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Abstract. The IRIS-HEP software institute, as a contributor to the broader HEP
Python ecosystem, is developing scalable analysis infrastructure and software
tools to address the upcoming HL-LHC computing challenges with new ap-
proaches and paradigms, driven by our vision of what HL-LHC analysis will
require. The institute uses a “Grand Challenge” format, constructing a series
of increasingly large, complex, and realistic exercises to show the vision of
HL-LHC analysis. Recently, the focus has been demonstrating the IRIS-HEP
analysis infrastructure at scale and evaluating technology readiness for produc-
tion.
As a part of the Analysis Grand Challenge activities, the institute executed a
“200 Gbps Challenge”, aiming to show sustained data rates into the event pro-
cessing of multiple analysis pipelines. The challenge integrated teams internal
and external to the institute, including operations and facilities, analysis soft-
ware tools, innovative data delivery and management services, and scalable
analysis infrastructure. The challenge showcases the prototypes — including
software, services, and facilities — built to process around 200 TB of data
in both the CMS NanoAOD and ATLAS PHYSLITE data formats with test
pipelines.
The teams were able to sustain the 200 Gbps target across multiple pipelines.
The pipelines focusing on event rate were able to process at over 30 MHz. These
target rates are demanding; the activity revealed considerations for future testing
at this scale and changes necessary for physicists to work at this scale in the
future. The 200 Gbps Challenge has established a baseline on today’s facilities,
setting the stage for the next exercise at twice the scale.
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1 Introduction

The upcoming High Luminosity Large Hadron Collider (HL-LHC) will deliver a dataset of
collisions with a total size significantly exceeding that resulting from the Run-2 and ongoing
Run-3 operation of the LHC. Both the CMS [1] and ATLAS [2] collaborations have studied
the computing challenges associated with handling this data and outlined the need for R&D
to meet the computational requirements of physics analyses with HL-LHC data.

The focus of the work reported here lies in the last stages of a High Energy Physics (HEP)
analysis pipeline, in the realm of end user physics analysis. Earlier stages in the pipeline are
commonly centrally organized and the end user part begins with centrally provided input
files. The subsequent workflow can vary a lot between analyses, but typically has to be run
frequently from the design stage of a physics analysis all the way through to the publication
of the results. The turnaround time for this end user workflow increase with dataset size.
This poses the risk of large increases in the time it takes to perform a physics analysis at the
HL-LHC. Mitigating this risk is one of the missions of the IRIS-HEP software institute.

1.1 IRIS-HEP and the “Grand Challenge” format

IRIS-HEP [3] is the Institute for Research and Innovation in Software for High Energy
Physics. Since 2018, IRIS-HEP has performed computing and software R&D for the
HL-LHC: it targets a software upgrade accompanying the detector hardware upgrades that
are being pursued for the CMS and ATLAS experiments. This work is being done in close
collaboration with the experiments and computing facilities. IRIS-HEP members are a mix
of physicists, computer scientists, and engineers, distributed across many institutes in the
United States. They work on a broad range of topics, many of which are connected via
“Grand Challenges”. These challenges outline a series of exercises of increasing complexity
towards realistic HL-LHC physics analysis scale. A recent focus has been end user physics
analysis: demonstrating IRIS-HEP analysis infrastructure at scale and evaluating technology
readiness. Two recent key projects are situated in this field:

• Analysis Grand Challenge (AGC) [4–7]: an end-to-end analysis pipeline that serves as
an integration exercise,

• 200 Gbps Challenge: demonstrating data throughput of 200 gigabit per second for physics
analysis applications.

1.2 Overall vision

A central goal for IRIS-HEP is to empower physicists by minimizing the time-to-insight and
thereby maximizing the HL-LHC physics reach. The time-to-insight is the turnaround time
of physics analysis and incorporates time spent debugging, bookkeeping, and waiting for
computing to finish. The institute aims to tighten feedback and support cycles in particular
among three groups of people:

• physicists,

• software developers,

• analysis facility experts.

An efficient and scalable implementation of a physics analysis pipeline requires expertise in
these three areas. By having people from all three work together within the IRIS-HEP chal-
lenge format, the institute targets the development of solutions that can serve as a blueprint
for the future.

The unifying IRIS-HEP vision for end-user physics analysis encompasses the following:



• Analyze O (1000 TB) of data within a few hours: This scale captures the envisioned
HL-LHC physics analysis needs and multiple hours of turnaround time for a full pipeline
run allow for efficient progress in a physics analysis.

• Interactive analysis turnaround with a “coffee break” timescale: The possibility of
iterating on ideas on the timescale of a coffee break with a meaningful subset of data means
that development can proceed rapidly and waiting time does not become a bottleneck.

• Fully integrated Analysis Facilities (AFs): These facilities provide a convenient inter-
faces to access required services and computational resources.

• User experience to empower big & small teams: A recent dedicated white paper [8]
describes desirable features from a user perspective, including the handling of software
environments and collaboration with colleagues.

• Easy access to state-of-the-art Machine Learning (ML) techniques: ML techniques are
widely used throughout physics analysis and new ideas have the potential to shape analysis
workflows, so sufficient flexibility to incorporate novel developments is desirable.

• Reproducibility, preservation, reuse: Developing sustainable physics analyses will help
maximize their long-term impact and legacy [9].

2 The Analysis Grand Challenge

The AGC defines a physics analysis task starting from publicly accessible CMS Open
Data [10]. It features the extraction and processing of data into histograms, ML training
and evaluation, as well as statistical inference. The reference implementation of this task
is provided by IRIS-HEP [11] and heavily uses Python libraries from the Scikit-HEP [12]
project. This pipeline is depicted in Figure 1.

Figure 1. The IRIS-HEP reference implementation for the AGC analysis task, figure adapted from [6].

The AGC project provides a useful environment for integration tests and a variety of
implementations beyond the IRIS-HEP reference have been developed. For IRIS-HEP, the
implementation employs task graphs to express and execute data analysis operations. This is
done with Dask [13], a Python library providing both an interface to describe manipulations



of data through task graphs, as well as ways to efficiently schedule the distributed execution
of such graphs. Deep integration of Dask with other HEP-specific Python libraries, such as
coffea [14], has been achieved over time and Dask is additionally emerging as a common
feature in many AFs.

The AGC has been successful in its integration role but is limited in scale as the size of
the input data is only around 2 TB. This motivated the start of a new Grand Challenge project
to specifically target scaling behavior.

3 The 200 Gbps Challenge

End user physics analysis pipelines are not centrally prescribed and there is limited agree-
ment on how physics analyses will evolve towards the HL-LHC. It is therefore currently
unclear what a “representative” HL-LHC analysis might look like. This poses a challenge
for software and computing R&D: in the absence of agreed-upon benchmarks, the evaluation
of technical readiness is more difficult. Figure 2 proposes a way to factorize computational
aspects of physics analysis pipelines into independent challenges. One axis is pure data
throughput, focused on how fast data can be read, decompressed and be made available for
any subsequent physics analysis operations. Another axis is the total computational cost of
the pipeline: this can capture aspects such as the cost to train and evaluate ML models, but
also the processing of systematic variations for the evaluation of associated uncertainties in
the physics result. The third axis is the analysis complexity, which can relate to the number
of different steps required in the workflow or the types of operations and external services
that are required to be supported. A given analysis example, such as the AGC shown in red,
can be located somewhere within this space.

total 
computational 

cost

analysis 
complexity 

e.g. AGC

R&D

data 
throughput

Figure 2. Factorizing computational aspects of physics analyses into independent challenges: the 200
Gbps project is focused on data throughput.

A benchmark analysis example like the AGC probes a specific point in this space. Defin-
ing technical capabilities today, as well as moving forward towards the HL-LHC, requires
addressing what region of this space is technologically accessible. The 200 Gbps Chal-
lenge project focuses purely on data throughput to evaluate what can be achieved with the
approaches envisioned by IRIS-HEP and to subsequently push these boundaries further out-
wards with targeted development.



3.1 Defining the challenge

The 200 Gbps Challenge is named after its key goal: demonstrate data throughput in a physics
analysis context at a rate of 200 Gbps, sustained over half an hour. These numbers target
physics analysis at scale to probe HL-LHC needs. A given physics analysis will frequently
only read a subset of the content in the centrally provided input files. Given a target 25% of
the file content needing to be read, a rate of 200 Gbps corresponds to processing a 180 TB
dataset within half an hour.

The relevant data formats in the HL-LHC context for the CMS and ATLAS experiments
are NanoAOD [15] and PHYSLITE [16]. Table 1 provides more context about what this
challenge means with event sizes typical for these formats. For the NanoAOD example,
reaching 200 Gbps with 1000 cores means processing events with a rate of 50 kHz and a
throughput of 25 MB/s per core. For PHYSLITE, a slightly more complicated data structure,
the use of 2000 cores would mean event rates of 5 kHz and throughput of 12.5 MB/s per core.

Table 1. Event numbers and rates for 200 Gbps data throughput sustained over half an hour for CMS
NanoAOD and ATLAS PHYSLITE examples.

CMS NanoAOD example ATLAS PHYSLITE example

size per event 2 kB 10 kB
number of events 90 billion 18 billion
target total event rate 50 MHz 10 MHz

As the challenge targets data throughput in the context of subsequent physics analysis, it
includes all the steps leading up to this: the initial read, network transfer, as well as decom-
pression. It captures the steps up until the point where arrays of data are available in memory,
ready for any case-specific additional physics operations.

Two different setups were studied in the context of the 200 Gbps Challenge. The CMS-
targeted implementation [17] uses Run-3 CMS NanoAOD data and was operated at an AF
located at the University of Nebraska–Lincoln. The ATLAS version [18] uses Run-2 ATLAS
PHYSLITE data and ran at the University of Chicago AF. While both implementations have
a similar target of demonstrating sustained throughput of 200 Gbps, they do differ in various
ways. Most importantly, the input files vary in event size, object types, and compression
used; the AFs differ in their setup and hardware.

The initial timeline for this project was tight: the goal was to present the status at the
2024 WLCG/HSF workshop, which took place 8 weeks after the creation of the challenge.
Despite this, the presentation [19] at the workshop demonstrated that the goal was achieved
and it was further improved upon subsequently.

3.2 Key Analysis Facility elements

Figure 3 schematically depicts the data flow and relevant AF components used in the chal-
lenge context. The input data starts out distributed across the Worldwide LHC Computing
Grid (WLCG). Reading over the wide-area network puts limits on throughput and latency
which are incompatible with the goals of this challenge. XCache [20, 21] instances are de-
ployed within the AFs to addresses this. Remote data is cached during the first read and all
subsequent reads happen out of the cache and are contained to the local network for fast and
stable data access. For the purpose of the following measurements all caches are assumed
to be warm, with the caching having already taken place previously. This corresponds to the



typical situation during the development of physics analysis where physicists iterate on a de-
sign and will repeatedly run similar data processing pipelines. The AFs also provide ways to
distribute the workflow across available resources. In the cases discussed here the individual
worker nodes provide CPU resources for data handling and decompression.

Analysis Facility

XCache instances Worker nodes

WLCG site

WLCG site

WLCG site

Fast network

Figure 3. Key AF components used to address the 200 Gbps Challenge.

4 Measurements with the CMS setup at Nebraska

Benchmarking with the CMS setup [17] took place on the coffea-casa [22] AF located at the
University of Nebraska–Lincoln. Coffea-casa is built as a prototype for a HL-LHC AF with
a hybrid setup employing both Kubernetes resources and resources via the local CMS Tier-2
and Tier-3 site. Eight XCache instances were deployed, each with a 2x100 Gbps uplink, to
scale to the intended throughput level. Details about the setup can be found in a dedicated
contribution to this conference [23].

The measurements run a task graph built with Dask. Nodes in this graph encapsulate the
work to be done for a single file: reading the data with uproot [24] into awkward [25] arrays
and returning metadata for benchmarking purposes. Both Dask and TaskVine [26] were used
to perform the distributed execution using resources provided by both HTCondor [27] and
Kubernetes.

Figure 4 shows a measurement example with Dask on HTCondor resources. Using a
constant allocation of around 1300 workers, a data rate exceeding 200 Gbps was sustained
over a period of roughly 15 minutes. This example processed 40 billion events distributed
across 64k NanoAOD files for an event rate of 32 MHz. A total of 30 TB of compressed
data was read, corresponding to an uncompressed size of 71 TB. This measurement was
performed on NanoAOD inputs that were re-compressed from the default LZMA to instead
use the Zstandard algorithm. The change in compression algorithm resulted in an event rate
increase per core of roughly a factor 2.5 and made reaching the 200 Gbps target possible.

5 Measurements with the ATLAS setup at Chicago

The ATLAS setup [18] used the University of Chicago AF. This AF is used in production
for ATLAS, is fully Kubernetes-based and was partially reconfigured to address the compu-
tational needs of the 200 Gbps Challenge. A detailed description about the facility configu-
ration is provided in a separate contribution to this conference [28]. Eight XCache instances
were deployed at this AF as well, distributed across the network to maximize the available
total bandwidth to the computing resources.



Figure 4. Data rate
measurement at the coffea-casa
AF located at the University of
Nebraska–Lincoln. A rate
exceeding the target of 200 Gbps
was sustained over 15 minutes in
a distributed setup using around
1300 workers.

Two different data pipeline configurations were pursued: a Dask-distributed reading of
data through an XCache with uproot and a setup employing ServiceX [29] as a data delivery
service.

5.1 Results with Dask and uproot

Using Dask to distribute reading of data into awkward arrays with uproot, the target 200 Gbps
data rate was sustained over a period of 20 minutes in the example shown in Figure 5. The
worker allocation was dynamic and controlled by the Dask scheduler. It quickly ramps up to
a peak of around 1700 workers and scales down again towards the end of the execution as the
number of remaining tasks decreases. The example processed 32 billion events from 218k
PHYSLITE files with a total size of 190 TB for an event rate of 15 MHz, with per-core rates
of 5–20 kHz. The uncompressed size of the data read was 32 TB, corresponding to 80 TB
uncompressed.

6

Figure 5. Data rate
measurement at the University of
Chicago AF. A rate exceeding
the target of 200 Gbps was
sustained over 20 minutes in a
distributed setup using up to
around 1700 workers.



5.2 Results with ServiceX

A second data processing pipeline that was tested for the challenge employed ServiceX as
a data delivery service. Data is read through the caches, processed by ServiceX, and then
written out to object storage. The resulting output can then be processed further in a next
stage, for example with another Dask-distributed setup. This multi-stage schema can be
beneficial especially when the data size significantly decreases in the first processing step, for
example due to event filtering being applied. Repeated executions of the following processing
step can then be particularly efficient if they only infrequently necessitate re-running the
earlier step.

Figure 6 shows the data rates achieved in an example run, measured through network
monitoring. This example resulted in a rates of 170 Gbps over a 25 minute runtime. It pro-
cessed 19 billion events corresponding to 146 TB of data, using up to 1000 pods. The pro-
cessing time of subsequent analysis steps, which read data out of the object storage, strongly
depends on the filtering performed during this ServiceX stage.

Figure 6. Data rate measurement at
the University of Chicago AF. Using
ServiceX, the network monitoring
shows rates up to 170 Gbps in this 25
minute example using up to 1000
pods.

6 Multi-user interactive analysis

Future AFs are aiming to host many physicists who all would like to simultaneously scale to
sufficiently many resources to enable interactive analysis turnaround. It is therefore important
to demonstrate that good performance can also be achieved with multiple users running in
parallel. The two exercises reported here looked at different scenarios in this context at the
AFs at the University of Nebraska–Lincoln and the University of Chicago.

The first exercise featured ten ATLAS users at the University of Chicago AF launching
data processing pipelines adapted from the 200 Gbps setup. Launch times were randomized
and each user was restricted to be assigned at most 200 cores, with Dask dynamically scaling
the allocation. The total data rate shown in Figure 7 (top) reached 200 Gbps, distributed
between multiple different users. Figure 7 (bottom) depicts the data rate per user as a function
of time. The rates dropped in the middle of the exercise as the network resources were
saturated at this point in time.

The second exercise used the coffea-casa AF at the University of Nebraska–Lincoln. Fig-
ure 8 (top) shows the worker allocation per participant. Five CMS users launched a data
processing pipeline at the same point in time and were allocated 150 workers each. Dask
dynamically scaled the allocation up to the 150 worker limit. The sixth user received a more
limited allocation due to the total availability of resources. After the first tasks finished up,
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Figure 7. Multi-user test at the University of Chicago AF. With ten users executing data processing
pipelines, the available bandwidth was distributed between users and reached 200 Gbps (top). A satu-
ration effect is visible in the per-user data rates (bottom).

the sixth user was dynamically allocated more of the available resources through Dask. The
data rate for this user subsequently increased significantly as shown in Figure 8 (bottom).

These measurements demonstrate how resources can be dynamically distributed across
users. Finding the right resource provisioning and fair-share patterns in the context of inter-
active analysis will likely require more work in this direction.

7 Conclusion and next steps

The 200 Gbps Challenge successfully demonstrated technology readiness and provided a
checkpoint towards the HL-LHC. It served as a valuable mechanism to generate feedback
and identify potential bottlenecks with large-scale data throughput analysis use cases. The
project relied on close collaboration between physicists, analysis software developers, and
analysis facility experts in order to reach the 200 Gbps throughput target.

Looking ahead, IRIS-HEP intends to further study the space of physics analyses outlined
in Figure 2. Two directions are of particular interest: adding complexity to the existing 200
Gbps setup to capture more of the event-by-event processing of a physics analysis, as well as
extending the throughput towards a 400 Gbps Challenge. The future of HEP end user physics
analysis remains difficult to predict, but these targeted efforts aim to ensure readiness for a
broad range of HL-LHC use cases.
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Figure 8. Multi-user test on the coffea-casa AF at the University of Nebraska–Lincoln. When the
resource demand for all users exceeded the available resources, users received more resources as other
tasks finish up (top). The per-user data rates show the effect of resource redistribution and subsequent
change in data rates (bottom).
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