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ABSTRACT

Using the full four-year SPTpol 500 deg2 dataset in both the 95 GHz and 150 GHz frequency
bands, we present measurements of the temperature and E-mode polarization of the cosmic microwave
background (CMB), as well as the E-mode polarization auto-power spectrum (EE) and temperature-
E-mode cross-power spectrum (TE) in the angular multipole range 50 < ℓ < 8000. We find the SPTpol
dataset to be self-consistent, passing several internal consistency tests based on maps, frequency bands,
bandpowers, and cosmological parameters. The full SPTpol dataset is well-fit by the ΛCDM model,
for which we find H0 = 70.48 ± 2.16 km s−1 Mpc−1 and Ωm = 0.271 ± 0.026, when using only the
SPTpol data and a Planck -based prior on the optical depth to reionization. The ΛCDM parameter
constraints are consistent across the 95 GHz-only, 150 GHz-only, TE-only, and EE-only data splits.
Between the ℓ < 1000 and ℓ > 1000 data splits, the ΛCDM parameter constraints are borderline
consistent at the ∼ 2σ level. This consistency improves when including a parameter AL, the degree

of lensing of the CMB inferred from the smearing of acoustic peaks. When marginalized over AL,
the ΛCDM parameter constraints from SPTpol are consistent with those from Planck. The power
spectra presented here are the most sensitive measurements of the lensed CMB damping tail to date

for roughly ℓ > 1700 in TE and ℓ > 2000 in EE.

1. INTRODUCTION

Measurements of the temperature and polarization of
the cosmic microwave background (CMB) provide valu-
able information about cosmology (e.g., Hu & Dodel-
son 2002; Galli et al. 2014). Their angular power spec-

tra are well-fit by the ΛCDM model, and currently
the best constraints for most of the ΛCDM parameters
come from CMB experiments, in particular the Planck

satellite (Planck Collaboration et al. 2020), but also
ground-based experiments such as the Atacama Cos-
mology Telescope (ACT, e.g., Aiola et al. 2020; Choi
et al. 2020) and the South Pole Telescope (SPT, e.g.,
Balkenhol et al. 2023; Dutcher et al. 2021). In recent
years, tensions have emerged between some of these pa-
rameter constraints and those measured from the late-

time universe (e.g, Verde et al. 2023; Heymans et al.
2021), and there have even been low-level (∼ 2σ) hints
of disagreements within different CMB data sets or sub-
sets of individual-experiment data (Henning et al. 2018;
Dutcher et al. 2021; Planck Collaboration et al. 2020).
With an eye toward sharpening or disfavoring one of
these observed trends, in this work we present a deeper
investigation into the internal consistency of the SPTpol
500 deg2 dataset, adding more data volume and multi-
frequency observations to the analysis in Henning et al.

(2018, hereafter H18).
The SPT (Carlstrom et al. 2011), with its arcminute-

scale resolution and polarization-sensitive detectors,

probes an important space of the CMB power spec-
tra. Specifically, the SPTpol 500 deg2 measurements

in this work cover a wide range of angular modes, from
the first peak to the damping tail, in both temperature
and polarization. SPTpol (Henning et al. 2012; Sayre

et al. 2012) was the 2nd generation receiver installed
on SPT, and it was composed of 1536 transition edge
sensor detectors with observing bands centered at 95 or
150 GHz. This work is an extension to H18, where we

perform TE/EE power spectrum analysis in a similar
fashion. H18 only analyzed data from the 150 GHz de-
tectors, and only from the first three years of 500 deg2

observations; in this work, we analyze the full four-year
dataset, and we use data from both the 95 GHz and
the 150 GHz frequency bands. In H18, the data used
to report the entire multipole range of bandpowers were
processed identically, but in this work, we process the
data in two different ways into two datasets: a low-ℓ
focused one and a high-ℓ focused one. All these ex-
tensions combined allow us to make the most sensitive
measurements of the lensed CMB damping tail to date
for roughly ℓ > 1700 in TE and ℓ > 2000 in EE.1 We
present our 500 deg2 temperature and E-mode polar-

1 Recently published estimates of the primordial, unlensed EE
power spectrum from SPT-3G data in Ge et al. (2024) are more
sensitive than the EE spectrum presented here over the entire ℓ
range covered in that work (400 < ℓ < 3500).
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ization maps, as well as our TE and EE angular power
spectra in the multipole range 50 < ℓ < 8000.
We provide an update to the mild tension between

low-ℓ and high-ℓ cosmological parameter preferences
found in H18. H18 had unresolved curiosities includ-
ing internal tensions and poor fits to ΛCDM , some of
which could be due to unmodeled systematics. In this
work we cast a wider net searching for systematic effects,
and we make several improvements including stringent
cuts, extensive null tests, and updated beam measure-
ments. We follow up on the aforementioned curiosi-
ties with these improved measurements of the SPTpol
500 deg2 TE/EE power spectra.
This paper is structured as follows. We describe the

SPTpol observations and time-ordered data in Section 2.
From these data, we make maps and present them in
Section 3. From these maps, we make power spectra
with methods described in Section 4, and we present
the binned power spectra (bandpowers) in Section 5.

We fit these bandpowers to cosmological models with
the methods described in Section 6, and we present the
parameter constraints in Section 7. We discuss the con-
clusions in Section 8.

2. OBSERVATIONS AND DATA REDUCTION

The SPTpol instrument, the 500 deg2 survey field, and
the scan strategies are the same as H18; please refer to

that work for more details. H18 only analyzed data from
the 150 GHz detectors and only from the first three years
of observations; in this work, we analyze the full four-
year dataset and use data from both the 95 GHz and

the 150 GHz frequency bands.

2.1. Observations

Observations from April 2013 to May 2014 were made

using the “lead-trail” scan strategy, where the 500 deg2

field was split into two halves, with one half observed af-
ter the other in the same azimuth-elevation range. Ob-
servations from May 2014 to Sep 2016 were made using
the “full-field” scan strategy, where we scanned across
the full range of right ascension of the 500 deg2 field.
For each observation, we produce a 95 GHz map and a
150 GHz map, however one or both of them can fail dur-
ing the time stream processing described in Section 2.2.
Unlike H18, we do not perform observation cuts based
on low-ℓ noise, but we remove ∼ 200 observations based
on jackknife null tests described in Section 5.1. The fi-
nal number of 95 GHz observations used in this dataset
is 1481 lead-trail & 3368 full-field, and the number of

150 GHz observations used in this dataset is 1481 lead-
trail & 3387 full-field.

2.2. Time Stream Processing

We record the time-ordered data (time streams) of
each detector, and they are subject to several processes
before being combined into maps. As in H18, spectral
lines related to the pulse tube coolers are notch-filtered;
additionally, in this work the 95 GHz time streams show
a strong 1 Hz noise line, so that line is also notch-filtered.
To further improve signal-to-noise at high ℓ over H18, we
then analyze two copies of the time streams; we apply
a high-ℓ focused set of filters on one copy, and apply a
low-ℓ focused set of filters on the other copy.
For the high-ℓ focused time streams, we subtract a

5th-order (or 9th-order) Legendre polynomial on a scan-
by-scan basis for lead-trail (or full-field) observations.
To prevent noise at low ℓx from mixing into high-ℓmodes
(where ℓx is along the scan direction), we apply a high-
pass filter at ℓx = 300, and a common-mode filter that
removes the average of all time streams in the same fre-

quency band. For anti-aliasing, we apply a low-pass
filter at ℓx = 20,000.
For the low-ℓ focused time streams, we first downsam-

ple the data by a factor of 2, and then subtract the same
5th-order (or 9th-order) Legendre polynomial for lead-
trail (or full-field) observations. This step effectively
equals a high-pass filter at ℓx ∼ 50, and we apply no

further high-pass filters. For anti-aliasing, we apply a
low-pass filter at ℓx = 3,200.
Both copies of the time streams go through the same

cross-talk removal, detector data cuts, and pre-map cal-
ibration as H18, except we make one additional detector
cut on the high-ℓ focused time stream data due to a noise

line. Detectors with anomalously high noise in the 8–11
Hz frequency band are cut on a per-observation basis.

3. MAPS

As in H18, we bin the time streams into T,Q,U map

pixels under the oblique Lambert azimuthal equal-area
projection. For the high-ℓ focused time streams, we
use square 0.5′ pixels, and for the low-ℓ focused time
streams, we use square 3′ pixels to speed up computa-
tions. From these low-ℓ focused maps only, we remove
a smooth scan-synchronous structure. To correct for
monopole T -to-P leakage (see Section 4.6), we subtract
a scaled copy of the T map from the Q and U maps, and
then we construct the E-mode polarization map from Q
and U in the same way as H18 (Zaldarriaga 2001).

Figure 1 shows the coadd (inverse-variance-weighted
average) of the 150 GHz low-ℓ focused maps, and the
150 GHz and 95 GHz noise maps, for temperature and
E-mode polarization. The 95 GHz signal maps are
omitted because they look similar to the 150 GHz sig-
nal maps. Figure 2 shows the noise spectra of these
95 GHz and 150 GHz temperature and E-mode polariza-
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tion maps. The white noise level in the multipole range
5000 < ℓ ≤ 6000 is 5.9 µK-arcmin for the 150 GHz tem-
perature map, 8.4 µK-arcmin for the 150 GHz E-mode
map, 13.5 µK-arcmin for the 95 GHz temperature map,
and 19.2 µK-arcmin for the 95 GHz E-mode map.
Similar to H18, we make 50 partial coadds (map bun-

dles) for lead-trail and full-field separately, where each
bundle is constructed to have 1/50th of the total T map
weights. Each lead-trail bundle is then coadded with
a full-field bundle in chronological order, and these 50
“lead-trail plus full-field” map bundles will be used in
Section 4.1 to calculate the angular power spectra. In
total, we have 50 map bundles for 150 GHz and 50 for
95 GHz, where each bundle has a T map and an E map.
Lastly, we make noise map realizations by randomly sep-
arating all the ∼ 4800 maps into two subsets, coadding
each subset, and subtracting these two half-depth coad-
ded maps. We do all of this for the low-ℓ focused maps
and the high-ℓ focused maps separately.

4. POWER SPECTRUM

4.1. Pseudo Cross-Spectra

We compute angular power spectra with the same
pseudo-spectrum method as H18 (Hivon et al. 2002),

using cross-spectra to avoid noise bias (Polenta et al.
2005; Tristram et al. 2005; Lueker et al. 2010). From
among our 50 map bundles in 150 GHz and 50 bundles in

95 GHz, we compute cross-spectra of every possible pair,
never crossing the same bundle with itself. We compute
all seven possible TE or EE cross-spectra (95T × 95E,
95T × 150E, 150T × 95E, 150T × 150E, 95E × 95E,

95E×150E, 150E×150E), and take the average within
each type. We do these for the low-ℓ focused maps and
the high-ℓ focused maps separately.

These cross-spectra are computed at a native ℓ res-
olution of ∆ℓ = 5. We denote them as C̃λ, where λ
represents the resolution of ∆ℓ = 5, and the tilde above
indicates that these are pseudo-spectra. The pseudo-
spectrum can be represented as the result of a biasing
kernel K acting on the unbiased power spectrum (Hivon
et al. 2002); equivalently, the unbiased power spectrum
equals the inverse of the biasing kernel acting on the
pseudo-spectrum, and we perform this inverse after bin-
ning to a resolution of ∆ℓ = 50. In Einstein summation
notation,

C̃β = Kββ′Cβ′

⇒ Cβ = K−1
ββ′C̃β′

= K−1
ββ′Pβ′λC̃λ , (1)

where β denotes a resolution of ∆ℓ = 50, and Pβλ is
defined as a binning operator that bins bandpowers from

a resolution of λ into a resolution of β. The biasing
kernel K consists of the mode-coupling matrix M due
to the apodization mask, the filter transfer function F ,
and the beam function B:

Kλλ′ = Mλλ′Fλ′B2
λ′ . (2)

In the next three subsections, we will discuss these three
components in more detail. They are computed at a
native resolution of ∆ℓ = 5, and then the biasing kernel
is binned to ∆ℓ = 50:

Kββ′ = PβλKλλ′Qλ′β′ , (3)

where Qλβ is the reciprocal to the binning operator Pβλ.
After obtaining the unbiased cross-spectra Cβ , we con-
vert them to Dβ using the operator Sββ = ℓ(β)(ℓ(β) +
1)/2π where ℓ(β) is the ℓ center of bin β. Finally, we
coarse-bin them into increasingly wider ℓ bins starting
at ℓ ≥ 2000, in order to reduce the total number of
bandpowers and simplify numerical computations.

Db = PbβSββCβ . (4)

These final ℓ bins and Db are shown in Section 5, and
they are used in Section 6 for fitting cosmological pa-

rameters. In addition, we also compute unbiased noise
spectra from the noise map realizations mentioned in the
previous section, and they will be used in the construc-
tion of the bandpower covariance matrix in Section 5.2.

4.2. Mask and Mode-Coupling

We make our apodization and point source mask in
the same way as H18, where all point sources with un-

polarized flux > 50 mJy at 95 or 150 GHz are masked.
We also compute the mode-coupling matrix Mλλ′ ana-
lytically, in the same way as H18. The mode-coupling
matrices in this work and in H18 both exhibit band-

diagonal structures, where elements the same distance
away from the diagonal are approximately equal, there-
fore we average them together during the construction of
the bandpower covariance matrix in Section 5.2. We do
these for the low-ℓ focused maps and the high-ℓ focused
maps separately.

4.3. Transfer Function

The filter transfer function F accounts for the ef-
fects of time stream processing described in Sec-
tion 2.2. As in H18, we solve for it using simu-
lated skies and “mock-observations.” We make 226
realizations of the sky from a given CMB power
spectrum Cℓ, where Cℓ is the best-fit theory to

the Planck base_plikHM_TT_lowTEB_lensing dataset



5

22h30m00m23h30m00m30m1h00m30m
RA

-60°

-58°

-56°

-54°

-52°

-50°

-48°

-46°

-44°

D
e
c

22h30m00m23h30m00m30m1h00m30m
RA

-60°

-58°

-56°

-54°

-52°

-50°

-48°

-46°

-44°

D
e
c

-60°

-58°

-56°

-54°

-52°

-50°

-48°

-46°

-44°

D
e
c

400 300 200 100 0 100 200 300 400
µKCMB

20 15 10 5 0 5 10 15 20
µKCMB

Temperature E-Mode Polarization

1
5
0
 G

H
z 

si
g

n
a
l

1
5
0
 G

H
z 

n
o
is

e
9
5
 G

H
z 

n
o
is

e

Figure 1. SPTpol 500 deg2 low-ℓ focused signal and noise maps, for temperature and E-mode polarization, for 150 GHz and
95 GHz. The 95 GHz signal maps are omitted because they look similar to the 150 GHz signal maps. The noise maps are made
with the coadd of left-going scans minus the coadd of right-going scans, then divided by 2.

(Planck Collaboration et al. 2020). Next, we add a real-

ization of the foreground power to each sky realization.
The foreground power spectrum is modeled as follows:

foreground DTT
ℓ =

(
Adusty

src +Aradio
src

)( ℓ

3000

)2

+ACIB

(
ℓ

3000

)0.8

+AtSZ · template

foreground DEE
ℓ =

(
Adusty

src pdusty +Aradio
src pradio

)( ℓ

3000

)2

+AEE
dust

(
ℓ

80

)−0.42

,

where the mean-squared polarization fraction for dusty
point sources pdusty = 0.0004, for radio point sources
pradio = 0.0014, and the tSZ model template is taken
from Shaw et al. (2010). For 150 GHz, the amplitudes
in µK2 are: {Adusty

src = 9, Aradio
src = 10, ACIB = 3.46,

AtSZ = 4, AEE
dust = 0.0236}. For 95 GHz, the amplitudes

in µK2 are: {Adusty
src = 1.5, Aradio

src = 50, ACIB = 0.56,
AtSZ = 12, AEE

dust = 0.00338}.

We convolve these sky realizations with the beam
function Bℓ, which is different for 95 GHz and 150 GHz.
Next, we mock-observe these sky realizations by scan-
ning through them at the same telescope pointings as
recorded in each of our ∼ 4800 observations. Time
stream processing, map-making and bundling are also
done in the same way as real data, and the end product

is 226 simulated datasets: We have all the low-ℓ focused
and high-ℓ focused map bundles, for 95 or 150 GHz, for
each sky realization.
For each of the 226 simulated datasets, we compute

95T ×95T , 150T ×150T , 95E×95E, 150E×150E, and
95E × 150E. These are pseudo-spectra, and the input
theory CTT

ℓ and CEE
ℓ are known, so we solve for the

filter transfer functions iteratively as in H18 (Hivon et al.
2002). For the five types of TT or EE spectra above,
we compute their transfer functions one at a time by
plugging in the average C̃λ of 226 simulations and Cλ,th
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Figure 2. SPTpol 500 deg2 noise spectra. For ℓ < 500, we use the low-ℓ focused dataset; for ℓ > 500, we use the high-ℓ focused
dataset, and the dashed line at ℓ = 500 shows this stitch. These are unbiased spectra but multiplied by the beam function again
(B2

ℓ ) to show the white noise level. The axis on the left is in units of µK2, while the axis on the right is in units of µK-arcmin.

(again, λ denotes a resolution of ∆ℓ = 5):

Fλ,1 =
⟨C̃ sim

λ ⟩
w2Cλ,thB2

λ

Fλ,i+1 = Fλ,i +
⟨C̃ sim

λ ⟩ −Mλλ′Fλ′,iCλ′,thB
2
λ′

w2Cλ,thB2
λ

,

where w2 denotes the second moment of the apodization
mask. This method could be numerically unstable for

the TE spectra due to their zero-crossings, therefore we
define the TE transfer functions as the geometric mean
of the corresponding TT and EE transfer functions:

F 95T×95E
λ =

√
F 95T×95T
λ · F 95E×95E

λ

F 95T×150E
λ =

√
F 95T×95T
λ · F 150E×150E

λ

F 150T×95E
λ =

√
F 150T×150T
λ · F 95E×95E

λ

F 150T×150E
λ =

√
F 150T×150T
λ · F 150E×150E

λ .

These transfer functions Fλ are used in unbiasing our

bandpowers as described in Section 4.1. For later use, we
also unbias these simulated spectra C̃λ using the same
method. In addition, we repeat the above simulation
process but with an “alternate” cosmology instead of
Planck, and these simulated spectra will be used in the
pipeline consistency tests (Section 6.3). We do all of this
for the low-ℓ focused maps and the high-ℓ focused maps
separately.

4.4. Beam and Calibration

We use Venus observations to estimate the beam func-
tion Bℓ of our instrument. For 150 GHz, we use the same

observations as H18. For 95 GHz, we also use Venus ob-
servations to estimate the beam function, but we note
that there are map artifacts in the 95 GHz Venus maps
at angular scales corresponding to ℓ ≫ 8000. We com-

pare the 95 GHz Bℓ measured on Venus to the Bℓ mea-
sured on Mars which does not contain those artifacts,
and find that the two are consistent at ℓ < 8000. Since

we only report bandpowers at ℓ < 8000, and since the
Venus beam has better sensitivity than the Mars beam
at low-ℓ, we decide to use the Venus observations for the

95 GHz beam as well.
The instantaneous pointing of the SPT is stable on

hour timescales but drifts on day timescales owing to
changes in the thermal environment. This pointing “jit-
ter” is negligible for planet observations, but for averages
of many CMB field scans, it causes the effective beam
size to increase. We estimate this by fitting 2D Gaus-
sians to the brightest point sources in the 500 deg2 field.
For 150(95) GHz, the final size of the Gaussian beam is
1.22′(1.90′) FWHM. We convolve each Venus map with
a 2D Gaussian whose FWHM is the quadrature differ-
ence between 1.22′ (or 1.90′) and the FWHM of Venus in
that map. For 95 GHz and 150 GHz separately, we take
the cross-spectra between these maps, and their average

is our B2
ℓ .

While computing these beam functions, we discovered
that Bℓ at ℓ < 800 can vary greatly depending on our
Venus mapmaking options. This low-ℓ beam uncertainty
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can be well described by a one-parameter model Bℓ →
Bℓ+Abeam·∆Bℓ where ∆Bℓ is a known vector describing
the typical shape of this variation, and Abeam is a free
parameter of its amplitude. For the case of 150 GHz,
we fit for Abeam and the temperature calibration factor
Tcal at the same time against Planck. As in H18, we
mock-observe the Planck 143 GHz temperature map in
the same way as our observations, and take its cross-
spectrum with the SPTpol 150 GHz temperature map:

T S150
cal

(
BS150

ℓ +AS150
beam ·∆BS150

ℓ

)
=
√
FP
ℓ BP

ℓ

〈
Re
[
fmap∗,S1501 · fmapS1502

]〉
ℓ〈

Re
[
fmap∗,P · fmapS150

]〉
ℓ

, (5)

where the superscript P denotes Planck 143 GHz, S150
denotes SPTpol 150 GHz, fmap denotes the tempera-

ture map in Fourier space, and the subscripts in fmap1

or fmap2 denote two independent half-depth maps of

SPTpol 150 GHz. The transfer function
√
FP
ℓ denotes

the pixel window function that corresponds to the size
of the Planck map pixels. We compute the right hand
side with uncertainties, then perform a least-squares fit

over the range 100 < ℓ < 1000. Under the best-fit T S150
cal

and AS150
beam values, Figure 3 shows what we now define

as the “fiducial” BS150
ℓ , and for illustration purposes, we

also show the range of ∆BS150
ℓ that corresponds to 1-σ

uncertainties in the AS150
beam parameter. For the case of

95 GHz, we similarly fit for Abeam and Tcal at the same
time against 150 GHz:

T S95
cal

(
BS95

ℓ +AS95
beam ·∆BS95

ℓ

)
= T S150

cal ·
√

F S150
ℓ

F S95
ℓ

· fiducial BS150
ℓ

·

〈
Re
[
fmap∗,S95i · fmapS150i+1

]〉
ℓ〈

Re
[
fmap∗,S1501,i · fmapS1502,i

]〉
ℓ

,

where S95 denotes SPTpol 95 GHz, the subscript i de-
notes the i-th map bundle, and fmapS150

1,i or fmapS1502,i

denote two independent half-depth maps of the i-th
150 GHz map bundle. We allow i to run through all
50 bundles and take the average. Similar to the above,
we define the fiducial BS95

ℓ using the best-fit values of
T S95
cal and AS95

beam. For the polarization calibration factor
Pcal, we repeat the above process using E-mode polar-
ization maps instead of temperature maps. We adopt
the value PS150

cal = 1.06 found in H18, and in this work
we find PS95

cal = 1.043. When performing cosmology fits,

we still allow these Tcal, Pcal, and beam uncertainty pa-
rameters to float as nuisance parameters, with their 1-σ
uncertainty ranges as priors (Section 6.2).

4.5. Bandpower Window Functions

To compare theory spectra Cth
l with our bandpowers

Db, we need to find the bandpower window functions
that convert Cth

l to the equivalent Dth
b . We begin by

defining the binned pseudo-spectrum C̃th
λ as the theory

Cth
l acted on by the biasing kernel and the initial binning

operator,

C̃th
λ = Kλλ′Pλ′lC

th
l .

Plugging this into Eq. 1 yields the expression for the
unbiased theory spectrum at intermediate binning,

Cth
β = K−1

ββ′Pβ′λKλλ′Pλ′lC
th
l .

And Eq. 4 yields the expression for the unbiased the-

ory spectrum at final binning, including the ℓ(ℓ+1)/2π
weighting,

final Dth
b = PbβSββC

th
β

=
(
PbβSββK

−1
ββ′Pβ′λKλλ′Pλ′l

)
Cth

l .

The quantity in parentheses above is our bandpower
window function. Kλλ′ and Kββ′ are defined in Eq. 2
and Eq. 3.

4.6. T-to-P Leakage

Through various systematic effects, it is possible for
the temperature measurements to leak into polarization
measurements, and the polarization maps need to be

corrected for this effect. For the monopole leakage, we
subtract a scaled copy of the T map from the Q and
U maps: Q → Q − ϵQT and U → U − ϵUT , where

the coefficients ϵQ and ϵU are estimated from the ra-
tio of half-dataset cross-correlated maps. We estimate
ϵQ to be 0.020(0.032) for 150(95) GHz, and ϵU to be
0.007(−0.022) for 150(95) GHz.
We also test for T -to-P leakage beyond a monopole,

which we refer to as the “leakage beam.” The leakage
beam for 95 GHz is negligible, and the leakage beam

for 150 GHz can be well explained by differential beam
ellipticity, the effect of which in the power spectrum we
parameterize as:

CTE
ℓ,corrected = CTE

ℓ,observed − ℓ2GTE
ℓ CTT

ℓ ,

CEE
ℓ,corrected = CEE

ℓ,observed − ℓ4GEE
ℓ CTT

ℓ .

We find best-fit values of GTE
ℓ = 7.38 × 10−10 and

GEE
ℓ = 6.40× 10−19.



8 T.-L. Chou, et al.

0 200 400 600 800 1000
Multipole `

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

B
`

fiducial BS150
`

S150 x P
1σ range on AS150

beam

Figure 3. The fiducial SPTpol 150 GHz beam (blue), and on top of it, the range of ∆BS150
ℓ that corresponds to 1-σ uncertainties

in the AS150
beam parameter (red region). Gray data points with error bars represent the right hand side of Eq. 5 with uncertainties.

As in Dutcher et al. (2021), the common-mode fil-
ter introduces a bias in the TE spectra, also the TE
transfer function is not designed to perfectly recover the
simulated TE spectra. We define this “TE bias” as the

difference between unbiased simulated bandpowers and
theory bandpowers with window function:

TEbiasi×j = Ci×j
β,sim − Ci×j

β,th

= K−1
ββ′Pβ′λC̃

i×j
λ,sim −K−1

ββ′Pβ′λKλλ′Pλ′lC
i×j
l,th

= K−1
ββ′Pβ′λ

(
C̃i×j

λ,sim −Kλλ′Pλ′lC
i×j
l,th

)
,

where i, j ∈ {95 GHz, 150 GHz} and i × j denotes the
cross-spectrum between the T map of i band and the E

map of j band. We apply this correction on our SPTpol
bandpowers as Ci×j

β → Ci×j
β − TEbiasi×j .

5. BANDPOWERS

Following the procedures in the previous section, we
unbias the low-ℓ focused power spectra and the high-ℓ
focused power spectra separately, using the appropriate
version of filter transfer function F in each case. The
final bandpowers are stitched together using the low-ℓ
focused power spectra in the range 50 < ℓ < 500 and
the high-ℓ focused power spectra in the range 500 <
ℓ < 8000. These final unbiased bandpowers are shown
in Figures 4 and 5. The error bars are the square root
of the diagonal elements of the bandpower covariance

matrix without “further conditioning” (see Section 5.3),

and they include contributions from sample variance and

noise. We also show our minimum-variance bandpow-
ers alongside other contemporary measurements of the
CMB in Figures 6 and 7.

A complete file of bandpowers and uncertainties
for plotting are available on the SPT website and
LAMBDA.

5.1. Jackknife Null Tests

We perform jackknife null tests before the unbiasing

step to look for potential systematic contamination. In
each test, we sort the 50 map bundles based on that
potential systematic, and difference each pair of bundles
that are maximally different in that metric. The spectra
of these null map bundles are expected to be zero on
average, otherwise it indicates our data is contaminated
by that systematic.

We perform a total of seven jackknife null tests. The
left-right, sun, and moon jackknives are done in the same
way as H18. For the azimuth jackknife, in order to max-
imize sensitivity to azimuth, we no longer use the same
50 map bundles for this test; instead we re-bundle every
observation sorted by azimuth into a new set of 50 bun-
dles. We test for potential contamination coming from
a building at 153◦ azimuth by sorting and differencing
these new 50 bundles based on distance to 153◦ azimuth.
For the chronological null tests, unlike H18, we perform
three separate jackknives: 1st half minus 2nd half within

https://pole.uchicago.edu/public/Data%20Releases.html
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Figure 4. SPTpol 500 deg2 TE angular power spectrum, with an inset plot zooming in at high ℓ. The gray line is the Planck
best-fit ΛCDM model, and the colored error bars are the square root of the diagonal elements of the bandpower covariance
matrix without “further conditioning” (see Section 5.3). We plot residuals ∆Dℓ to the Planck best-fit ΛCDM model in the
subpanel; cross-frequency bandpowers are omitted for better legibility. Small offsets in ℓ have been added for plotting purposes.

lead-trail observations, 1st half minus 2nd half within

full-field observations, and “1st half of lead-trail plus 1st
half of full-field” minus “2nd half of lead-trail plus 2nd
half of full-field”. This way, for all the jackknives above,
their null spectra in signal-only simulations are expected
to be small, and we verified that they are indeed neg-
ligible, therefore we do not subtract the simulated null
spectra from the jackknife null spectra as in H18. In-
stead, we compute the χ2 of jackknife null spectra with
respect to zero.
In the left-right jackknife, we found excess power in

the TE spectra. Looking through each null map bundle,
we only saw this excess power in a few date ranges in
2013. We removed observations between 2013 July 27
to August 9, October 25 to November 1, and November

15 to November 27. A total of 228 observations were
removed. In the azimuth jackknife, we also found excess
power in the lowest ℓ-bin (50 < ℓ < 100) of the 150 GHz
spectra. The source of this power was found to be a
coherent azimuth-dependent systematic contamination,
concentrated in a small area in 2D Fourier space. As
a solution, we applied a mask in that area in the 2D
Fourier space, for the low-ℓ focused dataset only, for

both the data maps and simulated maps.
We present the probabilities to exceed (PTEs) for

these jackknife χ2 tests, calculated after the fixes just
discussed, in Table 1. None of these PTEs fall out-
side of the threshold typically used in SPT papers (e.g.
Dutcher et al. 2021), namely 0.05/Ntests or one minus
this value. We conclude that our data does not con-
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Figure 5. SPTpol 500 deg2 EE angular power spectrum. The gray line is the Planck best-fit ΛCDM model, and the colored
error bars are the square root of the diagonal elements of the bandpower covariance matrix without “further conditioning” (see
Section 5.3). We plot residuals ∆Dℓ to the Planck best-fit ΛCDM model in the subpanel; cross-frequency bandpowers are
omitted for better legibility. Small offsets in ℓ have been added for plotting purposes.

tain statistically significant systematic biases from the
sources tested here.

Table 1. PTE values of each jackknife null test in this work.

150 GHz 95 GHz

EE TE EE TE

Lead-Trail 1st-2nd 0.81 0.24 0.70 0.39

Full-Field 1st-2nd 0.29 0.31 0.15 0.35

both 1st - both 2nd 0.13 0.10 0.36 0.04

left-right 0.05 0.20 0.28 0.18

sun 0.17 0.27 0.69 0.70

moon 0.59 0.81 0.02 0.33

azimuth 0.43 0.40 0.23 0.38

5.2. Bandpower Covariance Matrix

In addition to measuring the bandpowers, we also need
to know their uncertainties and the correlation of these
uncertainties, i.e., the bandpower covariance matrix. It
accounts for contributions from both sample variance
and noise variance. From our 95 and 150 GHz tempera-
ture and E-mode maps, there are seven possible sets of
TE or EE bandpowers one can calculate (95T × 95E,
95T × 150E, 150T × 95E, 150T × 150E, 95E × 95E,

95E× 150E, 150E× 150E); we concatenate these seven
sets of bandpowers, and therefore our covariance matrix
has a 7× 7 block structure.
H18 added noise map realizations to noiseless simu-

lated maps and then calculated the bandpower covari-
ance matrix from them, but in this work we did not make
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noisy sim maps. We found the (co)variance of the noise
realizations to be numerically noisy at high ℓ (especially
for 95 GHz), so instead, we use the expected variance in

the algebraic form for the noise part. To be specific, the
diagonal elements of each block in the covariance matrix
are expected to be (Lueker et al. 2010):

ΞAB,CD
bb ≃ 1

νb

(
⟨DAC

b ⟩⟨DBD
b ⟩+ ⟨DAD

b ⟩⟨DBC
b ⟩

)
, (6)

where νb is the effective number of degrees of freedom,
and DAB

b is the cross-spectrum between maps A and B.
We assume each map in {A,B,C,D} can be decomposed

into signal, identical in all maps, and noise, uncorrelated
between maps, so that the cross-spectrum DAB

b = Sb +
NAA

b δAB , where δAB is the Kronecker delta function.

Thus, if A,B,C,D are all different maps for example, all
the noise cross-spectra in Eq. 6 are assumed to be zero,
and only the signal part of the covariance remains: Ξbb =
2S2

b /νb. As another example, if A,B,C,D are all the

same map, the noise parts will be completely correlated,
so the expected variance becomes Ξbb = (2S2

b +4SbNb+
2N2

b )/νb.
We split the covariance into a sum of two parts and

obtain them differently, the signal-only part (S2) and

the noisy part (S × N and N2). The S2 part is not
very noisy numerically, so we calculate it directly from
the auto-spectra of 226 noiseless simulated maps, as in

Crites et al. (2015). In addition, we use Eq. 6 backwards
to obtain νb for use in the next part:

• Let A = C = 95 GHz T map, B = D = 95 GHz
E map, compute νb as νTE95

b ;

• Let A = C = 150 GHz T map, B = D = 150 GHz
E map, compute νb as νTE150

b ;

• Let A = C = 95 GHz E map, B = D = 95 GHz
E map, compute νb as νEE95

b ;

• Let A = C = 150 GHz E map, B = D = 150 GHz
E map, compute νb as νEE150

b ;

Finally, our estimate of νTE
b is the average of νTE95

b

and νTE150
b , and our estimate of νEE

b is the average of
νEE95
b and νEE150

b . For the S×N and N2 part, we again
use Eq. 6 to obtain ΞAB,CD

bb using the average spectra Sb

of noiseless simulations, the average spectra Nb of noise
realizations, and the aforementioned νTE

b and νEE
b .

The off-diagonal elements of each block in the covari-
ance matrix are expected to reflect mode-coupling from
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Figure 7. SPTpol and other contemporary measurements of the EE angular power spectrum. Black points and error bars are
the SPTpol minimum-variance bandpowers in this work. SPT-3G 2018 TT/TE/EE bandpowers are in green (Balkenhol et al.
2023), BICEP2/Keck in blue (BICEP2 and Keck Array Collaborations et al. 2015), ACT DR4 in magenta (Choi et al. 2020),
and Planck in orange (restricted to ℓ < 1500). The gray line is the Planck best-fit ΛCDM model.

two sources, apodization mask and lensing. These ele-
ments are again numerically noisy, so we model them in
the following way.

Lensing introduces mode-coupling in a “checker-
board” pattern (Benoit-Lévy et al. 2012), and it is fur-
thermore amplified and distorted under the flat-sky ap-
proximation we use. To estimate this resulting correla-

tion matrix, we take 3,000 pairs of noiseless simulated
HEALPix (Górski et al. 2005) skies (one lensed and one
unlensed), and convert them into flat-sky maps under
the oblique Lambert azimuthal equal-area projection.
We apply the same apodization mask as used for the
data, and we compute the TE and EE spectra of the
masked flat-sky maps. The correlation matrix estimated
using the 3,000 unlensed spectra only contains mode-
coupling from the mask, and we model it in a similar way
as H18, averaging elements the same distance from the

diagonal, and setting all elements greater than ∆ℓ = 50
from the diagonal to zero. On the other hand, the cor-
relation matrix estimated using the 3,000 lensed spectra
contains mode-coupling from both the mask and lens-
ing, therefore we subtract from it the aforementioned
correlation matrix of unlensed spectra, and we take the
remainder as our model of the lensing “checkerboard”.

We compute these model correlation matrices separately
for TE × TE and EE × EE.
We arrange these TE×TE or EE×EE model corre-

lation matrices into the same 7 × 7 block structure; for

a TE × EE off-diagonal block, we take the arithmetic
mean of TE×TE and EE×EE. These correlation ma-
trices are then converted into covariance using the main

diagonal of the 7× 7 bandpower covariance matrix, but
for the lensing “checkerboard” part, only the S2 part of
the main diagonal is used, since noise is expected to have
zero contribution. Finally, all the off-diagonal elements
from the lensing part and the masking part are added to
the bandpower covariance matrix. This matrix is then
binned to the same coarse ℓ bins as our bandpowers.

The bandpower covariance matrix constructed this
way is positive definite. It has 392×392 elements, but we
note that only 226 independent simulated auto-spectra
were used in its construction, leading to numerical in-
stability when inverting (near rank deficiency) as we will
see in the internal consistency tests (Section 5.3).
Our beam uncertainty comes from 3 sources, and as

in H18, we do not incorporate them into the bandpower
covariance matrix when performing cosmology fits. In-
stead, we compute beam uncertainty eigenmodes from
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each of them, and treat their amplitudes as nuisance
parameters during cosmology fits. When performing in-
ternal consistency tests however, we indeed add the ap-
propriate contribution from beams into the covariance
matrix.
The 1st source of beam uncertainty is the variation

between the 5 Venus observations. From each Venus ob-
servation, we make an instance of B2

ℓ , and we make them
in the same way for the 95 and 150 GHz bands. To cap-
ture the correlation between bands, we concatenate the
three types of spectra (95×95, 95×150, 150×150), and
compute its 3×3-block covariance matrix. This is the
covariance matrix of B2

ℓ , we extract 4 eigenmodes from
this matrix, and then under the first-order approxima-
tion, we convert it into a bandpower covariance matrix

Di×j
ℓ Dk×l

ℓ′
cov

(
(B2

ℓ )
i×j , (B2

ℓ′)
k×l
)

(B2
ℓ )

i×j(B2
ℓ′)

k×l

where Dℓ is CMB bandpowers from a fiducial model.
The 2nd source is the uncertainty on the size of the

pointing jitter kernels. The nominal pointing jitter ker-
nel is estimated by fitting 2D Gaussians to the two
brightest point sources in our field, and then averag-
ing over the two. Using the pointing jitter size of each

source individually, we compute their B2
ℓ in the same

3-block structure, and the 3×3-block covariance matrix
between the two B2

ℓ contains 1 non-trivial eigenmode.

We convert it into a bandpower covariance matrix in
the same way as described above.
The 3rd source of beam uncertainty comes from the

low-ℓ beam shape, described by AS95
beam and AS150

beam in
Section 4.4. By definition the beam uncertainty δBℓ =
δAbeam ·∆Bℓ where δAbeam is the 1-σ uncertainty of the
Abeam parameter, and we obtain the 1-σ uncertainty on

AS95
beam during the fits in Section 4.4 when we allow AS95

beam

and AS150
beam to float simultaneously. In that fit we also

find the correlation corr(AS95
beam, A

S150
beam) to be 0.45. From

these we can construct bandpower correlation matrices
by generalizing the method in Aylor et al. (2017). With
i, j, k, l denoting either SPTpol 95 GHz or 150 GHz,

ρi×j,k×l
ℓℓ′ =

〈
δDℓ

Dℓ

i×j

· δDℓ′

Dℓ′

k×l
〉

where
δDℓ

Dℓ

i×j

=

(
1 +

δBℓ

Bℓ

i
)−1(

1 +
δBℓ

Bℓ

j
)−1

− 1

to first order, = − δBℓ

Bℓ

i

− δBℓ

Bℓ

j

⇒ ρi×j,k×l
ℓℓ′ =

〈
δBℓ

Bℓ

i δBℓ′

Bℓ′

k
〉

+

〈
δBℓ

Bℓ

i δBℓ′

Bℓ′

l
〉

+

〈
δBℓ

Bℓ

j δBℓ′

Bℓ′

k
〉

+

〈
δBℓ

Bℓ

j δBℓ′

Bℓ′

l
〉

=
δBℓ

Bℓ

i δBℓ′

Bℓ′

k

corr
(
Ai

beam, A
k
beam

)
+

δBℓ

Bℓ

i δBℓ′

Bℓ′

l

corr
(
Ai

beam, A
l
beam

)
+

δBℓ

Bℓ

j δBℓ′

Bℓ′

k

corr
(
Aj

beam, A
k
beam

)
+

δBℓ

Bℓ

j δBℓ′

Bℓ′

l

corr
(
Aj

beam, A
l
beam

)
.

We stack these correlation matrices into a 3× 3 block
structure in the order of (95 × 95, 95 × 150, 150 × 150),
and we extract 2 eigenmodes from this matrix. Finally,
we use model bandpowers Dℓ to convert it into a band-

power covariance matrix Di×j
ℓ Dk×l

ℓ′ ρi×j,k×l
ℓℓ′ (Dutcher

et al. 2021). The total contribution from these 3 sources
of beam uncertainty to the bandpower covariance matrix
is therefore(

cov(B2, i×j
ℓ , B2, k×l

ℓ′ )venus + cov(B2, i×j
ℓ , B2, k×l

ℓ′ )jitter

B2, i×j
ℓ B2, k×l

ℓ′

+ ρi×j,k×l
ℓℓ′

)
·Di×j

ℓ Dk×l
ℓ′ ,

and the 4 + 1 + 2 beam uncertainty eigenmodes ex-
tracted are included in the fitting process described in

Section 6.2, with their amplitudes treated as nuisance
parameters. The priors on the beam eigenmode am-
plitudes are Gaussian, with 1-σ widths equal to their
eigenvalues.

5.3. Internal Consistency

We expect the multifrequency bandpowers to be con-
sistent with each other, assuming differences in fore-

grounds are small. With this expectation, we can con-
struct minimum-variance bandpowers DMV in the same
way as Mocanu et al. (2019) and Dutcher et al. (2021),
and then perform the same chi-squared test to test this
expectation.

DMV =
(
XTC−1X

)−1
XTC−1D ,

where D is our 7-block TE and EE bandpowers, C is
our 7×7-block bandpower covariance matrix, and X is
a 392 × 112 design matrix. In the first 56 columns of
X, four elements corresponding to TE bandpowers in
that ℓ-bin are 1, others are 0; in the last 56 columns

of X, three elements corresponding to EE bandpow-
ers in that ℓ-bin are 1, others are 0. Next we compute
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the χ2 that quantifies the difference between our multi-
frequency bandpowers and minimum-variance bandpow-
ers:

χ2 = (D −M)TC−1(D −M) ,

where M = XDMV . We find the resulting χ2 to be
too high for 280 degrees of freedom (392 multifrequency
bandpowers − 112 minimum-variance bandpowers).
In other words, we do not pass this test when using the

bandpower covariance matrix as constructed. It could
be due to the near rank deficiency of the bandpower co-
variance matrix, which is numerically unstable during
inversion. To mitigate that, we choose a threshold for
the eigenvalues under which we set them to a large num-
ber, essentially erasing information along those eigen-
modes. The criterion for choosing this threshold is the
χ2 distribution of the 226 simulated auto-spectra, com-
puted with this conditioned covariance matrix. When N

eigenmodes are erased, the distribution of these 226 χ2

should be consistent with a χ2 pdf of 392−1−N degrees
of freedom, and we quantify this using a Kolmogorov-
Smirnov test. After trying various cutoff thresholds, we

find that a threshold of “2.619× 10−5 times the largest
eigenvalue” passes all the criteria above. There are 57
eigenvalues smaller than this threshold, and they are set

to very large values instead. After this “further condi-
tioning”, the χ2 in the minimum-variance test becomes
χ2 = 257.79 for 223 degrees of freedom (PTE of 0.0548),
and the Kolmogorov-Smirnov test gives a PTE of 0.239.

As a check that the eigenmodes erased are indeed spu-
rious, we show that the parameter constraints are not
significantly degraded in Section 6.3.

We use this conditioned 7 × 7 bandpower covariance
matrix when fitting cosmology with our full data vector
in Section 7. However, the original covariance matrix

(before this conditioning) is also saved for later use, as
are the 57 eigenvectors that were erased. We will discuss
them in Section 7.1.

6. LIKELIHOOD

We write the likelihood in the Cobaya framework (Tor-
rado & Lewis 2021) and use Markov Chain Monte Carlo
(Christensen et al. 2001; Lewis & Bridle 2002) to sam-
ple the posterior distributions of the parameters. For
CMB power spectra in the ΛCDM model, we use the
emulator described in Bolliet et al. (2023) trained in the
CosmoPower framework (Spurio Mancini et al. 2022)
using outputs from the CLASS Boltzmann code (Lesgour-

gues 2011; Blas et al. 2011). For the ΛCDM + AL ex-
tension, we use the CAMB Boltzmann code (Lewis et al.
2000). The sum of neutrino masses is 0.06 eV in both
cases.

6.1. ΛCDM Parameters

The six ΛCDM parameters in the emulator are:
the reionization optical depth τ , the Hubble constant
H0, the baryon density Ωbh

2, the dark matter density
Ωcdmh

2, the scalar spectral index ns, and ln(1010As)
where As is the amplitude of primordial scalar pertur-
bations at k = 0.05 Mpc−1. The emulator also returns
the angular size of the sound horizon at recombination
(100θs) as a derived parameter, but we note that θs
in CLASS is defined differently than the θMC defined in
CosmoMC, therefore we never directly compare the θs
in this work with θMC in other works.
SPTpol data alone does not have strong constraining

power on the reionization optical depth τ . As in Balken-
hol et al. (2023), we use a Planck -based Gaussian prior
of τ = 0.0540 ± 0.0074. We do not apply any prior to
the other five ΛCDM parameters.

6.2. Nuisance Parameters

We fit for the temperature and polarization calibra-
tion factors in Section 4.4, and we obtained their best-
fit values and 1-σ uncertainties. Although we already

used these best-fit values to calibrate our data band-
powers, here we still allow the calibration factors to
float as nuisance parameters, with a Gaussian prior cen-
tered on unity and 1-σ uncertainties taken from the

above. Because we calibrate our 95 GHz data against
our 150 GHz data, the Tcal for 95 and 150 GHz are
correlated, therefore we rearrange terms to define four

independent nuisance parameters: T 150
cal , P

150
cal , T

95to150
cal ,

and E95to150
cal . T 95to150

cal is defined to be T 95
cal/T

150
cal , and

E95to150
cal is defined to be T 95

calP
95
cal/(T

150
cal P

150
cal ), and they

are both independent quantities obtained from the fits

in Section 4.4. The Gaussian prior 1-σ on T 95to150
cal is

0.00115, and the 1-σ on E95to150
cal is 0.00746. For T 150

cal , we
also need to incorporate the calibration uncertainty of
Planck, and the resulting Gaussian prior 1-σ is 0.00271.
For the polarization calibration factors, their Gaussian
prior 1-σ are taken from the findings of H18 (0.01).
We extract a total of 7 beam uncertainty eigenmodes

when making the bandpower covariance matrix, as men-
tioned in Section 5.2. In our cosmology fits, we allow the
bandpowers to have variations along those 7 eigenmodes
Hn

ℓ ,

Cbeam
ℓ,n = anbeamH

n
ℓ

Cℓ → Cℓ

7∏
n=1

(
1 + Cbeam

ℓ,n

)
,

where n indexes the eigenmodes, Cℓ is the theory power
spectrum, and anbeam are the nuisance parameters in-
troduced here as the amplitudes of the eigenmodes. We
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apply Gaussian priors centered on zero to anbeam, and the
eigenvalues found when we extracted those eigenmodes
are used here as the 1-σ widths of the priors.
We introduce a total of 8 nuisance parameters for fore-

ground parameterization, and they are defined in a sim-
ilar way to H18. For the power spectrum of Galactic
dust, we follow the model of Planck Collaboration et al.
(2016a),

DXY 95
ℓ,dust = AXY 95

80

(
ℓ

80

)αXY +2

DXY 150
ℓ,dust = AXY 150

80

(
ℓ

80

)αXY +2

,

where XY ∈ {TE,EE}, the superscripts 95 or 150 de-
note either frequency band, A80 is the amplitude of the
spectrum at ℓ = 80 in units of µK2, and αXY is the
ℓ-space spectral index. We assume αXY to be the same

between 95 and 150 GHz. For the cross-frequency power
spectra 95×150, we assume dust is 100% correlated, i.e.

DXY 95×150
ℓ,dust =

√
AXY 95

80 ·AXY 150
80

(
ℓ

80

)αXY +2

.

The priors for these nuisance parameters are also mo-

tivated by the findings of Planck Collaboration et al.
(2016a). For all the A80 parameters, we use a uni-
form prior between 0 and 2 µK2. For αXY , we use

a Gaussian prior centered on −2.42 with a σ of 0.02.
For polarized extragalactic point sources, we use a sin-
gle component DEE

ℓ ∝ ℓ2 to model the residual power
after masking all sources above 50 mJy in unpolarized

flux at 95 or 150 GHz. We introduce the nuisance pa-
rameters DPSEE,95

3000 and DPSEE,150
3000 as the amplitude of

this component at ℓ = 3000 for the 95 and 150 GHz

EE spectra, respectively. The amplitude of this com-
ponent for the 95 × 150 EE spectrum is assumed to

be

√
DPSEE,95

3000 ·DPSEE,150
3000 . We apply a uniform prior

between 0 and 2 µK2 on these two parameters.
As in H18, we use one parameter to account for

“super-sample lensing” at every step in the Markov
chain (Manzotti et al. 2014):

ĈXY
ℓ (p;κ) = CXY

ℓ (p)− ∂ℓ2CXY
ℓ (p)

∂ ln ℓ

κ

ℓ2
,

where p is the parameter vector, and the nuisance pa-

rameter κ is the mean lensing convergence in the field.
We apply a Gaussian prior centered on zero with a σ
of 0.001 to κ. For aberration, we apply the usual zero-
parameter correction to the theory spectra (Jeong et al.
2014):

Cℓ → Cℓ − Cℓ
d lnCℓ

d ln ℓ
β⟨cos θ⟩ ,

where β = 0.0012309 and ⟨cos θ⟩ = −0.40.

6.3. Pipeline Consistency Test

We perform several consistency tests on our likeli-
hood and fitting pipeline. First, we try to recover
the ΛCDM parameters of the input cosmology cho-
sen for making simulated skies in Section 4.3. We take
the average of our 226 noise-free simulated bandpow-
ers, thereby reducing sample variance as much as pos-
sible, and fit it with the pipeline described in this sec-
tion. Using the best-fit values and the marginalized 1-σ
widths of each parameter, we find the following shifts
compared to the nominal values of the input cosmology
(Planck base_plikHM_TT_lowTEB_lensing): ∆Ωbh

2 =
−0.02σ,∆Ωcdmh

2 = 0.05σ,∆H0 = −0.05σ,∆τ =
0.02σ,∆(109Ase

−2τ ) = 0.05σ,∆ns = 0.01σ. All six
parameters are in excellent agreement, with the shifts
being smaller than 1/

√
226 of a σ.

Furthermore, when making simulated bandpowers,
we also make 90 realizations of an “alternate cosmol-
ogy” as previously mentioned. Our alternate cosmol-

ogy is the same one as H18 (Ωbh
2 = 0.018,Ωcdmh

2 =
0.14, θMC = 1.079, τ = 0.058, As = 2.2 × 10−9, ns =
0.92), and with foreground amplitudes doubled. We

take the average of these alternate cosmology simu-
lated bandpowers, unbias them with the same kernel
used in Section 4, and fit them to ΛCDM theory with
the same bandpower covariance matrix obtained in Sec-

tion 5. This allows us to test whether the unbias-
ing kernel and/or the covariance matrix have a strong
dependence on the chosen input cosmology. As a re-

sult, we find the following shifts in the parameter con-
straints: (∆Ωbh

2 = 0.18σ,∆Ωcdmh
2 = −0.52σ,∆θs =

−0.57σ,∆τ = −0.01σ,∆As = −0.26σ,∆ns = 0.11σ).

Although this result shows some half-sigma shifts, we
note that the θMC in this cosmology is drastically differ-
ent from the current best constraints obtained by Planck
(θMC =∼ 1.041). The 1-σ uncertainty on θs in this result

is 0.00114, which means θ is ∼ 30σ away from Planck.
Therefore this is a very stringent test, and it shows our
pipeline is quite robust against variations in the chosen
input cosmology.
Finally, we verify that the “further conditioning” of

the bandpower covariance matrix done in Section 5.3

did not degrade our cosmological parameter constraints
too much. In that step, we erased information along 57
eigenmodes of the covariance matrix, and the assump-
tion was that most of those eigenmodes were spurious in
the first place. As a test, we fit our full data bandpow-
ers to ΛCDM cosmology again in the same way, but
this time using the bandpower covariance matrix be-
fore the further conditioning step. We compare, not the
best-fit parameters, but the 1-σ widths of the parameter
constraints before and after further conditioning. The
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result is that the constraint on 109Ase
−2τ is degraded

by 6%, the constraint on ns by 4%, and the constraints
on other parameters by less than 2%. We conclude that
this assumption is valid and that “further conditioning”
is justified.

7. COSMOLOGICAL CONSTRAINTS

Table 2 shows the combined cosmological parameter
constraints in the ΛCDM model from the seven sets
of multifrequency bandpowers in this SPTpol EE/TE
dataset. We find H0 = 70.48 ± 2.16 km s−1 Mpc−1,
Ωm = 0.271 ± 0.026, and σ8 = 0.758 ± 0.022. The χ2

of the best-fit ΛCDM theory curve to the SPTpol data
bandpowers is χ2 = 356.55 for 324 degrees of freedom
(PTE of 0.10).

Table 2. ΛCDM parameter constraints and 68% uncer-
tainties from the full SPTpol 500 deg2 dataset. The top
half shows free ΛCDM parameters (with a Gaussian prior
on τ = 0.0540± 0.0074), and the bottom half shows derived
parameters. H0 is expressed in units of km s−1 Mpc−1.

free

100 Ωbh
2 2.271 ± 0.041

Ωch
2 0.1115 ± 0.0051

ns 0.993 ± 0.024

H0 70.48 ± 2.16

ln (1010As) 2.968 ± 0.032

derived

100 θs 1.0409 ± 0.0015

109Ase
−2τ 1.754 ± 0.052

σ8 0.758 ± 0.022

Ωm 0.271 ± 0.026

We find the polarized point source power DPSEE,95
3000 <

0.43 µK2 and DPSEE,150
3000 < 0.035 µK2 at 95% confi-

dence. This upper limit in 150 GHz seems to be three
times better than H18, but we caution against taking it
at face value; if we did not use the prior to constrain
DPSEE,150

3000 between 0 and 2, the best fit would actually
prefer a negative value (−0.045 µK2) due to the random
noise in our bandpowers. Therefore our upper limit on
DPSEE,150

3000 is artificially tight. As for the Galactic dust
power, the upper limits at 95% confidence are 1.21, 0.89,
0.21, and 0.24 µK2 for DTE95

80,dust, D
TE150
80,dust, D

EE95
80,dust, and

DEE150
80,dust, respectively.

7.1. Data Splits

As another check of the internal consistency of the
SPTpol EE/TE dataset, we split the data into several
subsets and compare the best-fit cosmological parame-
ters between each subset and the full dataset. We also
compute the χ2 and PTE to the ΛCDM model for each
data subset individually. We test seven different subsets

of the data: the 95 and 150 GHz auto-frequency spectra,
the 95 × 150 cross-frequency spectra, the TE-only and
EE-only spectra, and the ℓ < 1000 and ℓ > 1000 band-
powers. We fit each subset to ΛCDM cosmology with
the same method described in Section 6, where only the
relevant nuisance parameters are floated, the rest fixed
to the best-fit values from the full SPTpol dataset. In
order to keep the fitting methodology comparable be-
tween the subset and the full dataset, for the case of
each subset, we fit the full dataset again, with these
same nuisance parameters fixed or floated.
For each subset, we would like to slice the bandpower

covariance matrix to keep only the relevant blocks, how-
ever it would be mathematically wrong to slice the ma-
trix after the “further conditioning” described in Sec-
tion 5.3. We instead slice the original covariance ma-
trix, but in order to keep the methodology “apples-
to-apples” between the subset and the full dataset, we
need to appropriately account for the 57 erased eigen-

modes here. Therefore, as part of the likelihood code,
whenever we subtract the theory ΛCDM curve from the
SPTpol bandpowers, we take this residual vector, com-
pute its projections with respect to the 57 eigenvectors

mentioned in Section 5.3, and subtract these projections
from the residual vector. This effectively erases informa-
tion along these 57 eigenvectors from the residual vector.

Finally, this residual vector is sliced to keep only the
relevant sections, and is used with the sliced covariance
matrix for fitting.

We compare the best-fit cosmological parameters be-
tween each subset and the full dataset under these con-
ditions. Similar to Dutcher et al. (2021), we quantify
their consistency with a parameter-level χ2 and PTE,

over the five parameters ln(1010As), ns,Ωbh
2,Ωch

2, and
100θs (5 degrees of freedom). τ is excluded here because
the constraints on it are prior-dominated. We define this

χ2 as:

χ2 = ∆pTC−1
p ∆p, (7)

where ∆p is a vector of the difference in best-fit pa-
rameters between the subset and the full dataset, and
Cp is the covariance of the parameter differences. From
Gratton & Challinor (2020), Cp simply equals the dif-
ference of parameter-level covariance matrices between
the subset and the full dataset. The results are listed in

Table 3, and all seven data splits are within the central
95% confidence interval [2.5%, 97.5%].
In addition to comparing to the full dataset, we quan-

tify the goodness-of-fit of each data split on its own by
computing the χ2 PTE of their bandpowers with respect
to their best-fit ΛCDM theory curve. As shown in Ta-
ble 4, the goodness-of-fit is generally improved over H18,

except for the TE-only subset. The χ2 for the TE-only
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Table 3. Parameter-level χ2 and the associated PTE be-
tween each data split and the full dataset. The five pa-
rameters being compared are ln(1010As), ns,Ωbh

2,Ωch
2, and

100θs.

Subset χ2 PTE

95 GHz 6.16 29.1%

150 GHz 2.80 73.1%

95× 150 1.83 87.2%

TE 1.63 89.8%

EE 2.16 82.7%

ℓ < 1000 9.87 7.9%

ℓ > 1000 12.57 2.8%

subset is χ2 = 238.11 for 180 degrees of freedom (PTE
of 0.24%). Although the origin of this low PTE is not
completely understood, we note that if we remove the

highest ℓ-bin (7000 < ℓ < 8000) of 90 × 90 TE (which
has negligible effect on cosmology) the PTE increases to
1.5%. Out of 7 tests we expect the lowest PTE to be
this low as frequently as 10% of the time.

Table 4. Goodness-of-fit for each data split. We compute
the χ2 between the bandpowers and their best-fit ΛCDM
theory curve, then compute their PTE values.

Subset PTE

95 GHz 10.8%

150 GHz 26.0%

95× 150 17.3%

TE 0.24%

EE 84.8%

ℓ < 1000 30.5%

ℓ > 1000 10.4%

7.2. Comparison with H18

Given that our analysis shares much of the same data
as H18, it’s interesting to compare to those results more
directly. Our overall measurements and constraints are
largely consistent with H18, with our analysis also mak-
ing several improvements. Notably, some weak ten-

sions in H18 have lessened, including the poor fit to
the ΛCDM model and the difference in the ΛCDM
parameters fit to the TE and EE bandpowers. As a
more apples-to-apples comparison to H18, we redo the
ΛCDM fit of our 150 GHz-only subset, without the ad-
ditional step of projecting with respect to the 57 eigen-
vectors as described in Section 7.1. The fit is indeed
good, with χ2 = 115.24 for 104 degrees of freedom (PTE
of 0.21). Further testing shows that this improvement in
goodness-of-fit comes from improvements in the band-
powers, not the covariance matrix: When we redo this

150 GHz-only fit with our bandpowers and the covari-
ance matrix of H18, the fit is equally good (PTE of 0.21),
but when we redo this fit with our covariance matrix and
the bandpowers of H18, the χ2 = 165.77 for 104 degrees
of freedom (PTE of 0.0001).
Two mild tensions at a ∼ 2σ level that have persisted

from H18 are: the differences in cosmological parame-
ters fit to the high and low-ℓ bandpowers, and a pref-
erence for AL < 1 (Section 7.3). H18 found that the
ℓ < 1000 subset prefers a low H0 and a high 109Ase

−2τ ,
whereas the ℓ > 1000 subset prefers a high H0 and a
low 109Ase

−2τ . We lay out the ΛCDM parameter con-
straints in this work in Table 5 for various subsets. The
parameters in Table 5 are derived using bandpower co-
variance matrices without the step of projecting the 57
eigenvectors; we find that for the covariance matrix of
the 150 GHz-only subsets, extra projection is unnec-
essary because it has fewer entries and has no nearly-
identical rows as in the full set. We also do not see nu-

merical instability issues with the single-frequency ma-
trices. As such, columns (b) and (d) are directly com-
parable with Table 4 in H18, and the constraints are
indeed similar.

Figure 8 plots the parameter constraints in Table 5
and some additional data (sub)sets. We see the same
high/low-ℓ trend as in H18, in both the 95 GHz-only

and the 150 GHz-only subsets. But as previously noted,
the internal consistency between data splits and the full
dataset are still within the central 95% confidence inter-
val (the last two rows in Table 3), therefore this is only

a ≲ 2σ curiosity. This trend further weakens in SPT-3G
1500 deg2 analyses (Dutcher et al. 2021; Balkenhol et al.
2023) when data from an additional 1000 deg2 of sky is

added, therefore it is unlikely to be a hint for physics
beyond ΛCDM .
Alternatively, this trend could be an uncaught sys-

tematic bias, but some potential sources of systemat-
ics were already ruled out in the jackknife null tests,
and some others are being modeled as nuisance param-
eters. We can also rule out systematics that affect TE
and EE differently, such as T-to-P Leakage, because the
ΛCDM parameters for TE and EE are consistent with
each other and with that of the full dataset (see Table 3,

and data points corresponding to 150 GHz TE and EE
in Figure 8). Galactic foregrounds are also unlikely to
be contaminating our dataset; as pointed out by H18,
the level of EE power from Galactic dust expected in
our survey field is a factor of ∼ 20 below our measured
EE power in the lowest ℓ bin. One test we perform
is to restrict our data to ℓ < 3000, same as SPT-3G
analyses, in order to determine whether extragalactic
point-source power at high ℓ caused these findings to
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Table 5. ΛCDM parameter constraints and 68% uncertainties from a few data splits. The top half shows free ΛCDM
parameters (with a Gaussian prior on τ = 0.0540± 0.0074), and the bottom half shows derived parameters. H0 is expressed in
units of km s−1 Mpc−1.

(a) (b) (c) (d)

ℓ < 1000, 95 GHz ℓ < 1000, 150 GHz ℓ > 1000, 95 GHz ℓ > 1000, 150 GHz

free

100 Ωbh
2 2.220 ± 0.132 2.267 ± 0.125 2.334 ± 0.083 2.207 ± 0.050

Ωch
2 0.1327 ± 0.0134 0.1225 ± 0.0101 0.1065 ± 0.0124 0.1003 ± 0.0078

ns 0.902 ± 0.059 0.941 ± 0.047 1.037 ± 0.066 1.061 ± 0.046

H0 62.61 ± 5.42 66.89 ± 4.62 73.13 ± 5.80 74.84 ± 3.70

ln (1010As) 3.020 ± 0.047 3.017 ± 0.041 2.903 ± 0.065 2.902 ± 0.051

derived

100 θs 1.0406 ± 0.0026 1.0422 ± 0.0023 1.0411 ± 0.0018 1.0416 ± 0.0012

109Ase
−2τ 1.839 ± 0.081 1.833 ± 0.070 1.636 ± 0.104 1.635 ± 0.081

σ8 0.818 ± 0.044 0.800 ± 0.041 0.725 ± 0.057 0.712 ± 0.036

Ωm 0.397 ± 0.100 0.326 ± 0.066 0.244 ± 0.056 0.220 ± 0.035
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Figure 8. ΛCDM parameter constraints from the full SPTpol 500 deg2 dataset (baseline), several data splits, and H18. For
comparison, the horizontal lines and gray bands are the best-fit values and 1σ uncertainty ranges of Planck. The 150 GHz TE
and EE parameter constraints are consistent with each other. The ℓ < 1000 and ℓ > 1000 data splits are borderline consistent
at the ∼ 2σ level.

be different between SPT-3G and SPTpol. The result
is that the best-fit ΛCDM parameters change negligi-
bly, (∼ 0.07σ in the worst case,) therefore we conclude
our model of the point-source power is also adequate.
Lastly, if we multiply the widths of the priors on the
beam covariance nuisance parameters by a factor of 10,
the χ2 to the best-fit SPTpol cosmology changes by only

−1.6. This suggests that our beam uncertainty modes
are not driving the cosmological fits.

7.3. Gravitational Lensing, AL

AL is the unphysical scaling parameter of the lensing
spectrum (see Planck Collaboration et al. (2016b) for
details), and H18 found AL to be 0.81 ± 0.14. We take
the same approach and fit the extended model ΛCDM+
AL to our full dataset. We find AL = 0.70±0.13, which
is ∼ 2σ lower than unity.
Figure 9 shows the marginalized ΛCDM posteriors for

this work and other contemporary experiments. These
constraints are in good agreement, although the con-
straint on 109Ase

−2τ in this work is ≳ 2σ different from
Planck. When marginalized over AL, constraints on all
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Figure 9. Marginalized ΛCDM parameter constraints (posteriors) for SPTpol (this work, blue), SPT-3G 2018 TT/TE/EE
(Balkenhol et al. 2023, orange), ACT DR4 (Aiola et al. 2020, gray), and Planck (black line contours). We note that the SPTpol
and SPT-3G 2018 constraints are not independent due to shared sample variance (the SPT-3G survey field fully contains the
SPTpol field).

ΛCDM parameters shift to agree better with Planck
(black points in Figure 10). A deeper look at Figure 8
reveals that the ℓ < 1000 constraints all agree with
Planck, and that the difference in 109Ase

−2τ is primar-
ily driven by the ℓ > 1000 data splits. CMB lensing not
only causes peak smoothing, but transfers power to the
damping tail. The ℓ > 1000 data generally favors less
structure, a lower matter density, and less CMB lensing,
which due to degeneracies in cosmological parameters,
also favors larger values for the Hubble constant and
scalar tilt (see Table 5).
By fixing AL to our best-fit value (0.7) instead

of unity, the ΛCDM parameter constraints for the

150 GHz ℓ < 1000 data split do not change much, but
the constraints for 150 GHz ℓ > 1000 move to agree with
the former (see green and orange points in Figure 10).
When AL is fixed to 0.7 in this work, the ΛCDM con-
straints all agree between the 150 GHz ℓ < 1000 and
ℓ > 1000 data splits, the full dataset, and the nomi-
nal Planck ΛCDM constraints. We conclude that the
differences in cosmological parameters between the high
and low-ℓ data are driven by features in the high-ℓ data

that are consistent with less lensing, or lower AL.
One systematic bias that could affect AL is an un-

caught error in the mode-coupling matrix Mλλ′ , which
would introduce peak smoothing or sharpening. In
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Figure 10. Marginalized constraints on ΛCDM parameters for the baseline, the full dataset but with AL floated, the 150 GHz
ℓ < 1000 and ℓ > 1000 data splits with AL fixed to 0.7 or unity, and H18. The horizontal lines and gray bands are the best-fit
values and 1σ uncertainty ranges of Planck. When AL is fixed to 0.7, all these constraints agree between the 150 GHz ℓ < 1000
and ℓ > 1000 data splits, the full dataset, and Planck.

H18 and in this work, we analytically compute Mλλ′

in the flat-sky regime (Hivon et al. 2002; Crites et al.

2015). Dutcher et al. (2021) made Mλλ′ using curved-
sky HEALPix simulations, and verified that this sim-
ulated Mλλ′ agrees well enough with the analytically-
computed Mλλ′ for the 500 deg2 field. Nevertheless,
we try swapping in the simulated Mλλ′ in the range
500 < ℓ < 3000, remaking the 150 GHz EE bandpow-
ers, and rerunning ΛCDM + AL cosmology fits. The
constraint on AL for the 150 GHz EE subset changed
from 0.62 ± 0.21 to 0.59 ± 0.20. We conclude that our
Mλλ′ is unlikely to be erroneous enough to drive the
preference for AL < 1.
In Section 7.1 we mentioned the TE-only data split

having a poor goodness-of-fit to ΛCDM . One might

wonder whether the TE-only data is driving the pref-
erence for AL < 1, but that is not the case. Fitting
to the ΛCDM + AL extended model, TE-only gives
AL = 0.69±0.30, while EE-only gives AL = 0.61±0.21;
they both prefer AL < 1. In addition, the TE-only

goodness-of-fit does not improve when the AL extension
is added: It reduces χ2 by 1.2, and the PTE value re-

mains at 0.24%.
In summary, we conclude that the low AL favored by

the SPTpol data is either due to a statistical fluctuation,
or a measurement of low lensing power in the SPTpol
500 deg2 patch. The latter is disfavored by indepen-
dent measurements of the lensing power that use the
lensing-induced correlation between otherwise indepen-
dent CMB modes (Wu et al. 2019). The “lensing re-
construction” analysis for this 500 deg2 field found that
AL × Aϕϕ

L = 0.995 ± 0.090 (Bianchini et al. 2020),

where Aϕϕ
L only scales the lensing power regardless of

acoustic peak smearing; this constraint on the combi-
nation of these two parameters shows that the lensing
power in the 500 deg2 field is consistent with ΛCDM
expectations.

8. CONCLUSION

We have presented the full four-year SPTpol 500 deg2

temperature and E-mode polarization maps, in both the
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95 GHz and the 150 GHz frequency bands. We have also
presented the TE and EE angular power spectra in the
multipole range 50 < ℓ < 8000, and they are the most
sensitive measurements of the lensed TE and EE power
spectra at ℓ > ∼ 1700, and ℓ > ∼ 2000, respectively.
This SPTpol dataset is self-consistent. The various

cross-frequency bandpowers are consistent with each
other, as evidenced by the chi-squared test on the
minimum-variance bandpowers. The ΛCDM parame-
ter constraints are consistent across frequency bands,
the TE and EE bandpowers, and with the full dataset.
This dataset is a good fit to the ΛCDM model, as are
most data splits in this work. Using the full SPTpol
dataset and a Planck -based prior on the optical depth to
reionization, we find H0 = 70.48± 2.16 km s−1 Mpc−1,
Ωm = 0.271± 0.026, and σ8 = 0.758± 0.022.
We have made several improvements in the analy-

sis that have reduced several weak tensions found in
H18, including improvements in the goodness-of-fit to

the ΛCDM model, and less difference in the ΛCDM
parameters fit to the TE and EE bandpowers. The
two curiosities that have persisted from H18 are: The
ΛCDM parameter constraints from the ℓ < 1000 and

ℓ > 1000 data splits are borderline consistent at the
∼ 2σ level, and that the full SPTpol dataset prefers
AL = 0.70± 0.13 in the ΛCDM +AL model.

If AL is fixed to 0.7, the ℓ > 1000 ΛCDM parameter
constraints shift to agree very well with ℓ < 1000 and
Planck. We conclude that the differences in cosmological

parameters between the high and low-ℓ data are driven
by features in the high-ℓ data that are consistent with
lower AL. The preference for low AL in our analysis
is more likely due to a statistical fluctuation than an

indication of less lensing power in this patch, because
the lensing reconstruction analyses from this same data
set and field (Wu et al. 2019; Bianchini et al. 2020) are

consistent with AL = 1.

We look forward to upcoming SPT-3G and ACT
data releases to provide yet higher-sensitivity measure-
ments of the CMB power spectra, as well as measure-
ments from CMB experiments such as the soon-to-be-
deployed Simons Observatory Large Aperture Telescope
(Simons Observatory Collaboration 2019) and CMB-
S4 (CMB-S4 Collaboration 2019). In particular, we
note the recent powerful cosmological constraints from
polarization-only 2019-2020 SPT-3G data (Ge et al.
2024) and the promise of the newly completed SPT-3G
Wide Survey (see Prabhu et al. 2024 for details). The
next few years will bring a wealth of new cosmological
information from the CMB.
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