we need mr > O(10) TeV to explain the observed

baryon asymmetry. Figs. 10 and 11 show that the AMM dominates over the KMM for such

a large mass. When the right-handed neutrinos are light, they may be in the thermal bath

while the axion rotates in the early universe, and the production becomes more efficient. mr

may be as low as O(1) MeV [27], for which the KMM can dominate.

There are other axiogenesis scenarios, including those with R-parity violation in super-

symmetric theories [21] and a sphaleron process of a new gauge interaction [18]. The viable

parameter space of those scenarios will be also affected by the AMM. We leave the investi-

gation of those scenarios for future work.
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5. SUMMARY AND DISCUSSION

Axion rotation is a Bose-Einstein condensation of PQ charges with repulsive self-

interaction, i.e., superfluid, and the fluctuations around the rotating background have a

sound-wave mode, which may be identified with axion fluctuations once the PQ charges

are diluted by cosmic expansion. In this paper, we follow the cosmological evolution of the

fluctuations in axion rotation and formulate the computation of the dark matter abundance

originating from the sound-wave mode. We refer to this method of axion dark matter

production as the “acoustic misalignment mechanism” (AMM). We identify the parameter

space where the AMM contribution dominates over that from the kinetic misalignment

mechanism, which occurs for a sufficiently large mass of the radial direction of the PQ

breaking field. The axion dark matter may be warm enough to affect structure formation.

The results have rich implications for axion searches and the cosmology of axion rotation.

The parameter region resulting in kination dominance shrinks. The cogenesis of axion dark

matter and baryon asymmetry through the axion rotation and the electroweak sphaleron

process, i.e., minimal axiogenesis, predicts larger axion couplings to the SM particles in

comparison with the case where the AMM contribution is subdominant. Baryogenesis by

axion rotation with the aid of Majorana neutrino mass terms, the so-called lepto-axiogenesis

scenario, requires that the mass of the radial direction is above O(10) TeV, and for such

a large mass, the AMM contribution dominates over the kinetic misalignment mechanism.

We leave the investigation of implications for other baryogenesis scenarios for future work.

We have discussed the implications for the parameter space assuming that the pertur-

bations are adiabatic and nearly scale invariant. Our computation is applicable to the case

where the adiabatic perturbation has large or small amplitudes at small scales or the axion

rotation has isocurvature fluctuations. Indeed, if the angular direction is nearly massless

during inflation, quantum fluctuations of it are generated and the PQ charge density is mod-

ulated. The isocurvature perturbations, however, lead to the growth of field perturbations

even outside the horizon and can create large boundary-less domain walls [14], which are

stable even for NDW = 1. The enhanced field perturbations also produce too large dark mat-

ter isocurvature perturbations from the misalignment mechanism [52]. To avoid the domain

wall and isocurvature problems, the isocurvature perturbations must be highly blue-tilted,

which can be achieved by the dynamics of the radial direction during inflation [83].
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In this work, we have focused on the scenario where the PQ symmetry-breaking field

itself undergoes the rotation initiated by the Affleck-Dine mechanism, but our results apply

to the case where another scalar field initially rotates and its charges are transferred into

the PQ symmetry-breaking field [7]. The other field obtains charge density fluctuations, and

the fluctuations are transferred into those of the PQ symmetry-breaking field, which become

axions after enough redshift of the charges.

In the AMM, axion dark matter have large fluctuations at small scales, which may re-

sult in small gravitationally bound dark-matter halos called axion minihalos (or miniclus-

ters) [84–87] or self-interaction bound solitonic objects called axion stars [88]. We leave the

investigation of this possibility for future work.

The formulation developed in this paper can be applied to a broader class of models

beyond dark matter production. If the axion mass is negligible, the model is constrained by

the overproduction of dark radiation. The possible enhancement of the perturbations during

the pre-kination phase gives a stronger constraint than the model-independent bound derived

in [34], which analyzes the evolution of perturbations during the kination phase alone.

Our results demonstrate that cosmic perturbations of generic fields following the kination

equation of state can produce dark matter, and the abundance arising from the kination

phase can be computed using our formulation, although the possible nonlinear evolution

when fluctuations become non-relativistic may be model dependent. Additionally, contribu-

tions from the pre-kination phase may require more careful investigation.

Our results highlight the significant role of the AMM in axion dark matter production and

its cosmological implications. The interplay between axion rotation, its perturbations, sub-

sequent evolution, and baryon-number violation provides a solid framework for addressing

both dark matter and baryon asymmetry. Furthermore, our results suggest new experi-

mental targets for axion searches, as the AMM generally predicts larger axion couplings to

Standard Model particles. Future studies should explore the nonlinear evolution of large per-

turbations, the impact of isocurvature fluctuations, and potential observational signatures

in structure formation. These directions will refine our understanding of axion cosmology

and the observational testability of the AMM scenarios.

Note added: As this paper was being completed we became aware of overlapping work

in preparation from another group [89].
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Appendix A: Phonon dispersion relation

In this appendix, we compute the dispersion relation of the perturbations around rotating

field P . We consider the case where P has a canonical kinetic term. The equation motions

of r and θ is

r̈ − rθ̇2 − ∂2i r + r(∂iθ)
2 + Vr = 0, rθ̈ + 2ṙθ̇ − 2∂ir∂iθ − r∂2i θ = 0. (A.1)

The equation of motion of the zero mode r0(t), θ0(t) are

r̈0 − r0θ̇
2
0 + Vr(r0) = 0, r0θ̈0 + 2ṙ0θ̇0 = 0. (A.2)

For a circular motion, where ṙ0 = 0 and r̈ = 0, the solution is given by

θ̇20 =
1

r0
Vr(r0), r20 θ̇0 = nθ = constant. (A.3)

The first-order perturbations δr, δθ follows

δ̈r − 2r0θ̇0δ̇θ + (Vrr − ∂2i − θ̇20)δr = 0, (A.4)

δ̈θ + 2θ̇0
δ̇r

r0
− ∂2i δθ = 0. (A.5)

In the Fourier space, they areE2 − k2 + θ̇20 − Vrr −2iEθ̇0

2iEθ̇0 E2 − k2

 δrk

r0δθk

 = 0. (A.6)
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Non-trivial solutions exists when the determinant of the matrix is zero,

E4 − E2
(
2k2 + 3θ̇20 + Vrr

)
+ k2

(
k2 − θ̇20 + Vrr

)
= 0. (A.7)

The two branches of solutions for E is

E2 =
1

2

(
2k2 + 3θ̇20 + Vrr ±

√
16k2θ̇20 +

(
Vrr + 3θ̇20

)2)
. (A.8)

For low k, at the leading order, they are

E2 ≃ Vrr − θ̇20
Vrr + 3θ̇20

k2 =
Vrr − Vr/r

Vrr + 3Vr/r
k2 ≡ c2sk

2, (A.9)

E2 ≃ 3θ̇2 + Vrr = 3Vr/r + Vrr. (A.10)

The first one is gapless and corresponds to phonon modes. cs coincides with Eq. (3.14)

derived for cosmological perturbations. The second one has an energy gap and corresponds

to the excitation of the radial mode.

Appendix B: Axion parameter space

In this appendix we show the implications of the AMM for a broader class of models.

Fig. 14 is the same as Fig. 10 but for rP ≫ 1. Figs. 15 and 16 are the same as Fig. 11 but

for rP ≫ 1 and the log-potential, respectively. Fig. 17 is the same as Fig. 13 but for rP ≫ 1.
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[82] D. Jiménez, K. Kamada, K. Schmitz, and X.-J. Xu, JCAP 12, 011 (2017), arXiv:1707.07943

[hep-ph].

[83] S. Kasuya and M. Kawasaki, Phys. Rev. D 80, 023516 (2009), arXiv:0904.3800 [astro-ph.CO].

45

http://dx.doi.org/10.1051/0004-6361/201833910
http://arxiv.org/abs/1807.06209
http://dx.doi.org/10.1007/JHEP03(2022)198
http://arxiv.org/abs/2112.11096
http://arxiv.org/abs/2112.11096
http://dx.doi.org/ 10.1103/PhysRevLett.120.261803
http://dx.doi.org/ 10.1103/PhysRevLett.120.261803
http://arxiv.org/abs/1712.04940
http://dx.doi.org/ 10.1103/PhysRevD.101.035027
http://dx.doi.org/ 10.1103/PhysRevD.101.035027
http://arxiv.org/abs/1907.06575
http://dx.doi.org/10.1007/JHEP06(2023)014
http://arxiv.org/abs/2301.09647
http://dx.doi.org/10.1103/PhysRevD.109.035024
http://arxiv.org/abs/2301.10757
http://dx.doi.org/10.1016/0370-2693(91)90642-4
http://dx.doi.org/10.1143/ptp/85.1.1
http://dx.doi.org/10.1016/0370-2693(91)90863-L
http://dx.doi.org/10.1103/PhysRevLett.66.1815
http://dx.doi.org/10.1103/PhysRevLett.113.141602
http://arxiv.org/abs/1404.3565
http://dx.doi.org/10.1103/PhysRevD.37.2743
http://dx.doi.org/10.1103/PhysRevLett.79.1193
http://arxiv.org/abs/astro-ph/9703005
http://dx.doi.org/10.1103/PhysRevD.97.103506
http://arxiv.org/abs/1802.03055
http://dx.doi.org/10.1088/1475-7516/2019/10/032
http://arxiv.org/abs/1905.13318
http://dx.doi.org/10.3847/2041-8213/aa855d
http://arxiv.org/abs/1707.03385
http://arxiv.org/abs/1707.03385
http://dx.doi.org/10.1103/PhysRevLett.80.22
http://arxiv.org/abs/hep-ph/9708303
http://dx.doi.org/10.1103/PhysRevD.57.2186
http://arxiv.org/abs/hep-ph/9710234
http://dx.doi.org/10.1103/PhysRevD.94.063501
http://arxiv.org/abs/1606.08891
http://dx.doi.org/10.1103/PhysRevD.94.123509
http://arxiv.org/abs/1610.03074
http://dx.doi.org/10.1088/1475-7516/2017/12/011
http://arxiv.org/abs/1707.07943
http://arxiv.org/abs/1707.07943
http://dx.doi.org/10.1103/PhysRevD.80.023516
http://arxiv.org/abs/0904.3800


[84] C. J. Hogan and M. J. Rees, Phys. Lett. B 205, 228 (1988).

[85] E. W. Kolb and I. I. Tkachev, Phys. Rev. Lett. 71, 3051 (1993), arXiv:hep-ph/9303313.

[86] E. W. Kolb and I. I. Tkachev, Phys. Rev. D 49, 5040 (1994), arXiv:astro-ph/9311037.

[87] E. W. Kolb and I. I. Tkachev, Phys. Rev. D 50, 769 (1994), arXiv:astro-ph/9403011.

[88] I. I. Tkachev, Phys. Lett. B 261, 289 (1991).

[89] C. Eröncel, Y. Gouttenoire, R. Sato, G. Servant, and P. Simakachorn, to appear.

46

http://dx.doi.org/10.1016/0370-2693(88)91655-3
http://dx.doi.org/10.1103/PhysRevLett.71.3051
http://arxiv.org/abs/hep-ph/9303313
http://dx.doi.org/10.1103/PhysRevD.49.5040
http://arxiv.org/abs/astro-ph/9311037
http://dx.doi.org/10.1103/PhysRevD.50.769
http://arxiv.org/abs/astro-ph/9403011
http://dx.doi.org/10.1016/0370-2693(91)90330-S

