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Abstract

In this paper, we propose a method to perform em-
pirical analysis of the loss landscape of machine
learning (ML) models. The method is applied
to two ML models for scientific sensing, which
necessitates quantization to be deployed and are
subject to noise and perturbations due to experi-
mental conditions. Our method allows assessing
the robustness of ML models to such effects as
a function of quantization precision and under
different regularization techniques—two crucial
concerns that remained underexplored so far. By
investigating the interplay between performance,
efficiency, and robustness by means of loss land-
scape analysis, we both established a strong cor-
relation between gently-shaped landscapes and
robustness to input and weight perturbations and
observed other intriguing and non-obvious phe-
nomena. Our method allows a systematic explo-
ration of such trade-offs a priori, i.e., without
training and testing multiple models, leading to
more efficient development workflows. This work
also highlights the importance of incorporating
robustness into the Pareto optimization of ML
models, enabling more reliable and adaptive sci-
entific sensing systems.

1. Introduction
Advances in sensing technology drive the frontiers of scien-
tific exploration, enabling breakthroughs across disciplines.
Scientific sensing challenges can far outpace industrial appli-
cations, with inference latency on the scale of nanoseconds
and microseconds, and extreme data rates (Duarte et al.,
2022; Wei et al., 2024). This requires new methodologies
for ultra-fast and ultra-compact edge processing.

Machine learning (ML) has emerged as a transformative
tool across several scientific domains. In low-latency ap-
plications, scientists can enhance the capabilities of their
instruments, including adaptiveness to dynamic conditions
and the extraction of deeper insights from raw data (Deiana
et al., 2022). Sensing and control with ML at unprecedented
spatial and temporal scales can enable real-time analytics in
scientific systems to accelerate scientific discovery.

Although significant advances have been made in methods
to co-design efficient ML algorithms to meet the perfor-
mance and resource demands of scientific systems, such as
quantization (Gholami et al., 2022; Rokh et al., 2023), prun-
ing (Vadera & Ameen, 2022; Cheng et al., 2024), and neural
architecture search (Elsken et al., 2019), the link between
reliability and, more in general, robustness of models and
their performance and resource optimization has been much
less studied. However, this issue is crucial for the unique de-
mands of scientific sensing, in which raw and unprocessed
instrument data are typically exposed to harsh environments
that make ML processing prone to noise and perturbations.

Contribution. This paper addresses the interplay between
performance, efficiency, and robustness in scientific sensing.
Specifically, we explore the robustness of state-of-the-art
(SoTA) neural networks under quantization and data cor-
ruption, focusing on two distinct applications: (i) autoen-
coders for sensor lossy data compression in particle physics
(Di Guglielmo et al., 2021) and (ii) computer vision regres-
sion tasks for fusion energy diagnostics (Wei et al., 2024).
An overview of their workflow is shown in Figure 1, which
will be later discussed in Section 4.

Specifically, the paper makes the following contributions:

• We introduce loss landscapes analysis (Sun et al.,
2020) methods for scientific sensing capable of identi-
fying robust configurations of ML models a priori, i.e.,
without requiring time-consuming exploration cam-
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paigns with training and testing in the loop.

• We study how different regularization methods can mit-
igate noise and perturbations in quantized ML models
for scientific sensing.

• We unveil a strong correlation between gently-shaped
landscapes, both locally and globally, and robustness to
data corruption. Furthermore, we observe non-obvious
phenomena that suggest the need for a careful trade-
off exploration in quantizing ML models to balance
precision with robustness.

This study emphasizes the importance of including robust-
ness to Pareto optimization of ML models, in addition to per-
formance and efficiency, when designing real-time models
for scientific sensing. By providing insights on robustness
a priori, independently of the source of noise and perturba-
tions that may affect a model, this work paves the way for
more adaptive experimental capabilities, thereby enabling
more capable experiments at unprecedented timescales.

Paper structure. The paper is structured as follows. We
first provide basic concepts of quantization and loss land-
scape analysis in Section 2. We proceed by presenting our
method based on multiple loss landscape metrics in Sec-
tion 3. Then, we introduce the setup used in this work in
Section 4, illustrating the models, the benchmarks, and the
mitigation techniques involved. Experimental results are
presented in Section 5, while Section 6 concludes the paper.
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Figure 1. Workflow of the models in this study. (a) The ECON-T
model workflow (Di Guglielmo et al., 2021), demonstrating the
lossy data compression pipeline designed for deployment in the
high-radiation environment of the Large Hadron Collider (LHC).
(b) The Fusion model workflow (Wei et al., 2024), illustrating
active feedback control in magnetic confinement fusion devices.

2. Related Work
Quantization. Quantizing deep neural networks is a widely
used technique to reduce memory usage and enhance infer-
ence speed, making it particularly valuable for deployment
on resource-constrained devices. However, these benefits
often come at the expense of performance degradation and
increased instability. To address this issue, a popular ap-
proach is Quantization-Aware Training (QAT), where we
re-train the Neural Network (NN) model with quantized
parameters so that the model can recover part of the perfor-
mance by converging to a better loss point. Since it is not
always possible to re-train the model due to computational
costs or unavailability of the dataset, an alternative approach,
called Post-Training Quantization (PTQ), allows quantizing
all parameters without re-training the model, with limited
overhead at the cost of lower accuracy, especially for low-
precision quantization (Nagel et al., 2020; Li et al., 2021;
Zheng et al., 2022; Wei et al., 2022). We focus this work
on QAT mainly for two reasons: first, we are interested in
studying the impact of quantization on the training of NN
models; and second, the training time of the target models
is low enough to favor the performance advantages pro-
vided by QAT. Regardless of the quantization method, in
this work, we chose uniform integer quantization due to its
superior hardware efficiency compared to Floating Point
(FP) representation, as evidenced by (Jacob et al., 2018) and
(van Baalen et al., 2023).

Loss landscape Analysis. Loss landscapes and the connec-
tions to training optimization techniques have been crucial
research paths in ML for years. (Choromanska et al., 2015;
Keskar et al., 2016; Fort et al., 2019) are works on the
connection between the loss landscapes and the Stochastic
Gradient Descent (SGD) optimization. (Fort et al., 2020;
Yang et al., 2021) propose empirical analysis to better un-
derstand how several factors, such as quality of the data,
number of parameters and hyperparameter tuning impact
the generalization capability of the model. Our work took
inspiration from the experiments of (Yang et al., 2021), but
with a different aim. As far as we know, this is the first work
that looks for correlations between loss landscape topology
and model robustness in science.

3. Method
This section presents the method used in this work to vi-
sualize and analyze the loss landscape of ML models. A
collection of metrics is presented for analysis purposes. Our
notation aligns with the conventions established by (Yang
et al., 2021).
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3.1. Loss Landscape Visualization

This work presents plots that approximate the surface of the
loss landscape, which are useful to interpret the results we
obtained. Various techniques to generate this kind of plot
were proposed in previous work (Goodfellow et al., 2014;
Im et al., 2016; Dinh et al., 2017; Keskar et al., 2017; Li
et al., 2018). To generate our plots, we took inspiration from
the approach of (Li et al., 2018), where the parameters of
the model are perturbed along one random direction and its
orthogonal, normalizing the weights filter-wise. Formally,
given the parameters θ of a model, the resulting plots depict
the following function:

f(α, β) = L(θ + ασ + βη), (1)

where σ and η are the two directions and α and β are the
steps in these directions. A series of N steps can be com-
puted as αi, βi = νmin + i · (νmax − νmin)/(N − 1), for
i = 0, 1, . . . , N − 1, where νmax and νmin are the maximum
and minimum perturbation module, respectively. 2D plots
can be obtained by fixing either α or β.

However, when considering models with thousands of pa-
rameters, picking one random direction may lead to a gross
approximation of the loss landscape which is not practically
representative (e.g., Figure 2b). For this reason, we propose
a novel approach that selects σ and η as the directions of
the top-2 eigenvectors of the converged model. In this way,
we can explore the two directions where the loss landscape
faces the maximum curvature, leading to a more informative
topology approximation of the surroundings of the model
parameters θ (e.g., Figure 2a). A detailed comparison of the
two approaches is discussed in Appendix B.1.

(a) (b)

Figure 2. Comparison of 3D loss landscape visualization methods:
(a) uses the top-2 eigenvectors of model parameters, while (b) uses
two random orthogonal directions.

3.2. CKA Similarity

In the context of loss landscape analysis, the Centered Ker-
nel Alignment (CKA) similarity (Kornblith et al., 2019;
Nguyen et al., 2021) is used to determine whether multiple
instances of the same model, trained separately with ran-

domly initialized parameters, tend to converge towards simi-
lar minima. This is assessed by examining the CKA similar-
ity of their outputs, i.e., given NN fθ and m ∈ N data sam-
ples randomly picked from the test set, we can define their
concatenation as Fθ = [fθ(x1) · · · fθ(xm)]T ∈ Rm×dout .

The CKA similarity between two NNs with different param-
eter configurations θ and θ′ can hence be measured by

CKA(θ, θ′) =
Cov(Fθ, F

′
θ)√

Cov(Fθ, Fθ)Cov(F ′
θ, F

′
θ)
. (2)

In the above equation, given two matrices X,Y ∈ Rm×d, it
holds

Cov(X,Y ) = (m− 1)−2tr(XXTHmY Y THm), (3)

where Hm = Im − 1
m11T is the centering matrix.1 Further

details are discussed in the Appendix B.2.

A high CKA value indicates that the models are likely con-
verging closely to each other, whereas a low value suggests
that different parameter initializations can lead to conver-
gence in different regions, as also empirically demonstrated
by (Yang et al., 2021). This information helps describe the
morphology of the loss landscape: in a globally smooth
and flat loss landscape, models initialized with different
parameters are expected to converge to similar, nearby min-
ima. In contrast, low similarity may indicate a rugged loss
landscape, where models risk getting trapped in suboptimal
local minima.

3.3. Hessian Metrics

The Hessian is a square matrix that characterizes the curva-
ture of the loss function at a specific point. The eigenvalues
of the Hessian provide scalar values that offer insights on
the curvature type at that point. Positive eigenvalues suggest
local convexity of the loss, indicating a single minimum or
maximum. In contrast, negative eigenvalues suggest local
concavity, which implies the presence of a saddle point,
often resulting from unfavorable training conditions. Zero
eigenvalues signify a flat loss at that point, indicating the
absence of both a minimum and a maximum. Intuitively, it
is desirable to have both the top eigenvalue and the sum of
the traces as close to zero as possible, because it suggests
that the model has converged to a smooth, flat minimum.

Computing the Hessian matrix can be challenging from a
computational perspective. In fact, it involves evaluating
second-order partial derivatives of the loss function with
respect to each pair of the model parameters. However,
our analysis focuses on models deployed on edge devices,
which are characterized by a limited number of parameters

1We use Im to denote the identity matrix of size m and 1
represents the indicator function.
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compared to foundational models. Furthermore, we leverage
PyHessian (Yao et al., 2020) to calculate Hessian metrics, an
open-source framework that approximates Hessian values
by applying power methods.

3.4. Mode Connectivity

Mode connectivity is a global metric that provides insights
about how well two minima are connected (Garipov et al.,
2018; Draxler et al., 2018). It is capable of revealing the
presence of barriers of loss between two points in which
the two models converged. A simple way to compute mode
connectivity is to set up a linear interpolation between two
given models and sample a certain number of parameter
configurations along it. Then, we can compute the loss of
the models resulting from the sampled parameter config-
urations and see if there are barriers. However, this is a
gross approximation because we do not know a priori the
shape of the minima: for instance, it may happen that the
two models are well connected via a curved line, whereas
the linear interpolation cannot catch this information. A
more convoluted method is hence required. We adopted the
one proposed by (Garipov et al., 2018), which is based on
a parameterized Bezier curve with k + 1 bends. Consider
k + 1 models with parameters ϕ = {θ0, . . . , θk}, where
θ0 = θ′ and θk = θ′′ are the parameters of the two models
to be compared, while θj for 1 ≤ j < k are the parameters
of other models to be trained. The Bezier curve is defined
as:

γϕ(t) =

k∑
j=0

(
k

j

)
(1− t)k−j · tj · θj , (4)

where t ∈ [0, 1] is a scalar to move along the curve. The
training of the models related to θj for 1 ≤ j < k is per-
formed as follows: first, the parameters are initialized using
a linear interpolation between θ0 and θk; then each of such
models is trained to reach convergence.

At this point, we can now sample m > 2 different parameter
configurations by picking m values of t, denoted by T =
{ti}m−1

i=0 , including the two boundaries t1 = 0 and tm−1 =
1. Intermediate values are computed by ti = i/(m− 1), for
i = 1, . . . ,m− 2.

We define the distance between the average loss of the two
models being compared and the loss of a sampled one by

d(t, θ′, θ′′) =
1

2
(L(θ′) + L(θ′′))− L(γϕ(t)). (5)

Finally, we can now define mode connectivity as the maxi-
mum deviation from the average loss of the two boundaries
in the selected sampling points ti, i.e., mc(θ′, θ′′) = d(t∗)
where t∗ = argmaxt∈T {|d(t, θ′, θ′′)|}.

This metric can be interpreted as follows:
mc(θ′, θ′′) > 0, There are better minima.2

mc(θ′, θ′′) < 0, There are barriers.
mc(θ′, θ′′) ≈ 0, Loss landscape is well connected.

In this work, we computed mode connectivity with 3 bends
(k = 2), training the models used to shape the Bezier curve
for 30 epochs. A graphical example of mode connectivity
is available in Appendix A, while an ablation study about
how we set the right number of bends and training epochs
is presented in Appendix B.3.

4. Experimental Setup
This section provides a detailed overview of the models
employed in this study as representative benchmarks, and
the noise mitigation techniques we tested.

4.1. Benchmark Models

Both models employed in our analysis are used for scien-
tific sensing and are designed to be deployed on resource-
constrained devices such as Field Programmable Gate Ar-
rays (FPGAs) and Application Specific Integrated Circuits
(ASICs), where the number of model parameters and the ar-
chitectural design play a pivotal role in achieving efficiency.

4.1.1. ECON-T MODEL

The ECON-T model introduced by (Di Guglielmo et al.,
2021) is an autoencoder for lossy data compression created
for the Large Hadron Collider (LHC) and its high luminosity
upgrade (HL-LHC) at CERN. Figure 1a shows an exam-
ple compression flow employed by ECON-T. We focus our
analysis on the encoder composed of 2288 parameters, and
deployed on the detector in a high-radiation environment.
The size and complexity of the model are constrained by
area, on-chip memory, and power (≤ 100 mW). The perfor-
mance of the autoencoder is measured via Earth Mover’s
Distance (EMD) (Rubner et al., 2000), which is not differen-
tiable, so it is not used during training. A physics-inspired
loss similar to Mean Square Error (MSE) called “telescop-
ing MSE” is used during training, and EMD is used for
measuring performance. Differentiable EMD loss (Shenoy
et al., 2023) has been studied but is not benchmarked here.

4.1.2. FUSION MODEL

Active feedback control in thermonuclear fusion devices
based on magnetic confinement is required to mitigate
plasma instabilities and enable robust operation, preventing
damage to the reactor. (Wei et al., 2024) combined effi-

2The training failed to locate a reasonable optimum, i.e., L(θ′)
and L(θ′′) are large.
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cient processing of FPGAs with high-speed imaging camera
diagnostic and convolutional neural networks (CNNs) for
magnetohydrodynamic (MHD) mode control on a tokamak
device. The workflow of this system is illustrated in Fig-
ure 1b. The model inputs a camera image and predicts the
n = 1 MHD mode amplitude and phase, where n is the
number density used to describe the degree of concentration
of countable objects in physical space. As CNN are not the
SoTA for phase predictions due to periodicity of the task,
between −π and π, this work focuses on amplitude only.

4.2. Scientific Corruptions

Neural network quantization may not be the only noise fac-
ing the model at the stage of deployment. Indeed, models
used in scientific experiments may operate in harsh envi-
ronments, such as space or particle accelerators, where they
typically experience significant performance degradation
due to noise in the input data and weight perturbation, such
as Single Event Upsets (SEU). To simulate the perturbations
in the input data we adopt the injection of two different
types of noise:

• Gaussian noise: It appears as random variations in
pixel intensity that follow a Gaussian distribution. It
typically arises from electronic noise in imaging sen-
sors or during transmission.

• Salt and Pepper noise: It commonly arises from de-
fects in imaging sensors, transmission errors, or faulty
pixels in digital cameras. Unlike Gaussian and random
noise, salt-and-pepper noise introduces localized dis-
ruptions in image content, which can severely degrade
image quality. The target pixels are randomly selected
without following any particular distribution and their
value is either maximized or minimized.

We evaluated the performance of the models under varying
levels of noisy perturbations to better understand their sensi-
tivity to distorted input data. It is important to note that, in
a practical setting, the nature of the perturbation is typically
unknown a priori. As we will demonstrate later, in section
5, in such cases, mitigation techniques that are agnostic to
the type of noise are generally more effective.

In addition to input corruptions, we also study weight cor-
ruptions from SEUs. On the software side, we adopted the
FKeras (Weng et al., 2024) methodology, which ranks bits
approximately from most to least sensitive to flipping. This
allows us to simulate worst-case scenarios by flipping the
top-k most sensitive bits and then evaluating the model’s
performance under these conditions. The sensitive bit rank-
ing is done by first sorting the weights by a sensitive score
computed as H ′ =

∑k
i=1 λi(vi · θ)vi ∈ Rn, where k

indicates the number of top eigenvectors of the model, λi is

the i-th eigenvalue, vi is the i-th eigenvector of the model,
and θ is the vector of model parameters (n is the number
of parameters). Once the parameters are sorted by sensitiv-
ity, we then sort the bits of each parameter from the most
significant bit (MSB) to the least significant one (LSB).

In Appendix C.1, we demonstrate the effectiveness of FK-
eras with respect to random bit flipping.

Note: Adversarial attacks were not considered, as models
used in scientific experiments are deployed in controlled
environments where they are not exposed to this threat.

4.3. Noise mitigation methods

To demonstrate the correlation between loss landscape anal-
ysis and robustness, we evaluated different versions of the
target models, trained with different regularization methods.
These methods aim to increase the robustness of the mod-
els against input and parameter perturbations by modifying
the model’s loss function and thus also its loss landscape.
However, we will see in section 5, that they are not always
effective, and how the morphology of the loss landscape can
help us to understand which one is more effective.

In this work, we compare two noise mitigation techniques:
Jacobian regularization (Sokolić et al., 2017; Hoffman et al.,
2019) and orthogonal regularization (Cisse et al., 2017;
Wang et al., 2020; Eryilmaz & Dundar, 2022).

Jacobian regularization aims to limit the impact of input
perturbations by adding a penalty to the loss function, which
is proportional to the Frobenius norm (denoted by ∥ · ∥F ) of
the model’s Jacobian matrix J(x), i.e.,

δ∥J(x)∥2F , (6)

where δ is a scalar used to weigh the impact of the regular-
ization on the training loss.

This method controls the magnitude of the components of
the Jacobian matrix, which are partially correlated with the
contribution of noise to the model output. The aim of this
method is to increase the margin between the input space
and the decision boundaries of the target class. In our exper-
iments, we use an efficient approximation of the Frobenius
norm of the Jacobian matrix proposed by (Hoffman et al.,
2019), which allows us to implement this method with neg-
ligible overhead.

The relationship between orthogonality and quantization
has previously been studied by (Eryilmaz & Dundar, 2022).
Although they demonstrated the beneficial effects of en-
forcing orthogonality among neural network weights during
QAT, our goal is to provide a more detailed analysis of the
effect of orthogonality on the loss landscape and reveal a
possible correlation of it with a model’s robustness. Vari-
ous approaches to promote weight orthogonality have been
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(a) (b) (c) (d)

Figure 3. Comparison of loss curves computed by perturbing the models along the top eigenvector of the Hessian matrix (i.e., varying
parameter α in Eq. (1), reported on the x-axis, while keeping β = 0). (a) and (b) compare the loss line of models trained with different
precision respectively for ECON-T and Fusion models, while (c) and (d) compare models fine-tuned with different regularization
techniques respectively for ECON-T and Fusion models.

proposed in the literature (Miyato et al., 2018; Bansal et al.;
Brock, 2018; Wang et al., 2020). In this work, we use a
soft orthogonal regularization based on the Frobenius norm,
formulated as:

δ∥WTW − I∥F . (7)

More complex regularization formulations could be applied,
but given the nature of the model and the objectives of this
study, this technique provides sufficiently effective results.

Moreover, in this work we did not take into account de-
fensive approaches such as adversarial training (Kurakin
et al., 2016) or noise injection during training for mainly
two reasons: first, we have no guarantees that these methods
will enhance reliability against noise of different nature; and
second, the overhead introduced during training it is not
negligible, especially when combined with QAT.

In Appendix C.2, we study how different values of δ impact
the performances of the model.

5. Experimental Results
In this section, we first present results to evaluate the metrics
introduced above and then assess the potential correlation be-
tween these metrics and the robustness of the tested models
(ECON-T and Fusion). We studied robustness in the pres-
ence of network quantization. The models were quantized
using integer uniform quantization implemented in Brevi-
tas (Pappalardo, 2023) library, and all experiments were
conducted on an NVIDIA A100 GPU using QAT. We eval-
uated three versions of each model: (i) a baseline version
fine-tuned without regularization, (ii) one incorporating Ja-
cobian regularization (with δ = 0.1 for the ECON-T Model
and δ = 10−6 for the Fusion model), and (iii) another one
employing orthogonal regularization (with δ = 10−5 for
the ECON-T Model and δ = 10−6 for the Fusion model).
This approach assesses how a quantization scheme and noise
mitigation influence the performance and reliability of the
models. Each model version was then trained three times

under different precisions, i.e., for bit widths ranging from 3
to 12. Unless otherwise stated, the results presented in this
section represent the average of these three model versions.

Codes are available at https://github.com/
balditommaso/PyLandscape.

5.1. Loss Landscape analysis

Visualizing the Loss Landscape. Visualization techniques
provide an approximate representation of the shape of the
loss landscape. In this work, we utilized 2D plots. The
intrinsic regularization effect of quantization is illustrated in
Figure 3a. The 4-bit version of the baseline model exhibits
a higher minimum compared to the 8-bit and 12-bit con-
figurations, due to the performance degradation typically
associated with low-bit quantization. However, examin-
ing the entire loss curve reveals that the convex portion of
the loss landscape is wider and flatter compared to models
trained with higher precision. In contrast, Figure 3b demon-
strates that low-precision quantization achieves a minimum
comparable to the one of higher-precision configurations,
but at the cost of sharper and more jagged minima. This
results in a harsher loss landscape, which can complicate
model training. As also discussed later, this has a signifi-
cant impact on model robustness. For the ECON-T model,
orthogonal regularization proves to be more effective than
Jacobian regularization, resulting in a smoother and wider
convex loss landscape (Fig. 3c). Conversely, for the Fusion
model, the impact of regularization on the loss landscape is
limited (Fig. 3d).

CKA similarity. We are interested in understanding if dif-
ferent instances of the same model converge in a close area
of the loss landscape by looking at their CKA similarity.
Figures 4a and 4b report the average CKA similarity be-
tween all pairs of parameter configurations (resulting from
the three trainings) of the three model versions as a function
of the quantization precision in bits. The figures show that
the baseline versions have limited CKA similarity, which

6
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Baseline Jacobian Orthogonality

(a) (b)

(c) (d)

(e) (f)

Figure 4. Analysis of loss landscape metrics for ECON-T (left col-
umn) models and Fusion models (right column) fine-tuned with
different regularization strategies across varying precision levels.
Subplots show: (a) and (b) CKA similarity, which evaluates rep-
resentational alignment among models; (c) and (d) Hessian trace,
capturing the overall curvature of the loss landscape where the
model is converged; and (e) and (f) mode connectivity, indicating
the presence of barriers among different minima. Regularization
methods include Baseline (no regularization), Jacobian regulariza-
tion, and orthogonal regularization.

tends to decrease as the precision increases, probably due
to the implicit regularization effect resulting from low-bit
quantization. This is not the case for the other two model
variants, where, especially for Jacobian regularization, they
converge to CKA-similar models. In these cases, the results
suggest the presence of a smoother loss landscape, where
the models do not get trapped in suboptimal minima dur-
ing training. The drop in CKA similarity as the precision
increases is more significant for the Fusion model (Fig. 4b)
than the ECON-T model (Fig. 4a): this was expected be-
cause the Fusion model has more parameters, leading to a
more complex loss landscape).

Hessian trace. The curvature of the loss landscape where
the model lands at the end of QAT can be analyzed with

the Hessian trace. The average Hessian trace values are
reported in Figures 4c and 4d. From the figures we can see
that all models tend to follow the same pattern in which
the slope of the loss landscape increases with precision
≥ 5 bits. Furthermore, while the ECON-T model (inset
(c)) benefits from orthogonal regularization, which allows
converging to flatter minima, regularization is instead letting
the Fusion model (inset (d)) converge to steeper minima.
These behaviors are further investigated later in this section.

Mode connectivity. The presence of barriers in the loss
landscape is undesirable as they hinder the optimization
process, making it difficult for algorithms to efficiently con-
verge to a global or near-global minimum. Weight pertur-
bations caused by bit errors can shift the model’s position
in the loss landscape, with the magnitude of the shift deter-
mined by the difference between the original and perturbed
parameters and the influenced direction. Intuitively, if the
region surrounding the model is free of barriers, the im-
pact of perturbations on performance is likely to be lower.
We studied the maximum mode connectivity (Max mc) ob-
tained as follows. Given the three models for each version,
we sampled m = 60 points on the corresponding Bezier
curve (Eq. (4)) and denote by T the set of model param-
eters corresponding to those 60 points. Max mc is hence
given by the maximum mode connectivity of all pairs in
T , i.e., max(Θ′,Θ′′)∈T×T {mc(Θ′,Θ′′)}. Figures 4e and 4f
illustrate how the presence of barriers is influenced by pre-
cision. Note that not all regularization methods effectively
mitigate these barriers. The two models exhibit different
behaviors: for ECON-T (Fig. 4e), Jacobian regularization
provides only slight improvements in connectivity for preci-
sions ranging from 6 to 12 bits, whereas models fine-tuned
with orthogonal regularization are well connected, demon-
strating the absence of significant barriers. In contrast, for
Fusion (Fig. 4f), the presence of barriers between minima
decreases as precision increases, with regularization mainly
offering benefits in low-precision configurations.

5.2. Performance under perturbations

Input Perturbations. The robustness of the ECON-T
model against input perturbations is critical to ensuring
the reliability of processed data. Regularization techniques
are promising candidates to improve model robustness; how-
ever, they may degrade performance on clean data, as shown
in Figures 5a and 5e. While Jacobian regularization intro-
duces negligible performance degradation, the degradation
caused by orthogonal regularization may be unacceptable
depending on the use case. The regularization weight δ in
the optimization loss (see Eqs. (6) and (7)) can be adjusted
to manage the trade-off between clean-data performance and
model robustness. Fine-tuning this trade-off often requires
several iterations to test various noise types and magnitudes
to guarantee reliability. The loss landscape metrics previ-
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Baseline Jacobian Orthogonality Best FP32 performance (on clean data)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Evaluation of ECON-T models (top row) and Fusion models (bottom row) robustness under different input or weight perturbations.
Each subplot represents performance benchmarks on specific scenarios: (a and e) clean data, (b and f) perturbed data with Gaussian noise,
(c and g) perturbed data with salt-and-pepper noise, and (d and h) flipping the five most sensitive bits. The models are trained with three
regularization methods: Baseline (no regularization), Jacobian regularization, and orthogonal regularization.

ously introduced provide valuable insights that align with
the performance results in Figure 5. Noise significantly
affects the performance of baseline models, as shown in
Figures 5b and 5f for Gaussian noise, and Figures 5c and 5g
for salt-and-pepper noise. However, mitigation techniques
are not always effective in increasing robustness, and the
reasons can be identified by looking at the loss landscape.
Indeed, by matching the performance of the ECON-T model
with the analysis of the loss landscape of discussed above,
we can note that improvements in robustness provided by
orthogonal regularization (Figs. 5b-5c) correspond to a flat-
ter and smoother landscape (Fig. 4e). In contrast, Jacobian
regularization is less effective in mitigating noise, which
correlates with poorer minimum connectivity and steeper
slopes at convergence points in the landscape (Fig. 4e). For
the Fusion model, the effectiveness of mitigation techniques
is evident for high precisions only. Although baseline mod-
els converge to flatter minima in these cases, they tend to
produce highly divergent representations (Fig. 4b), which
indicate obstacles in the optimization process that obstruct
the reach of lower minima. Interestingly, both models ex-
hibit higher robustness to input perturbations under low-bit
quantization, a behavior that was also observed in previous
studies (Lin et al., 2019).

Weight Perturbations. Given the size of the analyzed mod-
els, the impact of weight perturbations (bit flips) on their
performance is highly destructive. Nevertheless, the results
of Figures 5d and 5h confirm the observations made above

also for this issue. Specifically, ECON-T models fine-tuned
with low-bit configurations demonstrate greater robustness
to weight perturbations, even with fewer bits per param-
eter. This behavior strongly correlates with the Hessian
trace (Fig. 4c) and mode connectivity (Fig. 4e) analyses.
Models with fewer bits per parameter tend to have a lower
Hessian trace, i.e., indicating convergence to flatter minima,
and reduced barriers between minima. For most config-
urations, except for extreme low-bit settings (e.g., 3 or 4
bits) where quantization and performance degradation are
more pronounced, these phenomena are strongly correlated.
Additionally, models trained with orthogonal regularization
exhibit greater robustness to weight perturbations across
most quantization configurations. This result aligns with
their favorable Hessian trace and mode connectivity charac-
teristics. In contrast, the Fusion model exhibits a different
behavior. Performance degradation decreases as precision
increases, consistently with the trends observed in Figures
4d and 4f. Low-precision Fusion models show more barri-
ers between minima, and the baseline version of the model
has the lowest Hessian trace compared to the regularized
versions, explaining the results in Figure 5h.

6. Conclusion
We proposed a method to conduct a comprehensive empiri-
cal analysis of the loss landscape of machine learning mod-
els and applied the method to two representative, yet diverse
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models for scientific applications. These models require
quantization to be deployed and are subject to noise and bit
flips in the model parameters. Two regularization techniques
were considered to mitigate noise and bit flips, complement-
ing the intrinsic regularization provided by quantization.

Most interestingly, contrary to what one may expect, we
found that increasing quantization precision does not always
provide benefits in terms of robustness to noise and bit flips.
Furthermore, we found that different models may benefit
from different regularization techniques.

Our method allows efficient exploration of the trade-offs
between robustness and performance without calling for
tedious and time-consuming training campaigns for design
space exploration. It does so without assuming prior knowl-
edge of the perturbations. Automatic Pareto optimization of
model configurations can hence be enabled by building on
our method and represents our prominent future work.
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A. Example of mode connectivity computation
In this section, we provide a more detailed example of how mode connectivity is computed. Please refer to Section 3.4 of
the paper.

Once the Bezier curve between two models, with parameters θ′ and θ′′, is defined, we can then sample an arbitrary number
of points along this curve by picking a value t ∈ [0, 1]. The extreme cases, t = 0 and t = 1, correspond to θ′ and θ′′,
respectively. Each intermediate point ti for i = 1, ...,m − 2 serves as input to the Bezier curve, yielding a possible
configuration of model parameters. These parameters can be used to evaluate the loss along the Bezier curve, as illustrated
by the blue line in Figure 6).

Figure 6. Example of mode connectivity computation. The blue line represent the loss computed along the Bezier curve γϕ. We sample
m points along this curve, and then we look for the point which is maximizing the deviation from the average loss (t∗ in Section 3.4)
between the two extreme model parameters θ′ and θ′′.

B. Ablation study on metrics
In this section, we first compare the loss landscapes visualization method proposed by (Li et al., 2018) with our approach,
and then investigate different configurations when measuring the CKA similarity and the mode connectivity.

B.1. Ablation study on loss landscape visualization

We start by showing why visualizing the loss landscape using the top eigenvector as the perturbation direction (Figure 7c),
our novel proposal that differs from the approach in (Li et al., 2018), provides more informative insights compared to using
random directions (Figure 7f). Although both plots depict the loss landscape of the same Fusion models, they exhibit notable
differences.

First, by examining the y-axis, we observe that the scales of the two plots are completely different. When using random
directions—computed within the same range and with the same resolution (i.e., number of steps)—the loss variation is
negligible. As a result, this approach fails to provide meaningful insights into suboptimal minima and their sharpness.

The only notable feature in Figure 7f is the jagged shape introduced by low-bit quantization. However, this effect can be
disregarded, as we have no guarantee that the model will follow this direction during training. In contrast, when adopting
the top eigenvector as the perturbation direction, we ensure that the visualization captures the model’s behavior along the
direction of maximum curvature. This is particularly relevant because most training optimizers, such as SGD, tend to explore
this direction, making it a more reliable choice for loss landscape analysis.
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(a) (b) (c)

(d) (e) (f)

Figure 7. Ablation studies of the loss landscape metrics. Subplots show: (a) and (d) CKA similarity of the ECON-T model where we
respectively explore the impact of changing the number of concatenated outputs m, and the noise intensity; (b) and (e) mode connectivity
of the Fusion model, comparing results obtained tuning the number of training epochs (b) and the number of bends (e); (c) and (f) loss
landscape visualization methods, where the directions are computed respectively with top eigenvector of model parameters and a random
direction.

B.2. Ablation study on measuring CKA similarity

In this subsection, we provide a detailed analysis of how the number of concatenated outputs and the intensity of input
perturbations impact the CKA results. As shown in Figure 7a, increasing the number of concatenated outputs leads to lower
CKA similarity. This outcome is expected, as increasing the dimensionality of the matrices being compared raises the
likelihood of differences between them. However, we observe that the overall patterns remain consistent, demonstrating
the robustness of the metric across different configurations. In this work we used m = 10 to save computation time.
Additionally, it is often preferable to conduct this analysis on perturbed data distributions, which can be achieved by adding
uniformly distributed noise, such as Gaussian noise, to the inputs. This approach is particularly useful when models are
trained to achieve near-zero training loss, as it enhances the informativeness of the metric. However, Figure 7d indicates that
this is not necessary for the ECON-T model. Even without noise injection, we can extract meaningful insights regarding the
CKA similarity of the models.

B.3. Ablation study on measuring mode connectivity

In this subsection, we analyze the optimal configuration for generating the mode connectivity plots shown in Figures 4e and
4f. The first key parameter to consider is the number of training epochs for the models used to construct the Bezier curve.
This hyperparameter is particularly important because the characteristic curved shape of the Bezier curve emerges only
when the intermediate models begin converging to their respective minima. Otherwise, the sampled models will lie along
the linear interpolation between the two models, leading to a coarse approximation.

Figure 7b highlights this effect. Specifically, training the intermediate models for 1 and 15 epochs produces similar results,
whereas training for 30 and 50 epochs leads to significantly different outcomes. Since the curves for 30 and 50 epochs are
nearly identical, we opted for 30 epochs to reduce computational cost in subsequent experiments.

Another crucial hyperparameter in mode connectivity analysis is the number of bends k+1, which determines the complexity
of the Bezier curve. Figure 7e shows that increasing the number of bends has little impact, likely due to the relatively low
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number of parameters in the model under analysis. This results in a non-trivial loss landscape morphology that does not
require highly parameterized Bezier curves. Therefore, we chose to use three bends to balance accuracy and computational
efficiency.

C. Ablation study on benchmarks and mitigation techniques
In this section, we study different configurations of regularization methods and benchmarks.

C.1. Ablation study on benchmarks

In this subsection, we provide a comprehensive evaluation of the performance of the baseline version of the ECON-T model
under varying noise magnitudes (Figures 8a and 8b) and bit error rates (Figures 8c and 8d), analogous to the analysis
conducted in Figure 5.

Regarding input perturbations, both noise types exhibit similar behavior: for noise intensities below 20%, performance
degradation is observed, but the model still follows the same overall pattern. However, at higher noise intensities, the
destructive effects become irrecoverable and unpredictable.

For parameter perturbations, we validate the effectiveness of the FKeras approach as a benchmark for the worst-case scenario
by comparing Figures 8c and 8d. Notably, not all bits contribute equally to model performance, as evidenced by the fact that
flipping the most sensitive bit, as identified by FKeras, leads to significantly more destructive effects than randomly flipping
100 bits.

(a) (b) (c) (d)

Figure 8. Evaluation of the ECON-T model under different stress conditions: (a) and (b) shows respectively the performances of the
model where the input is corrupted with Gaussian and salt-and-pepper noise, focusing the attention on the models reliability respect to
different noise intensity; (c) and (d), instead, compare the degradation of performances of the models where the parameters are perturbed
by different numbers of bit errors,the bits to be flipped are picked randomly in (c) and adopting FKeras methodology in (d).

(a) (b) (c) (d)

Figure 9. Evaluation of the Fusion model fine-tuned with different values of the coefficient δ for the regularization part of the loss: (a) and
(b) shows respectively the performances of the model on clean and perturbed input (10% Gaussian noise), changing the δ of the Jacobian
regularization; (c) and (d), instead, shows respectively the performances of the model on clean and perturbed input (10% Gaussian noise),
changing the δ of the orthogonal regularization.
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C.2. Ablation study on mitigation techniques tuning

In this subsection, we provide a comprehensive evaluation of the impact of the regularization techniques proposed in this
work, comparing their performance on both clean data (Figures 9a and 9c) and perturbed data (Figures 9b and 9d). The
model under analysis is the Fusion model, trained with different regularization coefficients δ for each regularizer.

The coefficient δ controls the weight of the regularization term in the loss function, determining the trade-off between
performance on clean and perturbed data. Intuitively, a lower δ results in minimal performance degradation on clean data
while offering limited robustness improvement. Conversely, a higher δ may significantly enhance robustness but at the cost
of greater performance degradation on clean data.

In this study, we tested different values of δ and selected the one that provided the best trade-off (δ = 10−6 in this case).
While more sophisticated tuning methods could be explored, they are beyond the scope of this work.
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