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• Goal: Improving Qubit Readout Through Adaptive LMS Filtering!

Introduction
(Least Means Squared)

ADC
Qubit

FPGA or Waveform Generator

Room Temp
300K

4K

10mK

Measurement Gate = Readout
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Current Methodology
• Readout pulses are very noisy!
• The current method to average readout pulses in post processing for qubit readout works for 

smaller systems. However, this has limitations as qubit systems scale up.

100,000 averages

Phase Sweep @ ~6.3 GHz for 
single-shot time trace readout

Ground State

Excited State
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Qubit Calibration
Integration Window

Target

Time (µs)

1 dot = 10 traces 1 dot = 100 traces
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1. Filtered signals = faster convergence to the center of mass for the IQ plots.
– By filtering readout signals on a pulse-by-pulse basis, we reduce the noise in each 

individual trace before averaging.

– We can achieve the same level of discrimination with fewer traces or achieve better 
readout fidelity with the same number of traces.

Larger qubit systems = frequency-multiplexing = increased readout crosstalk…

Therefore, faster calibrations are important for larger qubit systems

2. Enables us to have a new diagnostic tool for quantum system environment and 
noise monitoring.

– Result of using an adaptive filter… more on this later!

Why Filter Readout Signals?
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Why an LMS Filter?

?

?
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Commercial Solutions



Hans Johnson | IEEE Quantum Week 2024 8

Open-Source Solutions on FPGA

Lawrence Berkeley 
National Lab’s 

QubiC

Fermilab’s
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FPGA Quantum Controller
RFSoC 4x2ZCU111 ZCU216

• Gen 1
• Max Control Pulse carrier 

frequency = 6 GHz
• Eight 14-bit DACs @ 6.5 

GSPS
• Eight 12-bit ADCs @ 4.096 

GSPS

• Gen 3
• Max Control Pulse carrier 

frequency = 10 GHz
• Can push to 12-13 GHz

• Sixteen 14-bit DACs @ 9.85 
GSPS

• Sixteen 14-bit ADCs @ 2.5 GSPS
• Can be combined for 5.0 GSPS

• Gen 3
• Max Control Pulse carrier 

frequency = 10 GHz
• Can push to 12-13 GHz

• Two 14-bit DACs @ 9.85 
GSPS

• Four 14-bit ADCs @ 5.0 GSPS
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Firmware and Readout Chain Overview

Block Diagram of System
Block Diagram of QICK Firmware
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Firmware and Readout Chain Overview

Block Diagram of System QICK Readout Chain (v1)

QICK Readout Chain (v2 = multiplexed)
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LMS Filter

(1)𝑤𝑤 𝑖𝑖 + 1 = 𝑤𝑤 𝑖𝑖 + 𝜇𝜇 ∗ 𝑒𝑒 𝑛𝑛 ∗ 𝑥𝑥[𝑛𝑛 − 𝑖𝑖]

(2)𝑦𝑦 𝑛𝑛 = �
𝑖𝑖=0

𝑁𝑁−1

𝑤𝑤 𝑖𝑖 ∗ 𝑥𝑥[𝑛𝑛 − 𝑖𝑖]

(3)𝑒𝑒 𝑛𝑛 = 𝑑𝑑 𝑛𝑛 − 𝑦𝑦[𝑛𝑛]
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LMS Demo Equation (4)

(1)𝑤𝑤 𝑖𝑖 + 1 = 𝑤𝑤 𝑖𝑖 + 𝜇𝜇 ∗ 𝑒𝑒 𝑛𝑛 ∗ 𝑥𝑥[𝑛𝑛 − 𝑖𝑖]

(2)𝑦𝑦 𝑛𝑛 = �
𝑖𝑖=0

𝑁𝑁−1

𝑤𝑤 𝑖𝑖 ∗ 𝑥𝑥[𝑛𝑛 − 𝑖𝑖]

(3)𝑒𝑒 𝑛𝑛 = 𝑑𝑑 𝑛𝑛 − 𝑦𝑦[𝑛𝑛]

𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 =
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 ∗ 𝑖𝑖 + 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛[𝑛𝑛]

𝑖𝑖 + 1
(4)

• The purpose of the demo was to prove the 
efficacy of the LMS algorithm on FPGA.
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Results: LMS Filter Demonstration on FPGA 
• 30 MHz, 8 µs pulse with white-noise standard deviation of 1
• Learning rate = 0.0006
• Taps = 64
• Filter was allowed to execute over 10 pulses
• 10th pulse/iteration for both ‘x’ and ‘e’ are shown

1 µs 
window

0.1 µs 
window
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Results: LMS Filter Demonstration on FPGA 
• 30 MHz, 8 µs gaussian chirp with white-noise standard 

deviation of 1, 5 µs in between pulses
• Learning rate = 0.0006
• Taps = 64
• Filter was allowed to execute over 10 pulses

13 µs window 
(pulse 10) 

130 µs 
window

Latency = 527.66 ns*
Took 15-20 minutes to load
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Packaged Logic Blocks

• Packaged logic block containing weight update 
LMS algorithm

• LMS logic block sends updated weights to FIR 
compiler 
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LMS Demo Hardware Resources

 
TABLE 3.1:        RESOURCE UTILIZAITON FOR LMS DEMO ON RFSOC 4X2 

Resource Utilization Available Utilization (%) 

LUT 21,964 425,280 5.16% 

LUTRAM 3,529 213,600 1.65% 

FF 33,992 850,560 4.00% 

BRAM 133 1080 12.31% 

DSP 10 42,732 0.23% 

BUFG 7 696 1.01% 

MMCM 1 8 12.5% 


		TABLE 3.1:        RESOURCE UTILIZAITON FOR LMS DEMO ON RFSOC 4X2
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LMS Demo: Current Work

𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 =
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 ∗ 𝑖𝑖 + 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛[𝑛𝑛]

𝑖𝑖 + 1
(4)

𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 = 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜 𝑛𝑛 ∗ 𝑖𝑖 + 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 ∗
1

𝑖𝑖 + 1 (5)
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Research Objectives & Future Work

1. Develop an Adaptive LMS Filter: Implement an adaptive Least 
Mean Squares (LMS) filter on an RFSoC FPGA-based control board 
to dynamically fine-tune the readout signals of qubits.

2. Integrate and Tune the Filter with the QICK Platform: Deploy the 
adaptive filter onto the open-source Quantum Instrumentation Control 
Kit (QICK) platform to enhance its capabilities for quantum 
experiments.

3. Evaluate and Enhance Qubit Readout Fidelity: Evaluate the 
performance of the adaptive filter in comparison to the current 
methodology of ensemble averaging and timing to demonstrate its 
efficiency and effectiveness in improving readout signal clarity. 

4. Characterize the Noise Profile: Utilize the adaptive LMS filter to 
conduct a detailed analysis and characterization of the noise affecting 
readout signals in both 2D and 3D QPU experiments. 
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2D QPU Platform
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3D QPU Platform

2
3

• 3D QPU = Superconducting qubits with SRF Cavities
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Characteristic Equations of Noise

(6)𝑆𝑆(𝜔𝜔) = 2 �
−∞

+∞

𝑑𝑑(𝑡𝑡 − 𝑡𝑡′)
𝑒𝑒𝑖𝑖(𝜔𝜔−𝜔𝜔′)(𝑡𝑡−𝑡𝑡′)

2𝜋𝜋
𝐼𝐼 𝑡𝑡 𝐼𝐼(𝑡𝑡′) − 𝐼𝐼 𝑡𝑡 𝐼𝐼(𝑡𝑡′)

C o n t r i b u t i o n  f r o m  
a l l  t i m e  

d i f f e r e n c e s

F o u r i e r  T r a n s f o r m

A u t o c o r r e l a t i o n  
f u n c t i o n

(7)𝑆𝑆𝑆𝑆𝑆𝑆 𝜔𝜔 =
𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑜𝑜(𝜔𝜔)
𝑆𝑆(𝜔𝜔)

 

(9)𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑜𝑜 𝜔𝜔 = 𝐹𝐹 𝐼𝐼𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑜𝑜(𝑡𝑡)
2 (10)𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑜𝑜 𝑡𝑡 = 𝐼𝐼𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑜𝑜2 𝑡𝑡

(8)𝑆𝑆𝑆𝑆𝑆𝑆 𝑡𝑡 =
𝐼𝐼𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛𝑠𝑠𝑜𝑜2 𝑡𝑡
𝜎𝜎𝐼𝐼2(𝑡𝑡)

 

• These equations are general equations for the noise power spectral density derived to fit the 
context of readout signals

• As the main effect of this research is to improve the Signal-to-Noise Ratio (SNR), the equations for 
SNR can give us insight as to what the sources of noise are
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Conclusion

• Foundational work is complete, implementation is 
underway

• Results will be significantly contributing to multi-
qubit experiments when complete

• Latency needs to be measured properly for new LMS 
filter on hardware, and new design needs more tests 
before integrating with QICK!
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Effect of LMS Filter on Readout calibration
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Get  th is  resu l t  in  
<100,000 t races

Achieve this in the same 
number of averages!



Best Superconducting Coherence Times

3
2

 

 TABLE 2.1:        BEST 2D SINGLE QUBIT COHERENCE TIMES  

Group T1 (µs) Freq. (GHz) Substrate Primary Material Year Ref. 

SQMS/Rigetti ~600 4 – 6  Sapphire Ta/Nb, dry etch 2024 [4] 

SQMS 451 4.5 – 5 Sapphire Ta/Nb, dry etch 2023 [4] 
(preprint) 

Yu (China) 503 3.8 – 4.7 Sapphire Ta, dry etch 2022 [58] 

IBM 340 ~ 4 Silicon Nb, wet etch 2021 [87] 

Houck/Princeton 360 3.1 – 5.5 Sapphire Ta, wet etch 2021 [57] 

IBM 234 3.808 Silicon Al, dry etch 2021 [88] 

Schuster 126 4.749 Sapphire Nb, Fl etch 2021 [89] 

Rigetti 133 3.8 – 4.2 Silicon Nb 2019 [90] 
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Transmon Qubit Timeline - SQMS
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FPGA Controls

3
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• Single RFSoC FPGA is used for controller 
of 2D qubits.

• 3D QPU uses benchtop control stack for 
now due to power limitations on ZCU216

1. Xilinx ZCU111 RFSoC UltraScale+ FPGA (Gen 
1)

2. Xilinx RFSoC 4x2 UltraScale + FPGA (Gen 3)

3. Xilinx ZCU216 RFSoC UltraScale+ FPGA 
(Gen 3)

• XM655 Breakout Card or custom card
• 16 RF-ADC: 14-bit, 2.5 GSa/s 

(interleaved)
• 16 RF-DAC: 14-bit, 9.85 GSa/s

• Quantum Instrumentation Control Kit 
(QICK)
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QICK Firmware v1
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QICK Firmware v2
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LMS Demo Block Design



Qubit Characterization Experiment

3
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• Qubit calibration and measurement on QICK

• This is a standard process for determining the ground/excited state for a qubit, and 
then determining T1 and T2 measurements for a qubit

• The goal is to do this with the LMS filter active and then compare results!
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