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Abstract

We construct a model of quark and lepton compositeness based on an
SU(15) gauge interaction that confines chiral preons, which are also charged
under the weakly-coupled SU(4)PS × SU(2)L × SU(2)R gauge group. The
breaking of the latter, down to the Standard Model group, is achieved by scalar
SU(15) bound states at a scale in the 30 − 100 TeV range. The embedding
of the QCD gauge group in SU(4)PS slows down the running of αs in the
UV. We estimate the effects of the strongly-coupled SU(15) dynamics on the
running of the SU(4)PS × SU(2)L × SU(2)R gauge couplings, which likely
remain perturbative beyond the compositeness scale of about 103 − 104 TeV,
and even above a unification scale. A composite vectorlike lepton doublet
acquires a mass in the TeV range probed at future colliders, and an extended
Higgs sector arises from 6-preon bound states.

1

ar
X

iv
:2

50
1.

11
60

7v
1 

 [h
ep

-p
h]

  2
0 

Ja
n 

20
25



Contents

1 Introduction 2

2 Preonic theory 4

3 Bound states of SU(15)p 6

3.1 Scalar di-prebaryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Di-prebaryons charged under SU(4)PS × SU(2)L × SU(2)R . . . . . . . . . 9

3.3 Spontaneous breaking of SU(4)PS × SU(2)R . . . . . . . . . . . . . . . . . 11

3.4 Effective theory below the SU(4)PS × SU(2)R breaking scale . . . . . . . . 13

4 Running of gauge couplings 16

4.1 Beta functions between mass thresholds . . . . . . . . . . . . . . . . . . . . 18

4.2 Gauge coupling evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Compositeness scale and premeson effects . . . . . . . . . . . . . . . . . . . 22

5 Conclusions 24

1 Introduction

The quest for uncovering deeper building blocks of matter was at the heart of physics

research throughout the 20th century, and yielded outstanding scientific breakthroughs.

Since the beginning of this century, that quest has been wavering, probably due to the

inherent difficulties of making progress towards understanding strongly-coupled quantum

field theories with chiral fermions [1]. Chiral gauge theories appear to be necessary for

describing the quarks and leptons as bound states, given that all Standard Model (SM)

fermions have chiral charges under the electroweak gauge group.

A recently proposed theory of quark and lepton compositeness [2] attempts to describe

the observed properties of the quarks and leptons based on an SU(15)p gauge interaction

that confines an anomaly-free set of chiral fermions, referred to as preons (for historical

reasons, e.g., [3, 4]). The latter include 15 fermions charged (the same way as a single

generation of SM fermions) under the SM gauge group, SU(3)c×SU(2)W ×U(1)Y , which
does not play a role in confining the preons. That theory has several successful features:

it implies the existence of three generations of composite quarks and leptons with the SM
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gauge charges, it provides a dynamical origin for the SM Higgs doublet as a 6-preon bound

state, and it predicts the existence of certain composite vectorlike quarks and leptons that

could be searched for at the LHC and future colliders.

At the same time, quark and lepton compositeness based on SU(15)p is facing some

challenges [5]. First, dimension-8 proton decay operators are likely induced at the com-

positeness scale, such that the latter must satisfy Λpre ≳ 103 TeV, with uncertainties

of more than an order of magnitude due to unknown nonperturbative effects. Second,

the presence of several composite vectorlike quarks implies that the QCD coupling loses

asymptotic freedom above a scale of about 10 TeV, and barely remains perturbative up

to Λpre. This suggests that SU(3)c should be embedded in a larger group, so that the

gauge coupling has a smaller positive β function (i.e., slower running), or even a negative

one (i.e., asymptotic freedom is recovered at higher scales).

Moreover, due to the composite vectorlike quarks and leptons, the U(1)Y coupling

loses perturbativity at a scale above Λpre but far below the GUT scale. Although we

cannot reliably predict what occurs in the region near the scale Λpre where the SU(15)p

interaction is strongly coupled, a self-consistent description of the hypercharge gauge

interaction requires embedding U(1)Y in a non-Abelian group. Only in that case the

hypercharge β function becomes smaller or even negative, due to the negative contribution

from the gauge boson self-coupling.

For the above reasons, in this paper we study a preonic SU(15)p theory in which the

preons are also charged under the minimal non-Abelian extension of the SM gauge group:

SU(4)PS × SU(2)L × SU(2)R. While the latter was proposed in [6] to provide a unified

origin for quarks and leptons, we study it here as a weakly-coupled non-Abelian gauge

group acting on preons as well as on preonic bounds states. Embedding the QCD gauge

group in SU(4)PS has the advantage that its gauge coupling runs slower at scales above

the masses of the composite vectorlike quarks. Moreover, we show that the binding due to

the additional gauge bosons may push the masses of several composite vectorlike fermions

towards the Λpre scale, further softening the running of the gauge couplings.

We also show that the composite scalars formed as di-prebaryon states (akin to the

deuteron in QCD) may provide the origin of SU(4)PS×SU(2)R breaking down to SU(3)c×
U(1)Y at a scale ΛPS < Λpre. While robust proofs of the mechanisms outlined here are not

possible in the absence of a better understanding of strongly-coupled chiral gauge theories,

which so far eludes lattice field theory (for recent attempts, see [7]), the SU(15)p ×
SU(4)PS × SU(2)L × SU(2)R gauge theory proposed here appears to have the necessary
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ingredients for a realistic theory of quark and lepton compositeness.

The paper is organized as follows. In Section 2 we introduce the preonic model above

the compositeness scale. In Section 3 we study the effective theory below the compos-

iteness scale. In particular, we examine the spontaneous breaking of SU(4)PS × SU(2)R

due to composite dynamics, followed by an analysis of the theory at scales below ΛPS. In

Section 4, we compute within this framework the running of the three gauge couplings

up to the compositeness scale, and then investigate how the gauge couplings may evolve

above Λpre. We summarize our findings and provide an outlook in Section 5.

2 Preonic theory

We consider a preonic theory with the SU(15)p × SU(4)PS × SU(2)L × SU(2)R gauge

symmetry. The SU(15)p group becomes strongly coupled at a scale Λpre, a few orders of

magnitude above the electroweak scale. SU(4)PS is the weakly-coupled group that embeds

QCD, SU(2)L is the SM gauge group associated with the weak interaction, and SU(2)R

is the weakly-coupled gauge group that together with the U(1)B−L subgroup of SU(4)PS

eventually breaks down to the SM hypercharge gauge group.

The preons are chiral fermions which transform nontrivially under SU(15)p: several

of them (ΨW ,ΨW ′ , ψ1, ψ2, ψ3) belong to the fundamental representation, and one fermion

(Ω) belongs to the conjugate symmetric representation. Only the ΨW and ΨW ′ fields are

charged under SU(4)PS × SU(2)L × SU(2)R, as shown in Table 1. This set of six chi-

field spin SU(15)p SU(4)PS × SU(2)L × SU(2)R

ΨW 1/2 ✷ ( 4 , 2 , 1 )

ΨW ′ 1/2 ✷ ( 4̄ , 1 , 2 )

ψ1, ψ2, ψ3 1/2 ✷ ( 1 , 1 , 1 )

Ω 1/2 ✷✷ ( 1 , 1 , 1 )

A , A′ 0 ✷
✷ ( 1 , 1 , 1 )

Table 1: Field content of the preonic model. All fields (6 chiral fermions and two scalars)
belong to nontrivial representations of the confining SU(15)p group. Only the ΨW and
ΨW ′ preons carry charges of the weakly-coupled SU(4)PS×SU(2)L×SU(2)R gauge group.
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ral fermion representations is free of gauge anomalies. In particular, the SU(15)p gauge

anomaly of Ω is cancelled by 19 fermions transforming in the fundamental representa-

tion [8]; this is achieved by the ψ1, ψ2, ψ3 fermions together with the 16 fundamentals of

SU(15)p packaged in ΨW and ΨW ′ .

The only other elementary fields present at scales of the order of Λpre are two scalars

(A, A′) in the conjugate antisymmetric representation of SU(15)p, whose Yukawa cou-

plings are ultimately responsible for the flavor dependence of the SM fermion masses (see

Section 3.4). The Yukawa couplings of the antisymmetric scalars to preons can be written

as

LYuk = λij Aab ψ
a
i ψ

b
j + λ′ij A′

ab ψ
a
i ψ

b
j +H.c. , (2.1)

where i, j = 1, 2, 3 are preonic flavor indices, and a, b = 1, ..., 15 are SU(15)p-color indices.

The Yukawa couplings λij form a complex symmetric matrix. Through an appropriate

redefinition of the fermion fields—implementing a Takagi factorization—this matrix can

be diagonalized with all entries (λi) real. In that field basis, λ′ij generically form a complex

symmetric matrix with both off-diagonal and diagonal nonzero entries.

Given that the second Dynkin indices for the symmetric and the antisymmetric SU(15)

representations are T2(Ω) = 17/2 and T2(A) = 13/2, respectively [8], we find the following

1-loop coefficient of the SU(15)p β function:

b15 = 55− 2

3

(
19

2
+ T2(Ω)

)
− 2

3
T2(A) =

116

3
. (2.2)

Thus, b15 > 0 (i.e., negative β function), implying asymptotic freedom for the SU(15)p

gauge interaction. Consequently, it is natural that SU(15)p is weakly coupled near the

Planck scale (MP), and that its gauge coupling grows logarithmically towards lower scales

until it becomes nonperturbative at Λpre, where it triggers confinement.

Turning now to the other gauge groups, the 1-loop coefficient of the β function is

b4 = −16/3 for SU(4)PS, and b2 = −38/3 for both SU(2)L and SU(2)R. As b4, b2 < 0, the

SU(4)PS×SU(2)L×SU(2)R gauge interactions are not asymptotically free. Furthermore,

the large values of |b4| and |b2| indicate that these interactions become strongly-coupled

at a UV scale below MP. Thus, either there is some strongly-coupled UV fixed point, or

SU(4)PS × SU(2)L × SU(2)R must be embedded in a larger gauge group at a scale Λ422

that satisfies Λpre < Λ422 < MP. That larger group can be a grand unified one, such as

SO(10), or just a product of groups with higher rank than SU(4)×SU(2)2. Note though

that |b4| is smaller than the analogous quantity for QCD, if SU(3)c were not embedded in

SU(4)PS. Therefore, the embedding pushes the scale Λ422 to higher values. The same is
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true for the embedding of the hypercharge gauge group in SU(4)PS×SU(2)R. In addition,

effects due to SU(15)p dynamics near Λpre (see Section 4.3) may substantially decrease

the gauge couplings such that Λ422 may be near MP.

3 Bound states of SU(15)p

At the scale Λpre, the SU(15)p interactions become strong and form SU(15)p-singlet

bound states. The chiral symmetry of the preons remains unbroken, so some fermionic

bound states, referred to as chiral prebaryons, remain massless at this stage. The ’t

Hooft anomaly matching conditions [1] indicate that the only chiral prebaryons are 3-

preon states formed of one preon belonging to the SU(15) conjugate symmetric tensor

representation (Ω in our model) and two preons belonging to the fundamental represen-

tation (ΨW , ΨW ′ , or ψi, i = 1, 2, 3) [9, 10]. Thus, the following 3-preon states (which

are 2-component fermions) remain massless: ΩΨW ψi , ΩΨW ′ ψi , Ωψi ψj , ΩΨW ΨW ′ ,

ΩΨW ΨW , ΩΨW ′ ΨW ′ , where i, j = 1, 2, 3 and i ̸= j. Since the ΨW and ΨW ′ preons

are charged under the weakly-coupled gauge group (see Table 1), the chiral prebaryons

belong to the SU(4)PS × SU(2)L × SU(2)R representations displayed in Table 2.

We label the chiral prebaryons as P with a lower index that specifies its SU(4)PS

representation, and when this does not uniquely determines the prebaryon, the SU(2)L

prebaryon preon content SU(4)PS × SU(2)L × SU(2)R

P15 , P1,2 ΩΨW ΨW ′ (15, 2, 2) , (1, 2, 2)

P10 , P6,3 ΩΨW ΨW (10, 1, 1) , (6, 3, 1)

P10 , P6,1 ΩΨW ′ ΨW ′ (10, 1, 1) , (6, 1, 3)

P i
4 ΩΨW ψi 3× (4, 2, 1)

P i
4̄ ΩΨW ′ ψi 3× (4, 1, 2)

P ij
1,1 Ωψi ψj 3× (1, 1, 1)

Table 2: Chiral prebaryons of SU(15)p, their preon content, and their representations
under the weakly-coupled gauge group. The preon flavor index is i = 1, 2, 3, so there
are three P i

4 prebaryons and three P i
4̄ prebaryons. The anticommutation property of the

preons implies that the P ij
1,1 prebaryons are antisymmetric in the i, j indices, so there are

also three of them.
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representation is also displayed after a comma, as shown in Table 2. For example, both

P6,3 and P6,1 belong to the 6 of SU(4)PS, but the first prebaryon is a triplet under SU(2)L

while the second one is an SU(2)L singlet. In the case of prebaryons that have one or two

ψi preons as constituents, one or two flavor upper indices (i, j = 1, 2, 3) are also included.

At scales below the SU(4)PS × SU(2)L × SU(2)R breaking, the P i
4 and P i

4̄ prebaryons

include 3 generations of SM quarks and leptons (see discussions in Sections 3.3 and 3.4).

There are also 6 SM-singlet fermions, three in P i
4̄ and three in the P ij

1,1 prebaryons, which

mix with the SM neutrinos. The remaining prebaryons, listed in the first three rows of

Table 2, are vectorlike under the SM gauge group, and acquire masses much larger than

the electroweak scale, as discussed below.

3.1 Scalar di-prebaryons

As the chiral symmetry of the preons is preserved, there are no light pion-like states

bound by the SU(15)p interactions. We expect, however, that bound states of two or

more chiral prebaryons form due to remnant interactions of SU(15)p, somewhat similar

to nuclear interactions in QCD. Scalars lighter than Λpre likely arise as bound states of two

chiral prebaryons [2], and are referred to as di-prebaryons. Let us model the interaction

between chiral prebaryons due to SU(15)p remnant effects as 4-fermion contact terms in

the Lagrangian:

−
g2ρ
Λ2

pre

(PσµP)(PσµP) , (3.1)

where the σµ matrices account for spin-1 premeson exchange between prebaryon Weyl

spinors, gρ is a premeson coupling to the prebaryons, and we have not displayed the

prebaryon indices. Additional operators involving four chiral prebaryons, such as tensor-

tensor couplings, are also expected to have important effects, but we will not further

discuss them.

A Fierz transformation of (3.1) gives operators of the type (P P)(PP), which are

attractive and produce scalar PκPλ bound states (di-prebaryons), generically labeled ϕκ-λ.

Here κ and λ are prebaryon lower indices, according to the labeling in Table 2. Since

these interactions between chiral prebaryons are nonconfining, the low-energy effective

theory includes Yukawa interactions of the di-prebaryons to their 3-preon constituents:

−yκ-λ ϕ†
κ-λ PκPλ , (3.2)

where yκ-λ are nearly-nonperturbative Yukawa couplings.
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The squared-mass M2
κ-λ of the scalar bound state ϕκ-λ receives a positive contribution

of the order of Λ2
pre due to the mass of the spin-1 premeson mediator, and a negative

contribution of the order of y2κ-λΛ
2
pre/(2π

2) due to prebaryon loops involving the attractive

Yukawa interaction. Thus, if the effective Yukawa coupling yκ-λ has a value near (but

smaller than) a critical coupling ycr ≈ π/
√
2, then it is possible to have 0 < M2

κ-λ ≪ Λ2
pre.

A similar phenomenon has been studied [11] in the context of top quark condensation

[12, 13] and composite Higgs models [14], where a second-order chiral phase transition

allows a large hierarchy between the scale of compositeness and the mass of the composite

scalar.

Although the binding of these ϕ di-prebaryons is due mostly to SU(15)p remnant

interactions, there are additional contributions from SU(4)PS × SU(2)L × SU(2)R gauge

interactions and scalar (A, A′) exchange. The additional contributions are larger when

the constituent prebaryons belong to higher gauge representations or have large Yukawa

couplings in Eq. (2.1). In those cases, the squared-mass of ϕ may turn negative, implying

that the di-prebaryons develop VEVs. If a di-prebaryon acquires a VEV, then its two

prebaryon constituents form a Dirac fermion that acquire a vectorlike mass.

The binding potential V (r) between two prebaryons Pκ and Pλ induced by one gauge

boson exchange can be written as

Vκ-λ(r) ≈ − 1

2r

(
Cκ-λ

4 α4 + Cκ-λ
L αL + Cκ-λ

R αR

)
, (3.3)

where α4, αL, αR are the SU(4)PS × SU(2)L × SU(2)R coupling constants at the Λpre

scale. The binding coefficients C4, CL, CR are given by the sum of the quadratic Casimirs

of the gauge representations in which the two prebaryons transform, minus the quadratic

Casimir of the ϕκλ di-prebaryon (the Pκ-Pλ bound state) [15]:

Cκ-λ
4 = C4(Pκ) + C4(Pλ)− C4(ϕκ-λ) , (3.4)

and analogously for CL and CR. Thus, the most deeply-bound states are gauge singlets,

i.e., ϕκ-λ with C4(ϕ) = CL(ϕ) = CR(ϕ) = 0, and are formed of prebaryons in represen-

tations with large quadratic Casimirs. In particular, the symmetric representations of

SU(4)PS, namely P10 and P10, bind with C10-10
4 = 9. As this binding is large, we assume

that the ensuing di-prebaryon ϕ10-10 acquires a large VEV, which induces a Dirac mass

near Λpre for P10 and P10.

The adjoint representation of SU(4)PS, P15, binds to itself and produces a gauge

singlet ϕ15-15 with a smaller C15-15
4 = 8. Additional binding in this channel is due to the
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SU(2)L × SU(2)R interactions, with C15-15
L = C15-15

R = 3/2. However, the SM coupling

constants indicate αL ≲ α4/3 and αR ≲ αL/3 (there is some uncertainty in the running

of the three gauge couplings, as discussed in Section 4), so it follows that the ϕ15-15

di-prebaryon (again a gauge singlet) has a smaller VEV than ϕ10-10, and generates a

Majorana mass for P15 that is smaller than the Dirac mass for P10 and P10.

The P6,3 binds to itself with C6,3-6,3
4 = 5 and C6,3-6,3

L = 4, and produces a gauge-singlet

ϕ6,3-6,3 di-prebaryon. Likewise P6,1 binds to itself with C6,1-6,1
4 = 5 and C6,1-6,1

R = 4, so

the ϕ6,1-6,1 di-prebaryon has a slightly smaller VEV than ϕ6,3-6,3. The ensuing Majorana

mass for P6,1 is slightly smaller than that for P6,3, which in turn is smaller than the one

for P15.

Bound states of the gauge-singlet prebaryons, P ij
1,1, may form depending on the strength

of the Yukawa couplings of the A and A′ scalars in Eq. (2.1). For example, if λ3, λ
′
32 > 1,

then A and A′ exchanges produce a P32
1,1-P32

1,1 scalar bound state, which may acquire a

VEV. Thus, the P32
1,1 prebaryon (a gauge singlet Weyl fermion) gets a large Majorana

mass, which may produce a see-saw mechanism responsible for the tiny SM neutrino

masses.

3.2 Di-prebaryons charged under SU(4)PS × SU(2)L × SU(2)R

Besides the di-prebaryons discussed so far, which are all gauge-singlets, it is likely that

there some di-prebaryons that transform nontrivially under SU(4)PS×SU(2)L×SU(2)R.

As the P10, P10, P15 (and to a lesser extent P6,3, P6,1) prebaryons are very heavy, non-

singlet bound states involving two of these are expected to have a large squared mass.

Bound states involving only one heavy prebaryon and a P i
4 or P

j
4̄
are more likely to acquire

a VEV when the binding coefficients are large enough. We will refer to these bound states

as heavy-light di-prebaryons. In particular, this is the case of the P15-P i
4 bound states,

labeled ϕ15-4i : the tensor product of the SU(4)PS × SU(2)L × SU(2)R representations in

this case is (15, 2, 2)×(4, 2, 1) → (4, 1, 2), so the binding coefficients are given by C15-4
4 = 4,

C15-4
L = 3/2, C15-4

R = 0.

Given that the ϕ15-4i di-prebaryons transform in the (4, 1, 2) representation, a VEV

for one of them would lead to a phenomenologically correct breaking pattern of the gauge

symmetry, as discussed in Section 3.3. Furthermore, the symmetry breaking pattern

remains correct when all three ϕ15-4i acquire VEVs because bilinear terms in the scalar

potential of the type ϕ†
15-4i

ϕ15-4j align the VEVs in the SU(4)PS × SU(2)R space. These
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Figure 1: Preon exchange diagram inducing the ϕ†
15-4i

ϕ10-4̄i bilinear terms in the scalar
potential, which are responsible for vacuum alignment along the SU(4)PS×SU(2)R space.
Gray bubbles represent the prebaryons (see Table 2): P15 and P i

4̄ form the ϕ15-4i di-
prebaryons, while P10 and P i

4̄ form the ϕ10-4̄i di-prebaryons.

bilinear terms are induced by the antisymmetric scalar A′ running in a loop together with

a ψk preon, and depend on the product of two different Yukawa couplings shown in (2.1):

a ψkψjA′ coupling and the Hermitian conjugate of the ψiψkA′ coupling.

In the case of the P15-P i
4̄ bound states, labeled ϕ15-4̄i , the tensor product is (15, 2, 2)×

(4̄, 1, 2) → (4̄, 2, 1) so C15-4̄
4 = 4, C15-4̄

L = 0, C15-4̄
R = 3/2, implying weaker binding com-

pared to ϕ15-4i . Thus, ϕ15-4i acquire smaller VEVs than ϕ15-4̄i , and break the electroweak

symmetry because they are doublets under SU(2)L. The remaining heavy-light bound

states are P10-P i
4̄ (labeled ϕ10-4̄i) and P10 -P i

4 (labeled ϕ10 -4i
), which transform again as

(4, 1, 2) and (4̄, 2, 1), respectively. Since P10 is heavier than P15, we expect that the VEVs

of ϕ10-4̄i and ϕ10 -4i
are smaller than those of ϕ15-4i , and could vanish. Even if all these di-

prebaryons acquire VEVs, the symmetry breaking pattern remains correct because these

VEVs are aligned with ⟨ϕ15-4i⟩ and ⟨ϕ15-4̄i⟩ through bilinear terms in the scalar potential

generated by tree-level exchange diagrams as the one shown in Figure 1.

P i
4 and Pj

4̄
may also bind. Although their binding coefficient is smaller, C4-4̄

4 = 15/4,

scalar exchange enhances their binding. We will assume λ3 ≫ λ2, λ1, such thatA exchange

in combination with premeson exchange interactions and SU(4)PS gauge boson exchange

produces a P3
4 −P3

4̄ bound state (ϕ43-4̄3) with nonzero VEV. That bound-state transforms

as (1, 2, 2) under SU(4)PS × SU(2)L × SU(2)R, implying that under the SM gauge group

it has exactly the same quantum numbers as two Higgs doublets. These provide the likely

origin for SM quark and lepton masses, as discussed in Section 3.4.
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3.3 Spontaneous breaking of SU(4)PS × SU(2)R

As discussed in Section 3.2, there are several scalar bound states transforming in the

(4, 1, 2) representation of SU(4)PS×SU(2)L×SU(2)R: ϕ15-4i and ϕ10-4̄i for i = 1, 2, 3. We

expect that some of these acquire VEVs, which are smaller than Λpre and are aligned in

the SU(4)PS × SU(2)R space. There is only one linear combination of these heavy-light

di-prebaryons that has a nonzero VEV, and we label it here by Φ.

Since the scalar Φ transforms as (4, 1, 2) under SU(4)PS×SU(2)L×SU(2)R, the general
renormalizable potential for Φ is

V (Φ) = −M2
Φ
TrΦ†Φ +

λ

2

(
TrΦ†Φ

)2
+
κ

2
Tr
(
Φ†Φ

)2
. (3.5)

We assume M2
Φ
> 0 so that the potential has minima away from the origin, and for

concreteness we chooseM
Φ
> 0. The above potential is asymptotically stable for κ > 0 or

0 ≤ −2κ < λ/2. To analyze the minima of this potential, we first use an SU(4)PS×SU(2)R
transformation to write without loss of generality the VEV of Φ as

⟨Φ⟩ = eiα/2


0 0

0 0

0 s2
s1 0

 , (3.6)

where s1, s2 ≥ 0 have mass dimension 1, and the phase satisfies −π < α ≤ π. There are

two nontrivial stationarity conditions for the potential:

1

2

∂V

∂s1
= s1

[
(λ+ κ) s21 + λ s22 −M2

Φ

]
= 0 ,

(3.7)
1

2

∂V

∂s2
= s2

[
(λ+ κ) s22 + λ s21 −M2

Φ

]
= 0 .

The case where s2 = 0 and s1 ̸= 0 gives

s1 =
M

Φ√
λ+ κ

, V (Φ)|s2=0 = −
M4

Φ

2(λ+ κ)
. (3.8)

The case where s1 = 0 and s2 ̸= 0 is the same up to an SU(4)PS×SU(2)R transformation.

Stationarity conditions (3.7) are also satisfied for s1, s2 ̸= 0 provided

s1 = s2 =
M

Φ√
λ+ 2κ

, V (Φ)|s1=s2
= −

M4
Φ

λ+ 2κ
. (3.9)
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The global minimum of V (Φ) is the one shown in (3.8) if and only if

0 < −λ < κ . (3.10)

That vacuum breaks SU(4)PS×SU(2)R down to SU(3)c×U(1) where the generator of U(1)
is a linear combination of the diagonal T15 = diag (1, 1, 1,−3)/

√
24 generator of SU(4)PS

and the diagonal generator T3 of SU(2)R. The gauge couplings of SU(4)PS and SU(3)c

are the same, gs. In order to find the gauge coupling of the unbroken U(1), consider the

kinetic term for the scalar Φ and focus on the terms that involve the generators mentioned

above:

(DµΦ†)(DµΦ) ⊃
∣∣(gsG15µT15 + g

R
R3µT3

)
⟨Φ⟩
∣∣2 = (

3g2s + 4g2
R

)
M2

Φ

8(λ+ κ)
Z ′µZ ′

µ . (3.11)

Here G15µ and R3µ are SU(4)PS and SU(2)R gauge bosons, respectively, while Z ′µ is their

linear combination that becomes massive,

Z ′µ = G15µ cos θz −R3µ sin θz . (3.12)

The mixing angle θz ∈ (0, π/2) satisfies

tan θz =
2 g

R√
3 gs

. (3.13)

The linear combination of G15µ and R3µ that remains massless at this stage,

Bµ = G15µ sin θz +R3µ cos θz , (3.14)

is the SM hypercharge gauge boson. To see that, note that the interactions of this gauge

boson are determined by the couplings of the G15µ and R3µ gauge bosons to the quarks

and leptons contained in the P i
4 and P i

4̄ prebaryons (see Tables 2 and 3), which belong to

the (4, 1) and (4, 2) representations of SU(4)PS × SU(2)R:

gs

2
√
6
G15µ

(
q̄Lγ

µqL − 3ℓ̄Lγ
µℓL
)
= gYB

µ
(
YqL q̄Lγ

µqL + YℓL ℓ̄Lγ
µℓL
)
+ gzZ

′µJ ′
Lµ , (3.15)

gs

2
√
6
G15µ

(
q̄Rγ

µqR − 3ℓ̄Rγ
µℓR
)
+
g
R√
2
R3µ

(
ūRγ

µuR − d̄Rγ
µdR + N̄Rγ

µNR − ēRγ
µeR
)

= gYB
µ
(
YuR

ūRγ
µuR + YdR d̄Rγ

µdR + YeR ēRγ
µeR
)
+ gzZ

′µJ ′
Rµ . (3.16)

Here we are using right-handed quark and lepton field, which are the conjugates of the

P i
4̄ prebaryons (all prebaryons in Table 2 are left-handed fermion fields).
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prebaryons preon content SU(3)c × SU(2)L × U(1)Y origin

qiL , ℓiL ΩΨW ψi (3, 2,+1/6) , (1, 2,−1/2) P i
4

uci , d
c
i , e

c
i , N

c
i ΩΨW ′ ψi (3, 1,−2/3), (3, 1,+1/3), (1, 1,+1), (1, 1, 0) P i

4̄

N31 , N21 Ωψ3ψ1 , Ωψ2ψ1 (1, 1, 0) P31
1,1 , P21

1,1

Lc, L
L

ΩΨWΨW ′ (1, 2,+1/2) + (1, 2,−1/2) P1,2

Table 3: Prebaryons of SU(15)p lighter than ΛPS and their representations under the SM
gauge group. The SM quarks and leptons arise as ΩΨWψi and ΩΨW ′ψi prebaryons, with
the generation index i = 1, 2, 3 identified as the preon flavor index. Fermions beyond the
SM (below ΛPS) include five SM singlets and one vectorlike lepton doublet. Last column
includes the original prebaryons, before SU(4)PS × SU(2)R breaking (see Table 2).

From (3.15) follows that the relation between the gauge couplings for Bµ and for

gluons can be written as

gY =

√
3

2
gs sin θz . (3.17)

Eqs. (3.15) and (3.16) are satisfied provided

YqL =
1

6
, YℓL = −1

2
, YuR

=
2

3
, YdR = −1

3
, YeR = −1 , (3.18)

which confirms that Bµ is the SM U(1)Y gauge boson. The J ′
Lµ and J ′

Rµ represent the

left-handed and right-handed quark and lepton currents coupled to Z ′µ, with appropriate

charges, while gz is the gauge coupling of the heavy gauge boson.

3.4 Effective theory below the SU(4)PS × SU(2)R breaking scale

At scales below ΛPS, where the SU(4)PS × SU(2)L × SU(2)R gauge symmetry is spon-

taneously broken down to SU(3)c × SU(2)L × U(1)Y , the effective theory includes the

composite fermions that don’t form di-prebaryons with large VEVs. These include the

P i
4, P i

4̄, P1,2, and P i1
1,1 prebaryons, described in Table 2. Their SM gauge charges are

shown in Table 3.

The prebaryons with preon content ΩΨW ψi represent the left-handed doublets of the

SM: the qiL quarks and ℓiL leptons. The index i = 1, 2, 3 labels the three generations,

arising from the flavor index of the preons ψi. The prebaryons with preon content ΩΨW ′ ψi
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represent the charge-conjugates of the right-handed SM fermions: up-type quarks uci ,

down-type quarks dci , and charged leptons eci . In addition, the three conjugates of right-

handed neutrinos, N c
i , also arise as ΩΨW ′ ψi bound states; they are gauge singlets under

the SM gauge group, but couple to the heavy gauge bosons associated with the breaking

of SU(4)PS × SU(2)R.

The P ij
1,1 prebaryons, whose preon content is Ωψi ψj (with i ̸= j), are neutral not only

under the SM gauge interactions but also under all SU(4)PS × SU(2)L × SU(2)R gauge

symmetries. Following the discussion at the end of Section 3.2, we assume that P32
1,1 has

a Majorana mass above ΛPS, due to A-exchanges; this can be responsible for a high-mass

seesaw mechanism involving the SM neutrinos. The other two P ij
1,1 prebaryons, which

for brevity we label here N12 and N13, have a Dirac mass below ΛPS; nevertheless, they

likely have some mixings with the N c
i fermions as well as with the SM neutrinos, and

may mediate additional seesaw contributions to the neutrino masses. Hence, the three

N c
i fermions play the role of sterile neutrinos.

The lepton doublets LL and Lc arise from the prebaryon P1,2 = ΩΨW ΨW ′ . These

doublets have effective Yukawa couplings to the di-prebaryons ϕ10-10 and ϕ15-15, which are

generated by the diagrams shown in Figures 2 and 3. The VEVs of the di-prebaryons

thus lead to to a Dirac mass mL for LL and Lc, which form a vectorlike lepton. As argued

in [5], the two contributions to mL are accidentally of the same order of magnitude. The

first contribution, the preon-interchange diagram in Figure 2, is suppressed by 1/N where

N = 15 for the gauge group responsible for preon confinement. The second contribution,

the SU(4)PS-exchange diagram in Figure 3, is suppressed by α4/π. As a result, mL may

be at the TeV scale, and thus the existence of the vectorlike lepton doublet may be probed

at the LHC and future colliders.

The current LHC limit set by the CMS [16] and ATLAS [17] collaborations is mL > 1.0

TeV. The High-Luminosity LHC will be sensitive to heavier vectorlike leptons. At a µ+µ−

collider with center-of mass energy
√
s > 2mL, Drell-Yan production of a pair of vectorlike

leptons would allow precision measurements of their properties.

As discussed in Section 3.2, the three ϕ15-4̄i di-prebaryons transform as (4̄, 2, 1) and

acquire VEVs smaller than the SU(4)PS×SU(2)R breaking VEVs of ϕ15-4i . Given that all

SU(4)PS breaking VEVs are aligned, below ΛPS each of the ϕ15-4̄i consists of a scalar q̃i
c

transforming as (3, 2,−1/6) under the SM gauge group plus a scalar Hi transforming as

(1, 2,+1/2). Consequently there are three Higgs doublets, Hi for i = 1, 2, 3, which have

approximately equal VEVs (with small corrections due to A and A′ loops).
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Figure 2: Preon exchange diagram inducing the effective Yukawa interaction of the ϕ10-1̄0

scalar (a gauge-singlet bound state of the P10 and P10 prebaryons) to a pair of P1,2

prebaryons.

Figure 3: Effective Yukawa interaction of the ϕ15-15 di-prebaryon (a gauge-singlet bound
state of two P15 prebaryons) to a pair of P1,2 prebaryons, induced by an SU(4)PS gauge
boson exchange.

Another source of electroweak symmetry breaking is the ϕ43-4̄3 di-prebaryon discussed

at the end of Section 3.2, which includes two Higgs doublets, Hu and Hd. These generate

the SM fermions masses through a mechanism similar to the one presented in [2]. The P3
4

and P3
4̄ prebaryons, which are identified with third-generation SM fermions as displayed

in Table 3, form the two composite Higgs doublets. Consequently, it is expected that the

Yukawa couplings of third-generation SM fermions are larger than one. If the ϕ43-4̄3 VEV

is predominantly tilted in the direction of Hu, then the top quark gets a mass near the

electroweak scale. Note that the Yukawa coupling larger than one is compensated by the

Hu VEV that is below v ≈ 246 GeV (because the H i
u VEVs also contribute to electroweak
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symmetry breaking). The b quark and τ lepton, which are also part of the P3
4 and P3

4̄

prebaryons, have Yukawa couplings to Hd that are comparable to the top coupling to Hu,

so this is a two-Higgs-doublet model in the large tan β regime, supplanted by the three

fermiophobic Higgs doublets Hi.

The SM fermions of the second and first generations have effective Yukawa couplings

to Hu and Hd which are mediated by A and A′ scalar exchange. As a result, their

masses are proportional to a sum of products of the Yukawa couplings of A and A′

shown in Eq. (2.1). For example, the up-type quark mass matrix Mu has the 22 element

proportional to λ33λ22 + (λ′33)
†λ′22. Its off-diagonal elements get contributions only from

A′ exchange in the basis where A has only diagonal couplings; e.g., the 23 element of Mu

is proportional to (λ′33)
†λ′23.

Thus, the SM quarks and leptons acquire masses, with the third generation of fermions

naturally heavier than the other two, which are suppressed by a scalar exchange. The

same would be true even if only one scalar in the antisymmetric representation of SU(15)p

existed. However, in the absence of A′ (as was the case in [2]), there would not be off-

diagonal CKM elements unless there is an additional source of preon flavor violation (such

as some higher-dimensional operators). This justifies the introduction of A′ in Section 2.

4 Running of gauge couplings

We now explore the behavior of the gauge couplings at energy scales above the elec-

troweak scale and up to the compositeness scale Λpre, using renormalization group equa-

tions (RGEs) [18–20]. The evolution of a coupling gi takes the form

dgi
d lnµ

= βi ({gj}) , (4.1)

where µ is the renormalisation scale, and the beta function βi of coupling gi depends on

the set of couplings denoted by {gj}, which includes gi. The beta functions are calculated

perturbatively from the relationship between the bare and renormalized couplings. For a

generic field theory with gauge couplings gi and Yukawa couplings Y i
jk (from terms of the

form Y i
jkϕiψ̄jψk in the Lagrangian), the beta functions can be written as βi = −bi g3i /(4π)2

with coefficients given by

bi = b
(1)
i +

1

4π

(
b
(2)
i αi +

∑
j ̸=i

b
(2)
ij αj +

∑
j

Yj

)
. (4.2)
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Here αi = g2i /(4π), and the one- and two-loop contributions are given by

b
(1)
i =

11

3
C(Gi)−

2

3
Ti(F )−

1

6
Ti(S) ,

b
(2)
i =

34

3
C(Gi)

2 − C(Gi)

(
10

3
Ti(F ) +

1

3
Ti(S)

)
,

(4.3)

b
(2)
ij = − 2

(
Ci(F )Tj(F ) + Ci(S)Tj(S)

)
,

Yi(F ) =
1

d(Gi)
Tr[Ci(F )Y

i(Y i)†] .

The quadratic Casimir invariants appearing here, C, correspond to those of Weyl fermions

(F ), real scalars (S) and gauge bosons (G). The second Dynkin index, T , refers to Weyl

fermions and real scalars, and the dimension of the Lie algebra of G is given by d(G).

The RGEs will be for the SM gauge couplings up to the scale ΛPS where there is a

transition to the SU(4)PS × SU(2)L × SU(2)R couplings. The SM coupling constants

associated with the SU(3)c × SU(2)W × U(1)Y gauge interactions are αs,

α2 =
α

sin2θW
, αY =

α

cos2θW
, (4.4)

where α is the electromagnetic coupling and θW is the weak mixing angle. The transition

between the two sets of coupling constants at the ΛPS scale satisfies the following tree-level

matching conditions [21]:

α−1
Y (ΛPS) = α−1

R (ΛPS) +
2

3
α−1
4 (ΛPS) ,

α2(ΛPS) = αL(ΛPS) ,

αs(ΛPS) = α4(ΛPS) .

(4.5)

One can also evolve the Yukawa couplings as they begin to play a role at the two-loop

level in the running of the gauge couplings, as can be seen in Eq. (4.3).

In our analysis of gauge-Yukawa theories, we have utilized two-loop order beta func-

tions from Refs. [22–25], evaluated using the packages SARAH 4 [26] and RGbeta [27]. We

set initial conditions for the SM gauge couplings at the top quark mass using mr:C++ [28],

as shown in Ref. [29]. At scales above mt, the running required recalculating beta func-

tions at each mass threshold described in Section 3.

17



4.1 Beta functions between mass thresholds

The lightest new particles charged under the SM gauge group are the vectorlike lepton

doublet (of mass mL), and the scalars associated with the second Higgs doublet (a linear

combination of the states in Hu and Hd), and the three ϕ15-4̄i scalars (which include three

q̃ci and three Hi), as discussed in Section 3.4. We assume for simplicity that all these new

particles are approximately degenerate in mass, so that the gauge coupling running up to

the mL scale is governed just by the SM. Above mL, the coefficients of the beta functions

for the three SM gauge couplings are

bY = − 25

3
− 1

4π

(
52

3
αs +

27

2
α2 +

245

18
αY

)
,

b2 =
1

3
− 1

π

(
9αs +

253

24
α2 +

9

8
αY

)
, (4.6)

bs = 6 +
1

4π

(
4αs −

27

2
α2 −

13

6
αY

)
.

Here we have included the one-loop contributions, as well as the two-loop gauge contri-

butions. At two loops there are also contributions from the Yukawa couplings, especially

those of the third generation fermions to Hu and Hd, which for simplicity we do not

include here.

The next threshold occurs around ΛPS, where the SM gauge couplings transition to

SU(4)PS × SU(2)L × SU(2)R couplings according to Eq. (4.5). The following left-handed

fermion representations are present here: 3× (4, 2, 1), 3× (4, 1, 2), (1, 2, 2), corresponding

to the prebaryons P i
4, P i

4̄, P1,2, respectively (see Table 2). The scalar representations

discussed in Section 3.2 are exactly the conjugates of the above fermion ones: 3× (4, 2, 1),

3 × (4, 1, 2), (1, 2, 2), due to the di-prebaryons ϕ15-4̄i , ϕ15-4i , ϕ43-4̄3 , respectively. Inter-

estingly, although the underlying theory is not supersymmetric, the pair of bound states

{P i
4, ϕ

†
15-4̄i

} form a chiral supermultiplet for each i = 1, 2, 3, and the same is true for

{P i
4̄, ϕ

†
15-4i

} and {P1,2, ϕ43-4̄3}. The pure gauge β function coefficients at one and two

loops, for scales between ΛPS and mP6 (the mass of the antisymmetric prebaryons) are
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given by:

bR =
1

3
− 1

8π

(
135α4 +

253

3
αL + 9αR

)
,

bL =
1

3
− 1

8π

(
135α4 + 9αL +

253

3
αR

)
, (4.7)

b4 =
26

3
+

1

8π

(
107

3
α4 − 27αL − 27αR

)
.

At scales above mP6 we include intermediate-mass states transforming under the rep-

resentations (6, 1, 3) and (6, 3, 1), corresponding to the P6,1 and P6,3 prebaryons, respec-

tively. The pure gauge coupling beta function coefficients become

bR = − 23

3
− 1

8π

(
255α4 + 9αL +

1021

3
αR

)
,

bL = − 23

3
− 1

8π

(
255α4 +

1021

3
αL + 9αR

)
, (4.8)

b4 =
14

3
− 1

8π

(
553

3
α4 + 51αL + 51αR

)
.

At a scale of order mP6 two di-prebaryons also become relevant: ϕ6,1-6,1 and ϕ6,3-6,3. These

are gauge-singlet scalars with large Yukawa couplings to the P6,1 and P6,3 prebaryons.

The latter belong to a higher representation of SU(4)PS (the antisymmetric one), so their

Yukawa couplings have larger two-loop effects on the gauge running compared to those

of the top and bottom quarks. We incorporate the effects of ϕ6,1-6,1 and ϕ6,3-6,3 in the

numerical study presented in Section 4.2 but their effects on the gauge running will turn

out to be only barely visible.

Next, we encounter the threshold corresponding to the heaviest prebaryons, which

transform under the representations (15, 2, 2), (10, 1, 1), and (10, 1, 1), as shown in Ta-

ble 2. These prebaryons significantly impact the beta functions due to their large SU(4)PS

representations. The pure gauge beta functions at scales above mP10 have the following

coefficients:

bR = − 46

3
− 1

4π

(
405

2
α4 + 24αL +

787

3
αR

)
,

bL = − 46

3
− 1

4π

(
405

2
α4 +

787

3
αL + 24αR

)
, (4.9)

b4 = − 8− 1

8π
(1013α4 + 81αL + 81αR) .
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These prebaryons also form two gauge-singlet scalars, ϕ15-15 and ϕ10-10. For the purpose

of calculating the running of the gauge couplings, we assume that the masses of these

prebaryons and their associated scalars are degenerate at the scale mP10 . Their Yukawa

couplings again contribute to the running of the gauge couplings at the two-loop order, but

the effects are larger due to the higher SU(4)PS representations. These are numerically

included in Section 4.2, with the starting value for the Yukawa couplings at the scale mP10

being close to the nonperturbative regime, y10-1̄0 ≈ y15-15 ≈ 2.

At this stage, the presence of many composite fields has lead to the loss of asymptotic

freedom for each SU(4)PS×SU(2)L×SU(2)R gauge interaction. Nevertheless, we will see

next that these interactions remain perturbative at least up to the compositeness scale.

4.2 Gauge coupling evolution

We perform the running with MS renormalized beta functions. At the mass of the top

quark, mt ≈ 173 GeV [30], the SM gauge coupling constants are given by [29]

αY (mt) = 0.01023, α2(mt) = 0.03337, αs(mt) = 0.01074 . (4.10)

The mass thresholds, discussed in Section 4.1, satisfy the following hierarchy:

mt < mL < ΛPS < mP6 < mP10 < Λpre . (4.11)

Using a reasonable set of values for these mass thresholds, we show the evolution of

the inverse coupling constants in Figure 4. There, we set the mass of the composite

vectorlike lepton at mL = 2 TeV (the current lower limit is 1 TeV, see Section 3.4). For

the scale of SU(4)PS×SU(2)R breaking we take ΛPS = 30 TeV. Note that in perturbative,

minimal Pati-Salam models, constraints from rare meson decays impose a lower limit on

the symmetry breaking scale of 80 TeV [31, 32]. However, in the presence of vectorlike

fermions, that limit can be lowered to about 5 TeV [31,33].

The remaining composite vectorlike fermions, which are heavier as they belong to

higher representations of SU(4)PS (see Table 2), are assumed to have masses at mP6 = 100

TeV (for the P6,3 and P6,1 prebaryons) and mP10 = 300 TeV (for the P15, P10 and P10

prebaryons). The benchmark choice for confinement scale Λpre = 3 × 103 TeV, is in line

with the bounds from proton decay estimated in Ref. [5].

As can be seen in Figure 4, above mL the three gauge couplings run to larger values

compared to the SM values at the same scale. The strong coupling starts decreasing faster
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Figure 4: Two-loop running of the inverse coupling constants (α−1) for SU(3)c×SU(2)L×
U(1)Y from the mt scale up to ΛPS, and for SU(4)PS×SU(2)L×SU(2)R between ΛPS and
Λpre. Vertical lines mark various thresholds. Prebaryons P10, P10 and P15, assumed to
have same mass mP10 , reduce the three α−1 near Λpre. Prebaryons P6,3 and P6,1 (of mass
mP6), as well as the charged di-prebaryons and the composite vectorlike lepton (of mass
mL), have a similar but less notable impact. The 2-loop effects of the composite singlet
scalars are shown in each lower line fork near Λpre. The gray-shaded vertical band at Λpre

represents the region of strongly-coupled preonic SU(15)p dynamics. The yellow-shaded
horizontal band indicates the region where the three α’s would no longer be perturbative.

above ΛPS due to the additional non-Abelian gauge bosons. The hypercharge coupling is

replaced by the SU(2)R coupling at ΛPS, according to the matching condition (4.5). As

expected based on Eqs. (4.7) and (4.8), the SU(2)L × SU(2)R couplings remain almost

constant at scales in the ΛPS−mP6 range, while above the mP6 scale they lose asymptotic

freedom. Above the scale of the heaviest chiral prebaryons, mP10 , the SU(4)PS interaction

also loses asymptotic freedom, but easily remains perturbative up to the compositeness

scale Λpre. The two-loop effects of the gauge-singlet scalars are shown in Figure 4 for each

coupling as the lower branch near Λpre, with the starting value (at the scalar masses) for

all Yukawa couplings taken to be y ≈ 2. For comparison, the upper branches show the

results without Yukawa couplings.
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4.3 Compositeness scale and premeson effects

Understanding the behavior of the SU(4)PS×SU(2)L×SU(2)R gauge couplings near the

compositeness scale Λpre is challenging due to the presence of numerous charged fields and

the nonperturbative effects of the SU(15)p interactions. Nevertheless, at least a rough

estimate of the shifts in the gauge couplings near Λpre is necessary for assesing the viability

of the theory analyzed here. To see that, recall that we already encountered (below Λpre) a

loss of asymptotic freedom in the gauge couplings of SU(2)L×SU(2)R above the scalemP6 ,

and of SU(4)PS above the scale mP10 , due to the presence of several prebaryons charged

under these gauge groups. Moreover, above Λpre, the theory includes multiple preons that

contribute to the running of the gauge couplings, preventing asymptotic freedom and

making it difficult for the couplings to remain perturbative towards higher energy scales.

To investigate this, we consider the impact on the coupling running of the premesons

of spin-1 that are charged under SU(4)PS × SU(2)L × SU(2)R. These premesons have

masses around the compositeness scale Λpre, and provide an uplift of the three inverse

coupling constants. The specific premesons formed from the preon fields ΨW , Ψ′
W , and

ψi are constructed as bilinears of the form ΨWσ
µΨW ′ , ΨWσ

µΨW , ψiσ
µΨW , etc. They are

labelled by ρ
WW ′ , ρWW

, ρ
iW
, etc., and transform under the gauge representations listed

in Table 4. Due to their large quadratic Casimir invariants or large multiplicities, these

spin-1 fields substantially decrease the SU(4)PS × SU(2)L × SU(2)R gauge couplings.

The one-loop contributions from all spin-1 premesons on the coefficient of the beta

Spin-1
premesons

Preon content SU(4)PS × SU(2)L × SU(2)R
representations

ρ
WW ′ , ρW ′W

ΨW σµΨW ′ , ΨW ′ σµΨW (6, 2, 2) + (10, 2, 2) , conjugates

ρ
WW

ΨW σµΨW (15, 3, 1) + (15, 1, 1) + (1, 3, 1)

ρ
W ′W ′ ΨW ′ σµΨW ′ (15, 1, 3) + (15, 1, 1) + (1, 1, 3)

ρ
iW

, ρ
Wi

ψi σ
µΨW , ΨW σµΨi 3× (4, 2, 1) , conjugates

ρ
iW ′ , ρW ′i

ψi σ
µΨW ′ , ΨW ′ σµΨi 3× (4, 1, 2) , conjugates

Table 4: Spin-1 premesons (of mass around Λpre) transforming under the SU(4)PS ×
SU(2)L × SU(2)R gauge group. The generation index is i = 1, 2, 3.
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function for an SU(N) gauge group (N = 4 or 2 in our case) is

b(ρ) =
11

3

[
NAdC2(Ad) +NS C2(S) +NAC2(A) +NF C2(F )

]
. (4.12)

Here NAd, NS, NA, and NF are the numbers of spin-1 premesons transforming in the

adjoint, symmetric, antisymmetric, and fundamental representations, as outlined in Ta-

ble 4. Note that b(ρ) > 0 because the contribution of spin-1 fields in non-Abelian gauge

theories is towards asymptotic freedom. In the specific case of SU(4)PS, the quadratic

Casimir invariants for these representations are C2(Ad) = 4, C2(S) = 9/2, C2(A) = 5/2,

and C2(F ) = 15/8. Using the number of pre-mesons in each representation (specifically,

NAd = NA = NS = 8, NF = 24), the beta function coefficient for the SU(4)PS gauge

coupling is found to be very large, b4(ρ) = 1463/3. Similarly, bL,R(ρ) = 1078/3, which is

almost two orders of magnitude larger than typical one-loop beta function coefficients in

the SM.

Besides spin-1 premesons, there are also many spin-0 premesons and vectorlike pre-

baryons with masses around the Λpre scale. Their effect is harder to estimate, but it is in

the opposite direction compared to the spin-1 states. Thus, the large positive contribu-

tions b4(ρ) and bL,R(ρ) are at least partially compensated by other prehadrons. Both the

sign and size of contributions from higher-spin prehadrons are difficult to determine. In

addition, the RGEs of α4, αL, and αR, are affected by purely nonperturbative effects due

to SU(15)p dynamics, which presently cannot be computed in chiral gauge theories.

To obtain a rough lower bound for α4, αL, and αR at a scale above preon confinement,

we estimate the change in the gauge coupling due to the spin-1 premesons listed in Table 4.

The question is over what range of scales do the spin-1 premesons act as relevant degrees

of freedom? For a rough estimate, we use the information provided by QCD, although one

should keep in mind that the behavior of spin-1 bound state in our chiral preon dynamics

may be very different from QCD. The mass of the ρ mesons is mρ ≈ 770 MeV, while

the scale where quarks and gluons become perturbative particles is around 2 GeV (see,

e.g., [30]). Thus, in QCD the ρ is a relevant particle up to a scale of about 2.6mρ.

Note that the running of the electromagnetic coupling constant α is pushed by ρ

mesons towards larger values because QED is an Abelian gauge theory. Therefore, we

cannot use information about α to draw conclusions about α4, αL, and αR (for a lattice

study of QCD effects on α, see [34]).

For a preonic confinement scale of Λpre ≈ 3 × 103 TeV, consistent with proton decay
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constraints from Ref. [5], the gauge coupling constants obtained in Section 4.2 are

α4(Λpre) = 0.071, αL(Λpre) = 0.042, αR(Λpre) = 0.013 . (4.13)

If the influence of the ρ premesons persists up to a scale Λ′
pre ≈ 2.6Λpre ≈ 8 × 103 TeV

(analogous to the endpoint of the ρ meson regime in QCD), then we find that the 1-loop

running gives the following coupling ratios:

α−1
4 (Λ′

pre)

α−1
4 (Λpre)

= 6.1 ,
α−1
L (Λ′

pre)

α−1
L (Λpre)

= 3.2 ,
α−1
R (Λ′

pre)

α−1
R (Λpre)

= 1.7 . (4.14)

These large ratios illustrate the substantial impact that the premesons have on the running

of gauge couplings. Thus, SU(15)p dynamics may substantially push up the three α−1

running curves shown in Figure 4 once they enter the right-handed (gray) shaded region.

At scales beyond Λpre where the preons rather than the prehadrons are the relevant

degrees of freedom, the SU(4)PS × SU(2)L × SU(2)R interactions lose again asymptotic

freedom (see Section 2). However, the decrease of the couplings due to SU(15)p dynamics

around Λpre may be sufficient to keep α4, αL, and αR perturbative up to a unification

scale Λ422. There, SU(4)PS × SU(2)L × SU(2)R may be embedded in the SO(10) gauge

group, which is large enough to have asymptotic freedom in the presence of all the preons.

Whether the three couplings unify at the Λ422 scale depends on various threshold

effects and symmetry breaking patterns [35]. Compared to usual, perturbative GUT

models, the unification scale can be higher (e.g., Λ422 ≈ 1017 GeV) in the framework

discussed here due to the intricate running of the three gauge couplings. As a result,

Planck-scale suppressed operators may be large enough to already split α4, αL, and αR

at Λ422.

5 Conclusions

We have developed a comprehensive framework for quark and lepton compositeness, based

on an SU(15)p chiral gauge theory that confines preons. This theory not only yields

three SM generations of composite quarks and leptons (as 3-preon bound states), but also

provides a dynamical origin for symmetry breaking and the Higgs sector (as 6-preon bound

states). The preons are also charged under the weakly-coupled SU(4)PS×SU(2)L×SU(2)R
gauge group, which is broken down to the SM gauge group at a scale ΛPS in the 30− 100

TeV range.
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By embedding the QCD gauge group within SU(4)PS, the ultraviolet behavior of the

strong coupling is moderated, at least up to the preon confinement scale Λpre, which is

about two orders of magnitude above ΛPS. Our analysis of renormalization group evolu-

tion, incorporating the effects of composite vectorlike fermions and scalar di-prebaryons,

shows that each of the SU(4)PS×SU(2)L×SU(2)R interactions lose asymptotic freedom

below Λpre. Near the compositeness scale there are many spin-1 premesons whose effect

is to decrease the gauge couplings. If that effect is not fully counterbalanced by other

prehadrons and nonperturbative effects at Λpre that cannot be currently computed, the

SU(4)PS × SU(2)L × SU(2)R gauge group may remain under perturbative control up to

a unification scale, where it may be embedded in SO(10).

The theory predicts composite vectorlike leptons not far above the TeV scale, as well as

an extended Higgs sector, offering observable signatures at the LHC and future colliders.

It also opens avenues for novel mechanisms of quark and lepton mass generation rooted in

underlying preon dynamics. There remain, however, many important questions, especially

related to the behavior of the strongly-coupled chiral SU(15)p gauge interactions. For

example, the size of the VEVs of di-prebaryons is highly dependent on the coupling

strength in the attractive channels. Consequently, a quantitative estimate of the mass

spectrum for the composite vectorlike fermions is hampered by the lack of information

regarding how close to the critical value is the binding due to premeson exchange.

Furthermore, the possibility that the preonic bound states associated with the Higgs

sector have masses several orders of magnitude below Λpre needs to be put on a firmer

ground. Nevertheless, the framework presented here offers a promising path for the preonic

SU(15)p chiral gauge dynamics to be a realistic substructure origin of the SM.
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