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Abstract. Celeritas is a GPU-optimized Monte Carlo (MC) particle transport
code designed to meet the growing computational demands of next-generation
high energy physics (HEP) experiments. It provides efficient simulation of elec-
tromagnetic (EM) physics processes in complex geometries with magnetic fields,
detector hit scoring, and seamless integration into Geant4-driven applications
to offload EM physics to GPUs. Recent efforts have focused on performance
optimizations and expanding profiling capabilities. This paper presents some
key advancements, including the integration of the Perfetto system profiling tool
for detailed performance analysis and the development of track-sorting methods
to improve computational efficiency.

1 Introduction

Detector simulation is an essential component of the design and analysis of HEP experiments.
However, it requires significant computing resources, and with the High-Luminosity Large
Hadron Collider (HL-LHC) upgrade these demands will grow beyond the capabilities of
conventional computing systems. Celeritas [1], a rapidly developing GPU-enabled MC
particle transport code, aims to address these challenges by leveraging high-performance
heterogeneous architectures. Over the past several years, Celeritas has implemented the core
infrastructure and capabilities [2–6] needed to accelerate detector simulation, including EM
physics processes, full device-based navigation in complex geometries and in the presence
of magnetic fields, detector hit scoring, and an API for integrating into existing Geant4 [7]
applications and experimental frameworks. This paper presents recent developments in
performance optimization and profiling, including the integration of the Perfetto [8] system
profiling and trace analysis tool.
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2 Stepping algorithm

Adapting methods originally designed for CPU-based codes like Geant4 requires significant
algorithmic modifications. One key area of change is the overall parallelization strategy.
Traditionally, particles are tracked sequentially from birth, undergoing a series of bound-
ary crossings and interactions until termination. Because individual particle histories are
independent, concurrency is achieved by distributing groups of particles to threads. While
this performs well on CPUs, it is an inherently multiple instruction, multiple data (MIMD)
approach that inhibits data-level parallelism on GPUs and can lead to significant thread
divergence.

A strategy that has proven successful in GPU-enabled neutral particle MC codes [9, 10],
and the approach adopted by Celeritas, restructures the stepping loop so the fundamental unit of
work is a specific particle action rather than an entire particle history. The CPU coordinates an
outer loop over a sequence of actions—such as step limit calculation, propagation, and discrete
interaction—each executed as a kernel launch on a large array of active tracks. Each iteration
of this loop is a step iteration. These smaller, specialized kernels use fewer registers, achieve
higher occupancy, and reduce thread divergence by ensuring most threads are performing
similar tasks.

The active tracks are stored as a struct of arrays, with each array containing per-track state
data such as the current energy, position, particle type, and ID of the next action. Instead of
partitioning state data into separate particle buffers or action queues, each kernel operates on
all tracks, using masking to select particles that participate in a given action.

Secondaries produced in interactions are pushed to a separate buffer of track initializers—a
lightweight struct containing the minimal data needed to initialize a new track. At the
start of each step iteration, vacant slots in the state array are initialized deterministically to
ensure reproducibility. Pseudo-random number generator (PRNG) states are assigned to track
slots, meaning each track’s random number sequence is dictated by its index in the state array.
Because Celeritas executes nearly the same code on the GPU and the CPU, reproducibility is
maintained across architectures, provided the same number of track slots is used.

3 Performance optimizations

Efficient execution on GPUs relies on optimizing control flow and memory access patterns:
performance is maximized when adjacent threads follow the same execution paths and access
contiguous memory. However, the thread masking in kernels and the arbitrary ordering of
tracks introduce branching and inefficient memory transactions. To address this, we have
explored strategies to reorder tracks, grouping together those undergoing similar actions. Along
the same lines, additional optimizations have been investigated to improve load balancing and
reduce synchronization overhead.

3.1 Reindexing track slots

Because sorting track state data at every step iteration is prohibitively expensive, we explored
sorting only the track slot indices and accessing the tracks through an indirection. Each
thread tid retrieves its track state via state[state_indices[tid]] using the lookup array
state_indices. Only state_indices is sorted, ensuring adjacent threads share properties
such as particle type or status (i.e., whether a track is active).

This approach aims to reduce branching and kernel grid sizes when grouping tracks based
on action or status. The hypothesis is that, given significant thread divergence, memory access
is already non-coalesced, and thus reindexing does not substantially degrade the access pattern.



In practice, this generally leads to a slowdown compared to unsorted execution, though the
performance penalty is smaller for problems with complex geometries and a large number of
active tracks.

The best performance is observed when sorting tracks by their along-step action—
specifically, distinguishing between neutral particles propagating in a straight line and charged
particles undergoing multiple scattering, possibly in a magnetic field. Kernel analysis using
NVIDIA Nsight Systems confirms that thread divergence decreases, with up to 38% fewer
instructions executed per along-step kernel, depending on the problem geometry. However,
this indexing model significantly hinders coalesced memory access, increasing global memory
read/write operations up to 344%, which negates any potential gains from executing fewer
instructions.

3.2 Partitioning track data

A second reordering strategy to reduce branching involves sorting track data by charged and
neutral particles without explicitly sorting the track arrays. This is achieved by partitioning
the track initializers scheduled to fill vacant slots in the next step iteration and assigning the
charged and neutral initializers to opposite ends of the track array. While this approach does
not completely separate particles—some mixing can occur, particularly when the state size is
small—it improves performance as long as the number of tracks is sufficiently large.

Since initializing the geometry state from the track’s position can be expensive, another
optimization aims to reuse the parent’s geometry state by immediately initializing a secondary
in the parent’s track slot if it is vacant. This provides a substantial performance boost for
complex geometries. However, it diminishes the benefits of track partitioning by mixing
neutral and charged tracks. Consequently, this optimization is not applied here, leading to
higher geometry costs. Future work will explore alternative methods to accelerate geometry
state initialization and mitigate this penalty.

3.3 Reducing load imbalance

Despite the use of smaller, specialized kernels, load balancing remains a challenge, particularly
in the along-step action. The trajectory of a charged particle in a field is approximated by
discretizing its curved path into linear substeps, each determined by numerical integration of
the equation of motion. While most tracks take only one or two substeps, some “curling” tracks
may need thousands, leading to significant load imbalance. To mitigate this, a limit is placed
on the number of substeps per iteration. When a track reaches this limit, its propagation is
paused and resumed in the next iteration. This introduces a tradeoff between kernel execution
time and the overall number of step iterations. As shown in Figure 1, limiting the substeps to
10 was found to reduce the average along-step kernel time without increasing the total number
of iterations beyond statistical fluctuations.

3.4 Asynchronous memory management

HEP software built on Geant4 parallelizes execution by assigning events to CPU threads. In
Celeritas, each CPU thread is mapped to a GPU stream, with all streams executing concurrently
on a single GPU. For realistic workloads using multiple threads (streams), memory transfer
can become a significant bottleneck, particularly when transferring hit data from device to host
for processing in user-defined sensitive detectors. While the actual data volume per transfer is
small, the frequency is high: hits must be transferred at every step iteration for each event.
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Figure 1: Simulation of 7 events, each consisting of 1300 10 GeV electron primaries, in the
CMS Run 2 geometry under a 3.8 T uniform field. A higher limit on field substeps per step
iteration leads to greater load imbalance in the along-step kernel and increased variability in
time per step. Reducing the maximum substeps from 1000 to 10 yields a 35% speedup, despite
98% of track steps converging in fewer than 10 substeps.

By default, synchronous memory operations (e.g., [cuda|hip]Memcpy) enforce a device-
wide synchronization, preventing any kernel in any stream from running while the transfer
occurs. Given the high transfer frequency, this can severely impact GPU utilization.

To mitigate this issue, we fully migrated all memory operations to the stream-ordered
memory API. Thrust kernel calls are issued in the appropriate stream, and a dedicated mem-
ory resource ensures stream-ordered memory allocation and transfers. We implemented a
PinnedMemory allocator, enabling seamless declaration of pinned std::vector objects for
efficient memory transfer, and developed utilities for asynchronous copying between pinned
and device memory. These improvements collectively resulted in substantial performance
gains, yielding speedups ranging from 10–100% across our benchmark problems.

4 Integration with Perfetto

Perfetto is an open-source tracing tool developed by Google, primarily for the Chromium
browser. Tracing records detailed, timestamped events throughout a program’s execution,
enabling fine-grained performance analysis. In contrast, profiling gathers statistical summaries
of resource usage by periodically sampling the program. While Perfetto supports both, this
work focuses on integrating Celeritas with its tracing software development kit (SDK). Since
trace data is too verbose for direct inspection, Perfetto offers analysis tools, including a
web-based visualizer and C++/Python libraries for SQL-based analysis.

Perfetto offers two tracing modes, both supported in Celeritas: application tracing and
system tracing. In application tracing, only events—slices and counters—from the Perfetto
SDK are recorded, with the tracing daemon running as a separate thread inside the application.
System tracing includes these application events but also captures system-level events via
the ftrace kernel API (Linux only). This mode requires administrator privileges and runs the
tracing daemon as an external process.
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Figure 2: Analysis of Perfetto traces of Celeritas running on an Apple M4 CPU. The plot
shows the correlation between propagation time per step iteration (red, along-step kernels)
and the number of active tracks. The time per track (green) stays fairly constant, as expected
on a CPU, but the overhead is exposed at the tail end of the simulation: when only ∼ 3000
tracks remain active, the time per track starts to increase.

Celeritas supports tracing through the CUDA (NVTX) [11] and AMD
(ROCTX) [12] libraries by providing an RAII-wrapper class, ScopedProfiling,
around [nvtx|roctx]Range[Start|Stop]. Timing a function requires only instantiating a
ScopedProfiling object. To integrate Perfetto, a ScopedProfiling Perfetto back-end is
available when neither CUDA nor ROCM are used. Celeritas also supports Perfetto’s counter
track events, named numeric values explicitly sampled by the program (e.g., the number
of active or queued tracks at each step iteration). Recording counters is straightforward,
requiring a single function call with the counter name and value.

To record track events, a Perfetto tracing session must be started. Celeritas provides a
RAII-based TracingSession wrapper around Perfetto’s C-style API. Users instantiate a
TracingSession object and call its start method when ready to begin tracing; the session
automatically finalizes upon destruction. Since Perfetto is bundled with Celeritas as a private
dependency, integrating applications do not need to install it separately.

Perfetto traces can be analyzed using its web interface for a high-level overview, such as
identifying timing gaps between actions or step iterations. More detailed analysis is possible
with the python library and SQL interface, allowing calculations like cumulative time spent
per action in each step iteration. For example, Figure 2 shows how the along-step kernel can
be identified as a bottleneck and correlated with the number of active tracks, providing insight
into how transport scales with the number of active tracks.

5 Performance results

A series of benchmark problems with realistic physics and geometry is used to evaluate the
impact of the optimizations applied to Celeritas and analyze the GPU thread scaling behavior.
Each problem starts with 16 events, each containing 1300 10 GeV electron primaries, chosen
to simulate the amount of energy per LHC collision deposited in the material. TestEM3
is simulated in the presence of a 1 T uniform magnetic field, and the CMS Run 3 and
Run 4 geometries use a 3.8 T uniform field. We use two Celeritas applications to evaluate



performance and validate physics: the first integrates with Geant4 for EM offloading, and
the second is a standalone application for independent analysis. Simulations are run using a
quarter of a node on the Perlmutter supercomputer [13]: a single NVIDIA A100 GPU and its
16 associated cores of an AMD EPYC 7763 CPU.

5.1 GPU thread scaling

Celeritas integrates with Geant4’s event-parallel model by mapping GPU streams to CPU
threads, with each stream simulating a single event at a time. Achieving asymptotic throughput
in this configuration requires a higher total number of tracks, as the number of tracks per
stream dictates overall performance. In contrast, when running Celeritas as a standalone
application, events are mixed in a single track array and simulated on the default stream. Fewer
total tracks are needed to reach the maximum throughput regime, as illustrated in Figure 3.
Both configurations achieve optimal performance at approximately 2 million GPU threads.
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Figure 3: Throughput scaling with GPU thread count on an NVIDIA A100 for the Geant4-
integrated and standalone Celeritas applications. The event-parallel model, which runs on
multiple GPU streams, requires a higher total track count to reach asymptotic throughput.
Overall, the applied optimizations yield up to a 2× speedup.

As expected, increasing geometric complexity reduces throughput due to the higher
computational cost of geometry operations. This effect is more pronounced on the GPU, as
illustrated in Figure 4 and discussed in [4], where the added complexity disproportionately
impacts performance compared to CPU-based transport.

5.2 Impact of optimizations

Four primary optimizations were explored to improve the GPU performance of Celeritas,
with varying degrees of effectiveness depending on problem complexity. The impact of the
individual optimizations on the throughput is shown in Figure 4. As expected, none of these
optimizations had any appreciable effect on the CPU performance.

Sorting track state indices and accessing tracks via a lookup array allows for smaller kernel
sizes and reduces thread divergence, but it significantly impacts memory coalescing. As a
result, this optimization had minimal or even negative effects on performance in most cases. A
more successful approach involved partitioning the track data rather than indices by particle
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Figure 4: Throughput for simulating 16 events with the Geant4-integrated application using
16 cores of an AMD EPYC CPU and a single NVIDIA A100 GPU with the optimal number
of tracks per stream (212 on the CPU and 217 on the GPU).

type (charged vs. neutral), which resulted in up to a 30% speedup. However, its impact on
problems with greater geometric complexity was limited, as it conflicted with a more effective
optimization for geometry initialization in these cases.

Reducing the maximum number of substeps per step iteration in field propagation signifi-
cantly improved load balancing in the along-step kernel without increasing the total number
of step iterations beyond statistical fluctuations. This optimization was particularly effective in
the full CMS detector geometries, where it led to up to a 25% performance improvement.

Migrating all memory operations to the stream-ordered memory API and enabling asyn-
chronous memory transfers between host and device provided the greatest overall performance
benefit in an integrated Geant4 configuration. Furthermore, it yielded greater improvements
for more complex geometries, with speedups ranging from 15% for the ATLAS tile calorimeter
to 2× for the CMS detector geometries.

6 Conclusions

Optimizations to the GPU-enabled Celeritas code yield a cumulative 1.5 − 2× speedup on an
NVIDIA A100 across five realistic benchmark problems. Reducing load imbalance in field
propagation, partitioning tracks to minimize branch divergence, and eliminating synchronous
memory operations lead to maximum speedups of 25%, 30%, and 100%, respectively. Integra-
tion of the Perfetto tracing tool enables fine-grained performance analysis, helping identify
bottlenecks and concurrency issues. Further performance improvements are expected through
optimizations to the geometry routines.
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