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We present two deterministic algorithms to approximate single-qutrit gates. These algorithms
utilize the Clifford + R group to find the best approximation of diagonal rotations. The first
algorithm exhaustively searches over the group; while the second algorithm searches only for
Householder reflections. The exhaustive search algorithm yields an average R count of 2.193(11) +
8.621(7) log10(1/ε), albeit with a time complexity of O(ε−4.4). The Householder search algorithm
results in a larger average R count of 3.20(13) + 10.77(3) log10(1/ε) at a reduced time complexity of
O(ε−0.42), greatly extending the reach in ε. These costs correspond asymptotically to 35% and 69%
more non-Clifford gates compared to synthesizing the same unitary with two qubits. Such initial
results are encouraging for using the R gate as the non-transversal gate for qutrit-based computation.

I. INTRODUCTION

Various fields anticipate quantum computing will tackle
problems that are intractable for classical computers, but
the large-scale architecture is still an active area of study.
While most devices are qubit-based, many have access
to higher levels and thus could be run as qudit-based
platforms including: trapped ions [1–3], transmons [4–
12], Rydberg arrays [13, 14], photonic circuits [15], cold
atoms [16, 17], and superconducting radio frequency
(SRF) cavities [18]. While experimentally more chal-
lenging, there are advantages to developing qudit-based
systems from an algorithmic perspective due to their en-
hanced effective connectivity, as native single-qudit SU(d)
rotations replace non-local multi-qubit circuits [19–22]. In
practice, this allows for lower gate fidelities for the same
algorithmic fidelity [11, 23–32]. Such potential has lead to
application-specific research in qudits across fields such as:
material science [33–37] numerical optimization [38–41],
condensed matter [42–46], and particle physics [47–56].

Regardless of the qudit dimensionality, reaching the
goal of quantum utility requires fault-tolerant gate syn-
thesis. That is, one identifies a finite set of generators
that can efficiently approximate unitary operations to any
required precision and support quantum error correction
for the logical gates in the set. Fundamentally though,
Eastin-Knill theorem [57] prevents a universal gate set
that is also transversal, i.e. not all logical gates can be
implemented in parallel across the physical qudits. This
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constrains the gate sets G for large-scale computation.
Further, the nontransversal gate counts NG dominates
the computation costs [58] but recent evidence suggests
they may not be as expensive as thought [59, 60]. Here,
we take the first steps beyond qubits by considering the
fault-tolerant gate synthesis of d = 3 qudits, called qutrits.

The prevalence of the qubits extends to fault-tolerant
gate synthesis. There, the Clifford group extended by
T = Diag(1, eiπ/4) – denoted (C + T)2 – is the leading
choice. However, novel sets with non-Clifford transversal
operations [61–63] or those based on groups larger than
the Clifford group also exist [64–66]. Once this finite gate
set is selected, one must map all other circuit primitives
to a gate set word. While (C + T)2 does not result in the
shortest word lengths compared to larger groups [65–68],
it has well-established error correction schemes and exper-
imental demonstrations in contrast to other gate sets and
codes. In the case of qutrits, three options have domi-
nated the literature, which extend the qutrit-Cliffords C3,
although others exist [69, 70]. The first uses with the gen-
eralized T3 = Diag(1, ω, ω2) [71–75] where ω = e2πi/3 is
the third root of unity. The other two common extensions
are D(a, b, c) = Diag(±ξa, ±ξb, ±ξc) [76–78] where ξ =
e2πi/9, and the metaplectic R = Diag(1, 1, −1) [79, 80]
gates. While the metaplectic set (C + R)3 is strictly a
subset of (C + T)3 [80], it may prove more practical in
hardware and thus warrants study. Thus, in this work we
will study the synthesis of SU(3) unitaries using (C+R)3.

This work is organized as follows. We briefly review
qutrit-based computation and ring-based gate synthesis
in Sec. II. This leads into Sec. III and IV where two algo-
rithms are constructed for approximating diagonal single-
qutrit gates: the exhaustive search and the Householder
search. This is followed by a method for determining the
(C+R)3 word for the approximation in Sec. V. Numerical
studies are found in Sec. VI before concluding in Sec. VII.
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II. THEORETICAL BACKGROUND

Qutrit systems have a basis of three-level states |0⟩, |1⟩,
and |2⟩; their Hilbert spaces scale as 3N which is a poly-
nomial increase compared to the qubits’ 2N . A univer-
sal—though not fault-tolerant—gate set for qutrits can
be built from single-qutrit rotations and an entangling
gate. One such set is the 18 two-level Givens rotations,

Rα
(b,c)(θ) = e−iθ/2σα

(b,c) , (1)

where σα
(b,c) is the Pauli matrix σα = {X, Y, Z} acting on

the |b⟩ − |c⟩ subspace, combined with the CSum gate:

CSum|i⟩|j⟩ = |i⟩|i ⊕3 j⟩. (2)

While CSum is part of qutrit Clifford group, Rα
(b,c)(θ) are

not. Therefore if one wants to implement the Rα
(b,c)(θ)

rotations using a fault-tolerant gate set, one has to ap-
proximately synthesize these rotations using a finite set
of gates such as (C + R)3.

The Solovay-Kitaev theorem [81] states that any d-
dimensional qudit gate U ∈ SU(d) that cannot be exactly
synthesized from a universal fault-tolerant gate set G can
still be approximated by a gate V ∈ G, with ||U − V || ≤ ε
and NG scaling as O(loga

d(1/ε)).
Optimal algorithms correspond to the case where a =

1 [82, 83]. Further, by considering the geometric structure
of hyperspheres covering SU(d), one can show that there
always exists a unitary U ∈ SU(d) whose ε-approximation
V requires at least [74, 84]:

NG ≳
ln (A) + (d2 − 1) ln

( 1
ε

)
ln(d(d − 1)) , (3)

where

A =
√

2d−1d[d(d − 1) − 1] Γ( d2−1
2 )

d4π3/2(d−1)G(d + 1)
, (4)

and G(n) =
∏d−1

k=1 k! is the Barnes G-function. For the
case of qubits (d = 2), Eq. (3) predicts:

NG = 3 log2(1/ε) − 5.65
= 9.97 log10(1/ε) − 5.65. (5)

For qutrits (d = 3), we find:

NG = 4.9 log3(1/ε) − 2.16
= 10.27 log10(1/ε) − 2.16. (6)

The described properties are independent of a specific
G, meaning that specific instances may exhibit different
performance. We focus here on G = (C + R)3 which is
generated by the qutrit Hadamard H, phase gate S, and
R, following the notation of Ref. [76]:

H = 1
i
√

3

1 1 1
1 ω ω2

1 ω2 ω

 ,

S = Diag(1, ω, 1), R = Diag(1, 1, −1). (7)

Other gates in C3 that will prove useful include:

X =

0 0 1
1 0 0
0 1 0

 , D(a, b, c) = diag(ωa, ωb, ωc), (8)

where a, b, c ∈ {0, 1, 2}. The decomposition of D(a, b, c)
into H, S can be aided by the relations:

H† = H3, X(0,1) = HS2H2SH†,

X(1,2) = H2, and X = H†SH2S2H†, (9)

As an example

D(1, 2, 1) = X(0,1)SXSX(1,2)S
2. (10)

Determining efficient synthesis is an ongoing area of
research, even for qubits. The best algorithms rely upon
insight from number theory. One can show that any V ∈ G
consists of matrix entries in a ring R. This was proven
and then used to perform exact single-qubit synthesis in
(C + T)2 [85]. The extension to approximate synthesis
requires determining a V that is within distance ε of the
desired gate.

Identifying these approximations requires solving a Dio-
phantine equation. In general this is NP-complete [86]
and thus finding the shortest word is often difficult. Luck-
ily, this need not prevent subclasses of gates from being
approximated efficiently. In particular, a probabilistic
number-theoretic method to approximate diagonal single-
qubit gates was first introduced in [87]. Since any single-
qubit gate can be exactly represented by 3 diagonal gates
and C2, it was demonstrated that U ∈ SU(2) could be
approximated with NG = 3 logp(1/ε3) with a gate set
associated to a prime p. For (C + T)2 one finds p = 2
while other “golden gate sets” can be used to reduce this
bound up to 7

3 log59(1/ε3) [65]. Further improvements
have been made for (C + T)2, with the state-of-the-art
being the repeat-until-success method of [88]. Ultimately,
finding ways to decompose and approximate arbitrary
gates more efficiently than by diagonal matrices remains
an open problem.

Similarly, (C + R)3 can be related to a ring. Starting
from the ring of Eisenstein integers R3 = {a0 +a1ω | ai ∈
Z, ω = e

2πi
3 } one localizes1 it to obtain the ring R3,χ =

{ a
χf | a ∈ R3, f ∈ N0} where χ = 1 + 2ω =

√
−3.

Inspecting the generators (Eq. (7)), one sees that all their
entries are in R3,χ. Therefore, the set generated by the
(C + R)3 is the unitary group over the R3,χ ring, denoted
by U (3, R3,χ) [76, 89]. Thus, any matrix V ∈ (C + R)3
has the form

V = 1
χf

x1 y1 z1
x2 y2 z2
x3 y3 z3

 , (11)

1 Localization extends a ring while introducing a division-like oper-
ation.
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where xi, yi, zi ∈ R3, and f ∈ N0. An important con-
sequence of this observation is that synthesis over this
gate set can be performed with optimal O(log3

1
ε ). The

remaining challenge lies in developing a constructive al-
gorithm that reaches this complexity while minimizing
constant factors. Such an algorithm can be decomposed
into two steps. First, find a sufficient approximation
V ∈ U (3, R3,χ). Then, determine the (C + R)3 word
that exactly synthesizes V .

Any single-qutrit unitary is a product of a global phase
and an SU(3) matrix. Noting that a global phase may
be synthesized by a modification of our first algorithm,
we focus only on SU(3) matrices which by leveraging C3
rotations can be synthesized from

RZ
(0,1)(θ) = Diag(e−iθ/2, eiθ/2, 1). (12)

Thus goal is to find V ∈ U(3, R3,χ) such that

||RZ
(0,1)(θ) − V || ≤ ε, (13)

given a choice of θ and error, ε > 0. We will use the
Frobenius norm2 throughout this work. Furthermore,
anticipating the large cost of implementing non-Clifford
gates, we use the number of R gates, NR as the quantum
complexity of the synthesis problem.

To solve Eq. (13), we will present two algorithms.
The first algorithm conducts an exhaustive search over
(C + R)3 group, yielding good results but incurring sig-
nificant classical runtime. The second algorithm restricts
its search to Householder reflection gates, improving clas-
sical complexity while requiring an increased NR. The
following sections provide detailed explanations of both
algorithms.

III. EXHAUSTIVE SEARCH ALGORITHM

To find a gate V that satisfies Eq. (13), it behooves us
to expand the Frobenius norm:

||RZ
(0,1)(θ) − V ||2 =

∑
j

(∑
i

∣∣∣RZ
(0,1)(θ)ij − Vij

∣∣∣2)
=
∑

j

||RZ
(0,1)(θ)j − Vj ||2. (14)

From this, we see that the norm can be decomposed
into a sum over column vectors, which each contributes
∥RZ

(0,1)(θ)i − Vi∥2. As a result, approximating RZ
(0,1)(θ)

may be reduced to approximating each of its column
vectors with errors εi (i = 1, 2, 3) such that

∑
i ε2

i ≤ ε2.
Consider a target unit vector t(j) = eiαδij with a single

nonzero entry and α being a real number. To approximate

2 The Frobenius norm is ∥A∥2
F = tr

(
A†A

)
=
∑

i,j
|Aij |2.

it using a unit vector v imposes a condition on only one
entry of v:

∥t(j) − v∥2 =
∑

i

|eiαδij − vi|2

= 2 − 2 Re
(
vj e−iα

)
. (15)

Requiring this be bound by ε2
j , we can apply it to Eq. (14)

to give:

Re
(

x1

χf
ei θ

2

)
≥η(ε1), Re

(
y2

χf
e−i θ

2

)
≥ η(ε2),

Re
(

z3

χf

)
≥ η(ε3), (16)

where η(ε) := 1 − ε2/2. To derive an algorithm, it is
useful to further simplify Eq. (16). To do so, we note

χ−f = (−3)−f/2 = (−1)⌈f/2⌉3−⌈f/2⌉χf̄ , (17)

where f̄ := f mod 2. By introducing the change of
variables

x′
1 = (−1)⌈f/2⌉χf̄ x1 (18)

and applying similar transformations for y2 and z3, Eq.
(16) can be rewritten as

Re(x′
1eiθ/2) ≥ 3⌈f/2⌉η(ε1),

Re(y′
2e−iθ/2) ≥ 3⌈f/2⌉η(ε2),
Re(z′

3) ≥ 3⌈f/2⌉η(ε3), (19)

Moreover, the unitarity of V imposes the bounds

|x′
1|2, |y′

2|2, |z′
3|2 ≤ 32⌈f/2⌉. (20)

The constraints of Eqs. (19) and (20) have straight-
forward geometric interpretations. Any complex num-
ber z (e.g. eiθ/2) can be mapped to a vector in R2 as
z 7→ (Re(z), Im(z))T . Similarly, any Eisenstein integer
x1 + x2ω can be mapped to vectors y = (x1 − x2

2 , x2
√

3
2 )T

in R2. As a result, the Eisenstein integers form an integer
lattice L1 given by

L1 =
{

y = B1 x
∣∣∣x ∈ Z2

}
, (21)

where

B1 =
(

1 − 1
2

0
√

3
2

)
. (22)

From Equations (21) and (22), we find that it is
convenient to work with a half-integer parametrization
(p, q). That is, for an Eisenstein integer x1 + x2ω, we set
p = x1 − x2/2 and q = x2/2. Thus satisfying Eqs. (19)
and (20) corresponds to finding three lattice vectors
(p, q

√
3)T each in a different region. Using α to represent

the desired angles and

r1 = 3⌈f/2⌉η(εi), r2 = 3⌈f/2⌉, (23)
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the three regions are then defined by

p cos α + q
√

3 sin α ≥ r1 and p2 + 3q2 ≤ r2
2. (24)

From the first inequality, it follows that p2 cos2 α ≥ (r1 −
q
√

3 sin α)2. Using the second constraint and completing
the square, it can be verified that |

√
3q − r1 sin α| ≤√

r2
2 − r2

1 cos α. Therefore, the half integers q are sampled
within the interval

1
2 ⌈S−⌉ ≤ q ≤ 1

2 ⌊S+⌋ , (25)

where S± := 2√
3 (r1 sin α ±

√
r2

2 − r2
1 cos α). For a given

q, the possible values of p satisfy p + q ∈ Z and lie in the
interval

1
2 ⌈2T−⌉ ≤ p ≤ 1

2 ⌊2T+⌋ , (26)

where T− := max
(

−
√

r2
2 − 3q2, r1−

√
3q sin α

cos α

)
and T+ :=√

r2
2 − 3q2.

These regions and candidate lattice vectors are depicted
on the left of Fig. 1. Then, the diagonal entries of V –
x1, y2 and z3 – may be easily obtained via division by
(−1)⌈f/2⌉χf̄ .

With these constraints for fixed f , one can enumerate
possible candidate triplets (x1, y2, z3). Then for a par-
ticular triplet (x1, y2, z3)/χf , one should check that they
satisfy Eq. (13) and the necessary and sufficient condition
for a set of complex numbers to serve as the diagonal
entries of a unitary matrix [90] which in our case are:

|x1| + |y2| − |z3| >
√

3
f
, |x1| + |z3| − |y2| >

√
3

f
,

|y2| + |z3| − |x1| >
√

3
f
. (27)

For triplets satisfying these conditions, we proceed to solve
for the off-diagonal entries. This unitary matrix comple-
tion problem is addressed given a triplet of candidate
diagonal entries (x1, y2, z3). The search for off-diagonal
entries can be done by exhaustive search. The norms of
column entries must satisfy the constraint

|x1|2 + |x2|2 + |x3|2 = 3f (28)

and analogous ones for yi, zi. To solve these equations, one
notes that |x2|2 ≤ 3f −|x1|2. Thus, for N = [0, 3f −|x1|2],
one tries to solve |x2|2 = N using the method described
in App. B. If a solution exists, the process is repeated for
|x3|2 = 3f − |x1|2 − |x2|2. One can precompute a lookup
table for |x|2 = N so that this norm equation is solved
only once for a given N up to a maximum N ,

N = max(3f − |x1|2, 3f − |y2|2, 3f − |z3|2)

≤ 32⌈f/2⌉
(

ε2 − ε4

4

)
, (29)

or in other words, N = O(3f ε2). With off-diagonal entries
determined, the final step is to verify that the resulting

matrix V is unitary. If no valid unitary matrix is found
after exhausting all possible triplets, we increment f
and restart the enumeration process. The pseudocode is
outlined in Algorithm 1.

Algorithm 1: Exhaustive search.
Data: θ and ε
Result: V ∈ U (3,R3,χ) such that ∥U − V ∥F ≤ ε

1 f ← 0
2 Γ← (−1)⌈f/2⌉χf̄

3 while V is not found do
4 S ← EnumerateCandidates(θ, f, ε)
5 for each (x′

1, y′
2, z′

3) in S do
6 if Γ divides x′

1, Γ divides y′
2 & Γ divides z′

3
then

7 x1 ← x′
1/Γ, y2 ← y′

2/Γ, z3 ← z′
3/Γ

8 if Eq. (27) is satisfied then
9 V ← CompleteUnitary(x1, y2, z3) if

V is found then
10 return V

11 increment f

12 Γ← (−1)⌈f/2⌉χf̄

The time complexity can be split into two steps. Step
(1) involves enumerating all valid triplets (x1, y2, z3),
where the area of the search regions in Fig. 1 determines
the complexity. One can show these areas are

32⌈f/2⌉ε2
(

1 − ε2

4

)
arccos

(
1 − ε2

2

)
. (30)

Expanding arccos
(
1 − ε2/2

)
= ε + O(ε3), we observe

that this area scales as O(3f ε3). Consequently, the total
complexity of enumeration is O(33f ε9).

Step (2) of the algorithm is to complete the unitary.
The complexity is dominated by solving Eq. (28) for
iteratively for |x|2 = N where N = O(3f ε2). Which in
App. B, we showed leads to a complexity of O(3f/2ε).

Combining the complexity of both parts, we obtain
O(37f/2ε10) for a fixed f . The algorithm terminates at
fmax once a solution is found. Recalling that we expect
scaling fmax = c1 log 1

ε , the overall complexity is

fmax∑
f=0

3
7f
2 ε10 = O

(
3 7

2 fmaxε10
)

= O
(

ε10− 7
2 c1
)

. (31)

Finally, it is possible to derive a rough lower bound
on c1 by estimating the number of Eisenstein integers in
each search region as follows. For a lattice L with basis
B = (b1, b2, ..., bm), the fundamental domain is

F(L) =
{∑

i

ci bi

∣∣∣ ci ∈ R and ci ∈ [0, 1)
}

. (32)

From Ref. [91], L is a uniform tiling of the ambient space
with its fundamental domain. As a result, the volume of
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FIG. 1. Search regions for: (left) Exhaustive Search Algorithm. The search regions of Eq. (19) are: the blue corresponds
to x′

1; the green region corresponds to y′
2 and the orange region corresponds to z′

3; (right) Householder Search Algorithm.
u = 1√

2 (cos θ/2, sin θ/2,−1, 0)T . The yellow region corresponds to the search region in Eq. (45).

this domain is

vol(F(L)) =
√

det(BT B), (33)

represents the inverse density of the lattice points. There-
fore, the number of lattice points within a region, K, of
volume vol(K) can be approximated by the ratio vol(K)

vol(F(L)) .
For us, each search regions has a vol(K) = O(3f ε3),

and L1, we find vol(F(L1)) =
√

3/2. Requiring that at
least one lattice point exists per volume then corresponds
to

1 ≤ vol(K)
vol(F(L)) = 3f ε3

√
3/2

= 2 × 3c1 log3
1
ε − 1

2 ε3. (34)

Reducing this inequality yields c1 ≥ 3 and consequently
NR ≥ 3 log3

1
ε + C where C is a constant.

IV. HOUSEHOLDER REFLECTION SEARCH

The poor scaling of the time complexity with ε of
Algorithm 1 motivates us to search for more efficient ways
to approximate diagonal gates. It was argued in Ref. [89]
that by restricting to Householder reflection of the form

Ru = 1 − 2uu† (35)

where u is a unit vector there exists a probabilistic clas-
sical algorithm returning an approximation with aver-
age NR ∼ 8 log3

1
ε using an average classical complexity

O(log 1
ε ). Further work in Ref. [79] reduced these es-

timates under certain number-theoretic conjectures to
NR ∼ 5 log3

1
ε for ‘non-exceptional’ target two-level unit

vectors. We present in these works an explicit algorithm
and demonstrate its scaling for Householder reflections in
the (C + R)3 group.

Ref. [89] reformulated the approximation problem to
only require approximating a unit vector u = (u1, u2, u3)
with another unit vector v = 1

χf (v1, v2, v3)T such that
the entries vi ∈ R3 and f ∈ N0.3 We refer to such a unit
vector as a unit Eisenstein vector. It is straightforward
to verify that a RZ

(0,1)(θ) matrix, up to a permutation,
corresponds to a Householder reflection i.e. RZ

(0,1)(θ) =
X(0,1)Ru for some

u = 1√
2

(eiθ/2, −1, 0)T . (36)

We can derive an upper bound between two House-
holder reflections Ru and Rv. To start, the norm between
two Householder reflections can be related to their associ-
ated unit vectors

∥Ru − Rv∥2 = 8
(

1 −
∣∣u†v

∣∣2) . (37)

Further, for any two vectors u and v

∥u − v∥2 = 2
(
1 − Re

(
u†v

))
. (38)

3 This problem is related to intrinsic Diophantine approxima-
tion [92].
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Since for any complex number z the following inequal-
ity is true (Re [z])2 ≤ |z|2, combining with the previous
expressions yields

∥Ru − Rv∥ ≤ 2
√

2 ∥u − v∥ δ (u, v) , (39)

where

δ (u, v) :=
√

1 − ∥u − v∥2

4 ≤ 1. (40)

Using δ(u, v) ≤ 1 reproduces the bounds of Ref. [93] which
demonstrates to approximate Ru within ε, it suffices to
identify a v such that

||u − v|| ≤ ε/(2
√

2). (41)

However, given δ(u, v) ≤ 1 in Eq. (39) means that the
requirement ∥u−v∥ ≤ ε/(2

√
2) may exclude some Rv that

meet the desired accuracy. To address this, we introduce
into our algorithm a contraction factor 0 < c ≤ 1 and
adjust the tolerance to ε/(2

√
2 c). While c < 1 no longer

guarantees that all reflections remain within ε, those
exceeding this threshold can be checked and rejected. This
approach reduces NR without increasing the algorithmic
complexity, but the enlarger search space will lead in
practice to longer run times.

From Eq. (36), we see that u3 = 0. Thus approximating
u by v = 1√

−3f (v1, v2, v3)T imposes the condition

Re (u∗
1v′

1 + u∗
2v′

2) ≥ r1, (42)

where we have rewritten terms using Eqs. (18) and (23).
Additionally, since v is a unit vector, it follows that

|v′
1| + |v′

2|2 ≤ r2
2. (43)

These constraints on v′
1 and v′

2 have a straightforward
formulation and geometric interpretation in R4. Any two-
level complex vector u ∈ C3 (with u3 = 0 in our case) can
be mapped to R4 by the isomorphism u = (u1, u2, 0)T 7→
u = (Re(u1), Im(u1), Re(u2), Im(u2))T . By a slight abuse
of notation, we refer to both the two-level complex and
its image in R4 using the same letter. When the context
does not make it obvious which version is being discussed,
we will clarify it explicitly.

In addition, consider for now the complex vector
(v1, v2)T ∈ C2 where v1, v2 ∈ R3. By defining these Eisen-
stein integers as v1 = x1 + x2ω and v2 = x3 + x4ω where
xi ∈ Z, we can represent the complex vector (v1, v2)T

in R4 by a vector y =
(

x1 − x2
2 ,

√
3

2 x2, x3 − x4
2 ,

√
3

2 x4

)T

.
Consequently, it can be seen that the set of all such vectors
y forms an integer lattice L2 in R4, defined by

L2 =
{

y = B2 x
∣∣∣x ∈ Z4

}
, (44)

where B2 = B1 ⊕ B1 and B1 is defined in Eq. (22). The
Eisenstein integers v1 and v2 can be recovered from y via
x = B−1

2 y.

To finally formulate the conditions in Eqs. (42) and (43)
as vector constraints in R4, we denote the image of
(v′

1, v′
2)T by a lattice vector y′ ∈ L2. Then, these con-

straints can be rewritten as lattice points y′ such that

uT y′ ≥ r1 and y′T y′ ≤ r2
2, (45)

In other words, we are looking for lattice points y′ above
a hyperplane and inside a hypersphere of radius r2 as
demonstrated in Fig. 1. Denoting the volume between the
hyperplane (uT y′ = r1) and the hypersphere by D(u, f, ε),
we have y′ ∈ L2 ∩ D(u, f, ε).

Once such an Eisenstein vector v = 1
χf (v1, v2, v3)T is

found, the matrix V = X(0,1)Rv is the desired approxi-
mation of RZ

(0,1)(θ). It can be shown that synthesizing V

requires NR ≤ 2f [76], and we will provide a deterministic
search algorithm focused on minimizing f .

Approximating V can thus be done in two iterated steps.
Step (1): Setting ε′ = ε/(2

√
2c), for a fixed f ∈ N0

and a unit vector u ∈ R4, we enumerate all candidates
y′ ∈ L2 ∩ D(u, f, ε′) following the algorithm in App. A.
Step (2): For each y′, we extract v1 and v2, and solve
the norm equation |v3|2 = 3f − |v1|2 − |v2|2 as discussed
in App. B. If a solution is found, we construct the vector
v and subsequently the matrix V = X(0,1)Rv. It only
remains to test that V approximates the target RZ

(0,1)(θ)
to the desired accuracy. Therefore, if ∥RZ

(0,1)(θ) − V ∥ ≤ ε,
the matrix V is returned. In the event that all candidates
y′ are exhausted and no solution is found, we increment
f and repeat the procedure. The details are summarized
in Algorithm 2.

Algorithm 2: Householder reflection search.
Data: θ, ε, and 0 < c ≤ 1
Result: V ∈ (C + R)3 group with ∥RZ

(0,1)(θ)− V ∥ ≤ ε.
1 u← 1√

2 (cos θ/2, sin θ/2,−1, 0)T

2 ε′ ← ε/(2
√

2c)
3 f ← 0
4 Γ← (−1)⌈f/2⌉χf̄

5 while v is not found do
6 for each y′ in L2 ∩ D(u, f, ε′) do
7 x′ ← B−1

2 y′

8 v′
1 ← x′

1 + x′
2ω and v′

2 ← x′
3 + x′

4ω
9 if Γ divides v′

1 and Γ divides v′
2 then

10 v1 ← v′
1/Γ and v2 ← v′

2/Γ
11 solve |v3|2 = 3f − |v1|2 − |v2|2
12 if v3 is found then
13 v← 1

χf (v1, v2, v3)T

14 V ← X(0,1)Rv

15 if ∥RZ
(0,1)(θ)− V ∥ ≤ ε then

16 return V

17 increment f

18 Γ← (−1)⌈f/2⌉χf̄

We now discuss the complexity of this algorithm. In
step (1), we enumerate all y′ in the region bound by
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Eq. (45). For a fixed f , the complexity of this corresponds
to the volume of the region. Due to spherical symmetry,
this volume corresponds to that of a hyperspherical cap
in R4 defined by the constraints y4 ≥ r1and yT y ≤ r2

2.
According to Ref. [94], this volume is given by:

vol(D(u, f, ε)) = π3/2

Γ(5/2)r4
2

∫ ϕ

0
sin4 θ dθ, (46)

where ϕ = arccos(r1/r2) = arccos(1 − ε2

2 ). Evaluating
this integral yields:

vol(D(u, f, ε)) = πr4
2

24 (12ϕ − 8 sin (2ϕ) + sin (4ϕ))

= 16
√

2π

15 r4
2ε5 + O(r4

2ε7), (47)

where we expanded in the ε → 0 limit. Using the defini-
tion of r2 in Eq. (23) gives us a final scaling for Step (1)
of O

(
32f ε5).

The problem in step (2) is to solve the norm equation
in Eq. (43) using the exhaustive search method in App. B
has a complexity O(|v3|). We show in App. C that |v3| =
O
(
3f/2ε

)
. Combining these two steps, the complexity of

the Householder search method is O(35f/2ε6). Similarly
to the exhaustive algorithm, this one terminates at fmax.
Assuming the scaling fmax = c2 log 1

ε , the overall

fmax∑
f=0

3 5
2 f ε6 = O

(
3 5

2 fmaxε6
)

= O
(

ε6− 5
2 c2
)

. (48)

Similarly, it is also possible to place a rough lower bound
on c2. The volume of the search region in Fig. 1 (right)
is O(32f ε5). Using the arguments at the end of Sec. III,
we obtain c2 ≥ 2.5. This lower bound corresponds to
NR ≥ 5 log3

1
ε + C where C is a constant.

V. EXACT SYNTHESIS

Given the approximation gate V ∈ U(3, R3,χ), what
remains is to determine the word in (C + T)3 which
produces it. To do this, one using the fact that any V
can be written optimally in a normal form [76]:

V =
f∏
i

HD(a0,i, a1,i, a2,i)RεiXδi (49)

where a0,i, a1,i, a2,i, δi ∈ {0, 1, 2}, εi ∈ {0, 1}. While this
form is more complicated than the analogous normal form
for qubits [95] which contains only H, T, S, there is still
only one non-Clifford gate, R since D(a, b, c) and X can
be constructed from H, S as shown above. Taken together,
the total number of possible normal forms NN smaller
than f is

NN =
f∑

i=0
(3422)i = 324f+1 − 1

323 . (50)

To determine the correct normal form, and therefore
circuit, we implement the algorithm from Ref. [76], which
guarantees optimality in NR.

To do this, we take advantage of the smallest denomi-
nator exponent sde(z) which corresponds to the smallest
non-negative integer f such that zχf ∈ R3 when z ∈ R3,χ.
It was shown in Ref. [76] that all entries of a matrix in
U(3, R3,χ) have the same sde(z). Therefore an algorithm
for solving Eq. (49) is to iteratively by finding a set
a0,i, a1,i, a2,i, δi, εi which reduces the sde(z) by 1. Each
reduction corresponds to most one R gate per iteration.
Once the sde(z) = 0, the resulting unitary is a Clifford
element, which can then be obtained from a lookup table.
The pseudocode is detailed in Algorithm 3.

Algorithm 3: Decomposition of V in U(3, R3,χ).
Data: Unitary U in U(3,R3,χ).
TD - table of all zero-sde unitaries in U(3,R3,χ).
Result: Sequence Sout of H, D, R, and X gates that

implement U .
1 u← top left entry of U
2 Sout ← Empty
3 s← sde(u)
4 while s > 0 do
5 state ← unfound
6 forall a0, a1, a2, δ ∈ {0, 1, 2}, ε ∈ {0, 1} do
7 while state = unfound do
8 u← (HD(a0, a1, a2)RεXδU)00
9 if sde(u) = s− 1 then

10 state ← found
11 append X−δR−εD−1H to Sout
12 s← sde(u)
13 U ← HD(a0, a1, a2)RεXδU

14 lookup matrix Srem for U in TD

15 append Srem to Sout
16 return Sout

VI. NUMERICAL RESULTS

We provide the scaling for the NR compared to
the infidelity, ε in Fig. 2. Using the exhaustive algo-
rithm, we evaluated 100 randomly sampled angles in
the interval (−π/2, π/2) at 10 target precisions ε ∈
{1, 0.5, 0.25, 0.1 . . . 10−3}. From this, we find on average

NE
R(ε) = 2.193(11) + 8.621(7)log10(1/ε)

= 2.193(11) + 4.113(3)log3(1/ε). (51)

For the Householder search algorithm we again evaluated
100 angles at 10 target precisions ε ∈ {1, 10−1 . . . 10−9}
and 36 angles at 10−10. After a modest search through
contraction factors, we found that c = 0.35 yields short
word lengths with tolerable additional runtime. Using
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FIG. 2. Scaling of the number of non-Clifford gates, NG (T
or R depending on qudit dimension) against the infidelity ε.
Angles are uniformly sampled in the region θ ∈ (−π/2, π/2).

this faster algorithm gave

NH
R (ε) = 3.20(13) + 10.77(3)log10(1/ε)

= 3.20(13) + 5.139(14)log3(1/ε). (52)

We can use the average costs (Eqs. (52) and (51)), along
with Eqs. (31) and (48), to compute the average com-
plexity of both algorithms. For the full (C + R)3 search,
the average c1 corresponds to the slope 4.11, which yields
an average complexity of O(ε−4.4). In the case of the
Householder search, the average c2 is half the slope, 5.139,
resulting in an average complexity of O(ε−0.42).

In order to determine the average cost for an arbitrary
single-qutrit SU(3) gate, these results should be multi-
plied by 6 [79]. Given the importance of the T3 gate
in discussions of qutrits, we investigate its approximate
synthesis with the Householder search algorithm, finding
NH

R for T3 aligns with that of the average gate costs. In
passing, we also note that NR exhibited a weak angular
dependence: angles closer to R3,χ lead to lower NR.

With these results, we can compare our single-qutrit
synthesis method to that of implementing the same uni-
tary on two qubits. For the general case of two-qubit
circuits with CNOTs and Rα(θ), i.e. SU(4), the number
of 15 single-qubit rotations is required [96]. Restrict-
ing to the single-qutrit subspace of SU(3), dimensional
analysis bounds the cost as at least 10 Rα(θ). Using
the average cost for synthesizing RZ(θ) from [88] of
NRUS

T = 9.2 + 3.817 log10(1/ε) = 9.2 + 1.15 log2(1/ε)
would estimate that an arbitrary single-qutrit gate would
require at least 10 NRUS

T . Comparing to the costs in
Eqs. (51) and (52) imply that single-qutrit synthesis via
our algorithms for R incurs an overhead factor as ε → 0

of 1.35 and 1.69 respectively. If one instead considers a
fiducial ε = 10−10, these factors reduce to 1.12 and 1.40.

VII. CONCLUSION

In this work, we have demonstrated two algorithms
to synthesize diagonal gates for qutrits using the Clif-
ford + R gates. Our studies show that given a tar-
get infidelity ε for a diagonal rotation gate, one can
approximate a diagonal that requires approximately
3.20(13) + 10.77(3)log10(1/ε) R gates. These results open
up the feasibility of using fault-tolerant qutrits for quan-
tum simulations. While these results are valuable, they
leave several open questions. First, while the prefactor
10.77(3) for synthesizing diagonal gates is close to the
lower bound of 10.27, multiplying by six to obtain arbi-
trary gates leaves us quite far from optimality. Potential
improvements could come from exploring repeat-until-
success methods [88] or identifying broader subclasses of
gates that can be efficiently synthesized. Another direc-
tion of research might investigate synthesis with other
groups, such as (C + D)3 or (C + T)3. Furthermore,
similar to qubits, looking for larger transverse groups
than Cliffords could further reduce the cost [69, 70] and
potentially enable novel application-specific gate sets e.g.
high energy physics [55, 97].
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Appendix A: Enumeration algorithm for
y ∈ L2 ∩ D(u, f, ε)

The goal is to enumerate all vectors y ∈ L2 ∩ D(u, f, ε)
for a fixed f ≥ 0. As defined in Eq. (44), the lattice
vectors y ∈ L2 take the form y = B2x, where x ∈ Z4. By
matrix multiplication, y can be written as

y =
(

x1 − x2

2 ,

√
3

2 x2, x3 − x4

2 ,

√
3

2 x4

)T

. (A1)

It is convenient to parametrize y with half-integers
p1, q1, p2, q2 such that pi := xi − x2i/2 and qi := x2i/2
where i = 1, 2. Each pair (pi, qi) must satisfy the in-
teger constraint xi = pi + qi. Consequently, the lat-
tice vectors take the form y =

(
p1,

√
3q1, p2,

√
3q2
)T and

yT y =
2∑

i=1
p2

i + 3q2
i .

Lemma 1. For y ∈ D(u, f, ε), |y4| ≤
√

r2
2 − r2

1.
Proof. Let ei (with i = 1, 2, 3, 4) be the canonical basis
vectors of R4. That is, e.g. e1 = (1, 0, 0, 0)T . Let Π3 be
the projector onto the subspace spanned by e1, e2 and
e3. Since u4 = 0, it follows that uT y = uT Π3y. By
the triangle inequality, (Π3y)T (Π3y) ≥ r2

1. Additionally,
using the total norm constraint: yT y = (Π3y)T (Π3y) +
y2

4 ≤ r2
2, implying that y2

4 ≤ r2
2 − r2

1 or equivalently,
|y4| ≤

√
r2

2 − r2
1.

This lemma constrains the sampling range for q2:
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⌋
. (A2)
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For each q2, the other components satisfy:

q1 cos(α) +
√

3q1 sin(α) ≥
√

2r1 + p2,

q2
1 + 3q2

1 ≤ r2
2 − 3q2

2 − p2
2 (A3)

where α := θ/2. Since (cos α, sin α)T is a unit vector,
applying the arguments in Lemma 1 gives:∣∣∣√2r1 + p2

∣∣∣ ≤
√

r2
2 − 3q2

2 − p2
2. (A4)

This inequality holds only for p2 within the interval:

1
2 ⌈2 p2,min⌉ ≤ p2 ≤ 1

2 ⌊2 p2,max⌋ , (A5)

where p2,(max,min) := 1√
2

(
−r1 ±

√
r2

2 − r2
1 − 3q2

2

)
. Note

that ensuring that the radicand is nonnegative provides an
elementary proof of Lemma 1. With p2 and q2 determined,
Eq. (A3) can be rewritten as:

p1 cos(α) +
√

3q1 sin(α) ≥ λ1, p2
1 + 3q2

1 ≤ λ2
2, (A6)

with λ1 :=
√

2r1+p2 and λ2
2 := r2

2−3q2
2−p2

2. Enumerating
such p1 and q1 can be done using the results in Eqs. (25)
and (26).

Appendix B: Solving the norm equation

This section describes how to solve the norm equation.
Specifically, given a positive integer N , the problem is to
find an Eisenstein integer x = a + bω such that |x|2 = N .
Using the half-integer representation, p = a − b

2 , q = b
2 ,

the norm equation can be rearranged to:

p2 + 3q2 − N = 0. (B1)

Interpreting this as a quadratic equation in p, the dis-
criminant is given by ∆ = 4N − 12q2. Real solutions for
p exist if ∆ ≥ 0, which requires q2 ≤ N

3 . Hence, valid
values of q are half-integers satisfying |q| ≤ ⌊

√
N
3 ⌋.

Since the equation is symmetric under q → −q, it
suffices to consider only non-negative values of q. For
each q, if p = ±

√
N − 3q2 such that p+q ∈ Z, then a valid

solution exists. Together, this gives an x = (p+q)+(2q)ω
which satisfies the norm equation. Finally, the complexity
of this search is O(

√
N).

It is important to note that because the norm of Eisen-
stein integers is multiplicative∣∣∣∣∣∏

i

xi

∣∣∣∣∣
2

=
∏

i

|xi|2 for xi ∈ R3, (B2)

the norm equation |x|2 = N for ∈ R3 can be solved with
a factoring algorithm. Given an integer factorization N =∏

i pci
i , there is a method to solve |x|2 = N which relies

on the relation between rational primes and Eisenstein
primes, see e.g. Ref. [98]. Indeed, a rational prime p ≠ 3
either remains prime in R3 or splits in R3. That is, if
p ∈ Z is prime, then p is also prime in R3 if p ≡ 2 (mod 3).
On the other hand, if p ≡ 1 (mod 3), there exists η ∈ R3
such that |η|2 = p. In the case p = 3, |1 − ω|2 = 3.

Then, having the factorization for N , solving |x|2 =
N reduces to solving each |xi|2 = pi for the case pi ≡
1 (mod 3)4. This can be solved using the method described
earlier with complexity only O(√pi). However, integer
factorization using a General Number Field Sieve (GNFS)
algorithm [99] would reduce the complexity.

Appendix C: Bound on |v3|

As shown in App. B, the complexity of finding v3 via
exhaustive search depends on |v3|. This section establishes
an upper bound on this value. For all y′ ∈ L2 ∩D(u, f, ε),
the triangle inequality implies |uT y′| ≤ |y′|, which can
be used to show y′T y′ ≥ r2

1.
For Eisenstein y′, it follows that y′T y′ = |v′

1|2 + |v′
2|2 ≤

r2
2. Applying the variable change of Eq. (18) we obtain

|v1|2 + |v2|2 ≥ 3−f̄ r2
1. (C1)

Remembering that |v3|2 = 3f −(|v1|2+|v2|2), this equation
simplfies by noting that 32⌈f/2⌉−f̄ = 3f to yield

|v3| ≤ 3f/2ε
√

1 − ε2/4 = O
(

3f/2ε
)

. (C2)

4 For pi = 3, xi = 1 − ω. For pi ≡ 2 mod 3, xi = p
ci/2
i if and only if ci is even because such pi is prime in R3.
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