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ABSTRACT

Context. Galaxy clusters selected based on overdensities of galaxies in photometric surveys provide the largest cluster samples. Yet
modeling the selection function of such samples is complicated by non-cluster members projected along the line of sight (projection
effects) and the potential detection of unvirialized objects (contamination).
Aims. We empirically constrain the magnitude of these effects by cross-matching galaxy clusters selected in the Dark Energy survey
data with the redMaPPer algorithm with significant detections in three South Pole Telescope surveys (SZ, pol-ECS, pol-500d).
Methods. For matched clusters, we augment the redMaPPer catalog by the SPT detection significance. For unmatched objects we
use the SPT detection threshold as an upper limit on the SZe signature. Using a Bayesian population model applied to the collected
multi-wavelength data, we explore various physically motivated models to describe the relationship between observed richness and
halo mass.
Results. Our analysis reveals the limitations of a simple lognormal scatter model in describing the data. We rule out significant con-
tamination by unvirialized objects at the high-richness end of the sample. While dedicated simulations offer a well-fitting calibration
of projection effects, our findings suggest the presence of redshift-dependent trends that these simulations may not have captured.
Our findings highlight that modeling the selection function of optically detected clusters remains a complicated challenge, requiring
a combination of simulation and data-driven approaches.

Key words. Galaxies: clusters: general – Cosmology: large-scale structure of Universe – Methods: statistical

1. Introduction

As suggested by their name, galaxy clusters appear as overden-
sities of galaxies. Since it is relatively easy to detect galaxies
in optical wavelengths with wide and deep observations at op-
tical wavelengths, finding galaxy clusters by identifying over-
densities of galaxies has not only led to the first cluster catalogs
(Abell 1958) but also to the largest available catalogs available
to this date (e.g. Rykoff et al. 2016; Oguri et al. 2018; McClin-
tock et al. 2019; Maturi et al. 2019; Aguena et al. 2021; Maturi
et al. 2023). They surpass the size of the galaxy cluster catalog
selected in X-ray and the millimeter wavelengths by at least an
order of magnitude.

Despite this apparent advantage, cosmological inference
from the number counts of optically selected clusters has proven
more prone to systematic effects (DES Collaboration et al. 2020;
Costanzi et al. 2021), even in the presence of weak gravita-
tional lensing (WL) mass calibration (McClintock et al. 2019;
Bellagamba et al. 2019; Murata et al. 2019; Park et al. 2023;

⋆ sebastian.grandis@uibk.ac.at

Sunayama 2023). It has arguably also been surpassed by the
constraining power of WL-calibrated number counts of cluster
samples selected in X-rays or via the Sunyaev-Zel’dovich effect
(SZe), despite the latter’s smaller sample sizes and lower WL
signal to noise (Mantz et al. 2016; Bocquet et al. 2019, 2024;
Ghirardini et al. 2024). These experiments still critically rely on
deep and wide photometric data to confirm X-ray or SZe cluster
candidates and measure their redshift (e.g., most recently Klein
et al. 2019; Bleem et al. 2020; Hilton et al. 2021; Bleem et al.
2024; Klein et al. 2024; Kluge et al. 2024), and to calibrate their
mass scale via WL (e.g. Bocquet et al. 2023; Grandis et al. 2024;
Bocquet et al. 2024; Kleinebreil et al. 2024). The discriminating
factor, thus, is not the use of photometric data in itself but its use
as a primary detection method for galaxy clusters.

Both simulation studies (Cohn et al. 2007; Song et al. 2012;
Farahi et al. 2016; Costanzi et al. 2019; Wu et al. 2022; Sal-
cedo et al. 2023) and spectroscopic analyses (Myles et al. 2021;
Werner et al. 2023; Sunayama et al. 2023) have highlighted
that the selection function of optically detected cluster samples
is quite complicated. Specifically, the measured overdensity of
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galaxies includes a noticeable fraction of galaxies not associated
with the main halo. These galaxies are arranged along the prin-
cipal halo’s line of sight, but the photometric data’s low radial
resolution makes them indistinguishable from the halo galaxies.
It has been speculated that even unvirialized objects might be de-
tected in extreme cases. It is by now well understood that the so-
called projection effects lead to significant leakage of low mass
halos into optically selected cluster samples and bias their halo
population towards objects with uncharacteristically high levels
of structure along the line of sight, altering their WL signal and
the resulting mass calibration (Sunayama et al. 2020; DES Col-
laboration et al. 2020; Wu et al. 2022; Zhang & Annis 2022;
Salcedo et al. 2023; Sunayama 2023; Zeng et al. 2023).

Complementary to simulation-based and spectroscopic ap-
proaches, optically selected clusters have been extensively com-
pared to X-ray and SZe-selected clusters (Rozo & Rykoff 2014;
Rozo et al. 2015; Saro et al. 2015; Hollowood et al. 2019; Farahi
et al. 2019; Giles et al. 2022; Kelly et al. 2023). This body of
works found that optically selected clusters are complete at the
high-mass end, where the clusters’ richness (number of photo-
metric member galaxies) shows a small scatter with respect to
halo mass. Grandis et al. (2020, 2021) then demonstrated how
the Bayesian population modeling used for WL-calibrated clus-
ter number counts could constrain a sample’s selection functions
by fitting for the fraction of objects detected by a survey in an-
other wavelength. This requires that the follow-up survey has a
well-calibrated selection function, a condition met by the South
Pole Telescope (SPT) cluster surveys in light of their successful
cluster number counts cosmology (Bocquet et al. 2019, 2023,
2024).

The results by Grandis et al. (2021) on the SPT-SZ survey
follow-up of the Dark Energy Survey (DES) year 1 optically
selected clusters did not yield a clear detection of contamina-
tion, and could not probe the strength of projection effects di-
rectly. Several upgrades motivate us to present here an updated
version of that analysis. Including wide and deeper survey data
has significantly increased the SPT and DES samples (DES Col-
laboration et al. 2018; Bleem et al. 2020, 2024). Furthermore,
the recent WL-calibrated cluster number counts analysis of SPT-
selected clusters with DES Y3 WL has significantly improved
our knowledge of the SZe-mass scaling relation (Bocquet et al.
2023, 2024), which encapsulates uncertainties on the SPT selec-
tion function. This enables us to present an updated version of
the SPT follow-up of DES-selected clusters.

This paper is organized as follows. In Section 2 we present
the data sets used and how they are combined. Section 3 out-
lines the analysis methods, which yield the results presented in
Section 4 and discussed in Section 5. We conclude this work in
Section 6, adding supplementary discussion in the appendices.
As a reference cosmology, we adopt a present-day matter den-
sity ΩM = 0.3, flatness, a cosmological constant Dark Energy,
and a dimensionless Hubble parameter h = 0.7. Halos are de-
fined as spherical overdensities 200 times the critical density of
the Universe.

2. Data

This work uses data from the Dark Energy Survey and the South
Pole Telescope. We describe the two data sets employed and the
methods used to combine them. We finally validate the combi-
nation of the two data sets.

2.1. Clusters selected in DES

The Dark Energy Survey is an approximately 5,000 deg2 pho-
tometric survey in the optical bands grizY , carried out at the
4m Blanco telescope at the Cerro Tololo Inter-American Obser-
vatory (CTIO), Chile, with the Dark Energy Camera (DECam,
Flaugher et al. 2015). This analysis utilizes the sample of galaxy
clusters selected from the photometric galaxy catalogs from the
first three years of observations (DES Y3, DES Collaboration
et al. 2018) covering the full survey footprint.

The catalog was constructed using the
redMaPPer algorithm, whose application to DES data is
described in Rykoff et al. (2016); McClintock et al. (2019).
Based on the griz colors, the galaxy catalog is filtered based on
the red-sequence colors of spectroscopically confirmed clusters
and a spatial filter following a projected Navarro-Frenk-White
profile (Navarro et al. 1996), which is known to describe the
member galaxy profile of galaxy clusters accurately (Hennig
et al. 2017; Shin et al. 2021). As a result, significant con-
centrations of red-sequence galaxies with mutually consistent
redshifts are identified as a photometrically selected cluster.
Each object has a very accurate photometric redshift and a sum
of its constituent galaxies’ membership probabilities, called
richness λ̂. We consider here objects with richness λ̂ > 20, the
richness threshold applied in previous cosmological analyses
(DES Collaboration et al. 2020; Costanzi et al. 2021; To et al.
2021b,a). The typical DES-Y3 depth yields a photometrically
complete cluster sample in the redshift range 0.2 < z < 0.65.
Fainter cluster members fall below the photometric complete-
ness at higher redshifts, making photometric cluster detection
noisier. We will also employ the masking fraction maskfrac.
It records the fraction of the masked area with regard to the
total aperture used for the richness measurement. Our baseline
analysis employs the standard selection 0 ≤ maskfrac < 0.2,
while Appendix A explores different cuts within that range.

Photometric redshifts of optically selected clusters have
proven very accurate and precise. This is largely due to the color
filters selecting early-type galaxies, for which photometric red-
shift estimation is comparably easy (Gladders & Yee 2000; Rozo
et al. 2016). Furthermore, cluster member galaxies are, on aver-
age, brighter than field galaxies, facilitating the redshift estima-
tion. Finally, the cluster redshift is the weighted sum of at least a
dozen individual galaxy redshifts, improving accuracy and preci-
sion. Also, the richness has been proven to be an excellent mass
proxy when considering cluster samples selected via their intr-
acluster medium (ICM), as shown, for instance, in Saro et al.
(2015); Bleem et al. (2020); Grandis et al. (2020, 2021); Chiu
et al. (2022). The performance of richness as a mass proxy at
lower masses/richnesses is poorly understood. So far, it is clear
that galaxies in a line of sight distance of up to ±100 Mpc can
contribute to the measured richness (Cohn et al. 2007; Costanzi
et al. 2019; Sunayama et al. 2020; Myles et al. 2021; Sunayama
2023). This long kernel along the line of sight has also motivated
the hypothesis that some optically selected clusters are not asso-
ciated with massive virialized halos (Song et al. 2012). However,
this claim is disputed for richness λ̂ > 20 objects (Farahi et al.
2016).

2.2. SPT observations

The strength of projection effects and the fraction of unvirial-
ized objects can be empirically constrained by studying the ICM
emission of redMaPPer selected clusters as a function of rich-
ness and redshift (Grandis et al. 2021). This work uses the South
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Fig. 1. Upper panels: Distribution in richness λ̂ and SZe signal-to-noise ξ of the redMaPPer clusters matched by SPT, with the redshift color-coded.
We split this into three surveys with different SZe detection limits (the grey lines) and varying depth. Lower panels: fraction of redMaPPer clusters
confirmed by SPT in the three surveys as a function of richness shown with black points. The grey-shaded area shows the upper limit of the
confirmation fraction due to false SPT detections.

Pole Telescope data to trace the ICM. Specifically, we use a
catalog of significant Sunyaev-Zeldovich effect (SZe) detections
from the SPTpol-500d survey data (Bleem et al. 2024), the SPT-
SZ data (Bleem et al. 2015) where no SPTpol-500d data is avail-
able, and the SPTpol-ECS survey (Bleem et al. 2020). In short,
CMB maps are cleaned of point sources, and the SZe signal is
extracted with a matched filter approach. We refer the reader to
the respective works cited above for details on the data process-
ing and catalog creation. The three SPT surveys are unified into a
master catalog in case of overlaps (Bocquet et al. 2023). This re-
sults in a catalog of objects with an SZe significance ξ. Following
the recent cosmological work on that sample by Bocquet et al.
(2023, 2024), we employ the selection thresholds ξ > 4.25/4.5/5
for the SPTpol-500d/SPT-SZ/SPTpol-ECS surveys, respectively,
which yields samples with a comparable purity in SZe.

We also indirectly use the optical information about the SPT
clusters derived from the optical follow-up of these objects.
The multi-component matched filter cluster confirmation tool
(MCMF, Klein et al. 2018, 2019) measures richnesses and pho-
tometric redshifts for SPT clusters by identifying red-sequence
galaxies around the SZe-derived position. These are compared
with richnesses and redshifts derived from random lines of sight
to ensure high confidence optical confirmation, as discussed in
more detail in Bleem et al. (2020, 2024); Klein et al. (2024).

2.3. SPT value-added DES cluster catalog

Based on the SPT pixel map, we assign to each DES Y3
redMaPPer selected cluster the field scaling γf of the SPT field it
fell in. The SPT field scaling γf parametrizes the rescaling of the
SPT detection significance due to the noise properties, account-
ing for the variations in the SPT observing depth among different
fields (Vanderlinde et al. 2010). If the object falls in no SPT field,
we mark it as not observed by SPT. 8.9% of DES Y3 clusters
fall in area observed by SPTpol-500d, 37.3% in areas observed
by SPT-SZ outside of the pol-500d footprint, 24.8% in SPTpol-

ECS, while 29.1% are unobserved by SPT. The latter objects
are predominantly at DEC > −20 deg. To match the lower red-
shift limit of the SPT-selected samples, we only consider clusters
with z > 0.25. This results in 13354 redMaPPer selected clusters
with SPT data for which we can potentially have an SPT signal,
spanning the redshift range 0.25 < z < 0.85.

We positionally crossmatch the redMaPPer clusters that SPT
could observe with all SPT detections, except those with se-
cure redshift z > 0.9. Secure high redshift clusters are those
that have been selected for the cosmological analysis by Boc-
quet et al. (2023), and comprise 289 objects in the parent SPT
sample of 1304 entries. Filtering them out significantly reduces
the chance of randomly matching a redMaPPer object with a
high redshift halo. Excluding the secure high redshift clusters
from the SPT sample leaves us with 1015 SZe detections for
the cross-matching with redMaPPer objects. Note that we ex-
pressly do not use the SPT internal optical confirmation in the
redshift range 0.25 < z < 0.9. Optical cleaning is based on
the richness computed by the MCMF algorithm, which assumes
the SZe detection’s center. This alternative richness measure-
ment correlates with the DES Y3 redMaPPer richness. Model-
ing incompleteness induced by the optical cleaning as a func-
tion of the DES Y3 redMaPPer richness is thus very compli-
cated. Instead, we keep possible SPT false detections in our
SPT sample. Such false detections have an expected number
density of 0.22 deg−2/0.073 deg−2/0.019 deg−2 for the SPTpol-
500d/-SZ/pol-ECS surveys (Bleem et al. 2015, 2024). These
arise from random fluctuations that pass the SPT detection al-
gorithm. Their distribution follows a Gaussian to high accuracy,
as expected by the Gaussian nature of the noise in CMB maps.

Around each redMaPPer cluster that SPT observes, we
search for the nearest entry in the SPT sample within an aper-
ture corresponding to 0.6Rλ = 0.6(λ̂/100)0.2h−1Mpc in the ref-
erence cosmology (see Section 4.3.2 for an extended discussion
on the implications of this choice). At high redshift, where this
aperture spans an angular size smaller than 2 arcmin, we fix the
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search radius to that angular extent. The positional query re-
sults in 423 redMaPPer objects matched to an SPT counterpart.
5 have redMaPPer and SPT redshift that does not match. They
are positionally matched to the clusters SPT-CL J0143-4452,
SPT-CL J0202-5401, SPT-CL J0024-6301, SPT-CL J0131-6248,
SPT-CL J0406-4805. They all have two or more significant
optical structures along the line of sight, as revealed by the
SPT optical follow-up (Bleem et al. 2020, 2024; Klein et al.
2024). The positional matches with inconsistent redshift corre-
spond to redMaPPer objects that coincide with secondary op-
tical structures in the SPT optical follow-up. We interpret this
as blending, with fainter halos being undetectable because of
brighter halos in their line of sight (Section 3.1.2). We find
418 redMaPPer clusters with a significant SZe detection out of
13354 observed by SPT. When limiting ourselves to the range
where redMaPPer is photometrically complete, that is, to z <
0.65, SPT confirms 378 out of 11687 observed clusters.

In the upper panels of Fig. 1, we show their richness–SZe
signal distribution, split by the SPT survey in which they were
observed, with redshift color-coded. The left panel shows the
SPTpol-ECS survey, the central one SPT-SZ and the right one
SPTpol-500d. From left to right, the distribution of SZe signals
is shifted to smaller richness values, in line with the increase
in SPT survey depth. Similarly, the fraction of SPT detected
redMaPPer clusters as a function of their richness for the dif-
ferent surveys is shown in the lower panels of Fig. 1. All three
confirmation fractions converge to 1 for large richnesses; the
confirmation fraction declines faster for the shallower SZe sur-
veys. We report the upper limit for the probability of matching an
SPT false detection to redMaPPer clusters, which results from
the aforementioned number of false detections times the search
area around the redMaPPer clusters as a grey area. We selected
the aperture size at z = 0.25 to determine an upper limit angu-
lar scale corresponding to 0.6Rλ. The chance of matching to an
SPT false detection is at least an order of magnitude smaller than
the measured confirmation fraction. For the SPTpol-ECS survey,
it is so small that it falls outside of the plotting range. For this
analysis, we can thus neglect the possibility that a redMaPPer
cluster is matched to a false SPT detection.

3. Method

This work uses a Bayesian Population modeling approach to an-
alyze the SPT follow-up of DES-Y3 selected clusters. In such
Bayesian frameworks, a stochastic process that generates the
data set D needs to be postulated, called the generative process,
that will inevitably have some unknown parameters p, referred
to as model parameters. Upon specification of the generative
model, the probability of the data D given a set of model param-
eters p, called likelihood L(D|p), can be readily derived. Using
Bayes’ Theorem, we can find the expression for the posterior,
that is, the probability density function of the model parameters
p, given the data D, reading

p(p|D) =
L(D|p)p(p)

E(D)
, (1)

where p(p) is the prior distribution of the model parameters, and
E(D) the evidence. Given that we will be working on posterior
samples whose creation requires the log-posterior to be evalu-
ated only up to constants in the model parameters, the later quan-
tity is of no interest for this work.

3.1. Cluster population model

Here, we shall outline the generative model that we use to un-
derstand cluster populations and provide the physical motivation
for that model.

3.1.1. Intrinsic population properties

The basic physical premise of population models for galaxy clus-
ters is that every detected object has a one-to-one association to
a halo, that is, a virialized, collapsed structure with a mass M
at a cosmic epoch parameterized by the redshift z. While some
debate on the optimal mass definition has been going on, as seen
later, the halo mass will be a latent variable of our analysis, mak-
ing our analysis invariant under reparameterizations of the mass.
We only require that the differential number of halos as a func-
tion of mass M and redshift z in our angular survey volume be
computable for each cosmological model considered. In prac-
tice, we use

d2N
d ln Mdz

=
dn

d ln M
dV
dz
, (2)

where dn
d ln M is the halo mass function, as calibrated by cosmolog-

ical simulations, and dV
dz is the differential cosmological volume.

Following Kaiser (1986), we assume that massive halos are
gravity-dominated structures, which results in their observables
displaying tight scaling relations with halo mass, critical den-
sity, and scale factor, as amply demonstrated in observation (e.g.
Mohr & Evrard 1997; Mohr et al. 1999; Pratt et al. 2009; Mantz
et al. 2016; Chiu et al. 2018; Bahar et al. 2022, among others)
and simulations (Bryan & Norman 1998; Angulo et al. 2012;
Farahi et al. 2018; Pop et al. 2022). We therefore parameterize
the mean intrinsic richness λ for a halo of mass M and redshift z
as

⟨ln λ|M, z⟩ = ln Aλ + Bλ ln
(

M
Mpiv

)
+Cλ ln

(
1 + z

1 + zpiv

)
, (3)

with constant pivots in mass Mpiv = 3 × 1014h−1 M⊙, and in
redshift zpiv = 0.6, and with unknown model parameters Aλ, the
amplitude of the scaling relation, representing the richness of
an object with mass Mpiv at redshift zpiv, the mass trend of the
mean richness Bλ, and the redshift trend Cλ. Several past works
have found that this parameterization describes their data (Saro
et al. 2015; Bleem et al. 2020; Grandis et al. 2021; Bocquet et al.
2023, 2024), while some simulation work has suggested a two-
component model (Anbajagane et al. 2020).

Analogously to the richness mass scaling, also the mean in-
trinsic SZe signal-to-noise in SPT observations follows a power-
law-like scaling relation, reading

⟨ln ζ |M, z⟩ = ln(γfASZ) + BSZ ln
(

M
Mpiv

)
+CSZ ln

(
E(z)

E(zpiv)

)
, (4)

whose unknown parameters are equivalent to those of the rich-
ness mass relation above, as done in all previous SPT works.
γf denotes the relative depth of the SPT field in question when
compared with the reference field defined in Vanderlinde et al.
(2010). E(z) = H(z)/H0 is the unitless expansion rate at redshift
z.

Not all halos at a given mass and redshift would have the
same observables, even without instrumental noise effects. This
is due to the inherent heterogeneity of cluster physics and the
plethora of effects that can lead to small deviations from the
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mean relation. As these effects are astrophysical and cosmo-
logical, they are a priori unknown, and their magnitude needs
to be empirically determined. Following the established model-
ing choice introduced by Mantz et al. (2010), we parameterize
the joint distribution of intrinsic noise-free richness λ and SZe-
signal-to-noise ζ as

P
([

ln λ
ln ζ

] ∣∣∣∣M, z) = N

([
ln λ
ln ζ

] ∣∣∣∣ [⟨ln λ|M, z⟩⟨ln ζ |M, z⟩

]
; C

)
, (5)

where N(x|µ,C) stands for a multivariate normal distribution in
x with mean µ and covariance C. Farahi et al. (2018) explicitly
confirmed the lognormality of this relation for the stellar and gas
mass of massive halos in simulations. As the extent of the het-
erogeneity of the cluster population is unknown, the covariance
of the intrinsic cluster properties is modeled via free parameters
as

C =
[
σ2
λ(M) + max(λ−1,0)

λ2 ρσλ(M)σSZ
ρσλ(M)σSZ σ2

SZ

]
, (6)

where σSZ is the intrinsic scatter of the SZe-signal-to-noise, and
σλ(M) is the intrinsic scatter of the richness. The Poissonian
noise of the number of non-central galaxies supplements the
variance in the richness. The correlation coefficient ρ among the
intrinsic optical and SZe scatter captures a variety of astrophys-
ical scenarios where objects with uncharacteristically high/low
SZe-signals for their mass and redshift also have uncharacteristic
richnesses. As ρ is a free parameter, we stay agnostic about the
astrophysical details of such processes. Given their astrophysical
nature, they are typically hard to model accurately.

The joint distribution of clusters in the space of intrinsic ob-
servables and redshift results from the marginalization of the
halo mass as follows

d3N
d ln λd ln ζdz

=

∫
d ln M P (ln λ, ln ζ |M, z)

d2N
d ln Mdz

, (7)

which we implement via grid-based numerical integration. Note
how we integrate the halo mass, treating it as a latent vari-
able of our population model. This expression is invariant under
reparametrizations of the mass if the scaling relation parameters
are adjusted to the new mass definition.

3.1.2. Observed population properties

The next step when forward-modeling the cluster population is
to specify the mapping between the noise-free and measured ob-
servables.

Regarding the SZe properties, the prescription is based on
studies of the interplay between the noise in the SZe map and
the matched filter employed for cluster detection (Vanderlinde
et al. 2010). The probability of a measured signal-to-noise ξ is
modeled as

P(ξ|ζ) = N

(
ξ
∣∣∣∣ √ζ2 + 3, 1

)
Θ(ζ − ζmin), (8)

where the first term describes the effect of running a matched
filter on a noisy map. The signal-to-noise of the matched filter
will naturally have a variance of 1, but the mean is biased by
the filter optimization, leading to a shift away from the noise-
free signal. Θ(ζ − ζmin) is the Heaviside function, which is 1 for
ζ > ζmin, and 0 else. Faint halos are undetectable by SPT, as
brighter halos occupy their line of sight. This manifests as some
optically selected clusters being matched to secondary structures
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revealed by the optical follow-up of SPT-selected clusters (see
Section 2.3). Furthermore, we expect a sharp decline in the pres-
sure of lower mass halos, leading to an effective truncation of
the SZe–mass relation. As these effects are complicated to model
from first principles, we will let ζmin be a free parameter.

For the optical richness, we know for certain that the pho-
tometric noise in the galaxy catalogs leads to a Gaussian noise
with richness and redshift-dependent mean and variance

Pbkg(λ̂|λ, z) = N(λ̂; µbkg(λ, z), σ2
bkg(λ, z)), (9)

as demonstrated by Costanzi et al. (2019). Following that work,
we recalibrate µbkg(λ, z) and σbkg(λ, z) by randomly injecting ob-
jects with richness and redshift (λ, z) into the DES Y3 data, and
re-extracting them to recover λ̂, as shown in Fig. 2.

We will also consider the possibility that galaxies along the
line of sight boost the observed richness and the masking of low-
richness structures by superposed higher-richness objects. Fol-
lowing Costanzi et al. (2019) this is modeled as

λ̂ = λ + ∆bkg + ∆prj + ∆msk, (10)

where ∆bkg ∼ N(µbkg(λ, z) − λ, σ2
bkg(λ, z)) is the aforementioned

contribution from photometric uncertainties. Masking effects pa-
rameterized via ∆msk are also play a very minor role. They occur
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with probability fmsk(λ, z), which is smaller than 0.1 for richness
λ > 10.

The physically most important contribution is ∆prj. It is the
increment in richness due to including galaxies that are not halo
members in the richness measurement. Their photometric col-
ors, however, are indistinguishable from those of cluster mem-
bers due to their physical proximity along the line of sight. It
is well established in simulation works that this affects galaxies
within a line of sight distance of up to ±100h−1 Mpc, the typi-
cal photometric uncertainty of red-sequence galaxies.1 Costanzi
et al. (2019) found that their simulations are well described by

P(∆prj|λ, z) = (1 − fprj(λ, z))δ(∆prj) + fprj(λ, z)Exp(∆prj|τ(λ, z)),
(11)

with δ(∆prj) being the delta-function, and Exp(∆prj|τ) an expo-
nential distribution with rate parameter τ. The probability of be-
ing affected by projection effects, fprj(λ, z), and their strength
τ(λ, z) are extracted from simulations as described in Costanzi
et al. (2019), and shown in Fig. 2. They find that all objects with
richness λ > 8 are certain to be impacted by projection effects, as
fprj(λ, z) = 1. According to this model, the expected number of
redMaPPer members not associated with the main halo is given
by

⟨∆prj|λ, z⟩ =
fprj(λ, z)
τ(λ, z)

. (12)

For λ > 5 the ratio between the mean number of projected galax-
ies and the host halos richness decreases gently toward higher
richness, from ∼ 30% at λ ∼ 5 to less 10% at λ > 200, as shown
in the lowest panel of Fig. 2. As derived in Costanzi et al. (2019,
see their equation. 15) the distribution Pprj(λ̂|λ, z) takes a com-
plex but analytical form, which we will use here.

The distribution in observed quantities then results from the
integration

d3N
dλ̂dξdz

=

∫
d ln λP(λ̂|λ, z)

∫
d ln ζ P(ξ|ζ)

d3N
d ln λd ln ζdz

. (13)

Given the gentle trends of all the functions above with redshift
and the excellent precision and accuracy of cluster redshift, we
can ignore photometric redshift uncertainties and treat the ob-
served redshift as the true redshift, ẑ = z.

3.2. Likelihood of individual clusters

As we are interested in the SPT follow-up of redMaPPer clus-
ters, our generative model should generate SZe signals ξi|λ̂i, zi
conditional upon a cluster richness and redshift. For each cluster
i, the pdf of its SZe-signal ξi conditional on richness and redshift
is given by

p(ξi|λ̂i, zi) =
(

d2N
dλ̂dz

∣∣∣∣
λ̂i,zi

)−1
d3N

dλ̂dξdz

∣∣∣∣
ξi,λ̂i,zi
, (14)

where the prefactor normalizes the distribution to integrate to 1
over all possible ξi values.

For objects not detected by SPT, we interpret the lack of de-
tection as an upper limit on the SZe signal. For such objects, the

1 Typical photometric redshift uncertainties of red galaxies are ∆zphot ≈

0.03, which translates in a line of sight distance ∆rphot ≈ c/H(z)∆zphot ≈

90h−1 Mpc at redshift z = 0.

SZe-signal has to be lower than the SPT selection threshold ξi,min
in the respective SPT survey. Its likelihood then reads

p(ξ < ξi,min|λ̂i, zi) =
(

d2N
dλ̂dz

∣∣∣∣
λ̂i,zi

)−1 ∫ ξi,min

0
dξ

d3N
dλ̂dξdz

∣∣∣∣
λ̂i,zi
. (15)

As already explored by Grandis et al. (2021), we also en-
tertain the possibility that an excess fraction πcont(λ̂, z) of clus-
ters is not detected by SPT on top of those predicted by our
population model. These would be clusters with excessively low
SZe-signals or overdensities of red galaxies not associated with
any collapsed object and thus lacking the high-pressure gas that
sources the SZe. Accounting for this possibility, the individual
cluster likelihood reads

Li =
(
1 − πcont(λ̂i, zi)

)
p(ξi|λ̂i, zi), (16)

if detected by SPT or

Li = πcont(λ̂i, zi) +
(
1 − πcont(λ̂i, zi)

)
p(ξ < ξi,min|λ̂i, zi), (17)

if not detected by SPT, as derived by Grandis et al. (2021),
see specifically their Fig. 5. The total log-likelihood of the SPT
follow-up of redMaPPer clusters then results by summing the
log-likelihood of the individual clusters.

3.3. Model variants

We consider several generative model variants to understand
which model best describes the observed data. These models are
summarized in Table 1.

Plain In this baseline model, we set the intrinsic richness scat-
ter to a constant σλ(M) = σλ, consider only photometric un-
certainties on the richness Pbkg(λ̂|λ, z), and allow for no excess
non-detections, πcont(λ̂, z) = 0. This model has been very suc-
cessful in describing the optical properties of SPT clusters (Saro
et al. 2015; Bleem et al. 2020; Grandis et al. 2021; Bocquet et al.
2023, 2024).

Mass-dependent scatter We expand the plain model with a
mass-dependent scatter. As high-mass clusters have shown a re-
markably low scatter between mass and richness, we a priori re-
ject models that have a mass power-law trend in the richness
scatter, instead opting for a composite model

σλ(M) = σλ
(
1 +

Mbreak

M

)Bσ
, (18)

with free parameters Mbreak and Bσ. For M ≫ Mbreak, this model
has a constant richness scatter, while for M ≪ Mbreak, it shows
a power-law trend σ(M) ∝ M−Bσ . Positive Bσ thus indicates an
increased scatter at low masses, while negative Bσ indicates a
much less likely decrease of the richness scatter at low masses.

Projection effects In the projection effect model, we consider a
constant richness scatter with mass, no excess non-detections, as
well as the simulation calibrated mapping between intrinsic and
true richness Pprj(λ̂|λ, z), that includes projection and percolation
effects.
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Table 1. Summary of the models we consider, listed by their abbreviations. We report the intrinsic richness model assumed, the treatment of
projection effects and contamination, their free parameters of the richness-mass relation, and the main result we found in each model. All models
share the same treatment of photometric scatter, equation (9).

name intrinsic scatter projection effects contamination free parameters results

plain
log-normal, constant
+ Poisson term,
equation (6)

no no Aλ, Bλ, Cλ, σλ

cont same as plain no equation (20) plain,
bcont

0 , bcont
z , acont

0

cont. consistent with zero,
absent at λ̂ ≳ 100

mass dep
log-normal with mass
trend + Poisson term,
equation (6,18)

no no plain,
log10 Mbreak, Bσ

constant scatter for
log10 M200,c ≳ 14.2

prj same as plain from simulation
see Fig. 2 no plain preferred over

plain, cont and mass dep

prj+cont same as plain same as prj same as cont plain,
bcont

0 , bcont
z , acont

0
same as cont

prj+ same as plain prj with free amplitude
equation (19) no plain α0 consistent with prj

prj++ same as plain
prj with free amplitude,
richness & redshift trend
equation (19)

no plain,
α0, αλ, αz

possible redshift trend in
strength of projection effects

Extended projection effects We empirically extend the projec-
tion effects model by altering the strength of the projection ef-
fects as follows

τext(λ, z) = eα0τ(λ, z)
(

1 + z
1.5

)αz ( λ
30

)αλ
. (19)

The new parameter α0 probes the overall strength of the projec-
tion effects, with the expected number of redMaPPer members
not associated with the main halo ⟨∆prj|λ, z⟩ ∝ e−α0 (see equa-
tion 13). αz is the redshift trend, and αλ the richness trend of
the strength of projection effects. We probe two models: ‘prj+’,
where we only vary the amplitude α0 while keeping the richness
and redshift trend fixed (αz,λ = 0), and ‘prj++’ where we fit for
all three extra parameters. These models can be understood as
an empirical validation of the simulation-calibrated projection
effects.

Contamination Following Grandis et al. (2021), we model the
richness scatter as a constant, utilize only the photometric un-
certainties on the observational richness scatter, but we fit for an
excess of non-detection with the following model

πcont(λ̂, z) =
A(λ̂, z)

1 + A(λ̂, z)
and A(λ̂, z) = ebcont

0

( z
0.5

)bcont
z

(
λ̂

30

)acont
0

,

(20)

where bcont
0 governs the overall amplitude of the excess non-

detections, bcont
z its redshift trend, and acont

0 its richness trend.

Contamination and projection effects As a final model, we also
consider a model with σλ(M) = σλ, with projection effects
Pprj(λ̂|λ, z), and a model for the excess non-detections, given in
equation (20).

We shall use the following abbreviations for the models we
consider: ‘prj’: projection effects, ‘cont’: contamination, ‘mass
dep’: mass-dependent scatter, ‘prj+’: projection effect with free
amplitude, ‘prj++’: projection effects with free amplitude, rich-
ness and redshift trends, ‘prj+cont’: projection effects with con-
tamination, as also summarized in Table 1.

Table 2. Priors on the model parameters. N(µ, v) denotes a Gaussian
distribution with mean µ and variance v, U(a, b) a uniform distribution
in the interval (a, b).

parameter prior

ΩM
present-day
matter density 0.3

h scaled Hubble constant 0.7

σ8
amplitude of
matter fluctuation 0.8

SZe–mass scaling
ln ASZ amplitude N(0.72, 0.092)
BSZ mass slope N(1.69, 0.062)
CSZ redshift trend N(0.50, 0.272)
σSZ intrinsic scatter N(0.20, 0.052)

γECS
calibration of
SPT-ECS field depth N(1.05, 0.032)

ζmin
minimal SZe
signal-to-noise U(0.2, 4)

richness–mass scaling
ln Aλ amplitude U(3, 4.5)
Bλ mass slope U(0.7, 1.4)
Cλ redshift trend U(−1.5, 2)
σλ intrinsic scatter U(0.05, 0.4)
multivariante observables–mass relation
ρ correlation coefficient U(−0.8, 0.8)
mass dependent scatter
log10 Mbreak characteristic mass U(11, 16)
Bσ mass slope U(−0.5, 1.5)
contamination fraction
bcont

0 amplitude U(−5, 2)
bcont

z redshift trend U(−2, 0)
acont

0 richness trend U(−3.5, 0)
extended projection effects model
α0 amplitude U(−5, 2)
αz redshift trend U(−1, 11)
αλ richness trend U(−0.7, 0.7)
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3.4. Posterior Sampling and Priors

We generate posterior samples using emcee (Foreman-Mackey
et al. 2013). Our parameter space is sufficiently low dimensional
(11-14 dimensions) to keep this sampling method effective. We
assess the convergence of the chains by visual inspection of the
trace plots, specifically requiring that the walkers reach a steady-
state solution.

For the priors, we chose three different approaches. We fix
the cosmological parameters to reference values (ΩM = 0.3,
σ8 = 0.8, h = 0.7). The code has been designed to allow these
parameters to vary, but they do not affect the inference of the
parameters of interest. The overall amplitude of the halo mass
function cancels because of the normalization in equation (14
and 15). The scaling relation depends very mildly on ΩM. The
halo mass function, the cosmological volume, and the scaling
relations are phrased in units with little-h, making the popula-
tion model independent of the value of the Hubble constant. To
expedite the inference, we thus do not vary the cosmological pa-
rameters.

We use informative priors on the SZe-mass scaling relation
derived from the DES Y3 & HST WL mass calibration and cos-
mological number counts fit of SPT-selected clusters (Bocquet
et al. 2023, 2024). These priors are implemented as indepen-
dent Gaussians with means and standard deviations given by
ln ASZ = 0.72 ± 0.09, BSZ = 1.69 ± 0.06, CSZ = 0.50 ± 0.27,
σSZ = 0.20 ± 0.05 and γECS = 1.05 ± 0.03, with the lat-
ter parametrizing the depth of the SPT-ECS field (Bleem et al.
2020). These constraints were derived simultaneously with the
cosmological inference by Bocquet et al. (2023, 2024), thus pro-
viding a conservative estimate of our understanding of the SZe–
mass relation and the resulting SPT selection function. The re-
sulting cosmological constraints are consistent with the refer-
ence cosmology we adopted.

Our likelihood is independent of WL mass calibration and
cosmological number count likelihood, as demonstrated in Boc-
quet et al. (2023) in the context of other follow-up observables.
Note also that these priors would have to be dropped if our like-
lihood was combined with the WL and number counts of DES-
selected clusters, as they are not statistically independent of the
WL and number counts of the SPT-selected clusters.

The parameters of the richness mass scaling relation, the
contamination model, the SZe line-of-sight blending, and the ex-
tended projection effects are sampled with flat priors, reported in
Table 2. Where applicable, the ranges of these priors were ex-
panded after exploratory analyses to fully sample the posterior
distribution.

3.5. Model comparison

This work explores 7 partially nested models to describe the
same data. We compare these models following the discussions
in Kerscher & Weller (2019). As our likelihood is not Gaussian,
we forego using the chi-squared to test the goodness of fit. Fur-
thermore, Bayesian evidence ratios are proportional to the prior
volume for flat priors. As the latter are chosen without physical
meaning, evidence ratios are avoided. We focus on the following
3 metrics to compare our models:

Likelihood ratio test Consider the maximum likelihood ln L̂M

for model M. As a comparison metric for the models A and B,
we use

SmaxL
A,B = −2

(
ln L̂A − ln L̂B

)
, (21)

which compares the probabilities that either best-fit parameters
describe the data. For nested models, it can be directly used to
reject the null hypothesis that the data was generated by model
B in favor of the test hypothesis that model A generated the data
if SA,B is small enough.

Information theoretic approaches We can also measure how
well the best fit can predict the data by using the Akaike In-
formation Criteria (Akaike 1973, 1981)

AICM = −2 ln L̂M + 2 dim(M), (22)

where dim(M) is the number of model parameters in the model
M. This metric is derived by estimating the relative entropy (also
known as Kullback-Leibler divergence) between the true distri-
bution of the data and the data distribution predicted by the best-
fit model.

As a metric, we use the difference between the AICs, SAIC
A,B =

AICA − AICB. This metric penalizes the model with more free
parameters. The preference for fewer parameters expresses the
principle of Ockham’s razor (not including unnecessary extra pa-
rameters).

In the case of complex hierarchical models like ours Spiegel-
halter et al. (2002); van der Linde (2012) propose the Bayesian
Complexity pD to quantify the number of effective model param-
eters, reading

pD,M = −2⟨lnLM⟩ + 2 ln L̂M, (23)

where ⟨·⟩ denotes an average over the posterior sample. Gener-
ally, pD,M < dim(M), as not all model parameters are effectively
measured. Using this expression as an Ockham’s razor penalty
yields the Deviance Information Criterion (DIC)

DICM = −2 ln L̂M + 2 pD,M. (24)

We use the difference between the DICs of the two models,
SDIC

A,B = DICA − DICB as a metric that penalizes the number of
parameters less severely.

We interpret the result of the model comparison based on
Jeffrey’s scale, as proposed by Spiegelhalter et al. (2002). Fol-
lowing the discussion in Grandis et al. (2016), we interpret
0 < SA,B < −2 as ‘insignificant’ evidence for model A, −2 <
SA,B < −5 as ‘positive’ evidence, −5 < SA,B < −10 as ‘strong’
evidence, and −10 < SA,B as ‘decisive’ evidence.

In summary, we will compare models using three metrics:
the difference in maximum likelihood, the difference in Deviance
Information Criterion, and the difference in Akaike Information
Criterion. They differ in how strongly they penalize the introduc-
tion of extra model complexity in the form of free parameters.
The likelihood ratio does not penalize this at all, while the AIC
penalizes this the strongest.

4. Results

This section presents the constraints on the parameters in the dif-
ferent models we considered. We then perform a model selection
to determine which of the considered models best describes the
data. We also present posterior predictive distributions for de-
rived quantities in the different models.
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Table 3. 1-dimensional marginal posteriors for the parameters of the richness mass relation (amplitude ln Aλ, mass slope Bλ and redshift evolution
Cλ), its scatter intrinsic scatter σλ and the minimum detectable intrinsic SZe signal-to-noise ζmin, reported via their mean ± their standard deviation.
The posterior of the correlation coefficient ρ between the SZe and richness scatter is unconstrained.

model σλ ln Aλ Bλ Cλ ρ ζmin
prj 0.217 ± 0.050 3.695 ± 0.077 0.953 ± 0.056 -0.64 ± 0.27 – 1.43 ± 0.44
plain 0.253 ± 0.043 3.781 ± 0.076 0.883 ± 0.057 -0.49 ± 0.26 – 1.50 ± 0.49
cont 0.242 ± 0.049 3.785 ± 0.064 0.928 ± 0.078 -0.40 ± 0.33 – 1.31 ± 0.53
mass dep 0.207 ± 0.050 3.815 ± 0.068 0.917 ± 0.055 -0.48 ± 0.25 – 1.49 ± 0.51
prj+ 0.221 ± 0.050 3.779 ± 0.094 0.920 ± 0.057 -0.52 ± 0.25 – 1.48 ± 0.48
prj++ 0.194 ± 0.056 3.771 ± 0.078 0.939 ± 0.081 0.47 ± 0.58 – 1.37 ± 0.46
prj+cont 0.213 ± 0.056 3.675 ± 0.091 0.996 ± 0.075 -0.47 ± 0.31 – 1.39 ± 0.51

0.1 0.2 0.3
prj

plain

cont

mass dep

prj+

prj++

prj+cont

3.5 4.0
ln A

0.75 1.00
B

1 0 1
C

Fig. 3. 1-dimensional marginal posteriors on the parameters of the
richness-mass relation (amplitude ln Aλ, mass slope Bλ and redshift
evolution Cλ), as well as the intrinsic scatter in richness σλ and the
correlation between the intrinsic SZe and richness scatter ρ in the dif-
ferent models considered (‘prj’: projection effects, ‘cont’: contamina-
tion, ‘mass dep’: mass-dependent scatter, ‘prj+’: projection effect with
free amplitude, ‘prj++’: projection effects with free amplitude, richness
and redshift trends, ‘prj+cont’: projection effects with contamination).
The stars denote the median, the full (faded) line extends from the 16th
(2.5th) to the 84th (97.5th) percentile.

4.1. Parameter constraints

4.1.1. Richness mass relation

The 1-dimensional marginal posteriors on the parameters of the
richness mass relation (amplitude ln Aλ, mass slope Bλ and red-
shift evolution Cλ), and the intrinsic scatter in richness σλ are
shown in Fig. 3. In different colors, we present the posteriors
in the different models we considered. Generally speaking, all
parameters except the correlation coefficient are well-measured.
We also report the numerical values for the 1-dimensional pos-
terior in Table 3.

We find that the intrinsic scatter in richness at a given halo
mass is between σλ = 0.194 ± 0.056 when considering an ex-
tended projection effects model with free amplitude, richness,
and redshift trend (‘prj++’) and σλ = 0.253 ± 0.043 when con-
sidering a log-normal scatter model (‘plain’). As expected, the
inferred amount of intrinsic scatter in richness depends on the
details of the optical scatter model. It is generally lower for mod-
els where part of the scatter is absorbed/accounted for by projec-
tion effects or contamination. The inferred values are nonethe-
less mutually consistent at less than 2σ.

We find that the amplitude of the richness mass scaling re-
lation is between ln Aλ = 3.675 ± 0.091 for the model with
projection effects and contamination (‘prj+cont’) and ln Aλ =
3.815 ± 0.068 for the model with a mass-dependent log-normal

scatter (‘mass dep’). This corresponds to a richness between
exp⟨ln λ|Mpiv, zpiv⟩ = 39.45 ± 9.1% and exp⟨ln λ|Mpiv, zpiv⟩ =

45.38 ± 6.8% at the pivot mass Mpiv = 3 × 1014h−1 M⊙, and
pivot redshift zpiv = 0.6. Differences among the models are less
than 2σ. The correlation ρ between the richness scatter and the
SZe scatter remains unconstrained.

The mass trend of the richness is constrained to be between
Bλ = 0.883 ± 0.057 for the model with log-normal scatter
(‘plain’) and Bλ = 0.996 ± 0.075 for the model with projec-
tion effects and contamination (‘prj+cont’). The inferred values
vary by less than 2σ depending on the model. They are generally
consistent with being slightly less than unity.

The redshift evolution of the richness-mass relation is con-
strained to be between Cλ = −0.64 ± 0.27 in the model with
projection effects (‘prj’) and Cλ = −0.40 ± 0.33 in the model
with log-normal scatter and contamination (‘cont’). A qualita-
tive outlier is the model in which projection effects have a free
amplitude, richness, and redshift trend (‘prj++’), where we find
a positive redshift trend Cλ = 0.47 ± 0.58. In light of the large
uncertainties on the redshift evolution, this is still statistically
consistent with the value inferred from other models at less than
2σ.

4.1.2. Minimal detectable SZe-significance

The minimal intrinsic SZe significance is constrained to be be-
tween ζmin = 1.31 ± 0.53 in the model with contamination
(‘cont’) and ζmin = 1.50 ± 0.49 in the model with plain log-
normal scatter (‘plain’). The values inferred in different models
are mutually consistent at less than 1σ. We detect a truncation in
the SZe-significance to mass relation, that is ζmin > 0, at around
3σ, depending on the model for the optical scatter. We thus em-
pirically confirm the presence of this effect at a population level,
corroborating our choices to exclude optically selected clusters
matched to secondary structures in the SPT optical follow-up
(see Section 2.3). The constraint we recover is also consistent
with values ζmin = 1 or = 2 that Bocquet et al. (2023) tested
in the DES and HST weak lensing calibrated SPT cluster num-
ber counts. They provide empirical evidence for the truncation
of the SZe-significance to mass relation postulated by previous
SPT studies (Vanderlinde et al. 2010; Bocquet et al. 2015; de
Haan et al. 2016; Bocquet et al. 2019, 2023, 2024).

4.1.3. Contamination fraction

No clear detection of a contamination fraction results from our
fits, both when considering plain log-normal scatter in richness
(‘cont’) and when considering projection effects (‘prj+cont’), as
can be seen in Fig. 4, showing the 1- and 2-dimensional marginal
contour plots of the posteriors on the parameters of the contam-
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Fig. 4. 1- and 2-dimensional marginal posteriors on the parameters of
the contamination fraction (amplitude bcont

0 , redshift trend bcont
z and rich-

ness trend acont
0 ) in the different models considered (‘cont’: contamina-

tion with log-normal richness mass scatter; ‘prj+cont’: projection ef-
fects with contamination).

ination fraction. In the model with projection effects, the am-
plitude of the contamination fraction is weakly constrained to
bcont

0 = −1.92 ± 1.27, and limited to bcont
0 < 0.07 at 95% credi-

bility. In the model with log-normal scatter, we only recover the
upper limit bcont

0 < 0.26 at 95% credibility. This indicates that the
contamination fraction πcont(z = 0.5, λ̂ = 30) < 0.56 (0.52) in
the model with log-normal scatter (with projection effects). We
could not detect a redshift trend in the contamination fraction.
We find a weak constraint on the richness trend of the contami-
nation fraction acont

0 = −1.92 ± 0.83 (−1.54 ± 0.85) in the model
with log-normal scatter (with projection effects). We can exclude
the presence of unvirialized objects at high richness while we
have less constraining power at low richness, as demonstrated
below (see Section 4.3.2).

4.1.4. Extended Projection Effects

We considered two scenarios within the extended projection ef-
fects modeling (see equation 19). In the first, we only consid-
ered a free amplitude α0 for the strength of the projection effects
while keeping the redshift and richness trend as fitted in the sim-
ulations (‘prj+’). We find the lower limit α0 > −0.70 in this case.
This means that the amount of redMaPPer members not associ-
ated with the main halo is, at worst, e0.70 = 2.01 times larger than
in the simulations used for the calibration. Our upper prior range
is α0 = 1.50, corresponding to e−1.50 = 0.22 times weaker pro-
jection effects. As shown by the orange distribution in the upper
left panel of Fig. 5, no constraint on the amplitude of projection
effects besides the lower limit is obtained in this model.

We also consider a model where we additionally fit for the
richness and redshift of the projection effects αλ,z (‘prj++’).
We find that the richness trend of the projection effects αλ =
−0.11 ± 0.30 is well compatible with zero. We find the weak
constraint αz = 5.75± 2.30 for the redshift trend. This constraint

0.0
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5.0
7.5
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.0

0.5 0.0 0.5 1.0
0.6
0.3
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0.3
0.6

0.0 2.5 5.0 7.5 10
.0 0.6 0.3 0.0 0.3 0.6

prj+
prj++

Fig. 5. In red, the 1- and 2-dimensional marginal posterior plots for
the parameters, amplitude α0, redshift trend αz, and richness trend αλ,
of the maximally extended projection effects model (‘prj++’). The 1-
dimensional posterior for the amplitude parameter α0 is also shown in
orange for the extended projection effects model (‘prj+’); the other two
parameters are set to zero (αλ = αz = 0) in this model.

is inconsistent with zero redshift evolution at more than 2σ, as
can also be seen in the red contours in Fig. 5. We discuss the im-
plications of this result below. The amplitude of the projection
effect strength is found to be α0 = 0.27 ± 0.54, when consider-
ing also free redshift and richness trends (‘prj++’). Compared to
the case with frozen richness and redshift trend, our posterior de-
clines noticeably before hitting the upper prior bound, indicating
a clear empirical detection of projection effects. Furthermore, we
find that the richness trend of the projection effects αλ correlates
with the mass trend of the richness slope Bλ and that the red-
shift trend of the projection effects αz correlates with the redshift
evolution of the richness-mass relation Cλ.

4.1.5. Mass dependent scatter

We find no detection of a mass-dependent richness scatter, as the
mass trend of the scatter Bσ remains unconstrained, as seen in
Fig. 6. Depending on the value of the mass slope, we find dif-
ferent upper limits for the characteristic mass Mbreak, which sets
the transition between a constant scatter and a mass-dependent
scatter. Naturally, for Bσ = 0, Mbreak remains unconstrained, as
equation (18) becomes trivial. Pronounced mass dependent scat-
ter (0.5 < Bσ < 0.7) leads to an upper limit log10 Mbreak < 14.4.
Strong mass trend (1.1 < Bσ < 1.3) implies log10 Mbreak < 14.0.
We, therefore, conclude that massive clusters are unlikely to have
a mass-dependent richness scatter while being unable to assess
if such trends are present in the group regime (log10 M < 14).

4.2. Model selection

For each of the models we considered, we can compute the max-
imum likelihood, the Deviance Information Criterion, and the
Akaike Information criterion conveniently from a posterior sam-
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Fig. 6. 1- and 2-dimensional marginal posteriors on the parameters of
the mass-dependent scatter (characteristic mass Mbreak, and mass trend
Bσ).

Table 4. Quantities used for the model comparison.

model dim(M) pD −2 lnL DIC AIC
cont 14 5.2 3050.2 3070.5 3078.2
plain 11 4.0 3051.1 3069.1 3073.1
mass dep 13 5.7 3048.3 3069.8 3074.3
prj 11 4.4 3044.7 3063.4 3066.7
prj+ 12 4.3 3044.3 3062.9 3068.3
prj++ 14 7.1 3036.8 3061.0 3064.8
cnt+prj 14 5.5 3043.2 3064.3 3071.2

ple that also report the likelihood value. We summarize the nu-
merical values in Table 4.

The Bayesian complexity pD crystallizes some of the trends
one could glean from the marginal posterior distribution. The
‘plain’ model attains a complexity pD = 4, though, in our vi-
sual assessment, five parameters have been well measured (the
four parameters of the richness mass relation and the minimal
SZe signal-to-noise). It also remains unclear how 0.4 more pa-
rameters are well measured in the model considering projec-
tion effects (‘prj’) when compared to the model with log-normal
scatter, as the correlations in the posterior in the two models
are visually similar. Allowing for a free contamination fraction
typically increases the Bayesian complexity by one. This re-
flects the fact that the richness trend of the contamination frac-
tion is constrained. When considering the mass-dependent scat-
ter model, the complexity increases by 1.7 with respect to the
plain model. Indeed, the marginal posterior on the correlation
coefficient peaks more in this model, and some constraints on
the mass dependence of the scatter could be extracted. Sam-
pling just the amplitude of the projection effects leads to no
increase in complexity, as the amplitude parameter remains un-
constrained. When allowing for amplitude, richness, and redshift
trends in the projection effects, we attain the highest complexity
(pD = 7.1), as we measure the most parameters. The results from

the Bayesian complexity thus generally reflect the visual inspec-
tion of the two-dimensional marginal plots but do not contribute
any significant quantitative insights on their own.

The comparison of the maximum likelihood, the DIC, and
the AIC is visualized in Fig. 7. Each cell of the panel represents
the difference between the model on the row and the model on
the column. These difference are interpreted using the Jeffrey’s
scales: 0 < SA,B < −2 is ‘insignificant’ evidence for model A,
−2 < SA,B < −5 ‘positive’ evidence, −5 < SA,B < −10 ‘strong’
evidence, and −10 < SA,B ‘decisive’ evidence (see Section 3.5).
We see that models with projection effects are, for the most part,
strongly favored over models with log-normal scatter. This is a
clear empirical indication that the scatter in the richness mass
relation deviates from log-normality and shows skewness. This
skewness can not be absorbed by assuming a contamination frac-
tion or a mass-dependent but still log-normal scatter. The best-
performing model is the maximally extended projection effects
model (‘prj++’), in which we detected a strong redshift trend in
the number of unassociated redMaPPer members that deviated
from our simulation-based expectation.

More detailed comparisons can not be drawn in a definitive
fashion, as the model comparison values vary from method to
method, showing that the degree to which one wishes to penal-
ize extra model complexity plays an important role. For instance,
evidence for the maximally extended projection effects model
(‘prj++’) over the baseline simulation-based calibration of se-
lection effects (‘prj’) varies from ‘strong’ if no penalty for extra
parameters is introduced (left panel) to ‘insignificant’ if we pe-
nalize extra model parameters maximally (right panel). Below,
we shall discuss further physical and methodological arguments
in favor of and against picking the simulation-based projection
effect model over its empirically calibrated counterpart.

Our analysis also shows that models with a contamination
fraction are typically penalized compared to models without
a contamination fraction. The former has more free parame-
ters, namely those parameterizing the contamination fraction. As
these are weakly constrained, they do not increase the goodness
of the fit (expressed via the maximum likelihood) but are pe-
nalized by Ockham’s razor terms. Nonetheless, the presence of
large amounts of contamination by unvirialized objects cannot
be definitively ruled out.

4.3. Derived properties

This section presents quantities derived from our posterior sam-
ples and discusses the resulting predictions.

4.3.1. Unmatched fraction

The analysis methods used in this work and introduced by Gran-
dis et al. (2021) sets itself apart from other studies of the ICM-
properties of optically selected clusters by the fact that we ex-
plicitly fit for fraction of unmatched objects. We consider here
the fraction of SPT undetected objects f no

kl in a redshift bin k and
richness bin l. This can be estimated from the data as

f̂ no
kl =

Nno
kl

N tot
kl

with Var
[
f no
kl

]
=

(
N tot

kl − Nno
kl

)
Nno

kl(
N tot

kl

)3 , (25)

where Nno
kl is the number of unmatched objects in the bin kl,

while N tot
kl is the total number.2 The resulting summary statistic

2 This estimator can be directly derived from the maximum likeli-
hood solution to the Bernoulli likelihood expressing the probability of
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Fig. 7. Model comparison metrics (from left to right: maximum likelihood, deviance information criterion, Akaike information criterion) for the
different models we considered (‘prj’: projection effects, ‘cont’: contamination, ‘mass dep’: mass-dependent scatter, ‘prj+’: projection effect with
free amplitude, ‘prj++’: projection effects with free amplitude, richness and redshift trends, ‘prj+cont’: projection effects with contamination).
Each entry is the difference between the model on the row and the model on the column. Negative, blue values mean that the model of the row is
preferred.
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Fig. 8. Unmatched fraction of redMaPPer objects as a function of redshift bins. As black points, we show the empirical estimate for the fraction
of redMaPPer objects not detected by SPT in redshift panels (columns) and richness bins. We show the posterior predictive distribution of the
fraction of unmatched objects in the best-fit model (‘prj++’, red), and the worst-fitting model ("plain", grey). The filled area encompasses the 16th
and 84th percentile.

is shown in Fig. 8 as black points, with error bars given by the
square root of the variance.

The posterior predictive distribution for the fraction of un-
matched objects is computed by evaluating equation (17) at rich-
ness λ̂ and redshift z corresponding the bin kl, reading

f no(λ̂, z) = πcont(λ̂, z) +
(
1 − πcont(λ̂, z)

)
p(ξ < ξmin|λ̂, z), (26)

weighted by the solid angle of the different SPT surveys. We
evaluate this expression on samples drawn from the posterior
samples in our different models to generate posterior predictive
samples. At each richness and for each redshift bin, we plot the
area in the 16th and 84th percentiles of the posterior predictive
in Fig. 8. In red, we plot the model with maximally extended
projection effects, ‘prj++’, our best-fitting model according to

Nno occurrences out of a pool of N tot events with a rate of occurrence
f ∈ [0, 1]: lnL = Nno ln f +

(
N tot − Nno) ln (1 − f ). The estimator is the

maximum in f for this expression, while the variance is given by the
negative inverse second derivatives towards f at the maximum, as cus-
tomary for maximum likelihood estimators. In the limit of Nno → 0, the
estimator converges to f̂ = 0 with variance 1/N tot.

the model selection, and grey the worst-fitting model (‘plain’).
The differences between the predictions in the two models are
minimal but still redshift-dependent.

4.3.2. Contamination fraction

We use the posteriors on the parameters of the contamination
fraction (amplitude bcont

0 , redshift trend bcont
z and richness trend

acont
0 ) in the model with contamination and log-normal richness

mass scatter (‘cont’) and in the model with projection effects
and contamination (‘prj+cont’) to predict the posterior predic-
tive distribution on the contamination fraction πcont(λ̂, z = 0.5).
As we found no constraint on the redshift evolution, we will just
inspect this prediction at the pivot redshift z = 0.5. The median
(solid curves) and the 16th and 84th percentile (dashed curves)
at each richness λ̂ are shown in Fig. 9. We see that the resulting
upper limit on the contamination fraction declines rapidly as a
function of richness. At low richnesses, we can not exclude that
a significant part of the sample is comprised of unvirialized ob-
jects, but our data is also consistent with all objects being actual
halos. We compare the contamination at higher richness with the
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Fig. 9. The median (solid curves) and the 16th and 84th percentile
(dashed curve) of the contamination fraction πcont(λ̂, z = 0.5) at each
richness in the model with contamination and log-normal richness mass
scatter (‘cont’, blue) and in the model with projection effects and con-
tamination (‘prj+cont’, green). We also show the fraction of objects
missed due to our search area as a gray band, as predicted by the mis-
centering distribution of redMaPPer clusters (hatched area plotted be-
tween the 16th and 84th percentile, lines denoting the 2.5th and 97.5th
percentile).

expected fraction of unmatched objects derived by confronting
our search area radius 0.6Rλ with the mis-centering distribution
of redMaPPer clusters derived by Kelly et al. (2023). We find
that the cumulative probability of a mis-centering larger than
0.6Rλ is P(Rmis > 0.6Rλ) = 0.0327+0.016

−0.014, shown in Fig. 9 as a
grey band. For clusters with richness λ̂ = 20 (λ̂ = 100), we use
the 0.6Rλ search radius up to z ∼ 0.4 (z ∼ 0.6) and a larger ra-
dius of 2 arcmin above that redshift (see Section 2.3). As such,
we would expect to not match high richness redMaPPer clusters
with ∼ 3% probability for most of the redshift range we consider.
As unmatched clusters contribute to the contamination fraction
constraint, P(Rmis > 0.6Rλ) provides a useful comparison for
the contamination fraction. Our prediction for the contamination
fraction falls below this limit around richness λ̂ ∼ 100. We thus
infer that no contamination is present at larger richness.

4.3.3. Projection effects

We also derive posterior predictive distributions for the frac-
tional increase in richness due projection effects, which can be
computed as

f!halo(λ, z) =
⟨∆prj|λ, z⟩
λ

. (27)

As this fraction is proportional to ⟨∆prj|λ, z⟩, it is inversely pro-
portional to the quantity τ(λ, z). In Fig. 10, we show as cyan lines
the fraction of unassociated members that results from the sim-
ulation calibration. It gently declines from around 30% for low-
richness systems to below 10% for high-richness systems. Also,
it is larger at high redshifts on account of the larger photometric
redshift errors at higher redshifts.

We show as orange dashed lines in Fig. 10 the fractions be-
low the 84th percentile of the posterior predictive distribution
in the model with a free amplitude for the projection effects
strength. As discussed in Section 4.1, we found a lower limit
on the parameters α0, which translates into an upper limit on
the fraction of unassociated members. The dotted orange lines

show the 97.5th percentile. In this model, our data is consistent
with the simulation calibration. It would, however, also allow for
significantly fewer projection effects, as very small fractions of
unassociated members have large posterior predictive probabili-
ties.

We also predict the fraction of unassociated galaxies for the
maximally extended projection effects model (‘prj++’), in which
we fit for an amplitude and a richness and redshift trend of the
richness. The corresponding posterior predictive distribution is
shown in Fig. 10 in red, with the median as a solid line and the
16th and 84th percentile as dashed lines. The prediction agrees
within 2σ with the simulation calibration. Minor deviations can
be observed for the low-redshift/high-richness regime, where
this model predicts a larger fraction of unassociated redMaPPer
members, and for the high-redshift regime, where a smaller frac-
tion is preferred. This matches with the goodness of fit results
based on the fraction of unmatched objects as a function of
observed richness (see Section 4.3.1). Given a larger (smaller)
fraction of unassociated members, the same observed richness
results in a smaller (larger) intrinsic richness and, thus, in a
smaller (larger) halo mass and predicted SZe-signal. Smaller
(larger) predicted SZe increase (decrease) the fraction of SPT-
unmatched objects. Thus, the fraction of unassociated members
and the fraction of unmatched objects correlate. Indeed, in the
low-redshift/high-richness regime, we find that the maximally
extended projection effects model predicts a larger fraction of
unmatched objects compared to the other models we considered.
Similarly, the extended model predicts a smaller unmatched frac-
tion at high redshifts. In summary, the trends in the fraction of
member galaxies not associated with the main halo agree with
the observations we made from the fraction of unmatched ob-
jects.

5. Discussion

We shall discuss several aspects of our results, such as the com-
parison to previous work, the astrophysical interpretation of our
results, its applicability to other optical cluster finders, and, fi-
nally, the implications of this work for cosmological inference
from optically selected clusters.

5.1. Comparison to previous works

The most direct comparison can be drawn to the analysis of the
SPT-SZ follow-up of DES Y1 redMaPPer clusters by Gran-
dis et al. (2021). That work used a smaller SPT cluster sam-
ple, a smaller DES-redMaPPer sample, and wider priors on the
SZe-mass scaling relation parameters. It was limited to a rich-
ness λ̂ > 40 because of the shallower SZe data. Considering
these limitations, it is unsurprising that its conclusion was much
weaker than the one presented here. Nonetheless, the predictions
that work made on the contamination fraction are consistent with
the ones found here, albeit allowing for a larger contamination
fraction. Compared to that work, we also use quantitative model
comparison metrics.

For redMaPPer clusters selected in SDSS, Myles et al.
(2021) analyzed the spectroscopic redshift of member galaxies
in the cluster redshift range 0.08 ≤ z ≤ 0.12. When stack-
ing clusters in richness bins, they found that the spectroscopic
redshift distribution comprised a narrow and a wide compo-
nent. They concluded that the first one was associated with the
galaxies of the halo, while the second one was due to projec-
tion effects. The fractional contribution of the wider compo-
nent matched the simulation prediction by Costanzi et al. (2019).
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Fig. 10. Posterior predictive distributions for the fraction of redMaPPer members that are not associated to the main halo ⟨∆prj⟩/λ as a function of
intrinsic richness λ for different redshift (panels). In cyan, we plot the result of the simulation-based calibration. The 84th (97.5th) percentiles for
the model with a free amplitude (‘prj+’) are shown as orange, dashed (dotted) lines. The median (full line) and 16th and 84th percentiles (dashed
line) for the model with free amplitude, and redshift and richness trends (‘prj++’, red) are also shown.

Stacked analyses of cluster member spectroscopy can determine
the ratio between halo members and unassociated galaxies in a
richness bin. It can not address if the unassociated members are
distributed over all redMaPPer objects, leading to projection ef-
fect, or if those unassociated members comprise a subset of the
objects associated to unvirialized structures. An intriguing ob-
servation window in the latter direction is given by studying the
velocity dispersion-richness relation of optically selected clus-
ters. Wetzell et al. (2022) found an outlier population with ap-
proximately twice the velocity dispersion at a given richness.
The larger velocity dispersion was likely not due to a higher
mass of these systems, as they had generally weaker X-ray sig-
natures than the main population. This corroborates our findings
that projection effects play a significant role in optically selected
clusters while the detection of unvirialized structures can not be
excluded.

Also Costanzi et al. (2021) indirectly concluded that pro-
jection effects play a significant role by combining the number
count of DES Y1 redMaPPer clusters with the SPT-SZ clusters
weak lensing mass calibration as presented by Schrabback et al.
(2018); Dietrich et al. (2019); Bocquet et al. (2019) and their
number counts at high redshift. In that context, the full dataset
could only be self-consistently described using projection effects
instead of a plain log-normal richness scatter, providing another
empirical piece of evidence for projection effects.

5.2. Astrophysical Interpretation

This work is principally concerned with understanding the scat-
ter around the richness mass relation to properly forward model
the mass incompleteness of optically selected cluster samples.
Given the inconclusive comparison results between the model
with a simulation-based calibration of projection effects (‘prj’)
and the one with an extended one (‘prj++’), we also investigate
which of the two models conforms better with our astrophys-
ical understanding of red galaxies. In the extended model, we
find that the redshift evolution of the richness mass relation is
positive, Cλ = 0.47 ± 0.58, while that evolution is negative in all
other models. A positive evolution conflicts with our understand-
ing of galaxy evolution in clusters, as the number of early-type,
red galaxies is expected to increase with lower redshift (see for
instance Hennig et al. 2017, and references therein). While this
trend is weak at the redshifts probed in this work, a positive red-
shift trend nonetheless remains puzzling.

Similarly, it seems astrophysically implausible that projec-
tion effects affect lower redshift clusters more strongly. The driv-
ing factor for projection effects is the photometric redshift uncer-
tainty of red-sequence galaxies (Costanzi et al. 2019), which is
smaller at low redshifts. An increasing trend towards low red-
shift can be found in the normalization of the galaxy luminosity
function (Lilly et al. 1995; Ilbert et al. 2005; Ramos et al. 2011;
Capozzi et al. 2017). This implies that the density of galaxies in-
creases to lower redshifts. Our current simulations for projection
effects use the richness mass relation to paint member galaxies
on simulated halos, and are not tuned to reproduce the redshift
trends in the galaxy luminosity function. This might lead to inac-
curacies in the estimated redshift trends of the projection effects.
These speculations underline that an accurate simulation-based
calibration of selection effects requires high fidelity in assign-
ing galaxy properties in simulations. As any simulation will only
reach a finite accuracy, it is methodologically prudent to use the
extended projection effects model instead of a model with pro-
jection effects fixed to the simulation-based calibration.

5.3. Applicability to other optical cluster finders

We explored projection effects and contamination in optically
selected cluster samples on a sample constructed with the
redMaPPer algorithm. Our results are thus not quantitatively
applicable to samples constructed with other algorithms. Such
algorithms can be generally split into two categories: red-
sequence-based algorithms, like redMaPPer, or CAMIRA (Oguri
2014; Oguri et al. 2018), and cluster finders based on pho-
tometric redshift, like AMICO (Bellagamba et al. 2018; Maturi
et al. 2019, 2023; Toni et al. 2024), PZWaV (Werner et al. 2023;
Thongkham et al. 2024; Doubrawa et al. 2024), or WaZP (Aguena
et al. 2021). In the case of CAMIRA, Murata et al. (2019) found
a complex redshift trend in the scatter of the richness mass rela-
tion when fitting for the number counts and stacked weak lens-
ing at fixed cosmology. The scatter is smallest for the redshift
bin 0.4 ≤ z ≤ 0.7, while it is larger at higher and lower redshifts.
While the increase in higher redshifts seems natural, the increase
in lower redshifts might be due to the increased low-redshift pro-
jection effects we also find.

To the authors’ knowledge, no study of projection effects has
been carried out for photometric redshift-based cluster finders.
We are nonetheless convinced that they are equally, if not more
strongly, affected by projection effects. The physical reason for
projection effects is the low line-of-sight resolution of photomet-
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ric data. Galaxies with the same photometric redshift might be
several dozen Mpc apart along the line of sight and still be in-
distinguishable from the cluster’s galaxies. Red-sequence galax-
ies have the lowest scatter in photometric redshift. Including
non-red-sequence galaxies thus increases the line-of-sight kernel
width and the projection effects. The simulation-based methods
presented in Costanzi et al. (2019) and the empirical tests pre-
sented in Grandis et al. (2021) and in this work will also enable
us to understand these effects for photo-z-based cluster detection
methods.

5.4. Implications for cosmology

Understanding projection effects is essential for the cosmologi-
cal exploitation of cluster samples. A crucial effect that needs to
be considered in that context is the ‘Eddington bias’. Its role in
the context of cluster cosmology is well explained by Morton-
son et al. (2011), Appendix C, recently revisited with attention
to the role of correlated scatter by Grandis et al. (2024), Sec-
tion 6.3, and also discussed by Norton et al. (2024), who pro-
pose to call it ‘convolution bias.’ In short, there are many more
low-mass halos than high-mass halos as the halo mass function
declines rapidly with halo mass. Even in the presence of sym-
metric scatter, it is thus more likely that low-mass halos scatter
up to a given observable value than high-mass halos scatter down
to the same observable values. Conversely, we will find more
up-scattered, low-mass objects at a given observable value than
high-mass, down-scattered ones. This effect can be easily mod-
eled by Bayesian population analyses, see Allen et al. (2011),
Fig. 5 for a illustrative plot. Most cluster cosmological works
adopt this framework in one way or another. As physical pro-
cesses source intrinsic scatter, cluster samples will naturally be
biased towards whatever leads to larger observable values at a
given mass and redshift. In the case of optically selected clus-
ters, projection effects boost the measured richness at a given
mass and redshift. Optically selected samples thus have a dis-
proportionally larger fraction of objects with uncharacteristically
higher structure along the line-of-sight.

This has been shown to impact their correlation function
and weak lensing signal. Halos in overdense regions are more
strongly biased with regard to the matter density contrast than
the average halo population (To et al. 2021b). Given the prefer-
ence of optical clusters for structure along the line of sight, they
have an anisotropic halo-matter correlation function (Sunayama
et al. 2020; Sunayama 2023). These effects can be empirically
calibrated by introducing extra free parameters (To et al. 2021a;
Park et al. 2023; Sunayama et al. 2023), generally called ‘optical
selection bias’ (Zhang & Annis 2022; Wu et al. 2022). Intro-
ducing extra parameters will, however, dilute the cosmological
constraining power of cluster number counts, which relies pri-
marily on the accuracy and precision of the weak gravitational
lensing measurement to determine the observable mass mapping
(Bocquet et al. 2023; Grandis et al. 2024; Bocquet et al. 2024;
Ghirardini et al. 2024).

The strength of the optical selection bias is directly linked
to the strength of the projection effects, as they both result from
the distribution of matter and galaxies in and around massive
halos. They, thus, are inherently affected by astrophysical un-
certainties, leading to inaccurate weak lensing mass calibration
and significantly challenging the cosmological exploitation of
optically selected cluster samples. In this context, it has been
proposed to use multi-wavelength information and to split the
stacked weak lensing in ICM-detected and undetected objects to
constrain the optical selection bias (Zhou et al. 2023). Also, full

forward modeling of the galaxy painting procedure has success-
fully reproduced the number counts and stacked WL of DES Y1
redMaPPer selected clusters, as demonstrated by Salcedo et al.
(2023). That work employed galaxy counts in cylinders as a rich-
ness proxy and used the number counts of objects at fixed Planck
cosmology to establish the mapping between cylindrical galaxy
counts and richness, making it unsuited for cosmological infer-
ence (where number counts should be used to constrain cosmol-
ogy and not the observable mass relation). In summary, projec-
tion effects and the possible contamination of optically selected
cluster samples pose significant challenges to their cosmological
exploitation via weak lensing calibrated cluster number counts.
As carried out in this work, future cluster cosmological analy-
ses of optically selected clusters will benefit from quantitative
cross-calibration with ICM-based cluster surveys.

6. Conclusions

In this work, we determine the SZe signature of the cluster sam-
ples selected with the redMaPPer algorithm from the DES Y3
data by positional cross-matching with significant SZe detection
in SPT observations. Of the 11687 redMaPPer-selected clusters
in the redshift range 0.25 < z < 0.65 with SPT data available,
SPT confirms 378. If no SZe detection is found, we use the SPT
detection threshold as an upper limit on the SZe signal.

This data is analyzed with a Bayesian Population Model in-
troduced in Grandis et al. (2021), which uses the halo mass func-
tion, observable–mass scaling relation for the richness and in-
trinsic SZe signal-to-noise, correlated intrinsic scatter models for
the scatter around the mean observable mass relations, and SZe
measurement noise, and accounts for the photometric noise in
the optical cluster selection. We expand on that model by con-
straining the minimal detectable SZe significance and by model-
ing the mapping between measured and intrinsic richness with 7
different models, summarized in Table 1:

– log-normal scatter richness mass scatter with no extra as-
sumptions (‘plain’),

– a mass-dependent log-normal scatter (’mass dep’),
– log-normal scatter with an added fraction of unvirialized ob-

jects that contaminate the optically selected cluster sample
(‘cont’),

– a simulation-based calibration of the contributions of unas-
sociated galaxies projected along the line of sight, updated
following Costanzi et al. (2019) to DES Y3 (‘prj’),

– a model where the amplitude of the projection effects is let
free (‘prj+’),

– a model where the amplitude, richness and redshift trend of
the projection effects is let free (‘prj++’), and

– a model with simulation-based projection effects and a con-
tamination fraction (‘prj+cont’).

Posteriors on the parameters of the richness–mass scaling re-
lation, the minimal SZe signal-to-noise due to blending, the cor-
relation among SZe and richness scatter, and, where applicable,
the extra model parameters of the respective model are sampled
using priors on the SZe–mass scaling and scatter derived by the
number counts and weak lensing measurements of SPT-selected
clusters (Bocquet et al. 2023, 2024). The resulting model fits
are compared with 3 different model comparison metrics; their
goodness of fit and their predictions are discussed.

We find that
– the minimal detectable SZe signal-to-noise is ζmin ∼ 1.4 in

excellent agreement with the values 1 and 2 explored by Boc-
quet et al. (2024) in the context of weak lensing calibrated
cluster number counts of SPT-selected clusters;
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– the mean richness ranges between exp⟨ln λ|Mpiv, zpiv⟩ =
39.45 ± 9.1% and exp⟨ln λ|Mpiv, zpiv⟩ = 45.38 ± 6.8% for
a halo at the pivot mass Mpiv = 3 × 1014h−1 M⊙, and pivot
redshift zpiv = 0.6, depending on the model used;

– the slope of the richness mass relation is consistently slightly
less than unity, while the redshift trend is generally negative
but consistent with zero;

– the richness scatter ranges from σλ = 0.194 ± 0.056 to σλ =
0.253±0.043 depending on the model, and is unlikely to have
a strong mass trend in the cluster regime (log10 M > 14);

– the contamination fraction is consistent with zero for high
richness (λ̂ > 100) but remains weakly constrained in the
low richness regime; and

– the simulation-calibrated projection effects provide a better
description of the data than a log-normal scatter and contam-
ination fraction. However, we detect a redshift trend, with
stronger projection effects found in the low-redshift/high-
richness regime and fewer projection effects found in the
high-redshift regime when compared to the simulations.

In summary, we caution the use of a calibration of projection ef-
fects from simulations without considering the possible limited
accuracy of such simulations. If possible, the strength of projec-
tion effects should be fitted on the fly from the data together with
other properties of interest.

Our results on the mean observable mass relation and the
value of its scatter provide tighter constraints than and agree
with previous studies (Saro et al. 2015; Bleem et al. 2020; Gran-
dis et al. 2021). The presence of unvirialized structures in the
redMaPPer sample is not favored by the model comparison but
cannot be definitively excluded at low richness. Strong projec-
tion effects are confirmed, as already suggested by spectroscopic
studies (Myles et al. 2021; Wetzell et al. 2022) and cosmological
number counts and weak lensing analyses (Costanzi et al. 2021),
though their quantitative trends with redshift remain uncertain.
Future cosmological analyses of optically selected clusters will
critically depend on our ability to characterize the impact of pro-
jection effects on the weak lensing signal and the correlation
function between optically selected clusters and the matter field.

Data Availability

The SPT catalogs are all online available at https://pole.
uchicago.edu/public/Publications.html. The DES data
underlying this article cannot be shared publicly as it is propri-
etary to the Dark Energy Survey Collaboration. However, the
DES collaboration is open to external collaboration requests.
Don’t hesitate to contact the corresponding author to initiate
such a request.
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Fig. A.1. Distribution in richness of the more masked and the less
masked subset of the redMaPPer sample (blue and orange, respec-
tively), as well as the total sample (dashed grey), normalized to the same
number-density. The vertical lines show the richness binning planned
for the weak lensing calibrated cluster number counts analysis.

Appendix A: Effect of masking on optical selection

Past comparisons between redMaPPer and SPT selected clus-
ters have highlighted that some SPT selected clusters that are
nominally included in the DES footprint are not matched to
redMaPPer selected objects. Closer inspection of these objects
has revealed that small-scale masking in the photometric data
has made detecting these objects impossible despite the clear
presence of red-sequence galaxies (Bleem et al. 2020, specif-
ically Fig. 9). In calculating the effective survey area, the
redMaPPer algorithm already accounts for the cluster redshift
and position-dependent part of this effect.

Possible richness/mass-dependent trends have not been ex-
plored but could well be expected and lead to a richness-
dependent incompleteness of the redMaPPer sample. This
would primarily affect cosmological inference from cluster num-
ber counts. Our analysis, which normalizes out the number
counts information, should be unaffected in as far as masking is
random and mainly due to bright foreground objects. Nonethe-
less, comparing the distribution in masking fraction maskfrac
of the SPT detected and undetected objects reveals that they are
significantly different (p-value 0.0023 in a two-sample KS test).

We, therefore, explore for which split in masking frac-
tion maskfrac ∈ (0, 0.2) the richness distributions of the
redMaPPer selected clusters with smaller and larger masking
fractions differ the most. The resulting KS-test attains signifi-
cant p-values < 0.001 when splitting at maskfrac ∼ 0.075. The
sample with maskfrac > 0.075 comprises about 10% of the
total sample. We compare the richness distributions of the two
samples in Fig. A.1. The more strongly masked subsample has
significantly more clusters at richness ∼ 100 and a conspicuous
lack of objects at higher richnesses. The alteration of the mask-
ing fraction at high richness explains the difference in masking
fractions between the SPT detection and undetected objects, as
the former are preferentially at high richness. At this stage of
the analysis, further investigations into masking would go be-
yond the scope of this work but might nonetheless be necessary
for the precision required for the cosmological exploitation of
stage IV optically cluster surveys. Of special concern is that
this effect is richness-dependent and affects the high-richness
regime, which was otherwise considered more robust than the
low-richness regime.
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