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A set of lattice operators for the energy-momentum (EM) tensor in the Ising CFT is derived in
the spin variables. Our expression works under arbitrary affine transformation both on triangular
and hexagonal lattices (where the former includes the rectangular lattices). The correctness of
the operators is numerically confirmed in Monte Carlo calculations by comparing the results with
the conformal Ward identity, including the operator normalization. In the derivation of the EM
tensor, a staggered structure of the affine-transformed hexagonal lattice is analyzed, which shows
a peculiar shift from the circumcenter dual lattice and appears as a mixing angle between the
holomorphic part 𝑇 (𝑧) and the antiholomorphic part 𝑇 (𝑧). The details of this contribution will
appear in a subsequent paper.
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Energy-momentum tensor in the 2D Ising CFT Nobuyuki Matsumoto

1. Introduction

To expand the non-perturbative understanding of quantum field theory, the Quantum Finite
Elements (QFE) project [1] aims to enable lattice calculation on curved spacetime. Such an
extension enables us to, for example, use radial quantization for conformal field theories (CFTs) in
the spacetime with dimensions 𝐷 > 2 [2–4]. As a step towards its rigorous formulation, this work
considers the energy-momentum (EM) tensor in the 2D CFT on the torus with generic modulus 𝜏,
which is a key physical object that generates diffeomorphism. We derive a lattice expression of the
EM tensor in both fermionic and spin variables. The expression is confirmed in direct Monte Carlo
calculation by checking the conformal Ward identities [5, 6]. Although we are not the first people
who address the EM tensor in the two-dimensional Ising spin model [7], we derive a complete
expression including normalization that works under an arbitrary affine transformation. To our
knowledge, our work is the first work that verifies the analytic formulas for the Ising CFT involving
the EM tensor numerically with the spin variables. The details of the content will be given in a
subsequent paper [8].

2. Affine-transformed lattice

We consider a generic affine-transformed triangular lattice as shown in Fig. 1. We write the
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Figure 1: Gray dots represent the affine-transformed triangular lattice. The blue and orange points represent
its dual lattices, where the colors distinguish the even (blue) and odd (orange) sites. The left panel shows the
circumcenter dual lattice, generated by ®ℓ∗

𝑖
, while the right panel shows the lattice generated by ®ℓ′

𝑖
, on which

the fields reside (see Sec. 4).

Cartesian coordinates as (𝑥𝜇) ≡ (𝑥, 𝑦) and the three lattice translation vectors as ®ℓ𝑘 (𝑘 = 1, 2, 3).
The circumcenter dual of the triangular lattice is a hexagonal lattice, and we write the three lattice
translation vectors from even to odd sites as ®ℓ∗

𝑘
. We further define the unit vectors on the hexagonal

lattice: ®𝑒𝑘 ≡ ®ℓ∗
𝑘
/| ®ℓ∗

𝑘
| ≡ (cos𝛼𝑘 , sin𝛼𝑘)𝑇 . Depending on the context, we use an alternative notation

such as ®ℓ∗𝑛𝑚 for the lattice translation vector from the site 𝑛 to 𝑚.
We impose periodicity of the torus by the identification:

0 ∼ 𝐿1 ®𝑢1 ∼ 𝐿2 ®𝑢2 (𝐿1, 𝐿2 ∈ Z), (1)

where ®𝑢1 ≡ −2®ℓ∗1 + ®ℓ∗2 + ®ℓ∗3 and ®𝑢2 ≡ −®ℓ∗1 − ®ℓ∗2 + 2®ℓ∗3 . In this work, we set 𝐿1 = 𝐿2 ≡ 𝐿 for simplicity.
As we consider a conformal theory on the torus, the scale of the system can be conventionally fixed
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by setting one of the lattice dimension to unity: 𝐿 | ®𝑢1 | = 1. With the standard identification between
the two-dimensional vector and the complex variable: R2 ≃ C, ®𝑢 = (𝑢𝑥 , 𝑢𝑦)𝑇 ↔ 𝑢 ≡ 𝑢𝑥 + 𝑖𝑢𝑦 , the
modulus of the torus can be expressed as 𝜏 ≡ 𝐿𝑢2.

3. Partition functions

As is well known, the 2D Ising model has a fermionic description with the Majorana fermion
[9–11]. For later discussion, we consider the Wilson-Majorana fermion action [12, 13] on the
hexagonal lattice in a generalized setup with arbitrary couplings:

𝑆𝑊 =
1
2

∑︁
𝑛

(1 + Δ𝑚𝑛)𝜓̄𝑛𝜓𝑛 −
∑︁
⟨𝑛,𝑚⟩

𝜅𝑛𝑚 𝜓̄𝑛𝑃( ®𝑒𝑛𝑚)𝜓𝑚, (2)

where 𝜓 ≡ (𝜓1, 𝜓2)𝑇 is the two-component real Grassmann variable, ⟨𝑛, 𝑚⟩ denotes the nearest
neighbor pair, and 𝑃( ®𝑒) is the Wilson projector:

𝑃( ®𝑒) ≡ 1
2
(1 − ®𝑒 · ®𝜎). (3)

We use the Pauli matrices ®𝜎 ≡ (𝜎1, 𝜎2) as the gamma matrices throughout the paper. The partition
function for the lattice fermion is then:

𝑍hex
𝑊 ≡

∫
D𝜓 𝑒−𝑆𝑊 , D𝜓 ≡

∏
𝑛

𝑑𝜓1
𝑛𝑑𝜓

2
𝑛. (4)

Our main focus is the Ising spin system on triangular and hexagonal lattices, whose partition
functions are:

𝑍 tri
𝐼 ≡

∑︁
{𝑠𝑘=±1}

exp
[ ∑︁
⟨𝑘,ℓ ⟩

𝐿𝑘ℓ 𝑠𝑘𝑠ℓ

]
, (5)

𝑍hex
𝐼 ≡

∑︁
{𝜇𝑛=±1}

exp
[ ∑︁
⟨𝑛,𝑚⟩

𝐾𝑛𝑚𝜇𝑛𝜇𝑚

]
. (6)

The partition functions (4), (5) and (6) can be related to each other by loop expansions [14, 12, 13]
even under various boundary conditions on the torus. For the discussion below, it suffices to quote
the following identities:

1

2𝑁hex
site

∏
⟨𝑛,𝑚⟩ cosh𝐾𝑛𝑚

𝑍hex
𝐼 (𝑃, 𝑃) = 1∏

𝑛 (1 + Δ𝑚𝑛)

[
− 𝑍hex

𝑊 (𝑃, 𝑃) +
∑︁

𝜀≠(𝑃,𝑃)
𝑍hex
𝑊 (𝜀)

]
, (7)

1
2
∏

⟨𝑖, 𝑗 ⟩ exp 𝐿𝑖 𝑗
𝑍 tri
𝐼 (𝑃, 𝑃) = 1∏

𝑛 (1 + Δ𝑚𝑛)

[
+ 𝑍hex

𝑊 (𝑃, 𝑃) +
∑︁

𝜀≠(𝑃,𝑃)
𝑍hex
𝑊 (𝜀)

]
. (8)

Here, the couplings are identified as:
𝜅𝑛𝑚√︁

(1 + Δ𝑚𝑛) (1 + Δ𝑚𝑚)
cosΔ𝛼𝑛𝑚𝑛′ cosΔ𝛼𝑛𝑚𝑛′′

cosΔ𝛼𝑛′𝑚𝑛′′
= tanh𝐾𝑛𝑚 = 𝑒−2𝐿𝑖 𝑗 , (9)

where the angle differences Δ𝛼𝑛𝑚𝑛′ ≡ 𝛼𝑛𝑚 − 𝛼𝑚𝑛′ are taken among the three neighboring sites
from 𝑚: 𝑛, 𝑛′, and 𝑛′′. In eqs. (7) and (8), the boundary conditions are indicated by 𝜀 =

(P,P), (A,P), (A,A), (P,A), where P stands for periodic and A for antiperiodic. Different signs for the
(P,P) sector correspond to the sign ambiguity in defining the chirality operator in the Ising CFT [15,
8].
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4. Staggered lattice structure in the affine-transformed hexagonal lattice

In Ref. [13], it was shown that the continuum limit can be taken under nontrivial affine
transformation with the couplings:

Δ𝑚𝑛 = 0, 𝜅𝑛,𝑛+𝑘̂ =
2| ®ℓ𝑘 |∑
𝑘′ | ®ℓ𝑘′ |

. (10)

Although this is correct, it turns out that the bipartite hexagonal lattice shows a peculiar staggered
structure under nontrivial affine transformation. While the directional information of the circum-
center dual lattice, 𝑒𝑘 , appears in the lattice action (2), the fermionic variables turn out to reside on
a different lattice generically. This fine structure of the hexagonal lattice is relevant in deriving the
lattice expression of the EM tensor as it involves a derivative in fermionic variables.

To see this, we consider the lattice equation of motion (EOM), 𝐸𝜓𝑛
= 0, where

𝐸𝜓𝑛
= 𝜓𝑛 −

1
2

∑︁
𝑘

𝜅𝑘
(
1 − ®𝑒𝑘 · ®𝜎

)
𝜓𝑛+𝑘̂ (𝑛 : even), (11)

𝐸𝜓𝑛
= 𝜓𝑛 −

1
2

∑︁
𝑘

𝜅𝑘
(
1 + ®𝑒𝑘 · ®𝜎

)
𝜓𝑛− 𝑘̂ (𝑛 : odd). (12)

The action is quadratic, and the infrared property of the Wilson-Dirac operator can be analyzed by
the derivative expansion:

𝜓𝑛+𝑘̂ ≃ 𝜓𝑛 + ℓ′𝑘𝜇𝜕𝜇𝜓𝑛, (13)

where the translation vectors ®ℓ′
𝑘

are arbitrary for now and to be determined below. For even sites:

𝐸𝜓𝑛
≃
(
1 − 1

2

∑︁
𝑘

𝜅𝑘

)
𝜓𝑛 +

1
2

(∑︁
𝑘

𝜅𝑘𝑒𝑘𝜇

)
𝜎𝜇𝜓𝑛

− 1
2

(∑︁
𝑘

𝜅𝑘ℓ
′
𝑘𝜇

)
𝜕𝜇𝜓𝑛 +

1
2

(∑︁
𝑘

𝜅𝑘𝑒𝑘𝜇ℓ
′
𝑘𝜈

)
𝜎𝜇𝜕𝜈𝜓𝑛, (14)

while for odd sites the signs of the second and third terms flip. The lattice EOM operators should
approach the continuum expression:

𝐸cont
𝜓 (𝑥) ≡ 𝜎𝜇𝜕𝜇𝜓(𝑥) (15)

up to proportionality constant. Under the solution (10), this requirement reduces to the condition
for the vectors ®ℓ′

𝑘
: ∑︁

𝑘

𝜅𝑘ℓ
′
𝑘𝜇 ≡ 0,

∑︁
𝑘

𝜅𝑘𝑒𝑘𝜇ℓ
′
𝑘𝜈 ≡ 2𝑎𝛿𝜇𝜈 , (16)

where a scaling constant 𝑎 can be set by demanding again the lattice dimension in the 𝑥 direction
to be unity. We have six conditions for six independent real variables (where an overall scaling is
fixed by 𝑎), and the condition is sufficient to determine ®ℓ′

𝑘
.

As emphasized above, the solution ®ℓ′
𝑘

to eq. (16) does not agree with ®ℓ∗
𝑘

under a generic affine
transformation. In Fig. 1, the two lattices are compared for the case 𝜏 = 1.2𝑒4𝑖 𝜋/9. We see that the
lattice generated by ®ℓ′

𝑘
has more regular appearance than that generated by ®ℓ∗

𝑘
.
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5. Lattice operators

We are now ready to derive the lattice EM tensor in spin variables by applying parametric
derivatives in the loop expansions. We first construct the lattice EM operators in the fermionic
variables. Our basic building blocks are the following:

− 𝜕

𝜕Δ𝑚𝑛

����
crit

⟨. . .⟩conn =

〈(1
2
𝜓̄𝑛𝜓𝑛 + 1

)
. . .

〉
conn

≡
〈
(𝜀𝑛 + 1) . . .

〉
conn, (17)

𝜕

𝜕𝜅𝑛𝑚

����
crit

⟨. . .⟩conn =

〈(
𝜓̄𝑛𝑃( ®𝑒𝑛𝑚)𝜓𝑚

)
. . .

〉
conn

≡ ⟨𝐸𝑛𝑚 . . .⟩conn, (18)

where the dots represent other operator insertions in the path integral and ⟨·⟩conn the connected part.
The subscript “crit” emphasizes that we evaluate the derivatives at the critical couplings (10).

By a simple comparison between the lattice variable 𝜓𝑛 and the continuum variable 𝜓(𝑥), the
relative scaling can be determined. The 𝜀 operator can then be expressed as:

𝜀(𝑥) ≃ 2𝜋
𝑎
𝜀𝑛 ⇔ −2𝜋

𝑎

[
𝜕

𝜕Δ𝑚𝑛

����
crit

− 1
]
. (19)

As for the EM tensor, we consider the projected tensor:

𝑇𝑘 (𝑥) ≡ −1
2
𝑒′𝑘𝜇𝑒𝑘𝜈𝜓̄(𝑥)𝜎𝜇𝜕𝜈𝜓(𝑥), (20)

for which we have the lattice expression:

𝑇𝑘 (𝑥) ≃
2𝜋
𝑎

1
| ®ℓ′
𝑘
|

[
𝐸𝑛,𝑛+𝑘̂ −

1
2
(𝜀𝑛 + 𝜀𝑛+𝑘̂)

]
⇔ 2𝜋

𝑎

1
| ®ℓ′
𝑘
|

[
𝜕

𝜕𝜅𝑛,𝑛+𝑘̂
+ 1

2

( 𝜕

𝜕Δ𝑚𝑛

+ 𝜕

𝜕Δ𝑚𝑛+𝑘̂

)
− 1

] �����
crit

. (21)

The unit vectors ®𝑒′
𝑘
≡ ®ℓ′

𝑘
/|ℓ′

𝑘
| ≡ (cos𝛼′

𝑘
, sin𝛼′

𝑘
)𝑇 encode the angle information of the ®ℓ′

𝑘
-lattice.

Up to the EOM, 𝑇𝑘 (𝑥) can be expressed as a linear combination of the holomorphic part 𝑇 (𝑧) and
the antiholomorphic part 𝑇 (𝑧):

𝑇𝑘 (𝑥) =
1
2
[
cos(𝛼′𝑘 + 𝛼

∗
𝑘)𝑇 (𝑧) − sin(𝛼′𝑘 + 𝛼

∗
𝑘)𝑇 (𝑧)

]
. (22)

Thus, the set 𝑇𝑘 (𝑥) (𝑘 = 1, 2, 3) is sufficient to reconstruct all the components of the EM tensor.
Having obtained the lattice operators expressed with the parametric derivatives, they can be

readily mapped to the spin systems via loop expansions (7) and (8). On the hexagonal lattice, the
building blocks (17) and (18) correspond to:

𝜀𝑛 =
∑︁
𝑘

tanh𝐾𝑛,𝑛+𝑘̂ cosh2 𝐾𝑛,𝑛+𝑘̂

(1
2
𝜇𝑛𝜇𝑚 + tanh𝐾𝑛,𝑛+𝑘̂

)
+ 1, (23)

𝐸𝑛,𝑛+𝑘̂ =
tanh𝐾𝑛,𝑛+𝑘̂ cosh2 𝐾𝑛,𝑛+𝑘̂

𝜅𝑛,𝑛+𝑘̂
𝜇𝑛𝜇𝑛+𝑘̂ , (24)

5
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while on the triangular lattice:

𝜀𝑛 =
∑︁

⟨𝑖, 𝑗 ⟩ around 𝑛

𝑠𝑖𝑠 𝑗 − 2, (25)

𝐸𝑛,𝑛+𝑘̂ = −1
2

1
𝜅𝑛,𝑛+𝑘̂

𝑠𝑖𝑠 𝑗 . (26)

In eq. (25), the sum is over the links ⟨𝑖, 𝑗⟩ on the triangular lattice surrounding the hexagonal site
𝑛, while in eq. (26), the link ⟨𝑖, 𝑗⟩ on the triangular lattice intersects with the link ⟨𝑛, 𝑛 + 𝑘̂⟩ on the
hexagonal lattice. The lattice operators for the CFT, 𝜀(𝑥) and 𝑇𝑘 (𝑥), can then be constructed by the
same linear combinations (19) and (21).

We comment that both 𝜀(𝑥) and 𝑇𝑘 (𝑥) acquire divergent parts through loop diagrams (the
divergent part of 𝜀(𝑥) comes from the Wilson term). The divergent parts need to be subtracted
when we consider disconnected components. This corresponds to taking the normal ordering. For
the Ising CFT, its evaluation can be performed with the fermion system without statistical error [8].
In the numerical analysis below, all the lattice operators are regularized in this way.

6. Confirming the CFT formulas with Monte Carlo calculations

In this section, we calculate various expectation values that involve the EM tensor with the spin
variable by performing Monte Carlo calculation. Ensembles are generated by combining the Wolff
algorithm [12] with the local heat-bath algorithm. The details of the calculation will be described
in Ref. [8]. We comment that that the signal of the EM tensor is noisy as the contributions from 1
(the diverging part), 𝜀(𝑥), and 𝜕𝜀(𝑥) (the first descendant of 𝜀(𝑥)) need to be subtracted to single
out the EM tensor components. The exact values are evaluated with the analytic expressions known
in the Ising CFT [5, 6]. The modulus is set to a nontrivial value 𝜏 = 1.2𝑒4𝑖 𝜋/9 below.

We begin with the one-point function of the EM tensor. In Fig. 2, we show the results
of ⟨𝑇𝑘 (𝑥)⟩ on the hexagonal lattice. For completeness, a constant fit is performed for the three
points, 𝐿 = 10, 12, 14, to make a comparison with the exact value. The obtained values are:

0.000 0.001 0.002 0.003
a2

0.10

0.15

0.20

0.25

〈T
1
〉

hexagonal, τ = 1.2e4iπ/9

exact

estimated continuum limit

1 σ

0.000 0.001 0.002 0.003
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−0.08

−0.06

−0.04

−0.02

0.00

〈T
2
〉

hexagonal, τ = 1.2e4iπ/9
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estimated continuum limit

1 σ
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−0.10
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Figure 2: Extrapolation of ⟨𝑇𝑘⟩ (𝑘 = 1, 2, 3) to the continuum limit for 𝜏 = 1.2𝑒4𝑖 𝜋/9 on the hexagonal
lattice for 𝐿 = 6, 8, · · · , 14.

⟨𝑇1⟩ ≈ 0.215(21) (exact: 0.218), ⟨𝑇2⟩ ≈ −0.0605(88) (exact: −0.0537), ⟨𝑇3⟩ ≈ −0.126(15) (exact:
−0.138). The good agreement shows that we have a good understanding of the lattice operators
including the mixing angle between𝑇 and𝑇 [see eq. (22)], the diverging part, and the normalization.
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We next consider the three-point function with the spin operators. This is the least noisy
correlator involving the EM tensor. Recall that the conformal Ward identity for the primary fields
𝜙𝑖 (𝑧, 𝑧) with the conformal weights (ℎ𝑖 , ℎ̃𝑖) is [5]:

⟨𝑇 (𝑧)𝜙1(𝑧1, 𝑧1) · · · 𝜙𝑁 (𝑧𝑁 , 𝑧𝑁 )⟩ − ⟨𝑇 (𝑧)⟩⟨𝜙1(𝑧1, 𝑧1) · · · 𝜙𝑁 (𝑧𝑁 , 𝑧𝑁 )⟩

=

{
2𝜋𝑖𝜕𝜏 +

𝑁∑︁
𝑖=0

[
ℎ𝑖
{
℘(𝑧𝑖 − 𝑧) + 2𝜂1

}
+
{
− 𝜁 (𝑧𝑖 − 𝑧) + 2𝜂1(𝑧𝑖 − 𝑧) + 𝜋𝑖

}
𝜕𝑧𝑖

]}
×

× ⟨𝜙1(𝑧1, 𝑧1) · · · 𝜙𝑁 (𝑧𝑁 , 𝑧𝑁 )⟩, (27)

where ℘(𝑧) and 𝜁 (𝑧) are the Weierstrass functions and 𝜂1 ≡ 𝜁 (𝜔1) (𝜔1 ≡ 𝜏/2). We see that as
𝑇𝑘 (𝑥) approaches the location of the other primary operators, it exhibits a diverging pole structure
of order two, giving rise to a complex global landscape in its functional form. For this reason, to
compare the lattice correlators with the exact values, we look into their sign pattern on the entire
torus. Figure 3 shows the result for ⟨𝑇𝑘 (𝑥)𝜇(0)𝜇(𝜔3)⟩ (𝜔3 ≡ (1 + 𝜏)/2) on the hexagonal lattice
with 𝐿 = 14. Though we observe a cutoff effect away from the insertion points 𝑥𝑖 , we observe an
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Figure 3: The sign patterns of ⟨𝑇𝑘 (𝑥)𝜇(0)𝜇(𝜔3)⟩ on the hexagonal lattice. Monte Carlo result (top) and the
exact solution (bottom) with 𝜏 = 1.2𝑒4𝑖 𝜋/9, 𝐿 = 14, and 𝜔3 = (1 + 𝜏)/2. 𝑘 = 1, 2, 3 from left to right.

agreement in the global landscape, in particular the characteristic pole structure.
Finally, we calculate the 𝑇𝑇-correlator, which cannot be re-expressed with the primary cor-

relators by the conformal Ward identity. In Fig. 4, we show the ⟨𝑇𝑘 (𝑥)𝑇2(0)⟩ correlators on the
triangular lattice for 𝐿 = 10. We comment that the signal turns out to be less noisy on the triangular
lattice than on the hexagonal lattice for a given 𝐿 (note, however, that the number of lattice sites
is half on the triangular lattice). We again confirm the correct landscape of the correlator with
statistical noise at the edge of ± patterns.

From the above results, we see that the derived lattice EM tensor correctly sources the desired
CFT operator both on hexagonal and triangular lattices under generic affine transformation.
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Figure 4: The sign patterns of ⟨𝑇𝑘 (𝑥)𝑇2 (0)⟩ (𝑘 = 1, 2, 3) plotted for the Monte Carlo result (top) and the
exact solution (bottom) with 𝜏 = 1.2𝑒4𝑖 𝜋/9, 𝐿 = 6 on the hexagonal lattice.

7. Conclusion

In this contribution, we derived the lattice EM tensor for the Ising CFT with spin variables on
triangular and hexagonal lattices under generic affine transformation. We numerically confirmed
that the expression correctly sources the CFT operator. It shows our understanding is correct on
the mixing angle between 𝑇 and 𝑇 in relation to the staggered lattice structure, the identification
of the divergent part, and the operator normalization. Evaluation of the one-point function is of
particular importance in curved space applications as it measures the trace anomaly proportional
to the curvature. We believe that this work gives an important step towards studying the CFT on
curved lattices.
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