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The strong coupling 𝛼s can be obtained from the static energy as shown in previous lattices studies.
For short distances, the static energy can be calculated both on the lattice with the use of Wilson
line correlators, and with the perturbation theory up to three loop accuracy with leading ultrasoft
log resummation. Comparing the perturbative expression and lattice data allows for precise
determination of 𝛼s (𝑚𝑍 ). We will present preliminary results for the determination of 𝛼s (𝑀𝑍 )
in (2+1+1)-flavor QCD using the configurations made available by the MILC-collaboration with
smallest lattice spacing reaching 0.0321 fm.
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1. Introduction

The strong coupling 𝛼s is a fundamental parameter of QCD and the Standard Model of particle
physics. The running of the strong coupling in the MS scheme is a function of the renormalization
scale 𝜇 and the intrinsic scale of QCD,ΛMS. WhenΛMS is known, one can perturbatively determine
𝛼s at any scale 𝜇 ≫ ΛMS. In these proceedings we focus on determining this intrinsic scale.

Observables that can be calculated with high precision in both perturbative- and lattice-QCD are
ideal candidates to determine 𝛼s in the regions where both approaches agree. One such observable
is the energy between a static quark and a static antiquark separated by distance 𝑟 known as the
static energy 𝐸0(𝑟). 𝐸0(𝑟) is a fundamental observable of QCD that played an important role [1]
in establishing confinement in QCD and understanding asymptotic freedom. On the lattice, 𝐸0(𝑟)
is defined as the ground state of a static Wilson loop. At short distances 𝑟ΛMS ≪ 1, it holds that
𝛼s(1/𝑟) ≪ 1 and the static energy is well defined by a weak coupling perturbative expansion. This
expansion is known up to N3LL level [2–7]. By comparing the perturbative expansion of the static
energy to the static energy on the lattice at short distances, we can extract ΛMS.

So far, ΛMS has been determined from the static energy in 𝑁f = 0 the pure gauge SU(3) Yang-
Mills theory [8–10] and with either 𝑁f = 2 dynamical quark flavors [11–13] or with 𝑁f = 2 + 1
dynamical flavors [14–18]. With 𝑁f = 2 + 1 + 1 dynamical flavors, ΛMS via the static energy is
yet to be determined, however, ΛMS has been determined on the lattice in 2+1+1-flavor QCD with
other methods [19, 20]. In these proceedings, we report on the progress of the newest TUMQCD
lattice extraction of ΛMS from the lattice with 2+1+1 dynamical flavors via the static energy. For
a complete review of the status of 𝛼s determined from the lattice QCD, we refer the reader to the
recent FLAG review [21] and for a wider review with also the experimental status to Ref. [22].

2. Static energy

2.1 Perturbation theory

The static energy 𝐸0(𝑟) has the perturbative expansion

𝐸0(𝑟) = Λ − 𝐶F𝛼s

𝑟

(
1+#𝛼s+#𝛼2

s +#𝛼3
s ln𝛼s+#𝛼3

s +#𝛼4
s ln2 𝛼s+#𝛼4

s ln𝛼s+ . . .

)
, (1)

where Λ is a constant of mass dimension one and the coefficients # can be found in the review [23].
The running coupling depends on a soft scale 𝜇 that is commonly set to be 𝜇 = 𝑐/𝑟 with 𝑐 varied
around 1 to gauge perturbative error. Starting at order 𝛼4

s ultrasoft logarithms are introduced with
ultrasoft scale 𝜈 = 𝐶A𝛼s(𝜇)/2𝑟 . These logarithms can be resummed, however, in these proceedings
we show results only without resummation and leave the study of ultrasoft scale dependence to
the final publication. The expansion given by Eq. (1) is known to the order given for massless sea
quarks. To include the effects from the finite mass of the charm quark, a correction 𝛿𝑉

(𝑁f )
𝑚 (𝑟) has

to be added to the static energy. This correction is known in perturbation theory up to order of 𝛼3
s

(see Ref. [24] for summary of equations). With (2+1+1)-flavor QCD, the relevant massive quark is
the charm quark that has a mass 𝑚MS

c (𝑚MS
c ) ≈ 1.28 GeV ≃ 1/0.15 fm−1 [21].

The constant Λ in Eq. (1) is scheme dependent quantity. On the lattice it relates to a linear
divergence in inverse lattice spacing 𝑎−1 and in dimensional regularization it manifests as a renor-
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Figure 1: Left: The static force 𝑟2𝐹 (𝑟) at different orders of perturbation theory and different scalings of
𝜇 = 𝑐/𝑟. Right: The static energy at different combinations of light and massive quarks. The free constant
shift Λ is optimized to minimize the covered range in y-axis to make the differences between curves more
visible.

malon of mass dimension one. Since the constant by itself does not depend on 𝛼s, and all 𝛼s

dependence is contained in the 𝑟-dependent part of 𝐸0(𝑟), we can obtain 𝛼s from the lattice data by
simply matching the lattice results and perturbative curves at some reference distance 𝑟∗. However,
in order to get as stable as possible perturbative behavior, the issue with renormalon needs to be
solved. We explore two strategies to deal with the renormalon contribution:

1. The static force 𝐹 (𝑟), defined as a derivative with respect to 𝑟 of the static energy, no longer
contains the constant Λ. 𝐹 (𝑟) can be computed directly on the lattice [10, 25] and compared
to perturbative expansion of the static force to extract 𝛼s. However, since we have computed
the static energy on the lattice, we take a different approach and integrate the perturbative
static force as described in [15, 17] to get more stable definition of 𝐸0(𝑟). The constant Λ
reappears, now as an integration constant, and can be matched to lattice data at distance 𝑟∗.
The total static energy with the finite mass correction then takes the form:

𝐸
(𝑁f )
0,𝑚 (𝑟) =

𝑟∫
𝑟∗

d𝑟 ′ 𝐹 (𝑁f ) (𝑟 ′) + 𝛿𝑉
(𝑁f )
𝑚 (𝑟) + const , (2)

where 𝑁f = 3 is the number of massless quarks. In the limit 𝑚 ≫ 1/𝑟 , Eq. (2) reduces to
the case of 𝑁f massless quarks 𝐸

(𝑁f )
0 (𝑟), while in the limit 𝑚 ≪ 1/𝑟 it reduces to case of

𝑁f + 1 massless quarks 𝐸 (𝑁f+1)
0 (𝑟). This is a consequence of the decoupling of charm quark

in the static potential. We demonstrate the entire procedure in figure 1. On the left side, we
show the static force multiplied by squared distance 𝑟2𝐹 (𝑟) at different orders of perturbation
theory and at different renormalization scales 𝜇 = 𝑐/𝑟. On the right side, we show the effect
of the charm quark after the force has been integrated back to static energy.

2. Alternatively, we can inspect the minimal renormalon subtraction (MRS) prescription [26–28].
In this method the leading factorial growth of the expansion coefficients is summed to all
orders, which stabilizes the behavior of Λ and reduces the perturbative error of the fits. This
approach avoids the need to numerically integrate the static force. To deal with the charm
sea, we add the correction 𝛿𝑉

(𝑁f )
𝑚 (𝑟) at fixed order to the MRS description of 𝐸0(𝑟).
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Figure 2: Different orders of improved distance 𝑟𝐼 applied to the finest lattice ensemble for the bare (Left)
and HYP-smeared (right) 𝐸0 (𝑟). The black curve shows a coulombic trend line with fixed coupling.

2.2 Lattice

We compute the static energy from the (2+1+1)-flavor lattice ensembles generated by the
MILC Collaboration [29–31]. For gluons the one-loop Symanzik-improved action with tadpole
improvement has been used. The sea quarks, namely two isospin-symmetric light quarks, and
physical strange and charm quarks, are simulated with the HISQ-action [32]. While the total
dataset spans lattice spacings from 0.032 fm to 0.15 fm with light quark mass 𝑚𝑙/𝑚𝑠 being either
1/10, 1/5 or physical, in these proceedings we mainly focus on the finest lattice with lattice spacing
𝑎 = 0.03216 fm and 𝑚𝑙/𝑚𝑠 = 1/5. Analysis for many of the coarser ensembles and the continuum
extrapolation is left for the final publication.

The gauge configurations have been fixed to Coulomb gauge, which allows for easy access to
off-axis distances. Instead of the Wilson loops, in Coulomb gauge, 𝐸0(𝑟) can be obtained from the
time dependence of the Wilson-line correlation function 𝐶 (𝒓, 𝜏, 𝑎) at separation 𝒓/𝑎:

𝐶 (𝒓, 𝜏, 𝑎) =
〈

1
𝑁3

s

∑︁
𝒙

∑︁
𝒚=𝑅 (𝒓 )

1
𝑁c 𝑁𝒓

tr
[
𝑊† (𝒙 + 𝒚, 𝜏, 𝑎)𝑊 (𝒙, 𝜏, 𝑎)

]〉
=

∞∑︁
𝑛=0

𝐶𝑛 (𝒓, 𝑎)
(
e−𝜏𝐸𝑛 (𝒓 ,𝑎) + e−(𝑎𝑁t−𝜏 )𝐸𝑛 (𝒓 ,𝑎)

)
= e−𝜏𝐸0 (𝒓 ,𝑎)

(
𝐶0 (𝒓, 𝑎) +

𝑁st−1∑︁
𝑛=1

𝐶𝑛 (𝒓, 𝑎)
𝑛∏

𝑚=1
e−𝜏Δ𝑚 (𝒓 ,𝑎)

)
+ . . . , (3)

where we have reparameterized the correlation in terms of energy differences 𝑎Δ𝑛 (𝒓, 𝑎) = 𝑎𝐸𝑛 (𝒓, 𝑎)−
𝑎𝐸 (𝑛−1) (𝒓, 𝑎) > 0. We choose 𝑁st = 1, 2, or 3 to fit our data to this form using Bayesian priors and
extract 𝐸0(𝑟). The reader is referred to our previous publication for further technical details [33]
of the procedure. In Ref. [33], we determined the potential scales 𝑟𝑖 , especially 𝑟1 ≃ 0.3 fm [34]
which is defined from the static force as 𝑟2

1𝐹 (𝑟1) = 1. We will use the 𝑟1-scale as our main scale
for the ΛMS extraction. The conversion of the results from 𝑟1-units to physical units is discussed
further in section 3.1.

After the static energy has been computed, we correct for the discretization artifacts. At short
distances of the order of the lattice spacing 𝑎, the static energy exhibits significant non-smooth
discretization errors. These cutoff effects are known at the leading order and can be removed with a
so called tree-level improvement prescription, where an improved distance 𝑟𝐼 is defined such that the
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continuum and lattice perturbation theories match at leading order. While tree-level improvement
allows one to reach shorter distances more smoothly than plain Euclidean 𝑟/𝑎, it is not enough for
the few first separations. To extend the improvement to even shorter distances, we have performed a
rigorous lattice perturbation theory calculation at next-to-leading order (one loop) [35]. The lattice
perturbation theory calculation is performed numerically with the HiPPy and HPsrc packages [36].
The effect of the different levels of improvement is demonstrated in figure 2 where the improvement
is shown for both bare or HYP-smeared [37] static quarks. In the figure, one can see that in the
bare data for the two distinct path topologies at 𝑟 = 3 =

√
32 =

√
32 + 02 + 02 or =

√
22 + 22 + 12,

the one-loop correction is clearly making the overall shape smoother. The biggest correction
from the one-loop improvement compared to the tree-level improvement happens at these on-axis
path topologies where the Wilson lines are separated in single cardinal direction. The one-loop
calculation in Ref. [35] is still being finalized, and for these proceedings we stick with the tree-
level improvement. To compensate for the missing 1-loop effects, we add 0.1% error as an extra
systematics to all points 𝑟2 ≤ 8𝑎, and to further reduce the unwanted discretization effects, we
exclude the on-axis points from any of the fits.

3. Extraction of 𝚲MS

To extract ΛMS, we perform a two parameter fit to the perturbative descriptions arising from
the two approaches we use to regulate the renormalons. The first fitted parameter is a shift constant
Λ that matches the perturbative curve to the lattice data at some distance 𝑟∗. Secondly, we fit ΛMS
that enters the equation (2) via 𝛼s(𝜇 = 1/𝑟,ΛMS). The running of the coupling is handled by the
RunDec [38] library with matching order of power counting to the static potential expansion.

The perturbative formulas describe the non-perturbative lattice data only up to some distances.
From previous TUMQCD extractions of ΛMS [14, 15, 17], we know that the perturbation theory
works well up to∼ 0.13 fm. However, since the charm quark decouples around 0.15 fm, the behavior
at 0.13 fm can already be affected by finite mass effects. Therefore, we perform two types of fits.
Firstly, we restrict to very short distances 𝑟max ≃ 0.1 fm and perform a fit with 4 massless quarks to
extract Λ(4)

MS
. The caveat of this approach is that we are now more susceptible to the discretization

errors. Secondly, we include the charm quark effects to the fit function, as described above, and
fit up to separations 𝑟max = 0.13 fm with three massless quarks and one heavy quark to extract
Λ

(3)
MS

. The caveat of this approach is that the finite mass effects are known only up to two loops
which restricts the entire analysis to two loop accuracy. The third option would be to fit at large
distances with 3 massless quarks, but for this to work we would need to fit in range >∼ 0.18 fm which
is clearly out of the perturbative range and hence not considered. The Lambda parameters with
different number of fermionsΛ(𝑁f )

MS
can be related to each other by perturbative decoupling relations.

For consistency, and for easy comparison with the previous TUMQCD 2+1-flavor extractions, we
present all the results as Λ(3)

MS
in these proceedings

With these limits, we perform correlated fits to data divided into 100 jackknife blocks and fit to
all possible ranges 𝑎 < 𝑟min ≤ 𝑟 ≤ 𝑟max that have at least three data points. The fits from different
ranges are then combined with a model average using the Akaike information criterion (AIC) to
weigh the different fits [39]. Since only small fractions of the fits have non-zero AIC weight and
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Figure 3: Left: Comparison of the lattice data to the
perturbative curves with the fitted ΛMS. Right: the fit
results for individual choices of 𝑟min and 𝑟max for the
3 flavor + charm fit (blue curve on the left) together
with the model weights and 𝜒2/d.o.f

since these ranges tend to be same between different jackknife blocks, we make sure to use the same
set of selected fit ranges for all jackknife blocks.

This fit procedure is demonstrated for the finest ensemble in figure 3. The black points show
the lattice data, with the filled points being included in the fit and the empty on-axis point being
excluded. The two curves present the fits either with or without the massive charm effects and the
solid region represents the range of the fit with best AIC weight. Similarly, on the bottom half of the
figure, the filled points correspond to the solid sections of respective lines from above. We observe
that the fits describe the data well within the range. Apart from doing the fits with 𝑁f = 4 and
𝑁f = 3 + 1 flavors, we also repeat the analysis with different orders of the perturbative expansion
of the static energy and using both renormalon removal methods. A collection of these fit results
for the finest ensemble is shown on the left side of figure 4. Since the finite mass corrections are
known only at two-loop level, the extraction with the three-loop static energy with massive charm
is incomplete at three loops. Nevertheless, we observe stability between all fit options and general
agreement with previous TUMQCD 2+1-flavor extractions [14, 15, 17] and the most recent FLAG
average [21].

The fit is then repeated for different scaling factors 𝑐 of the soft scale 𝜇 = 𝑐/𝑟 . Ideally, one
would vary the scale by a factor of two. However, as can be seen from the left of figure 1, the scale
variation 𝑐 = 1/2 will heavily constraint the available 𝑟-values for the fit. Therefore, at the time of
the conference, we could only afford to vary the scale within a more relaxed range 𝑐 ∈ {1/

√
2,
√

2},
due to the limited range in 𝑟 and from the missing one-loop improvement. Moreover, the fit is
then repeated over all ensembles. Again, due to available fit ranges with the chosen range of scale
variation 𝑐, we could only extract ΛMS at three finest lattice spacings with a few different light
quark masses. Using the 𝑁f = 3 + 1 two-loop MRS fit as a reference, we show the lattice spacing
dependence of the extracted Λ

(3)
MS

on the right side of figure 4, where the points that are grouped
together have the same lattice spacing 𝑎 but different light quark mass ratio 𝑚𝑙/𝑚𝑠. We observe
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Figure 4: Left: Resulting 𝑟1ΛMS from the fits to the finest lattice ensemble at different orders of perturbative
expansion in green. The 3-loop∗ point is incomplete at three loops. In blue we show the previous TUMQCD
extractions from 2+1 flavors and in black the current FLAG average. The FLAG point is calculated from
their 𝑟0Λ by multiplying it by the FLAG reported ratio 𝑟1/𝑟0. Right: One of the fits from the left hand side
figure performed to coarser ensembles. The points close to each other have the same lattice spacing (shifted
for visibility) but different light quark mass. The inner error bar indicates the statistical error, while the outer
error bar shows the systematic error from the variation of the soft scale 𝜇 = 1/𝑟 by a factor of

√
2.

mild dependency on the lattice spacing and light quark masses, however, the proper continuum
extrapolation is left for future publication. As the results in these proceedings are not final, we only
present them in visualized form and refrain from giving quotable numbers until the final publication.
Once the ΛMS-parameter has been determined, we can use RunDec to obtain the strong coupling at
the Z-pole mass 𝛼s(𝑀Z).

3.1 Physical scale

In these proceedings we decided to present results in 𝑟1-units. In order to convert to physical
units, we can use our scale determination [33] 𝑟1 = 0.3037(25) fm, which is based on the 𝑎 𝑓𝑝4𝑠

quantity discussed in Ref. [30]. The previous TUMQCD extraction with 2+1-flavors [17] used
a different value for the scale: 𝑟1 = 0.3106(17) fm based on 𝑓𝜋 scale. This means that if the
comparison on the left side of figure 4 was presented in physical units, there would be slightly more
pronounced difference between the Λ(3)

MS
extracted from the (2+1+1)- or (2+1)-flavor datasets. In an

upcoming study [40], a new determination of (2+1)-flavor 𝑟1 will be presented based on the Kaon
decay constant 𝑓K. This new constant moves the 𝑟1 value closer to the (2+1+1)-flavor 𝑟1 by a few
standard deviations. In general, one does not expect there to be significant finite mass effects in the
𝑟1 scale and hence the three and four flavor physical scales should be close to each other.
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