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1. Introduction

Monte Carlo importance sampling forms the basis of all lattice field theory calculations. Many
practical developments over the past decades—Hybrid Monte Carlo, multigrid preconditioners,
and efficient numerical codes—have enabled precision studies of dynamical lattice gauge theories,
including lattice QCD. Despite these advances, critical slowing down and topological freezing limit
the lattice spacings accessible in state-of-the-art calculations, which has lead to recent interest in
new algorithms, such as those provided by machine learning. One such approach has been the
application of normalizing flows to lattice field theory, which has been demonstrated to eliminate
critical slowing down in certain lattice field theories [1–3] and, for example, may provide near-term
practical advantages through correlated sampling to access specific observables [4, 5]. Normalizing
flow methods have also been extended to Monte Carlo sampling for dynamical lattice QCD at a
coarse lattice spacing [6]. These promising early results have motivated recent efforts to improve
the quality of models and find new practical applications of flows.

The present work is focused on two recent developments in applying normalizing flows to 4d
gauge theories, particularly QCD. The first is an architectural improvement called “learned active
loops”. This method replaces what has typically been a static choice in previous models with a
learned component, expanding the ability for each layer in the flow to modify the physical degrees
of freedom and substantively improving model quality. The second development is the application
of the correlated ensemble methods of Ref. [4] to a system with dynamical fermions, specifically to
calculate the gluon momentum fraction of the pion in 𝑁 𝑓 = 2 QCD with twisted mass fermions at
𝑀𝜋 ≃ 540 MeV. This is the first application of this method to a theory with dynamical fermions. For
this particular study, a computational advantage of the approach that incorporates flows is shown,
even when training costs are taken into account.

2. Learned Active Loops

This work introduces learned active loops as an architectural improvement for the coupling-
based spectral flow architectures described in Ref. [7]. Coupling-based flows are constructed by
stacking several layers, each of which transforms some subset {(𝑥, 𝜇)}𝐴 of the gauge links 𝑈𝜇 (𝑥),
referred to as the active links. Transformations of these active links are defined by first constructing
untraced Wilson loops containing each active link, then transforming these loops, then “pushing
back” the transformation onto the active links. The constructed loops are referred to as active loops.
Spectral flows in particular use an eigenvalue decomposition of the active loops to isolate and act
on gauge-invariant information [2, 7, 8].

Previous flow architectures have typically used a fixed active loop geometry per layer, often
using a particular orientation of a small loop, such as an untraced plaquette or 2×1 loop, alternating
the direction across successive layers. The central idea behind learned active loops is to replace
this fixed choice with a learned component, adding additional parameters that specify a linear
combination of loops to transform in each layer. This is a strict generalization of the previous
approach, and expands the degrees of freedom acted on by each layer of the flow. Intuitively, the
benefit of this approach is that it allows the transformation to more directly access and correlate
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both small and large active loops in an individual layer, which combinatorially increases the space
of transformations.

The implementation of learned active loops in this work has two components: first, the frozen
degrees of freedom are passed through a “staple network” to produce an “active staple”, denoted
by 𝑆act

𝜇 (𝑥). Here a staple 𝑆𝜇 (𝑥) refers to any set of complex matrices derived from gauge links that
transforms like the gauge link 𝑈𝜇 (𝑥) with the same (𝑥, 𝜇) under gauge transformations (notably a
staple is not required to be an element of SU(𝑁)). Once the active staple has been computed, the
active loop is then defined by

𝐿𝜇 (𝑥) = PSU(𝑁 ) (𝑈𝜇 (𝑥)𝑆act
𝜇 (𝑥)†) (1)

where PSU(𝑁 ) denotes a conjugation equivariant projection from general complex matrices onto
SU(𝑁). Here, conjugation equivariant means that the projection must satisfy

PSU(𝑁 ) (𝑔𝑀𝑔†) = 𝑔PSU(𝑁 ) (𝑀)𝑔† (2)

for any 𝑔 ∈ SU(𝑁).
In the architectures of this work, each coupling layer contains its own independent staple

network as a subcomponent. Each such staple network is constructed out of a series of 𝑁ℓ layers,
which successively transforms the input staples as

𝑆
(0)
𝜇𝑘

→ 𝑆
(1)
𝜇𝑘

→ · · · → 𝑆
(𝑁ℓ )
𝜇𝑘

. (3)

The index 𝑘 is an additional channel index that ranges from 1 to 𝑁
(𝑖)
ℎ

. All staple networks used
in this work fix 𝑁

(0)
ℎ

= 𝑁
(𝑁ℓ )
ℎ

= 1 and 𝑁
(𝑖)
ℎ

= 𝑁ℎ; the constant 𝑁ℎ is referred to as the width
of the network. The layers involved in this work are all linear transformations on the space of all
staples, though any gauge-equivariant architecture could be used here. For example, the L-CNN
architectures from Ref. [9] could be explored as an alternative architecture for the staple network.

The inputs to the network are initialized by setting the staples equal to the frozen links, zeroing
out any active links by setting

𝑆
(0)
𝜇0 (𝑥) = (1 − 𝑚𝜇 (𝑥))𝑈𝜇 (𝑥), (4)

where 𝑚𝜇 (𝑥) denotes the active mask, defined by

𝑚𝜇 (𝑥) =
{

1 𝑈𝜇 (𝑥) is active

0 𝑈𝜇 (𝑥) is frozen.
(5)

Schematically, each successive layer acts by parallel transporting same-direction staples from neigh-
boring sites and then taking a linear combination. In detail, to apply successive layers in the staple
network, first left and right staples are constructed out of the input staples via

𝑆
(𝑖)𝐿
𝜇𝜈𝑘

= 𝑆
(𝑖)†
𝜈 (𝑥 + 𝜇̂ − 𝜈̂)𝑆 (𝑖)†

𝜇 (𝑥 − 𝜈̂)𝑆 (𝑖)
𝜈 (𝑥 − 𝜈̂),

𝑆
(𝑖)𝑅
𝜇𝜈𝑘

= 𝑆
(𝑖)
𝜈 (𝑥 + 𝜇̂)𝑆 (𝑖)†

𝜇 (𝑥 + 𝜈̂)𝑆 (𝑖)†
𝜈 (𝑥).

(6)

These new staples are then concatenated and flattened along with the original staples 𝑆 (𝑖)
𝜇𝑘

, forming

an augmented vector 𝑆 (𝑖) ,aug
𝜇𝑘

—i.e., the 𝜈 and 𝑘 indices of the three original objects 𝑆 (𝑖)
𝜇𝜈𝑘

and 𝑆
(𝑖)𝐿/𝑅
𝜇𝜈𝑘
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are subsumed into the 𝑘 index of 𝑆 (𝑖) ,aug
𝜇𝑘

. Finally, the different elements 𝑘 of the augmented vector
are linearly combined to form the outputs of the layer via

𝑆
(𝑖+1)
𝜇𝑘

(𝑥) =
∑︁
ℓ

𝑐
(𝑖)
𝑘ℓ
𝑆
(𝑖) ,aug
𝜇ℓ

(𝑥), (7)

where 𝑐
(𝑖)
𝑘ℓ

are learned coefficients. After iterating through the layers of the staple net, the active
staple is taken to be the sole element of the final set of staples:

𝑆act
𝜇 (𝑥) = 𝑆

(𝑁ℓ )
𝜇0 (𝑥). (8)

After the active staple is chosen, what remains is to define the conjugation-equivariant pro-
jection PSU(𝑁 ) used in Eq. (1). In order to satisfy Eq. (2), the flow models in this work utilize a
two-step projection. First the matrix is projected onto 𝑈 (𝑁) via polar projection, defined by

P𝑈 (𝑁 ) (𝑀) = (𝑀†𝑀)−1/2𝑀. (9)

In practice this projection can be implemented by performing a singular value decomposition
𝑀 = 𝑈Σ𝑉†, and returning P𝑈 (𝑁 ) (𝑀) = 𝑈𝑉†, which is equivalent to, but more numerically stable
than, Eq. (9). Once the polar projection is computed, the matrix can be projected onto SU(𝑁) by
dividing out the determinant:

PSU(𝑁 ) (𝑀) =
P𝑈 (𝑁 ) (𝑀)

(det[P𝑈 (𝑁 ) (𝑀)])1/3 . (10)

It is straightforward to check via Eqs. (9) and (10) that this projection satisfies Eq. (2), and hence is
conjugation-equivariant.

To test the effectiveness of learned active loops, we perform a simple benchmark using two
models, with and without learned active loops. Both models are spectral flow models constructed
similarly to the models of Ref. [7], combining direction and location updates, repeated a total of
3 times for 3 × (48 + 16) = 192 layers. The only difference between the two models is that one
model uses learned active loops in its direction updates while the other uses a fixed active loop,
namely the untraced plaquette. Both models are trained using the Adam optimizer [10] with path
gradients [11]. For the model with learned active loops, the staple networks are constructed using
2 hidden layers with 𝑁ℎ = 8, and the coefficients of the staple network are initialized using the
PyTorch xavier_normal_ initialization scheme [12] with a gain of 0.5. In addition, the weights
𝑐
(𝑖)
𝑘ℓ

of the staple network are initialized near the identity, meaning that the weights are set so that
initialization with a gain of 0 would result in each layer of the staple network producing the identity
function.

The results of training both models to target a pure gauge theory with a plaquette action at
coupling 𝛽 = 2 on a 44 lattice is shown in Fig. 1. The model quality here is demonstrated by the
effective sample size (ESS), defined by [13, 14]

ESS =
E𝑈∼𝑞 (𝑈) [𝑤(𝑈)]2

E𝑈∼𝑞 (𝑈) [𝑤(𝑈)2]
, (11)

where 𝑤(𝑈) = 𝑒−𝑆 (𝑈)/𝑞(𝑈) is the (unnormalized) reweighting factor, 𝑆(𝑈) is the target action
defining the target density 𝑝(𝑈) ∝ 𝑒−𝑆 (𝑈) , and 𝑞(𝑈) is the model density. The ESS can be thought
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Figure 1: Example training curves with and without learned active loops. The models are otherwise identical,
and the target theory is a pure-gauge plaquette action with 𝛽 = 2 on a 44 lattice, optimized as described in
the text.

of as the effective number of independent samples per model sample, with an ESS of 1 indicating
a perfect model. The model that uses learned active loops shows a clear advantage over the model
without, achieving almost 80% ESS in comparison to 20%. Similar results have also been seen
across a wide variety of different tests, indicating that learned active loops appear to be a strict
improvement over previous spectral flow models.

3. Correlated ensembles for hadron structure in 𝑁 𝑓 = 2 QCD

One promising application of flow models is as a map between two nearby distributions with a
small difference in action parameters,Δ𝜆. Such an application of flow models, extensively discussed
in Ref. [4], can be used to compute derivatives with respect to action parameters:

𝑑⟨𝑂⟩
𝑑𝜆

≃
⟨𝑂⟩𝜆1 − ⟨𝑂⟩𝜆2

𝜆1 − 𝜆2
, (12)

where the right-hand side is a finite-difference approximation of the derivative, and ⟨O⟩𝜆 indicates
the expectation value in the theory with action parameter 𝜆. Using a flow model, this derivative can
be computed as

𝑑⟨𝑂⟩
𝑑𝜆

≃
〈
𝑂 (𝑈) − 𝑤( 𝑓 (𝑈))𝑂 ( 𝑓 (𝑈))

〉
𝜆1
, (13)

where 𝑓 (𝑈) is the flow acting on the gauge fields, and 𝑤( 𝑓 (𝑈)) = 𝑝𝜆2 ( 𝑓 (𝑈))/𝑞( 𝑓 (𝑈)) is the
corresponding reweighting factor for the flow from 𝜆1 to 𝜆2. The same derivatives can be computed
also by other means, such as 𝜖-reweighting, or using independent ensembles generated at 𝜆1 and 𝜆2.
The methods that incorporate flows were shown in Ref. [4] to offer reduced uncertainties at fixed
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number of configurations, due to the possibility of using larger Δ𝜆 while benefiting from correlated
cancellations.

A particularly promising application of this idea is to the computation of hadronic matrix
elements using Feynman-Hellmann techniques. The main idea is to add a term to the QCD action:

𝑆 = 𝑆QCD + 𝜆O, (14)

where O is some operator of interest. Then, the matrix element of that operator between hadronic
states can be computed as a derivative of the hadron mass, 𝑀ℎ:

⟨ℎ|𝑂 |ℎ⟩ = 1
2𝑀ℎ

𝑑𝑀ℎ

𝑑𝜆

����
𝜆→0

. (15)

One example is an operator related to the gluon momentum fraction of the pion:

O = − 𝛽

𝑁𝑐

Tr Re

(∑︁
𝑖

𝑈𝑖0 −
∑︁
𝑖< 𝑗

𝑈𝑖 𝑗

)
. (16)

This operator can be added as an asymmetry between the coupling of spatial and temporal plaquettes,
𝑈𝑖 𝑗 and 𝑈𝑖0, respectively. The gluon momentum fraction can then be computed as

𝑑𝑀ℎ

𝑑𝜆

����
𝜆→0

= −3𝑀ℎ

2
⟨𝑥⟩latt

𝑔 ≃ 𝑀ℎ (𝜆) − 𝑀ℎ (0)
𝜆

. (17)

In Ref. [4], we presented a proof-of-concept application of this approach in quenched QCD
with a small lattice volume and quark masses corresponding to a larger-than-physical pion mass,
and observed a >10× reduction of variance with a fixed number of configurations. Given this
promising result, the next step is to perform the same calculation in a more physical setting with
dynamical fermions, a larger lattice volume, and at lower pion mass. Below, we present our update
on that front. In particular, we use 𝑁 𝑓 = 2 twisted mass fermions using the Lüscher-Weisz gauge
action. Specifically, the action parameters and geometry are

𝜅 = 0.164111, 𝛽 = 3.8, 𝜇 = 0.012, 𝐿3 × 𝑇 = 123 × 24. (18)

This follows the same setup as the “A” 𝑁 𝑓 = 2 ensembles by the ETMC collaboration, see Ref. [15].
The pion mass is 𝑎𝑀𝜋 = 0.276(2). Using the lattice spacing 𝑎 = 0.1 fm quoted in Ref. [15], this
corresponds to 𝑀𝜋 ≃ 540 MeV. The volume is 𝑀𝜋𝐿 ∼ 3.31. We use 10k configurations generated
with Chroma [16]. For the Feynman-Hellmann calculation, we use 𝜆 = 0.005.

Since this is dynamical QCD, the flow approach has to be adapted to the presence of fermions.
For this, we utilize the pseudofermion approach of Ref. [17]. Specifically, we have a marginal model
and a conditional model, which are trained separately. The marginal model acts on the gauge fields,
while the conditional model is used to reduce the variance in the stochastic estimator of the fermion
determinant ratio. For the marginal model, we use the same architecture presented in Ref. [4]. For
the conditional model we follow the approach of Ref. [17], with a significant modification: since
both the base and target distributions are nontrivial, we allow for parallel transports with the flowed
and unflowed fields. Further details will be presented in an upcoming publication.
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The marginal model is trained using the action with an explicit fermion determinant at a small
volume, 𝑉 = 44. It has 48 layers alternating the M2, M4, M2 and M4 masking pattern described
in Ref. [4]. It achieves 99.7% ESS, which is an increase over the 94% ESS achieved with an
untrained identity flow. The conditional model has 16 layers with an alternating masking pattern
and is also trained at 𝑉 = 44. It uses even-odd preconditioning, and it achieves a 99.6% ESS,
higher than the baseline 99.4% ESS when using the identity pseudofermion flow. Both models
have been trained with path gradients. At the evaluation volume, 123 × 24, the ESS of the marginal
model with no pseudofermion flow and four pseudofermion noise shots is 53%. Including the
trained conditional model, it raises to 58%. Without a trained marginal model, i.e. simply using
unimproved reweighting, the ESS would be < 10−3.

The results are shown in Fig. 2. Specifically, we show the extracted gluon momentum fractions
of the pion extracted from the fit results for the pion mass 1 as a function of the fit range, defined
as [𝑡min, 𝑇/2]. We compare the flow approach to 𝜖 reweighting. We find that statistical errors are
2-3 times smaller when using flows. This means that for a fixed target statistical uncertainty, 5-10
times fewer configurations are needed.

A final comment about computational costs is due, made with the caveat that the numbers
necessarily depend on the implementation and hardware. We present here the costs of this particular
demonstration on A100 NVIDIA GPUs. A breakdown of the costs for each approach is:

COST(𝜖−rew) = generation + measurement,

COST(flows) = generation + training + flow eval. + 2 × measurement + reweighting.
(19)

The difference for the flow approach is thus that 1) flows need to be trained and evaluated, 2) the
reweighting factor involves fermions in the flow case and thus requires inversions to stochastically
estimate the determinant ratio, and 3) an additional measurement is needed on the flowed configu-
rations. We find that both measurement and generation costs per configuration are 0.17 GPU · hour.
In contrast flow evaluation costs barely accounts for 0.01 GPU · hour, while the reweighting cost
per flowed configuration is 0.04 GPU · hour. Thus, per configuration, the flow approach costs
around 2× times more. As for training, this model was trained for 8 days on 16 A100s, and thus
4608 GPU · hour. Given the 5− 10× reduction of variance demonstrated in Fig. 2, a computational
advantage is achieved after 4k configurations if training costs are taken into account. Note that this
demonstration used 10k, and thus the results are well into the regime of computational advantage
when flows are used.

4. Conclusion

Normalizing flows are a promising avenue for accelerating lattice field theory calculations. This
work has reviewed two recent advances in applying normalizing flows to 4d gauge theories. The
first, learned active loops, provides a substantive improvement to spectral flow models and shows
that there are still many possibilities for improving model performance. In the future this work could
be extended, for instance by increasing the expressivity of the staple networks using L-CNNs [9], or
by finding other methods to increase the ability of the flow to modify different degrees of freedom.

116 stochastic sources at random timeslices per configuration are used.
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Figure 2: Gluon momentum fraction of the pion computed using the Feynman-Hellmann approach as
function of the upper end of the fit range, 𝑡min. Orange squares correspond to using flows, while blue circles
are the baseline of 𝜖 reweighting.

The second advancement presented here is the application of correlated ensemble methods to a
theory with dynamical fermions, yielding a true computational advantage in a scenario not far from
practical applicability. Future directions include applying these ideas to larger volumes and lower
pion masses, approaching the scale of modern calculations. Separately, the method may be applied
for other operators to obtain e.g. quark mass derivatives and sigma terms. These two advances are
among many improvements in the application of normalizing flows to lattice field theory, bringing
this method closer to practical applicability at the state of the art.
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