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Response functions are a key quantity to describe the near-equilibrium dynamics of strongly-
interacting many-body systems. Recent techniques that attempt to overcome the challenges of
calculating these ab initio have employed expansions in terms of orthogonal polynomials. We employ
a neural network prediction algorithm to reconstruct a response function S(ω) defined over a range
in frequencies ω. We represent the calculated response function as a truncated Chebyshev series
whose coefficients can be optimized to reduce the representation error. We compare the quality
of response functions obtained using coefficients calculated using a neural network (NN) algorithm
with those computed using the Gaussian Integral Transform (GIT) method. In the regime where
only a small number of terms in the Chebyshev series are retained, we find that the NN scheme
outperforms the GIT method.

There are a number of problems of scientific interest
where quantum computers may play a key role in find-
ing solutions. In particular, quantum simulations offer a
promising set of algorithms for computing quantities of
interest that may be beyond the capabilities of classical
computers in tractable times. Indeed, quantum simula-
tion may be one of the first quantum computations to
show practical quantum advantage [1]. Many of the pos-
sible use cases in High Energy Physics are discussed in
recent reviews [2–4]. These include simulations of the
real time dynamics of quantum systems and alleviating
the sign problem limiting classical simulations. A mo-
tivation for this work is that quantum computers may
provide valuable contributions to problems relevant to
the long-baseline neutrino oscillation experiments [5, 6].
One of the prominent examples of this is direct ab-initio
calculations of inclusive scattering cross sections on nu-
clear targets.

Several schemes for calculating the linear response of
strongly correlated many-body systems using quantum
computers have been proposed in the recent past [6–11].
An effective use of near term quantum computers for this
goal relies on the extraction of suitably defined energy
moments which contain the non-perturbative informa-
tion and many-body observables, like scattering cross sec-
tions, can then be reconstructed with the help of classical
algorithms [12–17]. This strategy has been employed in
various forms in classical algorithms for a long time and
remarkable progress has been achieved in recent years us-
ing classical many-body techniques like Quantum Monte
Carlo [18–22] and Coupled Cluster theory [23–30]. These
methods are well suited for calculations of static proper-
ties of nuclear many-body systems, however, information
about the scattering cross sections, as encoded in the

so-called response function S(ω), are accessed through
suitably defined integral transform. The dependence on
the energy transfer ω of the scattering cross section is
captured by the following response function

S(ω) =
⟨Ψ0|Ô†δ(Ĥ − ω)Ô|Ψ0⟩

⟨Ψ0|Ô†Ô|Ψ0⟩
, (1)

with |Ψ0⟩ the ground state of the nuclear target, Ĥ the

Hamiltonian describing the target and Ô an excitation
operator describing the interaction between the target
and the probe. With this definition, the integral of S(ω)
over frequency is equal to one. An integral transform
Φ(ω) can then be defined as

Φ(ω) =

∫
K(ω, ν)S(ν)dν

=
⟨Ψ0|Ô†K(ω, Ĥ)Ô|Ψ0⟩

⟨Ψ0|Ô†Ô|Ψ0⟩
,

(2)

with the kernel K(ω, ν) defining the integral transform.
The main advantage is Φ(ω) can be estimated as a

ratio between ground state expectation values provided
the, so far arbitrary, kernel K is chosen appropriately.
For numerical schemes based on imaginary-time Monte

Carlo sampling, an exponential kernel — leading to the
Laplace transform [31, 32] — is typically employed, while
for schemes working in occupation number basis — like
the Coupled Cluster method — a Lorentzian or Gaussian
kernel is used [13, 33, 34].
A popular numerical technique in condensed matter

physics relies instead on integral kernels defined as fi-
nite linear combinations of orthogonal polynomials (see
e.g. [35]). This approach has also been used recently for
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nuclear physics applications on both classical [26, 27, 30]
and quantum [16, 36] computing platforms, including the
possibility of quantifying the errors induced by the inte-
gral transform [13, 37]. The central goal of this class of
methods is to use the computed integral transform Φ(ω)
to reconstruct the original response function S(ω).
Unfortunately, this procedure leads to an ill-posed in-

version problem that is, in general, extremely sensitive to
small errors in the input data [38, 39]. This issue can be
circumvented when the goal is to only estimate some ob-
servables connected with integrated properties of the re-
sponse, e.g., the electric dipole polarizability of nuclei [40]
or the impurity contribution to the thermal conductivity
in the outer crust of neutron stars [41]. Since these can be
obtained directly from the integral transform, one avoids
the inversion step.

For the general case, multiple techniques have been de-
veloped to perform numerically stable inversions at the
price of introducing systematic errors which are not al-
ways easy to quantify [42–47]. When the kernel satisfies
certain regularity conditions it can be shown that stable
reconstructions can be performed by limiting the final
energy resolution in a way that takes into account the
systematic errors [13]. For this purpose, it was found con-
venient to define integral kernels to be Σ-accurate with
resolution ∆ if the following holds [13]

inf
ω0∈[E0,Emax]

∫ ω0+∆/2

ω0−∆/2

dνK(ν, ω0) ≥ 1− Σ . (3)

In this expression the frequency ω0 over which one is ex-
tremizing is taken to be the full spectrum of the Hamil-
tonian [E0, Emax]. The intuition behind this definition
is that for a small value of Σ and an arbitrary but fixed
frequency ω0, a kernel satisfying Eq. (3) has most of its
support in an interval of size ∆ around the target fre-
quency. One can then expect the integral transform Φ(ω)
obtained employing such a kernel to be an approximation
of the original response S(ω) smoothed over a frequency
range of order ∆. This intuition can be made more rigor-
ous and allows one to show that when using these integral
kernels, it is possible to produce histograms of S(ω) with
rigorous error bars [37].

In cases where either the required energy resolution
is small or the preparation of the ground state |Ψ0⟩ is
complicated, simulations on quantum computers could
prove useful for carrying out the calculation in an effi-
cient manner, thus opening the possibility of expanding
the range of targets where the calculation of scattering
cross sections becomes possible (see e.g. [2, 3] for recent
reviews).

Inspired by recent work employing techniques from
Machine Learning(ML) for the problem of inversion of
integral transforms in Quantum Monte Carlo simula-
tions [45–47], we here develop a numerical technique that
uses Neural Networks to tailor the integral kernel used in
the definition of Φ(ω) to a specific application by train-
ing it over template response function generated from

an underlying model. The hope is that using such tai-
lored kernel functions, and for fixed number of moments,
a higher energy resolution will be achievable than using
general purpose kernels like the Gaussian.

I. INTEGRAL TRANSFORM METHOD

In this section, we present in more detail the Integral
Transform method using Chebyshev polynomials follow-
ing the presentation in Ref. [37]. In order to simplify the
notation used in the following derivation, it is convenient
to introduce a normalized state obtained by perturbing
the ground-state with Ô as follows

|ψO⟩ =
Ô|Ψ0⟩√

⟨Ψ0|Ô†Ô|Ψ0⟩
. (4)

Since we are interested in simulations where the many-
body system is defined over a finite basis, the Hamilto-
nian of the system, Ĥ, can be represented as a finite
matrix of dimension N . In order to avoid complica-
tions when using Chebyshev polynomials, the spectrum
of the Hamiltonian [E0, Emax] is mapped into the interval
[−1, 1] by defining a shifted and scaled Hamiltonian

˜̂
H =

2Ĥ − (E0 + Emax)

Emax − E0
. (5)

In situations when suitably tight bounds for E0 and Emax

are not available, we can instead use
˜̂
H = Ĥ/Λ with

Λ ≥ ∥Ĥ∥ as a computable upper bound on the spectral
norm of the Hamiltonian (for applications on quantum
computers this is always obtainable in an efficient way).
We will assume from here on that this redefinition of the
Hamiltonian of the system has been performed and refer
to it, for brevity, by Ĥ.
The discrete spectrum allows us to express the re-

sponse function as

S(ω) =

N∑
k=1

skδ(λk − ω) , (6)

where λk are the N eigenvalues of Ĥ with eigenvectors
|Ψk⟩. The probabilities sk are given by the squared over-
laps

sk = |⟨Ψk|ψO⟩|2 with
N∑

k=1

sk = 1 , (7)

Using this notation, an integral transform of the response
function S(ω) then becomes

Φ(ω) = ⟨ψO|K(ω, Ĥ)|ψO⟩ =
N∑

k=1

skK(ω, λk) . (8)



3

Given our goal to design an integral transform in-
formed by the expected properties of the response func-
tion, we aim to determine an integral kernel K such that
its corresponding integral transform minimizes the fol-
lowing cost function

C(∆) = max
ω0∈[−1,1]

∣∣∣∣∣∣∣
ω0+∆/2∫

ω0−∆/2

dω (Φ(ω)− S(ω))

∣∣∣∣∣∣∣ . (9)

The intuition behind this definition is the same that led
to the introduction of the condition in Eq. (3) in Ref. [13]:
when C(∆) is small, the strength of the response func-
tion in an interval of size ∆ centered anywhere within
the range of the spectrum is well approximated by the
strength evaluated using the integral transform Φ(ω) in-
stead. Indeed if the kernel is Σ-accurate with resolution
∆ we have C(∆) ≤ Σ.

In this work we attempt to optimize integral kernels
expressed as a finite sum of Chebyshev polynomials Ti(x)
as follows

KM (ω, ν) =
M−1∑
i,j=0

bijTi(ω)Tj(ν) . (10)

Note that this is not equivalent to the standard construc-
tion used in the Kernel Polynomial Method [35] or the
Gaussian Integral Transform [13, 37] since both of these
include non polynomial contributions in ν. We chose this
simplified class of kernels because the discussion of the
optimization via neural-networks is easier in this case,
but the strategy we propose in this work can be gen-
eralized easily to account for the differences. The main
advantage of using Chebyshev polynomials to capture the
ν dependence of the kernel is that the integral transform
of the response function can be evaluated as

Φ(ω) =
M−1∑
i,j=0

bijTi(ω)⟨ψO|Tj(Ĥ)|ψO⟩ , (11)

where the expectation value appearing on the right hand
side is the j-th Chebyshev moment of the Hamiltonian
evaluated on the state |ψO⟩, which we will denote as

mj = ⟨ψO|Tj(Ĥ)|ψO⟩ . (12)

The use of Chebyshev polynomials as a basis is par-
ticularly convenient since the moments mj which encode
the information about the response can be calculated ef-
ficiently on quantum computers [13, 48–50] and, at least
for some systems, approximated accurately using Cou-
pled Cluster theory[26, 27, 30].

II. NEURAL NETWORK

In this section, we describe the use of neural networks
(NN) in this problem. NNs are useful in making predic-
tions in physics to find the thermodynamic quantities, or

FIG. 1. A schematic of our inference neural network algo-
rithm. The inputs are the M moments mj and the output is
the M2 component bij vector.

to infer the quantum state based on the circuit training
data. Here, we use the NN to infer the response signal
from a few given moments, mj . In order to compute the
mj moments from Eq. (12), only the |ψO⟩ state, and the

Hamiltonian Ĥ are needed. The elements bij of the coef-
ficient matrix defining the integral kernel in Eq. (10) are
left as unknown parameters that will be optimized and
predicted by the neural network.
Ideally, the optimization procedure would work as fol-

lows. First, generate a set of response functions Sn(ω)
that are used for training, validation and testing. For
each Sn(ω) in the set, compute the corresponding Cheby-
shev moments m⃗n. Then choose a target resolution ∆T

and a budget of moments M and determine the optimal
response function as a map

m⃗ −→ boptij (m⃗) (13)

depending on an input set of M Chebyshev moments m⃗.
The goal being to create a multilayer NN, train it with
mj moments and infer the bij matrix from it.
In this work we represent this map using a multilayer

perceptron with three hidden layers as depicted in the
diagram in Fig. 1 and described in Table I. In all, the
NN has a three hidden, one input and one output MLP
layers. The input layer with M nodes normalizes the mj

moments. The three hidden layers use ReLU activation
functions and have 30, 25 and 40 nodes, respectively. We
use Adam with a variable learning rate to minimize the
cost function of the NN.
In principle, the NN architecture may be opti-

mized, but for initial demonstration purposes an easy-
to-understand design is desirable. Similarly, hyper-
parameter optimization would likely find different pre-
ferred values than the ones presented in Table I. How-
ever, in a given application, users will likely be sensitive
to data generation costs and processes, and those features
will likely differ from this case. For demonstration pur-
poses, we chose one set of parameters based on intuition
and experience. Very little tuning was done as the goal is
not to surpass a state-of-the-art benchmark, but rather
to establish that the technique functions as hypothesized.
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L1 30

L2 25

L3 40

learning rate 0.00025

batch size 80

epochs 300

number of data for training 2000

number of data for validation 400

number of data for test 100

TABLE I. Parameters of the NN used in this work. L1, L2

and L3 are the number of hidden nodes in each layer. We used
the Adam optimizer, choose a small learning rate and a large
number of epochs to have smooth controlled convergence. The
split of the 2500 data points for each (M,∆) is given in the
last three lines.

The cost function C(∆) in Eq. (9) is rather demanding
to evaluate precisely. In order to approximately minimize
the cost function over ω0 we can calculate this quantity
on a uniform grid of points with spacing d < ∆. For
simplicity, we pick K points so that the lattice spacing
in the energy interval [−1, 1] is d = 2/K, and we choose
∆ = 2L/K for some integer 1 ≤ L ≪ K. This means
that an interval of size ∆ is given by points L units apart
and the cost function can be then approximated as

C(∆) = max
l=0,...,K

∣∣∣∣∣∣∣
−1+(l+L)d∫
−1+ld

dω (Φ(ω)− S(ω))

∣∣∣∣∣∣∣ . (14)

The integral inside the absolute value can then be done
exactly integrating separately the response function S(ω)
from Eq. (6) and the Chebyshev moments Ti(ω) in the
expansion of the integral transform Eq. (11). During
the NN training we opted to use instead an upperbound
CU (∆), which can be evaluated more efficiently and is
also smoother. In order to obtain CU (∆) we first notice
that the cost function in Eq. (14) can be expressed as

C(∆) = ∥C⃗∥∞ where ∥ · ∥∞ denotes the infinity vector
norm and

Cl =
−1+(l+L)d∫
−1+ld

dω (Φ(ω)− S(ω)) . (15)

We can then introduce CU (∆) as

CU (∆) = ∥C⃗∥2 ≥ ∥C⃗∥∞ = C(∆) , (16)

where ∥ · ∥2 is the standard vector 2 norm. The main
advantage of this change in cost function is that C2

U (∆) is
a quadratic function of the coefficient matrix bij and can
be minimized straightforwardly using the least squares

method. The resulting optimal matrix b
(min)
ij is used as

the target for the NN training with a mean square error
(MSE) cost function.

III. RESPONSE FUNCTIONS

For the numerical calculations carried out in this work,
the dimension of the Hamiltonian matrix is fixed to
N = 200. These 200 energy eigenvalues, λk, with
k = 1, . . . , N , are chosen using a uniform random sam-
pling in the full energy interval normalized to [−1, 1]. For
each N eigenvalues {λk}, NS = 2500 data points, labeled
λnk with n = 1, . . . , NS are generated as described below.
Similarly, for each set of eigenvalues, {λk}, we generate

a response function

Sn(ω) =
N∑

k=1

snkδ(λ
n
k − ω) , (17)

by computing the probabilities snk according to a distri-
bution that resembles the typical features of the physi-
cal response function we are interested in. For applica-
tions of this scheme to study the nuclear response in the
quasi-elastic regime, which is particularly important for
planned and ongoing neutrino-nucleus experiments, we
use a model based on a skewed Gaussian function

SS(ω;µ, σ, α,Γ) = Γe−
(ω−µ)2

2σ2

[
1 + erf

(
ωα

σ
√
2

)]
, (18)

depending on 4 parameters: a location µ, a width σ, a
skewedness parameter α and a normalization constant Γ
that is determined by satisfying (19).
The 2500 data points, and consequently the individ-

ual response functions Sn(ω), are generated by choosing
fifty values each for α and σ. The fifty α are chosen uni-
formly within the range α ∈ [0, 2.5] to mimic a stronger
high energy tail in the response. The fifty σ are chosen
uniformly within σ ∈ [σmin, 0.4] for a suitable σmin that
is chosen to be σmin = ∆. This choice is motivated by the
fact that for signals with σ < ∆, a good approximation of
the response function that minimizes our cost C(∆) can
be obtained using only the first two moments m0 and
m1 leading to an undetermined optimization problem.
For each of these 2500 data points, µ is chosen randomly
within the interval µ ∈ [−0.3, 0.3] ensuring most of the
strength is in the central region of the energy range.
For each response function Sn, the individual proba-

bilities snk are constructed as

s̃nk = SS(λ
n
k ;µn, σn, αn, 1) ⇒ snk =

s̃nk∑
k s̃

n
k

, (19)

in order to ensure the normalization condition in Eq. (7).
The corresponding integral transform is then given by

Φn
M (ω; bij) =

M∑
i,j=0

bijTi(ω)m
n
j , (20)

where the mn
j moments are calculated independently for

each Sn(ω). This gives a total of M × NS numbers. In
other words, for each of the NS points, the M moments,
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mj , are calculated directly from the model response func-
tion Sn as follows:

mj =

∫ 1

−1

dω√
1− ω2

Sn(ω)Tj(ω) . (21)

This integral becomes a sum when Eq. (17) is used. The
calculation and comparison of the cost function using the
trained NN and the GIT [13, 37] algorithm starts with
these M ×NS numbers.

IV. NUMERICAL RESULTS

The choice Ns = 2500 data points for each fixed
(M,∆), selected as explained above, was a reasonable
match to our NN’s capacity. This dataset was split into
2000 training, 400 validation, and 100 test points, and
the NN trained using the hyperparameters presented in
Table I. The response signal is inferred from the training
by minimizing CU (∆) defined in Eq. (16)with K = 70.

The results for the cost function C∆ obtained with the
integral kernel expressed in terms of the NN are com-
pared with the general purpose GIT method based on a
Gaussian kernel [13, 37]. The truncated kernel that ap-
proximates a Gaussian with variance λ is expressed in
terms of Chebyshev polynomials as

K
(G)
M (ω, ν;λ) =

M−1∑
i=0

c
[M,M ]
i (ν;λ)Ti(ω) (22)

with coefficient functions c
[M,M ]
i (ν;λ) chosen to provide

a good representation of a Guassian over M moments
and given explicitly in Eq.(A20) of Ref. [37]. For a given
choice of resolution ∆ and number of moments M , we
obtain the value of λ to minimize the approximation er-
ror made when the response function is replaced with an
integral transform in Eq. (3) where Σ accounts for the
contribution of the tails (for more details see Ref. [37]).

Figure 2 shows a comparison of the results obtained
with the GIT method and the new NN-based technique.
The two panels show the 90% confidence intervals for the
value of the cost function, Eq. (16), obtained using the
100 data points reserved for testing, as a function of the
number of moments M used in the reconstruction. The
left panel corresponds to a wider resolution ∆ = 12/70 ≈
0.1714 while the right panel shows results for a narrower
resolution ∆ = 4/70. As ∆ is decreased, the GIT method
provides increasingly better results when a large number
of moments are included, i.e., the right panel shows this
happens for M > 60 for ∆ = 4/70. On the other hand,
the new NN approach shows saturation early, that will
eventually be outperformed by the GIT method at large
values ofM . To summarize our main result: for narrower
∆, as shown for ∆ = 4/70, the output of the NN method
saturates for M ≈ 10. Thus, when doing calculations
keeping a small number of moments, M <∼ 15 − 20, the
NN method is able to provide a good integral transform

much faster. We can interpret the result as a consequence
of the additional information employed in the training of
the network which is not used for a general purpose kernel
like the Gaussian used in GIT.

V. CONCLUSIONS

Several state of the art numerical techniques for study-
ing the linear response of strongly correlated systems
in nuclear physics rely on the physical information en-
coded in energy moments of a perturbed initial state.
In both classical and quantum algorithms, the use of
Chebyshev polynomials for the definition of these en-
ergy weights, and the subsequent reconstruction of the
nuclear response function, has been proposed as an effec-
tive and controllable strategy. In this work we explored
the use of Neural Networks to increase the allowed en-
ergy resolution when working with a limited number of
input moments by relying on the availability of a suitable
training set of response functions that can be motivated
by the physics of the problem. Employing this physics in-
spired training, we were able to show that when a limited
amount of information (in the form of Chebyshev mo-
ments) is available, NN-based strategies can outperform
more general reconstruction schemes (like the GIT) that
are more agnostic in design and do not directly exploit
the features present in physically realistic situations.

A. Future work

The goal of this work was not to produce the most
optimal ML model or to outperform a published state of
the art (SOTA) result. Instead, our primary focus was on
demonstrating the technique works under at least some
set of reasonable conditions, and from that perspective,
using a simple and easy-to-understand ML algorithm was
suitable. We, however, outline a number of improvements
that should be considered when deploying this technique
in practice, and for future research.
First, it would be appropriate to use a process like

neural architecture search (see [51] for a recent review)
to optimize the number and size of the hidden layers, or
to consider the use of specialized layers. Furthermore,
there are multiple hyperparameters (e.g., learning rate,
learning rate schedule, batch size, etc.) that should be
tuned using an efficient search strategy (see, e.g. [52] and
similar codes).
The next obvious improvement would be to enlarge

the training dataset (and increase model capacity accord-
ingly). Our dataset was chosen for ease of generation on
laptop-scale resources, but a modest investment of time
would parallelize the code for dataset generation and the
analysis, and allow the utilization of high performance
computing (HPC) resources to dramatically increase the
dataset size while still getting results in very little “wall-
clock” time.
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FIG. 2. (Color online) The cost function vs. the number of moments M for two values of resolution: ∆ = 0.1714 (left panel)
and ∆ = 0.0571 (right panel). The orange band shows the 90% confidence interval of results obtained using the trained NN
while the blue band corresponds to the same confidence interval over the same 100 test data points but for results obtained
using the GIT method [13, 37].

Finally, there are interesting opportunities for architec-
tural experimentation. For example, one could deploy an
auto-encoder structure to find an encoding into a fixed la-
tent dimensionality that could improve feature selection
for a variety of tasks. We could also study linear combi-
nations of moments, and study symmetries in the dataset
and try to engineer network layers built to keep those
symmetries invariant (a so-called “physics-inspired” net-
work).
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