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ABSTRACT

We conduct a search for strong gravitational lenses in the Dark Energy Survey (DES) Year 6 imaging

data. We implement a pre-trained Vision Transformer (ViT) for our machine learning (ML) architec-

ture and adopt Interactive Machine Learning to construct a training sample with multiple classes to

address common types of false positives. Our ML model reduces ~236 million DES cutout images to

22,564 targets of interest, including ~85% of previously reported galaxy-galaxy lens candidates discov-

ered in DES. These targets were visually inspected by citizen scientists, who ruled out ~90% as false

positives. Of the remaining 2,618 candidates, 149 were expert-classified as ‘definite’ lenses and 516

as ‘probable’ lenses, with 147 of these candidates being newly identified. Additionally, we trained a

second ViT to find double-source plane lens systems, finding at least one double-source system. Our

main ViT excels at identifying galaxy-galaxy lenses, consistently assigning high scores to candidates

with high confidence. The top 800 ViT-scored images include ~100 of our ‘definite’ lens candidates.

This selection is an order of magnitude higher in purity than previous convolutional neural network-

based lens searches and demonstrates the feasibility of applying our methodology for discovering large

samples of lenses in future surveys.

Keywords: Gravitational lensing: strong - methods: machine learning

1. INTRODUCTION Gravitational lensing occurs when an astronomical

source is located behind a massive foreground object



3

such as a galaxy, galaxy group, or cluster of galaxies.

If the source is sufficiently close to the line of sight be-

tween the observer and the lensing object, its light can

be deflected by the gravitational potential of the fore-

ground object, producing multiple magnified images of

the source. If the source is a galaxy these images appear

as extended arcs, whereas if the source is intrinsically

small, such as a quasar, we see multiple magnified point

source images.

In galaxy-scale strong gravitational lenses, systems in

which the deflector is a single galaxy, the observables

are primarily sensitive to the mass distribution of the

lensing galaxy. Most massive galaxies in the universe

are elliptical galaxies, so strong lensing can be utilized

to study the structure (baryonic and dark matter pro-

files) and evolution of these galaxies (Shajib et al. 2024).

Strong gravitational lensing is also sensitive to the un-

derlying cosmological parameters of our Universe (Pas-

cale et al. 2024; Kelly et al. 2023; Birrer et al. 2020;

Shajib et al. 2020a; Wong et al. 2019). A population of
~10,000 galaxy-galaxy gravitational lenses can provide

competitive constraints on the dark energy equation of

state parameters (Li et al. 2023). Strong gravitational

lenses with two sources at different redshifts (double-

source plane lenses, hereafter DSPLs) are particularly

useful for cosmology (Linder 2016; Collett et al. 2012)

since the ratio of Einstein radii is only mildly sensitive to

the mass profile of the deflector, the dominant system-

atic in strong lensing analyses. With only one system

Collett & Auger (2014) improved the equation of state

of dark energy w from Planck by 30% .

The initial discoveries of strong gravitational lenses

were mostly serendipitous (e.g., Walsh et al. (1979)).

The first dedicated searches for strong lenses involved

manually inspecting large numbers of images from small-

area surveys applying modest selection criteria, result-

ing in the identification of hundreds of lenses (e.g., More

et al. (2011); Newton et al. (2009); Faure et al. (2008);

Jackson (2008); Moustakas et al. (2007); Fassnacht et al.

(2006, 2004)). However, this method is impractical

for wide-field surveys, necessitating the development

of automated detection techniques. Early automated

methods primarily targeted lenses with multiple well-

separated images or distinctive elongated and curved

arcs (e.g., Gavazzi et al. (2014); More et al. (2012);

Alard (2006)). Since then, additional automated search

techniques have been developed. For instance, algo-

rithms such as ‘Blue Near Anything’ and ‘Red Near Any-

thing’ focus on identifying strong lensing systems with

lensed sources of the corresponding color (O’Donnell

et al. 2022; Diehl et al. 2017). While these automatic

techniques have proven effective, they still require sub-

stantial visual inspection to confirm candidates. Other

strong lensing search methods leverage crowdsourced vi-

sual inspection of large volumes of images, resulting in

candidate samples with high purity and completeness

(Marshall et al. 2016a; More et al. 2016).

Current state-of-the-art search methods involve the

application of machine learning (ML) techniques, which

have been successfully used in various fields of astro-

physics (Huertas-Company & Lanusse 2023). Among

these, Convolutional Neural Networks (CNNs), a class

of deep learning algorithms suited to identify patterns

and features in images, have shown significant promise.

Metcalf et al. (2019) compared different strong lensing

search methodologies and found that CNN-based tech-

niques consistently outperform previous methods, signif-

icantly reducing the presence of false positives. Numer-

ous studies have applied these techniques to wide-field

imaging surveys, identifying thousands of strong lenses

(e.g., Storfer et al. (2023); Zaborowski et al. (2023); Ro-

jas et al. (2022); Shu et al. (2022); Huang et al. (2021);

Cañameras et al. (2020); Huang et al. (2020); Li et al.

(2020); Jacobs et al. (2019a,b); Petrillo et al. (2019)).

However, despite reaching excellent performance on de-

veloped testing samples, the results on real data are very

different, usually exhibiting low true-positive rates of
~1% or less. This discrepancy may stem from train-

ing samples that lack the realism and diversity of actual

data.

Recently, a novel machine-learning technique known

as the transformer encoder (Vaswani et al. 2023) has

been adapted to image classification tasks. This tech-

nique has shown superior performance compared to

traditional CNN techniques on many image classifica-

tion datasets like ImageNet, CIFAR-10 and CIFAR-100

(Dosovitskiy et al. 2021). Thuruthipilly et al. (2024)

integrated a transformer encoder in their strong lens

search methodology and applied it to data from the Kilo-

Degree Survey (KiDS), reporting a true-positive rate of

0.5%. Grespan et al. (2024) adopted the ML architec-

tures of the previous work and fine-tuned them to real

KiDS data, after applying them to ~5 million galaxies

from KiDS, they select a sample of ~51,000 systems for

visual inspection and report a final sample of 231 can-

didates. Similar to previous searches, they encountered

the common issue of an extremely low true-positive rate

of less than 1%, which reflects the current state-of-the-

art performance.

Currently, the sample of strong lensing candidates

consists of tens of thousands of systems (Vernardos et

al. in prep), but with upcoming astronomical surveys

such as Euclid and the Legacy Survey of Space and

Time (LSST), this number is expected to increase to



4

105 - 106 (Barroso et al. 2024; Collett 2015). For the

much rarer DSPLs the picture is similar: A handful are

currently known (e.g., O’Donnell et al. (2022); Shajib

et al. (2020b); Diehl et al. (2017); Tanaka et al. (2016);

Gavazzi et al. (2008)) but O(103) and O(102) DSPLs

are expected to be found in Euclid (Sharma et al. 2023)

and LSST (The LSST Dark Energy Science Collabora-

tion et al. 2021), respectively. The main challenge for

these surveys will be finding strong lenses and DSPLs

amongst the billions of non-lenses that they will pre-

dominantly observe.

In the near future, astronomical surveys will gener-

ate a massive amount of data, making it essential to

develop search methods with higher true-positive rates.

Without new methods, an implausible amount of human

time would be needed to visually inspect ML-selected

strong lensing candidates. Our work has two main goals:

(1) identifying strong gravitational lenses in the Dark

Energy Survey (DES) and (2) developing a methodol-

ogy that can better handle the demands of upcoming

wide-field astronomical surveys. To achieve this, we

choose the Vision Transformer (Subsection 2.3) as our

machine learning architecture and adopt Interactive Ma-

chine Learning (IML) to create a more comprehensive

training sample (Subsection 2.2). Additionally, we con-

duct two independent strong lensing (SL) searches: one

to find strong lenses in general and another one to target

DSPLs. We implement an independent search for DSPL

because DSPLs can exhibit very different morphology

from single source lenses (Collett & Bacon 2015), and

ML searches designed for single-plane lenses often strug-

gle to identify them. In one study comparing different

lens searches, Metcalf et al. (2019) found that all au-

tomated searches failed to identify a compound lens in

their data. Only expert visual inspection correctly iden-

tified the DSPL.

This paper is structured as follows: In Section 2, we

summarize the methodology adopted in this work. Sub-

section 2.1 describes the DES dataset, 2.2 outlines how

our training sample is constructed, Subsection 2.3 sum-

marizes the architecture of the Vision Transformer, and

Subsection 2.4 covers the training process and the ML

model’s performance on a testing sample and known cat-

alogs of strong lenses. Section 3 presents the results

from the ML search, along with two rounds of visual in-

spection: one involving citizen scientists on the platform

Zooniverse, and the other with strong lensing experts.

Finally, in Section 5, we discuss the significance of these

results and summarize our conclusions.

2. METHODOLOGY

Applying machine learning to detect strong gravita-

tional lenses represents a standard vision classification

task. The initial step in this process is constructing

a training sample. Given the limited number of known

lenses, simulations of strong lenses are employed as posi-

tive examples within training datasets. Conversely, neg-

ative examples are typically extracted from real data

obtained from astronomical surveys.

In this section, we outline our methodology and it is

organized as follows: Subsection 2.1 describes the DES

cutout images used in this work for training and ap-

plying our ML algorithms. Subsection 2.2 details the

construction of our ML dataset for training, validat-

ing, and testing. Subsection 2.3 provides an overview

of the Vision Transformer’s architecture and Subsection

2.4 delineates the training process and discusses the ML

model’s performance.

2.1. The Dark Energy Survey Dataset

The Dark Energy Survey utilizes the Dark Energy

Camera (DECam) (Flaugher et al. 2015) on the 4-meter

Victor M. Blanco Telescope at the Cerro Tololo Inter-

American Observatory in Chile. DES mostly makes

use of five photometric filters (g, r, i, z, and Y ) that

collectively cover the range ~398-1065 nm. The latest

DES public data release (DR2) encompasses the total

six years of DES operations (DES Y6), covering approx-

imately 5,000 square degrees of the southern sky and

cataloging roughly 691 million distinct astronomical ob-

jects (DES Collaboration et al. 2021). This data release

has a median point-spread function Full Width at Half

Maximum (FWHM) of g = 1.11′, r = 0.95”, i = 0.88”,

z = 0.83” and Y = 0.90”. The median coadded catalog

depth for a 1.95” diameter aperture at signal-to-noise

ratio = 10 is g = 24.7, r = 24.4, i = 23.8, z = 23.1, and

Y = 21.7 mag.

In this work, we use g-, r -, and i -band 45x45 pixel

(~12”x12”) cutouts of the Y6 coadded images to con-

struct our training sample and apply our machine learn-

ing algorithms. The image sample for ML application is

created by selecting objects from the Y6 catalogs that

are likely to be galaxies, which are identified by apply-

ing a cut on the morphological star/galaxy classifier of

EXT_COADD > 1 (DES Collaboration et al. 2021). Ad-

ditionally, we apply a magnitude cut, selecting objects

with i-band AB magnitudes between 15 and 23.5. We

highlight that in contrast to many previous SL searches,

we do not apply color selection cuts. The resulting sam-

ple has an approximate size of 236 million cutout images.

Section 2.4 describes how the images are pre-processed

for the ML model.
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2.2. Constructing the Training Sample

Certain kinds of astronomical objects with features

that may resemble strong gravitational lensing fre-

quently appear as false positives in SL searches. Exam-

ples include spiral galaxies, ring galaxies, edge-on galax-

ies with close neighbors, etc. Some of these kinds of

objects are more abundant in the universe than others,

e.g. ring galaxies are much rarer than spiral galaxies.

Consolidating all such potential false positives into a sin-

gle negative training class risks under-representing less

common types. This under-representation can hinder

the ML model’s ability to learn the distinctive features

of each object type, reducing its effectiveness in distin-

guishing them from genuine strong lenses. To mitigate

this issue, we designed our machine learning searches as

multi-class image classification tasks, with specific train-

ing classes tailored to address these different types of

common false positives.

The training sample was constructed implementing

Interactive Machine Learning (IML), a form of human-

in-the-loop ML methodology characterized by close in-

teraction between the ML model and the developer. In

IML, both entities exert comparable levels of control

over the learning process. In this iterative approach,

the performance of a trained model is evaluated, and

the developer provides feedback by modifying either the

training sample or the ML model’s features (Amershi

et al. 2014). By enabling humans to tailor input based

on the model’s current deficiencies, IML facilitates ML

models to have predictions that better align with the

developer’s goals (Jiang et al. 2018).

We implement IML by starting with two basic training

classes for our primary search: positive (lens) and nega-

tive (not lens). When applying this initial trained model

to real Y6 DES imaging data, an enormous quantity of

images were incorrectly classified into the positive class

exhibiting a true positive rate ≪ 1%. A large fraction of

these false positive cases were spiral galaxies and small

and faint elliptical galaxies. As a consequence, we cre-

ated a new training class for spiral galaxies and added

faint elliptical galaxies to our initial negative class. We

iterated this process several times and created a total of

nine distinct training classes for the main search. These

training classes were also included in the dataset for the

DSPL search, supplemented by two additional classes:

the target of this search (DSPLs) and an additional com-

mon type of false positive of this search. All training

classes are described in detail in subsections 2.2.1 and

2.2.2. Both training samples are similar in size, and in

the DSPL search, single-plane strong lenses are part of a

different training class than DSPLs. Figure 1 showcases

example images for each training class. Additionally,

Tables 1 and 2 show the entire composition of the ML

dataset for the main and DSPL search, respectively.

Table 1. Distribution of classes in the ML dataset for the
main search, with the dataset divided into 70% for training,
15% for validation, and 15% for testing. Subsections 2.2.1
and 2.2.2 describe the training classes.

Class Number of Images

Single 14,000

Ring 1,700

SDSS Spirals 1,500

DES Spirals 2,000

Smooth 1,500

Companions 1,000

Artifacts 2,090

Crowded 1,400

Red Spheroids 15,000

Total 40,190

Table 2. Distribution of classes in the ML dataset for the
DSPL search, with the dataset divided into 70% for training,
15% for validation, and 15% for testing. Subsections 2.2.1
and 2.2.2 describe the training classes.

Class Number of Images

Double 8,000

Single 8,000

Ring 1,600

SDSS Spirals 1,500

DES Spirals 2,000

Smooth 1,250

Companions 1,000

Artifacts 2,090

Crowded 1,400

Red Spheroids 15,000

Diffuse 1,100

Total 42,940

While most examples in the negative training classes

were sourced from previously published morphological

catalogs of galaxies, approximately 8,000 examples were

added through visual inspection of images that the ML

model initially misclassified as positive. These exam-

ples were selected after manually reviewing tens of thou-

sands of images, which required a significant time invest-

ment. However, by applying this ML model to the DES

dataset, this work provides tens to hundreds of thou-

sands of objects reliably categorized into each of our
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Figure 1. Examples of the classification classes in our ML Dataset. This figure illustrates 5 example images from each of the
11 different training classes in our dataset. The examples demonstrate the distinct features within each class. Classes include
‘Single’ (Single-plane simulations), ‘Double’ (DSPL simulations), ‘Ring’ (ring galaxies), ‘SDSS Spirals’ and ‘DES Spirals’ (spiral
galaxies found in the respective survey), ‘Smooth’ (diffuse, extended galaxies), ‘Companions’ (central galaxies with adjacent
companions), ‘Artifacts’ (imaging anomalies), ‘Crowded’ (densely populated regions), ‘Red Spheroids’ (predominantly elliptical
galaxies), and ‘Diffuse’ (interstellar clouds of gas and dust). Each cutout measures ~12×12 arcseconds.

training classes, facilitating the creation of future train-

ing samples. Furthermore, recent efforts to refine galaxy

morphology catalogs, such as Walmsley et al. (2023),

will further reduce the need for extensive human involve-

ment in the construction of training datasets.

2.2.1. Simulated Positive Training Classes

‘Single’ is the positive class of our main search, while

‘Double’ is the positive class for the DSPL search. Both

classes are populated with simulations featuring real

DES images of the lensing galaxies, overlaid pixel by

pixel with images of simulated lensed sources. The lens-

ing galaxies are selected randomly from a DES catalog

created with the redMaGiC algorithm (Rozo et al. 2016)

that targets luminous red galaxies (LRGs), which tend

to be massive elliptical galaxies. We consider only the
~50,000 galaxies with available spectroscopic redshifts,

which are measured by external spectroscopic surveys as

described in Rozo et al. (2016). For this reason, the rep-

resentation of deflectors with redshifts greater than 0.75

is limited (see Figure 3), and this methodology is not

expected to achieve a high completion rate for such sys-

tems. Additionally, we exclude galaxies with redshifts

below 0.15 due to them being too large and bright for

our cutout size. After choosing a lensing galaxy, we su-

perpose simulated lensed sources into the image of the

deflector galaxy, as shown in Figure 2. Finally, we ran-

domly rotate and reflect the final image to augment this

class with non-repeating simulations.

Figure 2. Creation of simulations for the ‘Single’ class. Left:
Images of luminous red galaxies randomly selected from the
DES redMaGiC catalog (Rozo et al. 2016). Right: The same
images overlaid with simulated strongly lensed sources. Sim-
ulation properties are constrained to ensure obvious strong
lensing features. Each cutout measures ~12×12 arcseconds.

Through the adoption of IML, we observed a signifi-

cant improvement in the performance of the ML model

when utilizing simulations featuring clear strong lensing

features. Consequently, we adopted simulation proper-
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ties that produce bright and large lensed source images.

Although the resulting simulations may not resemble re-

alistic examples of strong lenses, this does not pose a

problem in the context of a search as long as the se-

lection function of the ML model is taken into account

in population-level analyses of strong lenses. The use

of IML likely tunes this methodology to preferentially

identify strong gravitational lenses with large Einstein

radii and bright lensed images.

The simulation of gravitationally lensed sources is gen-

erated using Lenstronomy (Birrer et al. 2021; Birrer

& Amara 2018). The mass distribution of the lensing

galaxy is assumed to be a Singular Isothermal Ellipsoid

(SIE) profile, a simple mass profile capable of fitting

most strong lenses. This mass profile requires as in-

put parameters the velocity dispersion of the galaxy (at-

tribute proportional to its mass), its position (assumed

to be in the center of the cutout), and its ellipticity.

The values of the velocity dispersion are drawn from a

uniform distribution spanning the range 300-650 km/s.

For the ellipticity, we choose the orientation angle to

be within 40 degrees of the galaxy’s visible orientation

angle, this is because the semi-major axis of the galaxy

could be misaligned with respect to the orientation an-

gle of the dark matter halo hosting it. The axis ratio

of the ellipticity is allowed to vary uniformly between

0.001 and 1.

The redshift of the lensing galaxy is drawn from the

sample of spectroscopic redshifts included in the red-

MaGiC catalog (Rozo et al. 2016). For the ‘Single’ class,

the redshifts of the deflector galaxy and the source fol-

low the distributions shown in the top panel of Figure

3, with the constraint that the source redshift is at least

0.2 higher than the lensing galaxy’s redshift.

The intrinsic light distribution of the source, prior

to lensing, is modeled by a Sérsic light profile (Sérsic

1963). The eccentricity parameters, and surface bright-

ness value at the half-light radius and the half-light ra-

dius for each photometric band are derived from mea-

sured properties of galaxies in the DES Y6 catalog with

similar redshift values (DES Collaboration et al. 2021).

The Sérsic index is randomly drawn from a uniform dis-

tribution between 0.3 and 4. In addition, we choose a

random source position inside the region that produces

multiple images with a total magnification higher than 3.

The seeing of the simulated image in each photometric

band is modeled by a Gaussian function with its FWHM

determined using the DES Y6 survey condition maps for

sky areas near the deflector galaxy. This Gaussian ap-

proximation is sufficient for our analysis, as it captures

the dominant effects of seeing while maintaining consis-

tency with the observational conditions.

Figure 3. Redshift distributions used for our strong gravi-
tational lensing simulations. Top panel: ‘Single’ class, ensur-
ing the source redshift is at least 0.2 larger than the lensing
galaxy’s redshift. Bottom panel: ‘Double’ class, ensuring
the first source redshift is at least 0.2 larger than the lensing
galaxy’s redshift, and the second source redshift is at least
0.1 larger than the first source’s redshift.

To make simulations with pronounced lensed arcs, we

boost the brightness of the source by two magnitudes,

similar to the adjustment made by Rojas et al. (2022)

and Jacobs et al. (2019b). Additionally, we set con-

straints on simulation properties like the apparent mag-

nitude of the lensed source, and source image position

(correlated to the Einstein radius). The distribution of

Einstein radii of these simulations is shown in the top

panel of Figure 4. Additionally, we define and constrain

the values of two properties: ‘contrast’ and ‘size com-

parison’. Contrast measures the brightness of the source

relative to the lensing galaxy within the pixels occupied

by the source. Size comparison estimates the poten-

tial overlap between the source images and the lensing

galaxy as the ratio between the Einstein radius and the

radius of a circle around the lensing galaxy’s barycenter

that contains half of its flux in the g band.

https://github.com/lenstronomy/lenstronomy
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Figure 4. Einstein radii distributions used for our strong
gravitational lensing simulations. Top panel: ’Single’ class.
Bottom panel: ’Double’ class.

In relation to the DSPL search, we are particularly

interested in finding systems where the intermediate

source galaxy is much less massive than the foreground

lensing galaxy. This is because in this case lens mod-

eling, the main systematic in strong lensing analyses,

is much easier to determine. For this reason, we pro-

duce the ‘Double’ simulations by generating two inde-

pendent ‘Single’ simulations with sources at different

redshifts using the same lensing galaxy. Then, we over-

lay the image of the lensing galaxy with the simula-

tions of both sources. Both ‘Single’ simulations are re-

quired to pass the constraints described in the previ-

ous paragraph. The redshifts of the lensing galaxy and

the sources follow the distributions shown in the bot-

tom panel of Figure 3, with the constraints that the

first source redshift is at least 0.2 higher than the lens-

ing galaxy’s redshift and the second source redshift is

at least 0.1 higher than the first source redshift. To en-

sure that the lensed features from each source are distin-

guishable and clear, we define and constrain the values of

two new simulation properties. One of these constraints

avoids simulations where the sources have colors that

are too similar: we calculate the difference between the

color indices g− i and g− r for the sources, and require

that the sum of the absolute differences be at least 0.3

(|(g − i)2 − (g − i)1| + |(g − r)2 − (g − r)1| ≥ 0.3). The

other constraint discourages sources with similar Ein-

stein radii by requiring a minimum absolute difference

of 0.5” in image separation between the values of both

source simulations. The distribution of Einstein radii of

these simulations is shown in the bottom panel of Figure

4.

2.2.2. Negative Training Classes

As described in Section 2.2, our negative training sam-

ple was constructed employing an IML approach. We

began with a basic negative training sample consisting

solely of LRGs and gradually increased its complexity

to enhance the ML model’s performance on the DES

dataset. While several training classes were populated

using published morphological catalogs of galaxies, the

majority were populated through the manual labeling of

images that our ML models had incorrectly classified as

either ‘Single’ or ‘Double’ with high probability.

Our main search uses the following negative training

classes: Ring, Smooth, Companions, SDSS Spirals, DES

Spirals, Crowded, Artifacts, and Red Spheroids. All of

these classes have a degree of subjectivity and are best

understood by referring again to Figure 1. In summary,

the ‘Ring’ class consists of images showcasing ring galax-

ies, while ‘Smooth’ denotes galaxies with a diffuse and

extended appearance. ‘Companions’ refer to images fea-

turing a central galaxy with an adjacent edge-on or dif-

fuse galaxy. ‘SDSS Spirals’ and ‘DES Spirals’ encompass

mostly spiral galaxies originally identified within their

respective astronomical surveys. These two classes were

not combined because ‘DES Spirals’ could not be filtered

to include only face-on spiral galaxies, which are more

challenging to distinguish from strong lenses, whereas

‘SDSS Spirals’ was specifically constructed to include

only face-on spirals. ‘Crowded’ images capture densely

populated regions. ‘Artifacts’ represent images display-

ing imaging anomalies stemming from instrumental ef-

fects, processing errors, or transient phenomena. ‘Red

Spheroids’ comprises a diverse collection of images pre-

dominantly featuring elliptical galaxies.

The DSPL search includes two additional negative

training classes: Single (single plane lenses) and Diffuse.

‘Diffuse’ images feature cloud-like, diffuse structures, of-

ten representing fields observed through the extended

structure of a low-redshift galaxy. This class was added

to this search because the initial DSPL ML model fre-

quently misclassified such objects as ’Double’.
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We populate some training classes with the SDSS

morphological catalog presented in Domı́nguez Sánchez

et al. (2018), which comprises ~42,000 galaxies also iden-

tified in DES. From these ~42,000 galaxies, we select

face-on spiral galaxies and classify them as either Ring

(46 instances) or SDSS Spiral (317 instances). Both sets

were augmented by applying rotations and reflections to

increase their size to 100 and 1,100, respectively. Ad-

ditionally, we select images with a high probability of

displaying merging objects, augment this sample from

219 to 400, and add the resulting images to the SDSS

Spiral class. The augmentation limits were chosen to

increase sample size while avoiding over-representation

and potential overfitting. Finally, we randomly select

2,000 galaxies likely to be round and add them to the

Red Spheroid training class.

We populate more training classes with the morpho-

logical catalog presented by Cheng et al. (2021), which

contains over 20 million galaxies detected within the

DES footprint, along with a probability measure for each

galaxy being elliptical rather than spiral. From this cat-

alog, we select a sample of 2,000 galaxies likely to be

spiral. Given the significant fraction of edge-on galaxies

in this subset, we create the ‘DES Spirals’ class for them.

This approach ensures that the class ‘SDSS Spirals’, al-

lows the ML model to better distinguish the features of

face-on spiral arms from lensing arclets. In addition, we

add to the ‘Red Spheroids’ class 2,500 highly probable

elliptical galaxies (p > 0.9) and 2,000 moderately prob-

able elliptical galaxies (p > 0.6), excluding previously

selected objects.

The ‘Red Spheroids’ class also includes 5,000 ran-

domly selected redMaGiC galaxies (Rozo et al. 2016)

that we use as lensing galaxies in our simulations. Ad-

ditionally, this class comprises 3,500 images that were

classified by an early-trained ML model as having an

extremely low probability of being strong lenses.

Approximately 40% of the ‘Artifact’ class consists of

images selected using columns from the Y6 GOLD table

(Bechtol et al. in prep), which identify bright foreground

objects or regions with missing data.

The remaining images in the training set were se-

lected through manual inspection and labeling of images

incorrectly classified as ‘Single’ or ‘Double’ during the

IML process. The distribution of labeled images across

the different categories is as follows: 1,600 for ‘Ring’,

1,500 for ‘Smooth’, 1,000 for ‘Companions’, 1,400 for

‘Crowded’, 1,290 for ‘Artifacts’, and 1,100 for ‘Diffuse’.

2.3. The Vision Transformer

The machine learning model used for both searches is

the Vision Transformer (ViT) (Dosovitskiy et al. 2021).

We briefly describe the model’s architecture here and

refer the reader to the original paper for full details.

Figure 5 provides a visual representation of the ViT ar-

chitecture. First, the input image is divided into smaller,

non-overlapping image sections called patches, with each

patch projected onto a one-dimensional vector. Position

embedding vectors are then added to these vectors to

encode the position of each patch within the sequence.

The resulting vectors, called ‘embedded patches’, are

then input into the Transformer Encoder, which con-

sists of multiple stacked layers. The final element in

the architecture is a Multilayer Perceptron (MLP) head

that assigns the input image to one of the predefined

categories for the classification task.

The Transformer Encoder was introduced in Vaswani

et al. (2023) and is based on the self-attention mecha-

nism, here represented by multi-head attention (MHA)

blocks. The goal of the self-attention mechanism is to

produce output vectors that are ‘context-aware’ of the

entire sequence. This is done by calculating them as

a weighted sum of the input values using three matri-

ces, whose components are learned during training. A

multi-head attention block performs multiple attention

functions in parallel and at the end, the output of each

function is concatenated into a single vector. The final

element in the Transformer Encoder is an MLP that acts

as a classification head.

A key difference between transformers and conven-

tional CNNs is their approach to image analysis. In

CNNs, early layers focus on small, localized regions of an

image, with each subsequent layer integrating informa-

tion from progressively larger areas. In contrast, the Vi-

sion Transformer (ViT) processes the entire image from

the initial transformer block. This allows the network

to capture patterns across distant patches and identify

global features early in the training process.

Since self-attention layers are global and lack the built-

in assumptions about local patterns that CNNs have,

they do not generalize well when trained on limited

data. However, we can overcome this disadvantage by

pre-training a ViT model on a large dataset and then

fine-tuning it to our classification task, this is known

as ‘transfer-learning’ (Pan & Yang 2010). By using the

learned features and weights of the pre-training process

as a starting point, the amount of data and computa-

tional resources required for training is reduced and the

performance of the model usually increases. When ViT

is pre-trained on large datasets, it can perform the same

or better than state-of-the-art CNN models (like BiT

and Noisy Student) (Dosovitskiy et al. 2021).

In this work, we implemented the ViT model with

the least number of parameters (ViT-Base, with 86 mil-
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Figure 5. Architecture of the Vision Transformer (ViT) (Dosovitskiy et al. 2021). The input image is divided into fixed-size
image sections, which are linearly embedded and combined with position embeddings. These embeddings are then processed by
a Transformer Encoder which applies multiple self-attention mechanisms. The output is finally fed into a classification head to
predict the input image’s class based on the training categories.

lion parameters) and adopted a 16x16 pixel patch size.

These choices reduce the computational resources re-

quired for training while maintaining high performance.

Our ML model is pre-trained on ImageNet-21k (Deng

et al. 2009), which contains 14 million images and 21

thousand classes. Pre-training enables the model to

learn general image features from a diverse dataset, pro-

viding a strong foundation that improves performance

and reduces the data requirements for fine-tuning on our

specific task. The model with its pre-trained weights is

implemented using the Python library PyTorch Image

Models (Timm) (Wightman 2019). For the fine-tuning

process, we add a single MLP layer at the end of the

architecture to classify images according to the defined

classes for our task.

2.4. Training and Performance

The ML datasets used for both searches are divided

into three subsets: 70% for training, 15% for valida-

tion, and 15% for testing. Before being fed into the

ML model, the images are resized to 224 x 224 pixels,

as required by the pre-trained model available in the

Timm Python package (Wightman 2019). The resizing

is performed using the Resize function from the torchvi-

sion.transforms package, which employs bilinear inter-

polation. Additionally, the images are normalized to

the mean values [0.485, 0.456, 0.406] and standard devi-

ations [0.229, 0.224, 0.225] for the g-, r-, and i-bands, re-

spectively. These values are used because the ML model

was pre-trained on the ImageNet dataset, and these im-

ages were pre-processed using these specific mean and

standard deviation values. During training, we mini-

mize cross-entropy loss and stop training once the ac-

curacy on the validation set fails to improve for more

than three epochs. Training accuracy reflects the ML

model’s performance on the data it learned from, while

validation accuracy provides an indication of how well

the ML model generalizes to unseen data, helping to

prevent overfitting. The ML model for the main search

achieved training and validation accuracies of 95.5% and

95.6%, respectively, while the DSPL model achieved

training and validation accuracies of 95.2% and 93.9%.

We trained both ML models on the Open Science Pool

(OSG 2015) platform, utilizing a GPU to accelerate the

process from a few days to nearly four hours.

2.5. Performance on the testing sample

We achieve classification accuracies of 95.2% and

93.9% on the testing samples for the main search and

the DSPL search, respectively. Additionally, we assess

the model’s ability to distinguish between the positive

class and any of the negative classes, yielding accura-

cies of 99.5% for the main search and 99% for the DSPL

search. To further assess performance, we use a Receiver

Operating Characteristic (ROC) curve, which illustrates

an ML model’s performance as a binary classifier as the

discrimination threshold is adjusted. Figure 6 presents

the exceptional ROC curve for the main model, where

all negative classes are treated as a unified class.

Another performance metric for binary classifiers is

the area under the ROC curve (AUC), which ranges

from 0 (indicating a perfectly incorrect classifier) to 1

(indicating a perfect classifier), with a value of 0.5 repre-

senting random guessing. Both ML models demonstrate
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Figure 6. Receiver Operating Characteristic (ROC) curve
illustrating the performance of the main machine learning
model on its testing sample. The pink star indicates the
probability threshold chosen for application to the Dark En-
ergy Survey dataset.

exceptional performance on their respective testing sam-

ples, achieving AUC values of ~1. While many previ-

ous ML strong lensing search studies have also reported

near-perfect performance on their testing sets, the per-

formance on real data differed significantly. Given that

training, testing, and validation were conducted solely

on simulated lenses and our negative sets are unam-

biguous, we should not anticipate achieving near-perfect

performance on the actual DES data. This discrepancy

highlights the importance of not overemphasizing model

performance based solely on results from constructed

testing sets.

2.6. Performance on known SL candidate catalogs

We use two catalogs of SL candidates identified in DES

to evaluate the performance of our main ML model.

The Jacobs et al. (2019a,b) sample consists of 511

mostly galaxy-scale candidates discovered using CNN-

based methods. The O’Donnell et al. (2022) catalog

contains 247 mainly cluster-scale candidates identified

through non-ML algorithms. For this analysis, we visu-

ally inspect these candidates and exclude systems with

lensing features outside our cutout images, resulting in

457 candidates from the Jacobs catalog and 140 from

the O’Donnell catalog.

The ML model’s output for an input image is a vector

with components corresponding to the number of train-

ing classes, where each component, ranging from 0 to 1,

represents the probability of the image belonging to that

class. By classifying images into the class with the high-

est assigned probability, the model successfully recovers

85.6% of candidates from the Jacobs sample and 70%

from the O’Donnell sample. Given that neither the Ja-

cobs nor the O’Donnell samples are completely pure, it is

not surprising that many of their candidates are missed.

Additionally, the lower recovery of the O’Donnell sam-

ple is probably due to group-scale lenses having more

complex morphologies that are not represented in our

training sample.

To provide a qualitative assessment of the ML model’s

performance, Figure 7 displays a collection of candidates

that were not recovered. Each image title indicates the

class to which it was classified, the model-assigned prob-

ability of being ‘Single’, and an expert-assigned grade

(0-3) or rank (0-10) from the Jacobs and O’Donnell

samples respectively, reflecting the likelihood of being

a strong lens. While Jacobs et al. (2019a,b) required a

grade of 2 to qualify as a candidate, O’Donnell et al.

(2022)’s rank cut was set at 3. Most of the candidates

not recovered by the main ML model lack definite signs

of strong lensing or seem to be group-scale lenses.

Without spectroscopic confirmation, it is not possible

to determine whether our ML model fails to identify real

lenses or correctly rejects false positives in the Jacobs

and O’Donnell catalogs. Additionally, the Jacobs search

was performed on a previous DES data release signifi-

cantly shallower than DES Y6. Visual inspection sug-

gests that many of the missed candidates are likely not

true lenses, although some may be lenses that our clas-

sifier has overlooked. Nonetheless, most of the missed

candidates remain ambiguous even after expert visual

inspection.

3. RESULTS

We applied both ML models to the sample of ~ 236

million DES cutout images and selected all images ex-

ceeding a threshold of 0.75 and 0.5 for the main and

DSPL search, respectively. The output was then visually

inspected by citizen scientists through a Space Warps1

project on the Zooniverse2 platform. Subsequent ex-

pert inspection was conducted on the resulting images.

In Section 3.1, we describe the application of ML to

the DES dataset. Sections 3.2 and 3.3 detail the setup

and results of the citizen science inspection. Section

3.4 covers the expert visual inspection process and the

classification of our final sample of candidates. Finally,

in Section 3.5, we present the best DSPL candidates

identified. Figure 8 provides an overview of our selec-

tion workflow, illustrating the filtering of 230 million

images to 1,328 SL candidates and 8 DSPL candidates.

This figure includes the number of candidates that have

been reported as strong lensing candidates in the SLED

1 www.spacewarps.org
2 www.zooniverse.org

www.spacewarps.org
www.zooniverse.org
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Figure 7. Examples of strong lensing candidates (O’Donnell
et al. 2022; Jacobs et al. 2019a,b) not retrieved by the main
ML model. Each image title indicates the assigned class,
the model’s probability of being ‘Single’ (single-plane strong
lens), and the expert-assigned ‘grade’ or ‘rank’ (0-3 for Ja-
cobs, 0-10 for O’Donnell). Most unrecovered candidates lack
definite strong lensing signs (with lower ‘grades’ from Jacobs
et al. (2019a,b)) or group-scale strong lensing candidates.
Each cutout measures ~12×12 arcseconds.

database (Vernardos et al. in prep), without doing any

cuts on the reported expert score or on the astronomical

survey where they were identified.

3.1. Machine Learning

We processed the ~230 million DES cutout images

with both ML models on the FermiGrid3, and through

parallelization, both applications took around three

days to complete. For the main search sample, we se-

lected images with a ‘Single’ ML score of 0.75 or higher.

For the DSPL search sample, we selected images with a

‘Double’ ML score of 0.5 or higher. The ‘Single’ proba-

bility threshold was chosen to obtain a reasonable num-

ber of candidates for visual inspection while still aim-

ing to attenuate the presence of false positives. For the

3 https://www.fnal.gov/pub/science/computing/grid.html

DSPL search, a much lower threshold was chosen as the

focus in this case is to find true-positives. A significant

fraction of the selected images contained the same SL

candidates, albeit centered on different objects. We re-

moved duplicated images and manually add 40 SL can-

didates visually identified during the IML process. This

led us to a final sample of 20,636 ‘Single’ candidates

and 2,538 ‘Double’ candidates, with 610 candidates in

the intersection of both sets.

3.2. Visual Inspection by Citizens

The 22,564 candidates from both searches were vi-

sually inspected by citizen scientists as a Space Warps

(Marshall et al. 2016a; More et al. 2016) project, which

ran from October 17th to November 3rd, 2023. Dur-

ing this period, 731 users participated with a median

of 34 classifications. Each lens candidate was presented

in four different ‘filters’ or color balance PNG settings,

which highlight different features in the images. Partic-

ipants were asked to mark any strong lensing features

they recognized in the image. The four PNG filters and

the task instructions are shown in Figure 9.

In addition to our candidates, which we refer to as

‘test subjects’, we included 2,451 ‘training subjects’,

comprised of 1,152 non-lenses, 444 known candidate

lenses, and 855 simulated lenses. These known candi-

date lenses are extracted from the samples published in

Jacobs et al. (2019a,b) and O’Donnell et al. (2022), and

did not include systems with strong lensing features out-

side our cutout images. We use the training subjects to

provide active training to citizens during the classifica-

tion task, providing live feedback indicating whether the

classification was correct or incorrect after each classifi-

cation was made. In addition, these classifications are

used to calculate the users’ success or skill in classifying

lenses and non-lenses.

This method is summarised here, but readers are

directed to Marshall et al. (2016a) for a complete

description. The posterior probability Pk+1(L) ≡
P (L|{CU0 , ..., CUk

}) for a given training subject, having

received k + 1 classifications {CU0
, ..., CUk

} from users

{U0, ..., Uk} is given by:

Pk+1(L) =
P (CUk

|L) · Pk(L)

P (CUk
|L) · Pk(L) + P (CUk

|L̂) · Pk(L̂)
(1)

where the classifications are either ‘Lens’ (‘L’) or ‘Non-

Lens’ (‘L̂’). The skill of each user is given by their

responses to the training subjects they have seen, e.g,

P (CUk
=‘L’|L) ≈ N‘L’/NL is the ratio of the number of

lens training subjects, N‘L’, that the user has correctly

classified as a lens to the total number of lenses they

have seen, NL. In this manner, higher skill users can

https://www.fnal.gov/pub/science/computing/grid.html
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Figure 8. Summary of our selection workflow, illustrating the reduction from 230 million images to 1,328 SL candidates and
8 DSPL candidates. Both ML models were applied to the DES cutout images, and those exceeding a chosen threshold were
inspected by citizen scientists. The highest-scoring images were then reviewed by experts. The number at the bottom of each
block represents the number of subjects reported in the SLED database as SL candidates including all reported scores and
candidates identified in other surveys. We report 1,328 strong lensing candidates and 8 potential DSPL candidates.

Figure 9. Screenshot from the Space Warps citizen science project on Zooniverse. Participants were shown each candidate in
four distinct PNG filters designed to highlight different image features and were asked to place at least one mark in the image
if strong lensing features were recognized.

cause more significant changes in the posterior probabil-

ity, while a user who mis-classified the training subjects

50% of the time (i.e. random classification) would not

change the subject score at all.

All subjects were assigned an initial score of P0(L) =

5 × 10−4 (the prior), based on the frequency of strong

lensing in the galaxy population. These scores were pro-

cessed via the Space Warps Analysis Pipeline (SWAP,

Marshall et al. (2016b)). If users reached a consensus on

any test subject after at least 5 classifications such that

its score was p < 1 × 10−5 the subject was ‘retired’ i.e.

no longer shown on the platform. This is to maximise

efficiency as the bulk of the task is to remove unlikely

candidates. Test subjects with p > 1 × 10−5 remained

in the classification stream until 30 classifications had

been made. Training subjects were not retired.

3.3. Results of Visual Inspection

The citizen scientists skill distribution is shown in Fig-

ure 10. The vast majority of classifiers were in the

‘Astute’ quadrant of user skill, indicating that they

could correctly identify the majority of training sub-

jects, both lenses and non-lenses. The training subjects
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Figure 10. A plot of the user skills, based on their per-
formance on a training set. The user skill is defined as the
fraction of correctly classified training subjects of each type,
e.g the probability a user will classify a training subject as
being a lens, given that it is indeed a lens, P (‘Lens’|Lens),
and vice versa. The size of each datapoint is scaled by the
number of classifications made by the user. The vast major-
ity of users correctly identified most of the lenses and non-
lenses they were shown.

were accurately classified: most non-lenses received low

scores, while most lenses (both simulated and real) re-

ceived high scores. Furthermore, the majority of high-

confidence real lens candidates also received a high score

from the citizens.

Out of the 22,564 test subjects that were inspected by

citizens, 2,502 received a score p > 1 × 10−5 and were

subsequently inspected by SL experts.

The Zooniverse platform allows users to engage in dis-

cussion boards about specific subjects, tag subjects with

relevant labels (such as ‘lens’, ‘possible’, ‘double’), and

save them to personal collections. During the process

of classifying subjects, reviewing discussions, and exam-

ining various tags, JG saved ‘interesting’ subjects into

different collections. 104 of these subjects had received

scores p < 1 × 10−5 and were manually added to the

pool of candidates to be inspected by SL experts.

3.4. Expert Grading of Candidates

Experts inspected the 2,502 subjects that received a

score p > 1 × 10−5 from citizens, along with 500 lower-

scoring subjects randomly chosen for calibration pur-

poses, and 104 candidates manually added by JG (as

described in section 3.3). The group of experts con-

sisted of eight individuals: JAB, GC, PH, JG, MM, TL,

KR, and SS. The inspection task was performed using

the software Visapp (More et al. 2016). Each subject

was displayed in the same four PNG settings we used

in the visual inspection by citizens. Experts assigned a

grade to each subject as follows:

• 0: Very unlikely (< 1%),

• 1: Probably not a lens (2 − 50%),

• 2: Probable lens (50 − 90%),

• 3: Certain lens (> 90%).

Additionally, we asked the experts to type the word

‘double’ in the Visapp comment box if they believed

a subject could be a DSPL candidate.

We calibrated the scores from the experts and report

this as the ‘expert score’. Figure 11 displays the distri-

bution of these values across the sample (not including

the 500 random subjects). We use the following thresh-

olds on the expert score for classifying our final 1,328

strong lensing candidates into categories A, B, and C:

• A: 2.25 < Score (149 subjects, with 141 reported

in the SLED database),

• B: 1.25 < Score < 2.25 (516 subjects, with 377

reported in the SLED database),

• C: 0.75 < Score < 1.25 (663 subjects, with 243

reported in the SLED database),

Figure 11. Distribution of the calibrated expert scores for
the 2,502 subjects with citizen scores exceeding 10−5, and the
104 subjects manually added by JG after reviewing Zooni-
verse discussion boards, tags, and personal collections.

The A category contains primarily ‘definite’ lenses,

with all 149 subjects displayed in Figures 12 and 13.

Each subject in this category was scored a 2 or 3 by at

least six of our seven experts, and at least two experts

rated them a 3. Category B includes mostly ‘probable’

lenses, with a subset of subjects shown in Figure 14.

Most subjects in this category received a score of 2 or

3 from at least three experts. Category C comprises

‘maybe’ lenses, which are less likely but could still be
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true positives. A subset of these subjects is shown in

Figure 15. Each subject in this category was scored a 2

or 3 by at least one expert and exhibited a relatively high

variation between the highest and lowest scores given by

the experts.

3.5. Double source plane lens candidates

Out of the 2,502 subjects experts inspected, 44 re-

ceived a ‘double’ comment from at least one expert.

This sample includes DESJ0610-5559, a multiple-source

gravitational lens found previously in Diehl et al. (2017)

and O’Donnell et al. (2022). All clear multiple-source

candidates in both Diehl et al. (2017) and O’Donnell

et al. (2022) are cluster-scale systems, and given that our

cutout size is not optimized for this scale, we only recov-

ered one of them. JG reviewed the subset of 44 subjects

to identify the most compelling galaxy-scale DSPL can-

didates, removing cluster-scale multiple-source lenses

from consideration. Figure 16 presents the top 8 DSPL

candidates with their respective expert scores across var-

ious PNG settings and bands. Notably, all these candi-

dates were identified by the main ML model, with two

(DESJ001314-560839 and DESJ012258-022705) also be-

ing selected by the DSPL model. Most of the candidates

are probably at least single-plane lenses (in our A and

B categories), which is also suggested by the observa-

tion that all candidates, except for DESJ012258-022705,

have already been reported in the SLED database.

DESJ035242-382544 is almost certainly a double-source

strong lens, though spectroscopic data is needed to con-

firm whether the sources are on different planes. The

remaining candidates exhibit characteristics indicative

of potential DSPLs, but higher-resolution imaging and

spectroscopic confirmation are required for definitive

identification.

4. GENERATION OF AN ENSEMBLE CLASSIFIER

Given classification scores were available for two dif-

ferent classifiers, the Vision Transformer and the Space

Warps visual inspection, we tested whether an ensemble

(combining the information from each individual classi-

fier) would provide improved classification overall. With

the arrival of wide-area surveys such as LSST, Euclid,

and Roman wide-area surveys, the time-cost of expert

grading of large numbers of high-scoring candidates will

be significant but can be reduced by constructing the

best possible performing classifier.

We generated an ensemble classifier via the ‘Isotonic

Regression’ method, the best-performing method stud-

ied in Holloway et al. (2024). We split the expert-graded

sample equally into a calibration and test set. For the

purpose of calibration, we defined a ‘true lens’ as one

receiving a grade G ≥ 1.25. We calibrated the scores of

the Vision Transformer and citizen science project via

Isotonic Regression using the calibration set to produce

probabilities a given object was a lens; this process maps

a given classifier score (e.g. a score of 0.9 from the Vision

Transformer) to the average expert grade that subjects

with that score receive (calculated via Isotonic Regres-

sion). We note due to our definition of a true lens in

this case the ‘probabilities’ are with respect to a system

being an A or B grade; in the future a spectroscopic cal-

ibration set could be used to provide true probabilities

of a lensing system. The probabilities determined from

each classifier, {Pc} = {PSW , PV T } are then combined

via Bayes Theorem (see Holloway et al. (2024) for a full

derivation):

PEns(L|{Pc}) =
NNL ·

∏
c Pc

NNL ·
∏

c Pc + NL ·
∏

c(1 − Pc)
(2)

where NL and NL̂ refer to the number of lenses (i.e.

grade A+B) and non-lenses (including low confidence

candidates in the C category) in the calibration set re-

spectively.

Validation of this calibration was made on the distinct

test set, which is shown in Figure 17; a third ‘valida-

tion’ set commonly used in machine learning was not

required here as the Isotonic Regression method had no

free parameters. We then combined the calibrated prob-

abilities for each subject from the vision transformer

and citizen science search, assuming the two classifiers

were independent (Holloway et al. 2024). The ROC

and purity-completeness curves of the individual and en-

semble classifiers are shown in Figure 18. We find the

Citizen Science classifier typically provides greater com-

pleteness than the Vision Transformer, however the lat-

ter can provide a more complete sample when requiring
high purity. We find our ensemble of just two classifiers

can provide the best of both worlds, providing a perfor-

mance at least as good as the best classifier for a given

false positive rate (or purity). The ensemble classifier is

dominated by the Citizen Science classifications at low

purity (≲ 60%), while both classifiers play a significant

role for higher purity thresholds. For future surveys this

would reduce the number of systems required to be in-

spected; the ensemble classifier can provide lower false

positive rates than the individual classifiers, and the cal-

ibration can be used to accurately predict the lens like-

lihood for each system in a dataset without them all

being inspected.

5. DISCUSSION AND CONCLUSIONS

The main goal of this work was to develop an ML

search methodology for strong gravitational lenses that
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Figure 12. Page 1 of the strong lensing candidates in our A category (expert score > 2.25 out of 3). Eight of the candidates
in this category have not been reported in the SLED database and are highlighted in blue in this figure. Each image shows the
candidate’s coordinates and expert score, with each cutout measuring ~12×12 arcseconds.
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Figure 13. Page 2 of the strong lensing candidates in our A category (expert score > 2.25 out of 3). Eight of the candidates
in this category have not been reported in the SLED database and are highlighted in blue in this figure. Each image shows the
candidate’s coordinates and expert score, with each cutout measuring ~12×12 arcseconds.
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Figure 14. Collage of 56 random strong lensing candidates in our B category (1.25 < expert score < 2.25, out of 3). Candidates
not reported in the SLED database are highlighted in blue. This category contains 516 subjects. Each image shows the
candidate’s coordinates and expert score, with each cutout measuring ~12×12 arcseconds.

can better handle the demands of the upcoming era of

big data by producing samples of candidates with higher

true-positive rates (TPR). We developed two ML mod-

els: one to find strong lenses in general and another to

target DSPLs. We designed both searches as multi-class

classification tasks, where we created specific training

classes to address different types of potential false posi-

tives. We implemented a pre-trained Vision Transformer

model as our ML architecture and adopted an Interac-

tive Machine Learning approach to iteratively build and

increase the complexity of our training sample.

Figure 8 summarizes our results. We applied both ML

models to ~230 million DES cutout images, selecting the

top 20,636 images from the main model and 2,538 from

the DSPL model, with 610 images overlapping between

the two samples. The selected images were visually in-

spected by citizen scientists, and the top 2,502 were fur-

ther reviewed by experts, along with 104 images man-

ually added by JG, as described in 3.3. Out of these,

1,328 received an expert score higher than 0.75 out of

3, and 149 of these are grade-A candidates according

to our expert scores. Figures 12 and 13 show all can-

didates in the A category. Figures 14 and 15 present

a random collection of candidates in the B and C cate-

gories, respectively. The 8 most promising galaxy-scale

DSPL candidates are shown in Figure 16.
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Figure 15. Collage of 56 random strong lensing candidates in our C category (0.75 < expert score < 1.25, out of 3). Candidates
not reported in the SLED database are highlighted in blue. This category contains 663 subjects. Each image shows the
candidate’s coordinates and expert score, with each cutout measuring ~12×12 arcseconds.

Figure 19 presents a selection of 32 images that are

scored highly by the main ML model (≥ 0.998) and are

rejected by the experts. The majority of these images

exhibit features very similar to strong lensing. A signif-

icant fraction of them appear to depict merging galax-

ies and blue curved or elongated objects around a red

galaxy, objects that are not well represented in our train-

ing sample. Future ML algorithms could be improved

by including more of these types of systems in the train-

ing data or potentially by incorporating physics-based

priors into the learning process.

To investigate the recovery rate of our methodology,

we use four catalogs of strong lensing candidates that

have been identified in DES previously (O’Donnell et al.

2022; Rojas et al. 2022; Diehl et al. 2017; Jacobs et al.

2019a,b). Results are summarized in Table 3. For the

samples from Diehl and O’Donnell, we only consider sys-

tems with an Einstein radius lower than or equal to

6” and a rank of 5 or higher out of 10, where 3 was

the minimal rank to be considered a candidate in both

works. Additionally, for the Jacobs sample, we do not

consider systems with arc-lets outside our cutout im-

ages. For low-confidence candidates in Rojas, and all

pre-selected candidates in Diehl, O’Donnell, and Jacobs,

the main ML model alone recovers 52%, 58%, 72% and

81% of the samples, respectively. The low recovery rate
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Figure 16. The eight most promising galaxy-scale DSPL candidates from the 44 subjects identified by at least one expert as
potential DSPLs. Each sub-figure’s title includes the candidate’s coordinates and expert score. The first two images of each
candidate are composites of the g-, r-, and i-band cutouts. Each cutout measures ~12×12 arcseconds.
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Figure 17. Validation of the calibration curves generated via isotonic regression, performed on a separate test set. The x-axis
shows the calibrated probability, while the y-axis shows the fraction of objects with that assigned probability which are indeed
lenses. A perfect calibration curve would therefore lie along the y = x line (solid black). The error bars have been calculated
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indicates the ROC expected from a random classifier (note the left-hand x-axis is logarithmic).
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Figure 19. Collection of 44 images that received very high scores from our main ML model (≥ 0.998) but were rated low by
the experts. These are challenging cases with features very similar to strong lensing, most of which appear to be galaxy mergers.
The text box on the bottom right of each image is its expert score. Each cutout measures ~12×12 arcseconds.

for these Rojas candidates is expected as these are am-

biguous systems without prominent lensing features or

counter-images. The highest recovery rate is for the Ja-

cobs sample, which is composed mostly of galaxy-scale

SL candidates. In comparison, we noticed a lower re-

covery for Diehl and O’Donnell, which could be due to

these samples containing group-scale candidates. Next,

we consider only the high-confidence candidates from

Rojas, and the candidates that pass the thresholds grade

> 2.3 out of 3 and rank > 7 out of 10 from Jacobs, and

Diehl and O’Donnell, respectively. We calculate a recov-

ery of 76%, 87%, 88%, and 90% for the high-confidence

candidates in O’Donnell, Diehl, Rojas and Jacobs, re-

spectively. This proves that our ML model is successful

in identifying galaxy-scale lenses with clear lensing fea-

tures.

The ‘(%)’ column of ‘Citizen Scientist (CS) Recovered’

in Table 3 considers only the systems that were recov-

ered by the ML model and not the total pre-selected

sample. Thus, this column offers an estimate of ~88.5%

for the completion rate of Citizen Scientists. When tak-

ing into account the selection by the main ViT model

and the citizens’ inspection, we calculate a recovery of

51%, 62%, 71% and 81% of the Diehl, O’Donnell, Ja-

cobs, and Rojas high-confidence samples, respectively.

We also investigated how many of our final high-

confidence candidates were reported in the previous four

catalogs of strong lensing candidates (O’Donnell et al.

2022; Rojas et al. 2022; Diehl et al. 2017; Jacobs et al.

2019a,b). We calculate that the Diehl, O’Donnell, Ja-

cobs and Rojas samples contain 10%, 10%, 39% and

23% of our candidates in categories A and B. Consider-

ing only the candidates in our A category, we calculate

that the Diehl, O’Donnell, Jacobs, and Rojas samples

contain 20%, 23%, 63% and 40% of these candidates,

respectively. This highlights the relatively high comple-

tion achieved by our methodology.

Among our 228 candidates that received an expert

score higher than 2, 71 were not reported by Jacobs

or Rojas. Of these, 40 did not pass either of their color

selection cuts. By not applying color cuts, we discovered

∼20% more candidates but at the cost of analyzing ∼30

times more data.

The TPR that an ML model can achieve depends

on the chosen score threshold, which determines the
number of images to be inspected. Figure 20 shows

the number of images past a probability threshold that

needs to be inspected (x-axis) to recover a certain num-

ber of candidates (y-axis). To recover 100 of the 149

subjects in our A category, we would need to inspect

830 images, representing a TPR of 12.1%. A similar

TPR of 12.8% is reached to recover 400 of the 655 sub-

jects with expert scores higher than 1.25. Discovering

600 of these would require inspection of 15,310 images

(TPR of 3.9%). These TPR estimates are much higher

than previous searches, demonstrating the viability of

our methodology for discovering tens of thousands of

lenses in Euclid and LSST.

DATA AVAILABILITY

As part of this publication, we are making the follow-

ing data products publicly available:
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Table 3. Recovery statistics of our methodology for different strong lensing candidate catalogs identified in the Dark Energy
Survey. Rojas’s A and B samples are high and low-confident strong lensing candidates, respectively.

SL Catalog Total Pre-selected ML Recovered CS Recovered ML+CS Recovered

Count (%) Count (%) (%)

Diehl et al. (2017) 376 129 75 58.1 66 88.0 51.2

O’Donnell et al. (2022) 252 94 68 72.3 58 85.3 61.7

Jacobs et al. (2019a,b) 511 457 371 81.2 329 88.7 72.0

Rojas et al. (2022) (A) 90 90 79 87.8 73 92.4 81.1

Rojas et al. (2022) (B) 315 315 164 52.1 127 77.5 40.3

Acronym definitions: ML = Machine Learning; CS = Citizen Science. The ‘%’ of ‘CS Recovered’ is the percentage that citizens recovered

from the sample selected by ML. ‘ML+CS’ is the workflow of applying visual inspection by CS to the output of ML.

Figure 20. Relationship between the number of images with ML scores exceeding a specified threshold (x-axis) and the number
of good candidates among these images (y-axis). Candidates are separated by expert score thresholds. This figure illustrates
the true-positive rate that can be achieved by our main ML model.

• A dataset containing ~236 million scores from our

main ML model (Gonzalez et al. 2025). This in-

cludes the coordinates of the systems and the com-

plete probability vector for the different training

classes. This dataset is highly valuable for con-

structing training samples in future strong lensing

searches. The dataset is hosted on Zenodo and can

be accessed here.

• Expert Scores: ~2,600 coordinates and expert

scores of all subjects inspected by our experts.

• Ensemble Scores: ~20,600 coordinates and ensem-

ble scores for all subjects inspected by citizen sci-

entists.
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APPENDIX

In this section, we present Table 5, which summarizes

key information about the strong lensing candidates in

the A category. Additionally, we provide a complete ta-
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ble with this information for all subjects inspected by our experts, available in a machine-readable format ac-

companying this publication.

Table 5. Strong lensing candidates in our A category. Ordered by
increasing RA. ID is the ‘COADD OBJECT ID’, a unique object id for
the object within the Y6 DES data release.

Name ID RA DEC Exp. score References

DESJ000316-334804 1032630238 0.818284 -33.801233 2.68 Jacobs et al. (2019a,b)

DESJ000451-010318 1040460697 1.21556 -1.055098 2.55 Diehl et al. (2017); Jaelani et al.
(2020); Rojas et al. (2022)

DESJ000816-323714 1040688993 2.067008 -32.620741 2.42 Khramtsov et al. (2019); Storfer
et al. (2023)

DESJ001110-323704 1046194283 2.793084 -32.617921 2.29 This work

DESJ001542-463611 1054556683 3.928374 -46.603077 3.0 Jacobs et al. (2019a); Rojas et al.
(2022)

DESJ002510-494626 1065068829 6.294487 -49.774042 2.72 O’Donnell et al. (2022); Rojas et al.
(2022); Stein et al. (2022); Storfer
et al. (2023)

DESJ003104-440300 1075990880 7.770369 -44.050078 2.26 Diehl et al. (2017); Rojas et al.
(2022)

DESJ003119-642037 1080776069 7.832104 -64.343818 2.41 Jacobs et al. (2019a)

DESJ003507-252658 1079483541 8.7806 -25.449639 2.83 Jacobs et al. (2019a); O’Donnell
et al. (2022); Rojas et al. (2022)

DESJ003727-413150 1083587736 9.362854 -41.530574 2.55 Diehl et al. (2017); Jacobs et al.
(2019a); Rojas et al. (2022)

DESJ004109-004349 1088494058 10.287583 -0.730289 2.53 Jacobs et al. (2019a); Huang et al.
(2020)

DESJ004144-233905 1093364977 10.434067 -23.651545 2.5 Huang et al. (2021)

DESJ004150-515750 1091516325 10.461274 -51.963971 2.3 Stein et al. (2022); Storfer et al.
(2023)

DESJ004257-371858 1093259184 10.738893 -37.31623 2.71 Jacobs et al. (2019a)

DESJ004958+022714 1102641485 12.493282 2.454043 2.74 Stein et al. (2022); Storfer et al.
(2023)

DESJ005736-484814 1120481923 14.403741 -48.803999 2.68 Diehl et al. (2017); O’Donnell et al.
(2022)

DESJ005948-244220 1122534660 14.952536 -24.705638 2.58 Huang et al. (2021)

DESJ010519+014456 1135365822 16.331889 1.749025 2.87 Jacobs et al. (2019a); Huang et al.
(2020)

DESJ010606-310437 1133540843 16.525913 -31.077073 2.27 Li et al. (2020); Huang et al. (2021);
O’Donnell et al. (2022)

DESJ010659-443201 1136639478 16.746433 -44.533746 2.84 Jacobs et al. (2019a); Rojas et al.
(2022)

DESJ010704-312840 1139453426 16.770516 -31.478048 2.83 Li et al. (2020); Huang et al. (2021);
O’Donnell et al. (2022)

DESJ011333-381312 1147504166 18.389683 -38.220225 2.57 Rojas et al. (2022); Stein et al.
(2022); Storfer et al. (2023)

DESJ011408-361313 1151529929 18.534964 -36.220442 2.28 Jacobs et al. (2019a)

DESJ011646-243702 1153333586 19.194995 -24.61728 2.39 Jacobs et al. (2019a); Rojas et al.
(2022)

DESJ011756-242824 1154333895 19.48702 -24.473544 2.27 Jacobs et al. (2019a)

DESJ011758-052717 1159257785 19.494912 -5.45495 2.37 Jacobs et al. (2019a); Huang et al.
(2020); Rojas et al. (2022)

DESJ011842-615613 1162332513 19.677498 -61.937023 2.39 Jacobs et al. (2019a); Storfer et al.
(2023)
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DESJ012025-182001 1164169304 20.107368 -18.333831 2.26 Jacobs et al. (2019a,b)

DESJ012042-514353 1163516688 20.176065 -51.731425 3.0 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020); Rojas
et al. (2022)

DESJ012431-520703 1170335487 21.130103 -52.117501 2.48 Jacobs et al. (2019a)

DESJ012533-414217 1172896430 21.389999 -41.704998 2.83 Diehl et al. (2017); Jacobs et al.
(2019a)

DESJ012611-131642 1173896612 21.549582 -13.278375 2.85 Jacobs et al. (2019a)

DESJ012753-453233 1178407449 21.971634 -45.542754 2.53 Jacobs et al. (2019a)

DESJ012933-150634 1176674664 22.388727 -15.109646 2.59 Huang et al. (2021); Rojas et al.
(2022)

DESJ013002-374457 1179738251 22.512071 -37.749394 2.83 Jacobs et al. (2019a); O’Donnell
et al. (2022); Rojas et al. (2022);
Storfer et al. (2023)

DESJ013026-152012 1177839322 22.610422 -15.336928 2.46 Jacobs et al. (2019a); Huang et al.
(2020); Rojas et al. (2022); Storfer
et al. (2023)

DESJ013050-160008 1178164184 22.710647 -16.002424 2.3 Jacobs et al. (2019a); Huang et al.
(2020)

DESJ013322-125201 1300215437 23.342167 -12.867052 2.37 Jacobs et al. (2019a)

DESJ013354-643412 1186271916 23.47771 -64.57026 2.86 Jacobs et al. (2019a); O’Donnell
et al. (2022)

DESJ013522-423223 1305035224 23.845168 -42.539875 2.56 Diehl et al. (2017); Jacobs et al.
(2019a); Rojas et al. (2022)

DESJ013542-203335 1301081250 23.928359 -20.559886 2.25 Jacobs et al. (2019a); O’Donnell
et al. (2022); Rojas et al. (2022)

DESJ013822-284408 1309246601 24.595731 -28.735568 2.38 Jacobs et al. (2019a); Huang et al.
(2021); O’Donnell et al. (2022); Ro-
jas et al. (2022)

DESJ014134-404033 1307017630 25.391709 -40.675957 2.43 Jacobs et al. (2019a)

DESJ014234-164817 1301526898 25.64572 -16.804905 3.0 Jacobs et al. (2019a)

DESJ014252-183115 1620013669 25.720342 -18.521055 2.87 Jacobs et al. (2019a,b); Rojas et al.
(2022)

DESJ014326-085021 1194748640 25.862212 -8.839277 2.68 Jacobs et al. (2019a,b); O’Donnell
et al. (2022); Rojas et al. (2022)

DESJ014433-114209 1195735476 26.138987 -11.70261 2.38 Jacobs et al. (2019a); Huang et al.
(2020); Rojas et al. (2022)

DESJ014546-354127 1196484135 26.44499 -35.690953 2.87 Jacobs et al. (2019a); O’Donnell
et al. (2022); Rojas et al. (2022)

DESJ014556+040228 1194195904 26.484828 4.041358 2.59 Jacobs et al. (2019a); Huang et al.
(2020); Rojas et al. (2022)

DESJ014655-092959 1311861257 26.731673 -9.499843 2.51 This work

DESJ014839-442555 1205436665 27.16306 -44.43212 2.68 Stein et al. (2022)

DESJ014908-313738 1200974180 27.283341 -31.627336 2.44 Jacobs et al. (2019a); Li et al.
(2021)

DESJ015225-570359 1207637405 28.108001 -57.066558 2.68 Storfer et al. (2023)

DESJ015737-122138 1223104292 29.404393 -12.36064 2.31 Huang et al. (2021)

DESJ015824-003959 1224505431 29.603206 -0.666636 2.7 Jacobs et al. (2019a); Huang et al.
(2020); O’Donnell et al. (2022); Shu
et al. (2022)

DESJ020107-155117 1225062343 30.283231 -15.854756 2.61 Jacobs et al. (2019a); Huang et al.
(2020); Rojas et al. (2022)

DESJ020134-603640 1227758667 30.392541 -60.611218 2.83 Stein et al. (2022)
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DESJ020144-273942 1229530106 30.436133 -27.661776 2.87 Jacobs et al. (2019a); Huang et al.
(2021)

DESJ020304-233802 1235391858 30.766741 -23.634049 2.83 Jacobs et al. (2019a,b); Cañameras
et al. (2020); O’Donnell et al.
(2022); Rojas et al. (2022)

DESJ020505-403830 1621099632 31.27143 -40.641747 2.83 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020); Rojas
et al. (2022)

DESJ020526-353947 1234418937 31.358766 -35.66318 3.0 Jacobs et al. (2019a); Li et al.
(2021); O’Donnell et al. (2022)

DESJ020611-372938 1240229572 31.547501 -37.494102 2.5 Stein et al. (2022); Storfer et al.
(2023)

DESJ020706-272644 1243683190 31.777784 -27.445807 3.0 Jacobs et al. (2019a); Huang et al.
(2021); Li et al. (2021); O’Donnell
et al. (2022)

DESJ020954-354757 1248376493 32.477616 -35.79924 2.42 This work

DESJ021100-193810 1247965442 32.752503 -19.63615 2.6 Cañameras et al. (2020)

DESJ021514-290925 1255097893 33.809596 -29.157161 2.85 Jacobs et al. (2019a); Khramtsov
et al. (2019); Huang et al. (2021)

DESJ021744-215834 1260779971 34.43687 -21.976185 2.26 Storfer et al. (2023)

DESJ022140-021020 1272147895 35.417247 -2.172297 2.26 Sonnenfeld et al. (2018); Jacobs
et al. (2019a); Cañameras et al.
(2021); Shu et al. (2022)

DESJ022148-642642 1264873479 35.453169 -64.445139 2.38 Rojas et al. (2022); Stein et al.
(2022); Storfer et al. (2023)

DESJ022310-224817 1270874866 35.794587 -22.804847 2.7 Huang et al. (2021); Rojas et al.
(2022)

DESJ022809-125252 1282567543 37.03776 -12.881181 2.26 Jacobs et al. (2019a); Huang et al.
(2020)

DESJ022930-290816 1286124138 37.379004 -29.137926 2.58 Jacobs et al. (2019a)

DESJ023249-032326 1287909989 38.207791 -3.390566 3.0 Diehl et al. (2017); Jacobs et al.
(2019a); Huang et al. (2020); Jae-
lani et al. (2020); Cañameras et al.
(2021); Shu et al. (2022)

DESJ023341-344759 1294274501 38.422054 -34.79983 2.87 Li et al. (2021); Stein et al. (2022)

DESJ023906-204718 1321063152 39.776981 -20.788368 2.29 Jacobs et al. (2019a)

DESJ024328-214202 1326680132 40.866699 -21.700556 2.32 Jacobs et al. (2019a)

DESJ024604-060739 1331836609 41.520481 -6.12752 2.68 Huang et al. (2020)

DESJ024809-395548 1334070236 42.039764 -39.930101 2.28 Jacobs et al. (2019a); O’Donnell
et al. (2022); Rojas et al. (2022);
Storfer et al. (2023)

DESJ024857-605403 1335051094 42.240122 -60.900967 2.29 Jacobs et al. (2019a)

DESJ025052-552411 1342755111 42.717888 -55.403254 2.27 Jacobs et al. (2019a); Rojas et al.
(2022)

DESJ025623-270718 1358779892 44.097386 -27.121845 3.0 Jacobs et al. (2019a)

DESJ030639-273626 1368575074 46.665437 -27.607478 2.27 Petrillo et al. (2019); Huang et al.
(2021)

DESJ031127-423219 1380201297 47.863261 -42.538645 2.53 Jacobs et al. (2019a); O’Donnell
et al. (2022)

DESJ031638-223633 1441805121 49.161822 -22.609255 2.53 Jacobs et al. (2019a); Rojas et al.
(2022)

DESJ031904-492143 1445784294 49.768511 -49.362018 2.25 Rojas et al. (2022); Stein et al.
(2022); Storfer et al. (2023)
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DESJ031906-273941 1444249631 49.778598 -27.66145 2.58 Huang et al. (2021)

DESJ031941-173404 1447194025 49.922007 -17.567922 2.83 Jacobs et al. (2019a)

DESJ032125-153003 1449752819 50.356635 -15.501013 2.34 Jacobs et al. (2019a)

DESJ032216-523440 1385113597 50.568423 -52.577903 2.87 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020); Rojas
et al. (2022)

DESJ032449-102053 1382896242 51.205155 -10.348143 2.72 Cañameras et al. (2020); Huang
et al. (2021)

DESJ032711-324634 1386748971 51.797337 -32.776162 2.29 Jacobs et al. (2019a,b); Rojas et al.
(2022)

DESJ033056-522815 1395105474 52.734562 -52.47084 2.7 This work

DESJ033143-612315 1397305017 52.932554 -61.3875 2.56 Rojas et al. (2022); Stein et al.
(2022); Storfer et al. (2023)

DESJ033717-315213 1400483784 54.321876 -31.870435 3.0 Jacobs et al. (2019a); Rojas et al.
(2022)

DESJ034130-513045 1410370257 55.378418 -51.51253 2.45 Diehl et al. (2017); Jacobs et al.
(2019a); O’Donnell et al. (2022);
Rojas et al. (2022)

DESJ034311-282840 1409295264 55.797722 -28.477789 2.42 Huang et al. (2021); ?); ?

DESJ034435-444744 1413196615 56.146233 -44.795611 2.83 Jacobs et al. (2019a)

DESJ034744-245431 1414531628 56.935597 -24.908735 2.42 Jacobs et al. (2019a,b); Rojas et al.
(2022)

DESJ035242-382544 1425127607 58.17678 -38.429166 3.0 Jacobs et al. (2019a); O’Donnell
et al. (2022); Rojas et al. (2022)

DESJ035337-402417 1423677815 58.405967 -40.404958 2.27 Diehl et al. (2017); Rojas et al.
(2022)

DESJ035346-170639 1423965682 58.442713 -17.110922 2.83 Jacobs et al. (2019a); Cañameras
et al. (2020)

DESJ035418-160952 1425763095 58.576161 -16.164526 2.87 Jacobs et al. (2019a,b); Rojas et al.
(2022)

DESJ035510-183134 1427368966 58.792571 -18.52621 2.29 Huang et al. (2021)

DESJ035649-240841 1429256248 59.204423 -24.144758 2.39 Jacobs et al. (2019a); O’Donnell
et al. (2022); Rojas et al. (2022)

DESJ035713-475652 1432852433 59.306552 -47.948003 2.72 This work

DESJ040624-264624 1453825350 61.601641 -26.773339 3.0 Jacobs et al. (2019a)

DESJ040715-571303 1458095582 61.815154 -57.217543 2.83 Jacobs et al. (2019a); Storfer et al.
(2023)

DESJ040822-532714 1454069093 62.094448 -53.453918 2.83 Diehl et al. (2017); Rojas et al.
(2022)

DESJ041112-541320 1462051999 62.802003 -54.222443 2.26 Rojas et al. (2022)

DESJ041242-264632 1616630786 63.178811 -26.775662 2.87 Jacobs et al. (2019a)

DESJ041644-552500 1466200592 64.186786 -55.416745 2.55 Diehl et al. (2017); Jacobs et al.
(2019a); O’Donnell et al. (2022)

DESJ041809-545734 1466401262 64.541216 -54.959696 2.59 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020); Rojas
et al. (2022)

DESJ042048-563046 1468847242 65.201028 -56.51302 2.54 Storfer et al. (2023)

DESJ042218-213245 1470342587 65.575916 -21.546111 2.85 Jacobs et al. (2019a,b); Rojas et al.
(2022)

DESJ042723-290743 1481457559 66.848597 -29.128656 2.83 This work

DESJ043303-271423 1491366260 68.26478 -27.239827 3.0 Jacobs et al. (2019a)

DESJ043806-322852 1493630017 69.525777 -32.481174 2.69 Jacobs et al. (2019a)
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DESJ044747-304630 1505802492 71.94812 -30.775079 2.41 This work

DESJ044805-580721 1505900316 72.022081 -58.122569 2.27 Diehl et al. (2017); Jacobs et al.
(2019a); Rojas et al. (2022)

DESJ045008-571519 1510652342 72.536758 -57.255536 3.0 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020)

DESJ045352-502234 1516572409 73.470762 -50.376362 2.56 Rojas et al. (2022); Stein et al.
(2022); Storfer et al. (2023)

DESJ045951-304324 1523439802 74.964266 -30.723591 2.55 Huang et al. (2021); Rojas et al.
(2022)

DESJ050849-214430 1536678003 77.205297 -21.741881 2.37 Jacobs et al. (2019a,b)

DESJ051314-523020 1538255919 78.3096 -52.505683 2.55 Rojas et al. (2022); Storfer et al.
(2023)

DESJ051325-305035 1540902420 78.356147 -30.843306 3.0 Huang et al. (2021); O’Donnell
et al. (2022)

DESJ052700-185805 1559106390 81.753525 -18.96833 2.28 This work

DESJ053804-473513 1569046306 84.51926 -47.587146 2.5 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020); Rojas
et al. (2022)

DESJ054735-600442 1584250649 86.897808 -60.078518 2.37 Diehl et al. (2017); Rojas et al.
(2022)

DESJ054848-421254 1588997152 87.200728 -42.215103 2.3 Rojas et al. (2022); Stein et al.
(2022); Storfer et al. (2023)

DESJ055734-415950 1591517201 89.393433 -41.997283 2.43 Jacobs et al. (2019a); Storfer et al.
(2023)

DESJ060239-465307 1601363180 90.662686 -46.885496 2.25 Diehl et al. (2017)

DESJ060246-452443 1597714254 90.695238 -45.411976 2.87 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020)

DESJ060443-414837 1599167680 91.180479 -41.810311 2.27 Storfer et al. (2023)

DESJ060653-585843 1604164262 91.721436 -58.978777 2.87 Rojas et al. (2022); Stein et al.
(2022); Storfer et al. (2023)

DESJ062415-470942 1610316947 96.065874 -47.161667 2.29 Jacobs et al. (2019a,b); Rojas et al.
(2022)

DESJ203911-545942 895557306 309.797344 -54.995216 2.28 Diehl et al. (2017); Jacobs et al.
(2019a); Rojas et al. (2022)

DESJ211005-563930 909363984 317.522564 -56.658496 2.27 Diehl et al. (2017); Jacobs et al.
(2019a)

DESJ211627-594701 913936319 319.113845 -59.783864 2.87 Jacobs et al. (2019a)

DESJ212251-005949 918844670 320.716645 -0.997037 2.38 Diehl et al. (2017); O’Donnell et al.
(2022)

DESJ212427-612510 919882930 321.113269 -61.419484 3.0 O’Donnell et al. (2022); Storfer
et al. (2023)

DESJ213054-485714 925546537 322.727846 -48.954092 2.56 Stein et al. (2022)

DESJ221912-434835 958711616 334.801696 -43.809809 2.83 Jacobs et al. (2019a); O’Donnell
et al. (2022); Rojas et al. (2022)

DESJ224434-590910 974192911 341.144978 -59.152836 2.26 Stein et al. (2022); Storfer et al.
(2023)

DESJ225403-405549 981794120 343.512752 -40.930347 2.42 Diehl et al. (2017); Jacobs et al.
(2019a); Rojas et al. (2022)

DESJ230521-000211 995519978 346.34027 -0.036597 2.86 Wong et al. (2018); Jacobs et al.
(2019a); Cañameras et al. (2021);
Shu et al. (2022)

DESJ232128-463049 1005730815 350.368333 -46.513736 2.83 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020); Rojas
et al. (2022)
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DESJ233459-640407 1015482810 353.746734 -64.068626 3.0 Jacobs et al. (2019a); Rojas et al.
(2022)

DESJ233551-515217 1015396778 353.966419 -51.871635 2.68 Diehl et al. (2017); Jacobs et al.
(2019a); O’Donnell et al. (2022);
Rojas et al. (2022)

DESJ234930-511339 1027961497 357.375315 -51.22754 3.0 Diehl et al. (2017); Jacobs et al.
(2019a); Nord et al. (2020);
O’Donnell et al. (2022); Rojas
et al. (2022)

DESJ235717-571025 1031154124 359.323497 -57.173869 2.39 Jacobs et al. (2019a)

DESJ235848-612558 1033271849 359.700322 -61.433041 2.83 Huang et al. (2021); O’Donnell
et al. (2022)
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