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Abstract

The traditional Fermi function ansatz for nuclear beta decay describes enhanced perturbative effects in
the limit of large nuclear charge Z and/or small electron velocity β. We define and compute the quantum
field theory object that replaces this ansatz for neutron beta decay, where neither of these limits hold.
We present a new factorization formula that applies in the limit of small electron mass, analyze the
components of this formula through two loop order, and resum perturbative corrections that are enhanced
by large logarithms. We apply our results to the neutron lifetime, supplying the first two-loop input to the
long-distance corrections. Our result can be summarized as

τn × |Vud|
2
[

1 + 3λ2
][

1 +∆R

]

=
5263.284(17) s

1 + 27.04(7) × 10−3
,

with |Vud| the up-down quark mixing parameter, τn the neutron’s lifetime, λ the ratio of axial to vector
charge, and ∆R the short-distance matching correction. We find a shift in the long-distance radiative
corrections compared to previous work, and discuss implications for extractions of |Vud| and tests of the
Standard Model.
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1 Introduction

The neutron’s lifetime τn is an important precision observable within the Standard Model [1–12], offering a
theoretically clean probe of the CKMmatrix element |Vud| and probing physics beyond the Standard Model [13–
23]. Unambiguous conclusions require control over radiative corrections [24–34]. It is well known that the
neutron decay rate receives a large, ∼ 7%, first order QED radiative correction [7, 35], two orders of magnitude
larger than the naive expectation of α/(2π) ≈ 10−3. While a portion of this correction arises from electroweak
logarithms and can be resummed by standard means, the largest contributions arise from the low-energy
matrix element.

These numerically large long-distance contributions have historically been estimated using a Fermi function
ansatz; after integrating over phase space, the estimated corrections to the rate behave as [26, 35, 36]

1 + 4.6α+ 16α2 + 35α3 + . . . . (1)

As we discuss below, the Fermi function does not give a controlled approximation to the complete decay
amplitude beyond first order in α. Nevertheless, the ansatz in Eq. (1) predicts a permille-level contribution from
the second-order term (16α2), which is larger than the precision goals for |Vud| determinations from neutron
beta decay. What object should replace the ansatz in Eq. (1) and its associated second-order correction?

The Fermi function for beta decay [36] describes a class of enhanced radiative corrections arising from
electron or positron propagation in a nuclear Coulomb field. The corrections are parametrically enhanced at
large Z and/or at small electron velocity β. However, neither limit holds for neutron beta decay: Z is equal
to 0 or 1 for the neutron or proton, and the region of small electron velocity is kinematically suppressed. In
detail, the electron velocity spectrum is given by (for simplicity in this illustration we compute at tree level
and in the heavy nucleon limit)

dΓ(n → peν)

dβ
∝ β2

(1− β2)
5

2

[

∆

m
− 1

√

1− β2

]2

, (2)

where m is the electron’s mass, ∆ = mn −mp is the difference between the neutron mass mn and the proton

mass mp, and the allowed range is 0 ≤ β ≤
√

1−m2/∆2. The spectrum is strongly suppressed at small β:
the mean velocity is 〈β〉 ≈ 0.73, and less than 0.1% of the total decay rate involves electron velocity β < 0.1
(less than 10% involves β < 0.5).

In Refs. [30, 31], two of us showed how the traditional Fermi function for nuclear beta decay may be
identified as the leading-in-Z contribution to a well-defined quantum field theory object (the hard contribution
in the factorization formula for the process). Here, we show how the large first-order correction appearing in
this quantum field theory object, and in Eq. (1), arises from large logarithms | log[(−E − i0)/E]| = π, where
E is the electron energy. We show how these large logarithms are resummed using renormalization group
(RG) methods. Moreover, in the limit of small electron mass (recall m2/∆2 ≈ 0.16), we show that the Fermi
function enhancement for neutron beta decay is governed by the universal cusp anomalous dimension for QED
scattering amplitudes [37, 38].

In what follows, we construct a systematic description to replace Eq. (1), identifying the object that
replaces the traditional Fermi function ansatz for neutron beta decay as a component of a quantum field
theory factorization formula. We decompose this object in the limit of small electron mass and compute the
associated hard and jet functions through two loop order. Using these results, we present a new analysis of
the long-distance radiative corrections to neutron beta decay and apply our formalism to obtain improved
predictions for τn and |Vud| and comment on application of our results to nuclear beta decay.

2 Renormalization analysis

In what follows, we will write the matrix element for neutron decay as a Dirac structure that acts between
the electron and neutrino spinors. For an electron with momentum p and a neutrino with momentum k, this
object appears in the leptonic part of the amplitude as ū(p)Mγµ(1 − γ5)v(k), and is normalized to unity at
tree level, M = 1 + O(α). The matrix element including virtual photon corrections can be decomposed in
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terms of soft and hard virtual photon contributions i.e., M ∼ MS × MH [30]. Real photon contributions
are discussed after Eq. (14). The soft factor is known to all orders in perturbation theory [39, 40]. The hard
matrix element can be computed order-by-order in perturbation theory.

Let us decompose the hard amplitude MH in the static limit (defined as ∆/mp → 0 with ∆ held fixed).
In this limit, we can label the proton and neutron with a conserved four-velocity vµ. With vµ as an available
reference vector, the amplitude can be written as

MH(w, µ2) = AH(w, µ2) +
1

w
v/BH(w, µ2) , (3)

where pµ is the electron four-momentum, vµ = (1, 0, 0, 0) in the neutron rest frame, w = v · p/m, and µ is the
renormalization scale. Amplitudes computed in the static limit have certain simple properties. For instance
taking v → −v (implying w → −w) is equivalent to crossing (this follows immediately from the Feynman rules
of the heavy-particle effective theory). Writing

MH(w) = MH(−w) + [MH(w) −MH(−w)] , (4)

we recognize the first object, MH(−w), as the amplitude for the spacelike process where a heavy particle of
charge −1 converts to an electron.1 At one loop order, explicit calculation yields

AH(−w) = 1 +
α

2π

[

3

4
log

µ2
UV

m2
+ log

µ2

m2
(wj(w) − 1) + wj(w) − wJ(w)

]

,

BH(−w) =
α

2π

[

− wj(w)

]

, (5)

where (for w > 1) the function j(w) is defined by wj(w) = [w/
√
w2 − 1] log

(

w +
√
w2 − 1

)

, whereas the

function J(w) is defined by wJ(w) = [w/
√
w2 − 1]

[

Li2
(

1− (w −
√
w2 − 1)2

)

+ log2(w +
√
w2 − 1)

]

.
Again using properties of heavy-particle amplitudes, we observe that MH(w) can be computed as the sum

of the first object MH(−w) plus all possible insertions of a Z = +1 background field [32, 41]

MH(w) ≡ =





















∣

∣

∣

∣

∣

∣

∣

∣

∣

v→−v

= + +

















+ + + (6)

+ +

















+ . . . .

1An example is the anti-particle analog of inverse beta decay i.e., νep̄ → e−n̄.
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The second object in Eq. (4), MH(w, µ2)−MH(−w, µ2), contains all diagrams with at least one background
field insertion. At one loop order,

AH(w)−AH(−w) =
α

2π

[

iπw√
w2 − 1

(

log

(−4p2 − i0

µ2

)

− 1

)]

,

BH(w) − BH(−w) =
α

2π

[

iπw√
w2 − 1

]

, (7)

where we use w̃j(w̃) = wj(w) − iπw/
√
w2 − 1 and w̃J(w̃) = wJ(w) − iπ(w/

√
w2 − 1) log

(

−4(w2 − 1)− i0
)

,
with w̃ = −w − i0.

When E/p = β−1 = w/
√
w2 − 1 and E/m = w are order unity, there is no large ratio of physical scales,

and naively no large logarithms in perturbation theory. However, even when there are no large ratios of scales,
the difference of amplitudes MH(w) −MH(−w) contains factors of log(−1− i0) log[(−4p2 − i0)/µ2] ∼ −π2,
cf. Eq. (7). Such large logarithms are minimized by choosing µ2 = −4p2 − i0 as opposed to, for example,
µ2 = +4p2 [42, 43]. Since the µ2 dependence of the amplitude is known to all orders, such enhancements can
be resummed to all orders by RG methods, leading to the expression [30]

MH(w, µ2) = exp

[

πα

2β
+ iαφ

]

MH(w,−µ2 − i0) , (8)

where φ = 1
2 [wj(w) − 1] = 1

2

(

1
2β log 1+β

1−β − 1
)

. In the sections that follow, we show how the expression (8)

emerges, to all orders in perturbation theory, in the small-m limit. Furthermore, this same analysis relates
the Fermi function to enhancements that stem from the RG evolution of the universal gauge theory cusp
anomalous dimension. We compute MH(w,−µ2− i0), including virtual contributions through two-loop order,
and estimating residual corrections from real radiation and m2/∆2 power corrections. We include relevant
recoil corrections and the UV matching coefficient to arrive at updated predictions for τn and |Vud| from the
neutron lifetime.

3 Factorization and small mass expansion

Using the expression (8) and the complete one-loop result for MH(w,−µ2 − i0), we find remaining corrections
are of order α2, without logarithmic enhancements arising from the scale µ2 ∼ −4p2. In order to investigate
the numerical convergence of perturbation theory for the object MH(w,−µ2 − i0) and to further clarify the
physical meaning of a “Fermi function” for neutron beta decay, let us work to leading power in the small-m
expansion, m2/∆2 ≈ 0.156, where ∆ is the maximal electron energy in the static limit. In the small-m limit,
the virtual corrections to neutron beta decay factorize [44, 45]

MH(w) ≈ AH(w) ≈ FR(w,m)FJ (m)FH(E) . (9)

Apart from the small correction from the “remainder” function FR, which converts between ne = 1 and ne = 0
dynamical electrons in the low-energy effective theory, the amplitude factorizes into a collinear or “jet” function
FJ depending only on the mass scale m, and a “hard” function FH depending only on the energy scale E.

In terms of the well-behaved AH(−w), enhancements are contained in the ratio
∣

∣

∣

∣

AH(w)

AH(−w)

∣

∣

∣

∣

≈
∣

∣

∣

∣

FH(E)

FH(−E)

∣

∣

∣

∣

, (10)

where we use that FR(w)/FR(−w) is a pure phase [44], cf. Eq. (13). Since FH (upon setting µUV = µ)
depends only on the dimensionless ratio E/µ and since the µ dependence is determined by renormalization,
we can resum enhancements in this ratio [45]. At the scale µ = µ∗ = 2E,

∣

∣

∣

∣

FH(E, µ∗)

FH(−E, µ∗)

∣

∣

∣

∣

2

=

∣

∣

∣

∣

FH(E, µ∗)

FH(E,−µ∗ − i0)

∣

∣

∣

∣

2

= exp

[

−X2
∗

ᾱ

4π
+

32

9
neX

2
∗

( ᾱ

4π

)2

− 8

27
n2
eX

4
∗

( ᾱ

4π

)3

+ . . .

]

, (11)
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where X∗ = log
µ2

∗

(−µ∗−i0)2 = 2πi. Here α is the ne = 1 flavor MS coupling and is given in terms of ne = 0

(on-shell) α as

α = α

(

1− 4ne

3

α

4π
log

m2

µ2
+ . . .

)

. (12)

We thus recover the exponential factor in Eq. (8), together with a series of subleading logarithms.
After isolating the factor (11), we may use explicit two-loop results extracted [45] from the literature [44, 46–

50] to compute the remaining components of the factorization formula through two-loop order:

FR(−w,m, µ) = 1 +
( ᾱ

4π

)2

(log(2w)− 1)ne

(

−4

3
L2
m − 40

9
Lm − 112

27

)

,

FJ (m,µ) = 1 +
ᾱ

4π

[

1

2
L2
m − 1

2
Lm + 2 +

π2

12

]

+
( ᾱ

4π

)2
[

1

8
L4
m − 1

6

(

−4

3
ne +

3

2

)

L3
m − 1

4

(

52

9
ne −

9

2
− π2

6

)

L2
m

− 1

2

(

ne

(

−154

27
− 8π2

9

)

+
7

2
− 23π2

12
+ 24ζ3

)

Lm

+ ne

(

4435

324
− 2

9
ζ3 −

41π2

54

)

+ 2π2 − 4π2 log 2− 331π4

1440
− 3ζ3 +

209

16

]

,

FH(−E, µ) = 1 +
ᾱ

4π

[

−2L2
E + 2LE − 2− 5π2

12

]

+
( ᾱ

4π

)2
{

ne

[

− 16

9
L3
E +

64

9
L2
E +

(

−304

27
− 16π2

9

)

LE +
656

81
+

2

9
ζ3 +

113π2

54

]

+ 2L4
E − 4L3

E +

(

6 +
5π2

6

)

L2
E +

(

24ζ3 −
11π2

2

)

LE − 8 +
65π2

6
− 167π4

288
− 15ζ3

}

, (13)

where Lm ≡ log
(

m2/µ2
)

and LE = log(2E/µ). The above components of the factorization formula can be
expressed in terms of on-shell α using Eq. (12).

4 Radiative corrections in the static limit

We first present radiative corrections in the static limit, in terms of the tree-level decay rate. These corrections
are our main focus; in the following section, we combine these corrections with known recoil corrections and
express the tree-level rate in terms of weak-interaction couplings to determine the neutron lifetime.

The differential neutron beta decay rate (including final state photons) can be expressed as

dΓ

dE
=

(

dΓ

dE

)

tree

S(εγ , µ
2)H(εγ , µ

2) , (14)

where εγ is a soft-photon energy cutoff. Dependence on εγ cancels between S and H order-by-order in α when
all real and virtual photon effects are included. When εγ is assumed small, the soft function exponentiates

logS(εγ) =
α

2π

[

log
2εγ
µ

(

2

β
log

1 + β

1− β
− 4

)

− 1

2β
log2

(

1 + β

1− β

)

− 2

β
Li2

(

2β

1 + β

)

+
1

β
log

1 + β

1− β
+ 2

]

. (15)

Employing Eq. (8), we write

H(εγ , µ
2) = 1 +

α

2π
H(1) +

( α

2π

)2

H(2) + . . .
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= exp

[

πα

β

]

H(εγ ,−µ2 − i0) (16)

=

(

1 +
πα

β
+

π2α2

2β2

)[

1 +
α

2π
Ĥ(1) +

( α

2π

)2

Ĥ(2)

]

+ . . . .

The quantities H(n) and Ĥ(n) are expansion coefficients for H(εγ , µ
2) and H(εγ ,−µ2 − i0) respectively. We

may further consider the expansion in electron mass

H(n) =
[

H(n)
]

0
+

(

m2

∆2

)

[

H(n)
]

1
+

(

m2

∆2

)2
[

H(n)
]

2
+ . . . ,

Ĥ(n) =
[

Ĥ(n)
]

0
+

(

m2

∆2

)

[

Ĥ(n)
]

1
+

(

m2

∆2

)2
[

Ĥ(n)
]

2
+ . . . . (17)

For H(1) and Ĥ(1), we use the well known exact result [24]

H(1) = H
(1)
V +H

(1)
R , (18)

with the virtual and real photon contributions

H
(1)
V = 3 log

µUV

m
+ log

µ

m

(

2

β
log

1 + β

1− β
− 4

)

+ β log
1 + β

1− β
+

2π2

β
− 2

β
Li2

(

2β

1 + β

)

− 1

2β
log2

(

1 + β

1− β

)

,

H
(1)
R = log

εγ

∆− E

(

4− 2

β
log

1 + β

1− β

)

+
1

β
log

1 + β

1− β

[

(∆− E)2

12E2
+

2(∆− E)

3E
− 3

]

− 4(∆− E)

3E
+ 6 . (19)

For virtual photon contributions to [H
(2)
V ]0 and [Ĥ

(2)
V ]0 we equate the small mass limit of Eq. (16) with the

expression obtained using Eq. (9).
Table 1 examines the convergence of perturbation theory for the hard function, comparing the direct

expansion (i.e., H(n)) with the expansion after extracting exp(πα/β) (i.e., Ĥ(n)). In both cases, the complete
soft function is included to all orders. We estimate the impact of omitted real radiation contributions by
including the known εγ dependence as log[εγ/Λγ ] in the hard functions, and varying Λγ = ∆/2 . . . 2∆; for
comparison, Table 1 shows the analogous exercise at one-loop order. Neglected higher-order perturbative
corrections are estimated by renormalization scale variation: µ = m/2 . . .2∆. Finally, for an estimate of
neglected power corrections [H(2)]i, [Ĥ

(2)]i, for i ≥ 1, we first observe that these corrections contribute to the
difference between left and right columns in the last row of the table: 29.31− 29.04 = 0.27.

For a more refined estimate of power corrections, we consider the inclusion of a gauge invariant subclass
of power corrections represented by the first two-loop diagram on the right hand side of Eq. (6). This class of
diagrams (photon exchange with an external field) contains the leading 1/β2 dependence of the hard function
at β → 0, amounting to a correction

Ĥ
(2)
V −

[

Ĥ
(2)
V

]

0
= −2π4

3

m2

E2 −m2
= −2π4

3

(

m2

E2
+

m4

E4
+ . . .

)

, (20)

and shifts the central value for the “With Resummation” column of Table 1 as 29.31 → 29.18. We assign a
residual power correction uncertainty as 1/2 of this shift. The remaining two-loop diagrams in Eq. (6) have
been estimated to contribute at a numerically small (10−5) level [27], after including the iteration of one-loop
subdiagrams, which are automatically incorporated in our resummed analysis by employing Ĥ in place of H .

We take as our final result, in the static limit, at a renormalization scale µUV = ∆,

δR,static(µUV = ∆) = (29.18± 0.07± 0.01± 0.02)× 10−3 . (21)

The uncertainties are, respectively, from neglected power corrections in m2/∆2 at two-loop order, from ne-
glected real radiation at two-loop order, and from perturbative corrections at three-loop order. We now turn
to the application of our result to the neutron’s lifetime.
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Without Resummation With Resummation

1 0.3 ± 3.5 ± 2.1 34.5 ± 3.6 ± 2.2

1 +H
(1)
V 32.6 ± 0.1 ± 2.2 33.2 ± 0.004± 2.2

1 +H(1) 28.8 ± 0.08± 0.05 29.32 ± 0.02 ± 0.01

1 +H(1) +H
(2)
V 29.04± 0.05± 0.05 29.31 ± 0.02 ± 0.01

Quantity Value [10−3]

∆R 45.37± 0.27

δR,static 29.18± 0.07

δrecoil − 2.06

δrad.rec. − 0.08

Table 1: (Left) Long-distance radiative correction (δR,static) to the neutron decay rate, computing the hard
function at different orders in perturbation theory, in units of 10−3. The first column of numbers shows direct
expansion of the hard function, and the second column shows the expansion after extracting exp(πα/β) as
in Eq. (16). Central values are evaluated at µ2 = m∆, Λγ = ∆, and µUV = ∆ while the errors denote scale
variation µ = m/2..2∆, and Λγ = ∆/2..2∆ as discussed beneath Eq. (19). (Right) Summary of radiative
and recoil corrections to neutron decay rate. Electroweak and QED corrections ∆R and δR are evaluated at
renormalization scale µUV = ∆, in the MS scheme with ne = 1 dynamical electron. The power correction
given in Eq. (20) accounts for the shift 29.31 → 29.18 in going from the left table to the right table for δR,static.

5 Neutron lifetime

The neutron lifetime is given by

Γn =
G2

F |Vud|2∆5

2π3
fstatic(1 + 3λ2)

[

1 + ∆R(µUV)

][

1 + δR,static(µUV) + δrecoil + δrad.rec.

]

, (22)

where λ = gA/gV is the ratio of axial to vector weak-couplings of the nucleon, and the phase space factor in
the static limit is given by

fstatic =

∫ 1

m/∆

dy y (1− y)2
√

y2 −
(

m
∆

)2 ≃ 0.0157528 . (23)

The short-distance radiative correction ∆R(µUV) ≡ g2V (µUV)− 1 encodes weak-scale and other short-distance
physics [4, 5, 7, 35, 51]; we do not include an estimate for isospin breaking in ∆R since its numerical value
(∼ −4 × 10−5 [52]) is roughly six times smaller than the current error estimate on ∆R. The term δR,static

encodes the long-distance radiative corrections (as given above), and δrecoil and δrad.rec. are recoil and radiative
recoil corrections. The recoil corrections are computed as described in Refs. [2, 26], and we include the effect
of the induced pseudoscalar form factor (i.e., one-pion exchange) [26]. The radiative-recoil correction includes
the dominant interference between recoil terms and the first-order πα/β correction, and the shift between the
electron velocity in the proton versus neutron rest frame [26].

In terms of |Vud|, λ, and ∆R(µUV = ∆) the neutron lifetime is thus given by (restoring ~ for SI units and
using inputs for mn, mp, GF from the Particle Data Group (2024) [53])

τn × |Vud|2(1 + 3λ2)

[

1 + ∆R(µUV = ∆)

][

1 + 27.04(7)× 10−3

]

=
2π3

~

G2
F∆

5fstatic
= 5263.284(17) s . (24)

As an illustrative example, let us take the lifetime of the neutron from the most recent UCNτ average,
τn = 877.82(30) s [54] and the measurement of λ from the PERKEO-III experiment [55], λ = −1.27641(56).
Using ∆R(µUV = ∆) = 45.37(27)× 10−3 [51],2 we obtain

|Vud| = 0.97393(17)τ(35)λ(13)∆R
(3)δR

= 0.97393(41) ,
(25)

where in the final line, errors have been added in quadrature. Using average values from Ref. [53] for τn
(878.4(5)s excluding beam measurements or 878.6(6)s including beam measurements) in place of the most

2This value for ∆R is taken from Ref. [51] (see also Table 2 of Ref. [23] and Refs. [4, 5, 7–9, 12]). We have converted between
the renormalization scheme of Ref. [51] and conventional MS at renormalization scale µ = ∆.
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precise measurement (τn = 877.82(30)s [54]) yields a similar result in Eq. (25) (∼ 1σ downward shift in
|Vud| and similar total error). Using the average from Ref. [53] for λ (−1.2754(13)) in place of the most
precise measurement (λ = −1.27641(56) [55]) yields a consistent central value, and approximately two times
larger total error. An in-beam measurement of τn [56] is ∼ 4σ discrepant with the ultracold neutrons (UCN)
measurements, which dominate the average.3 For a discussion of the discrepancy between in-beam and UCN
measurements of τn, see Refs. [58, 59]. We have computed radiative corrections to the decay rate for the process
n → peν̄(γ). This rate determines the neutron lifetime in the Standard Model, but should be interpreted as a
partial rate if beyond the Standard Model neutron decay modes are present.

6 Discussion

Our new result, Eq. (21), modifies the long-distance radiative correction to neutron beta decay. Compared to
previous work [7, 51], the largest effect corresponds to the replacement of the Fermi function ansatz,

FNR =
(2πα/β)

1− exp(−2πα/β)
−−−→
m→0

1 + πα+
π2α2

3
+ . . . , (26)

with the resummation (8),

∣

∣

∣

∣

MH(µ2)

MH(w,−µ2 − i0)

∣

∣

∣

∣

2

= exp

[

πα

β

]

−−−→
m→0

1 + πα+
π2α2

2
+ . . . . (27)

We have presented the first complete analysis of the two-loop virtual corrections in the limit of small m2/∆2,
included leading contributions and uncertainties associated with power corrections and real radiation at two
loop order, and included all relevant recoil and radiative recoil corrections. Keeping full mass dependence at
tree-level and one-loop, and upon including these corrections, the decay spectrum has the correct β → 0 and
(m2/E2) → 0 limits through two-loop order.

Let us return to the ansatz (1) (evaluated at R = 1.0 fm [26]),

1 +

〈

π

β

〉

α+

〈

π2

3β2
+

11

4
− log(2pR exp{γE})

〉

α2 + . . .

≈ 1 + 4.6α+
(

8.3 + 2.8 + 4.6
)

α2 + . . . , (28)

where angle brackets denote averaging over phase space. We may now clarify the contributions to the coef-
ficient of α2. First, we note that the contribution involving log(2p/µR) (µR = exp(−γE)R

−1) represents the
renormalization between scales p ∼ ∆ and µR ∼ mp arising from the Z2 part of the anomalous dimension:

in the notation of Ref. [32], γ1 = γ
(0)
1 Z2 + γ

(1)
1 Z + γ

(2)
1 , the coefficient of log

(

R−1
)

corresponds to 32π2γ
(0)
1 .

For neutron beta decay however, only the local heavy-light current contribution γ
(2)
1 survives (Z = 0 for

the neutron), so that this contribution is spurious; the complete renormalization group running is known to
high precision and included in our analysis (cf. Ref. [51] for a related discussion). The remaining two-loop
contributions, π2/(3β2) + 11/4, are replaced by our systematic analysis of the low-energy matrix element.

Our results provide the first O(α2) input (beyond the Fermi-function ansatz) to neutron beta decay. Let us
compare to existing results in the literature. For example, in Eqs. (107) and (113) of Ref. [51], the long-distance
contribution in Eq. (22) is given by

[

1 + δR,static(µUV) + δrecoil + δrad.rec.

]CDMT

= 1 + 26.934(50)× 10−3 . (29)

In Eq. (15) and line 5 of Table 1 of Ref. [7],

[

1 + δR,static(µUV) + δrecoil + δrad.rec.

]CMS

= 1 + 26.33(33)× 10−3 . (30)

3The in-beam-measurement of τn also yields a value for |Vud| that is discrepant with determinations from superallowed beta
decays [57].
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Our central value for the long-distance correction, 27.04 × 10−3 in Eq. (24), represents a shift of 1.1 × 10−4

(2.1σ) compared to the central value and error bar of Ref. [51] and 7.1× 10−4 (2.2σ) compared to the central
value and error bar of Ref. [7].

In order to compare with alternative determinations of the short-distance corrections from the literature [7]
we use the conversion formula,

1 + ∆R(µUV = ∆) = R(∆,mp)

(

1 + ∆V
R − 11α

8π

)

, (31)

where ∆V
R is defined in the convention of Ref. [7], R(∆,mp) = 1.0234650 relates renormalization scales µ = ∆

and µ = mp, and the factor −11α/(8π) converts the Sirlin convention for one-loop corrections to MS [30].
Taking ∆V

R = 0.02426(32) from Ref. [7] yields ∆R(µUV = ∆) = 45.03(33)× 10−3; with the same inputs for τn
and λ, this translates to |Vud| = 0.97409(17)τ(35)λ(15)∆R

(3)δR .
We have provided the first two-loop input to the long-distance radiative corrections to neutron beta decay.

The result, Eq. (24), sets a target for uncertainty reductions in the experimental and short-distance inputs.
Existing determinations of the neutron’s lifetime τn and axial-vector charge ratio λ have already reached a
level where errors on |Vud| are competitive with, albeit still larger than, superallowed beta decays. In order to
surpass superallowed data, measurements of τn must reduce their errors by a factor of roughly two, while a
reduction in the uncertainty on λ requires a reduction in uncertainty by at least a factor of three [60]. Proposals
at the European Spallation Source suggest that the necessary reduction in the error on λ is achievable [61],
while the UCNτ+ upgrade will offer the necessary reduction in uncertainty on τn [60]. In fact, a recent
update from UCNτ [54] has already achieved a small reduction in the uncertainty on the neutron lifetime
as compared to their 2021 dataset average [11]. In conjunction with these experimental advances, progress
towards a lattice-QCD determination of ∆R has recently been undertaken [9, 62, 63].

We note that our two-loop analysis can also be applied to other observables (such as asymmetry coefficients)
for future precision determinations of λ; currently radiative corrections are not a dominant source of uncertainty
for extractions of λ [55]. Finally, let us note that Eqs. (6) and (13) can be used to a determine the low-energy
Zα2 matrix element in the recently developed effective field theory framework [30–32, 34, 41, 64] that is
currently an important source of uncertainty in the analysis of superallowed beta decays. This would supplant
previous estimates computed in the independent particle model [25, 27, 28, 64, 65].
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