





#### Re-assembly and test of COMB dipole magnet with STAR® wires

Vadim Kashikhin ASC2024 4 September 2024 In partnership with:





#### Introduction

Fermilab is developing the Conductor on Molded Barrel (COMB) magnet technology that works well with round REBCO conductors

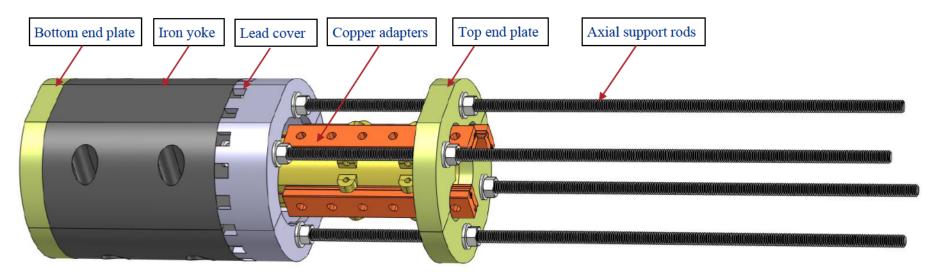
COMB-STAR-1 magnet based on STAR® wire by AMPeers was fabricated and tested in liquid nitrogen in 2023

The magnet demonstrated >90 Ic retention in the coils (before/after winding)

Even though the magnet was not originally designed for operation at lower than 77 K, it was decided to test it in liquid helium to:

check the instrumentation and the DAQ system

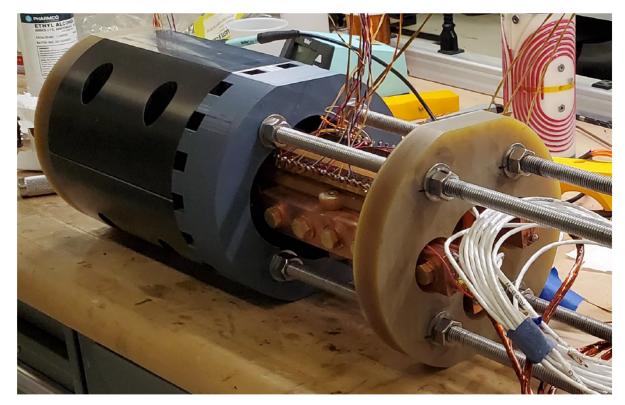
check the ability to detect resistive transitions or quenches and to protect the magnet

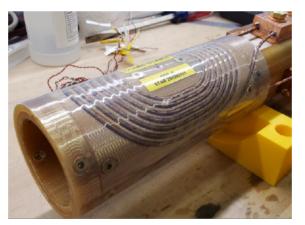

gather the information on possible magnet design chances and upgrades of the test facility for future testing of HTS magnets

The magnet was re-assembled with a larger iron yoke and the axial supports and tested in liquid helium in 2024 at Fermilab's Vertical Magnet Test Facility (VMTF)

It was the first HTS magnet test at that facility ever




## **COMB-STAR-1** dipole magnet features

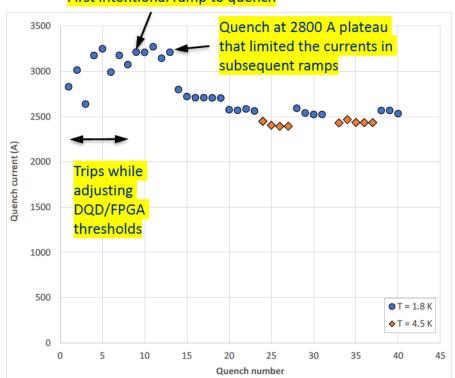



60 mm clear bore, 80 mm coil OD, two half-coils made with two layers of round STAR® wire The non-insulated conductor is wound into a continuous channel in the insulating (ULTEM) structures The leads are terminated at 3 copper adapters that allows to test each coil individually Redundant voltage taps co-wound with the conductor into the support structure



# **Magnet re-assembly**










## **Quench history**

#### First intentional ramp to quench



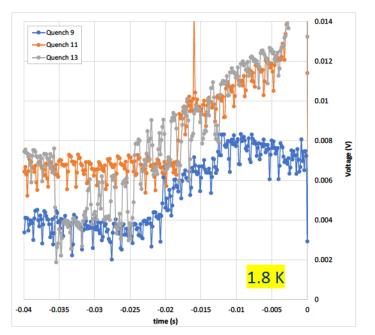
The magnet was tested at 1.8 K and 4.5 K temperatures

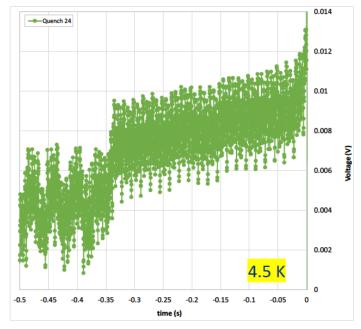
The QP thresholds had to be increased from 1 mV to 2.5 mV to avoid trips

Still a very low number comparing to LTS!

The highest current reached was 3273 A

- 1.5 T bore field
- 2.3 T peak coil field


All the quenches were localized in half-coil 2


The same conductor showed a small, but progressive reduction of  $I_{\rm c}$  when tested standalone at 77 K

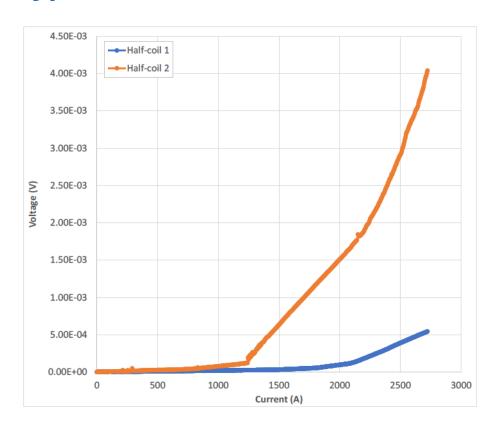
It seems that whatever caused that reduction in liquid nitrogen was amplified when tested in liquid helium



# Typical quench signals (bucked half-coil voltages)






The quench behavior was very different between 1.8 K and 4.5 K

At 1.8 K, the quench development time (before QP trigger) was ~20 ms with a rapid voltage growth

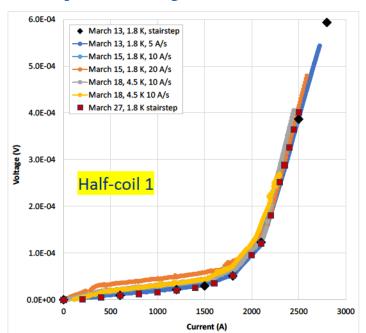
At 4.5 K, the quench development time was ~350 ms with a slow linear voltage growth

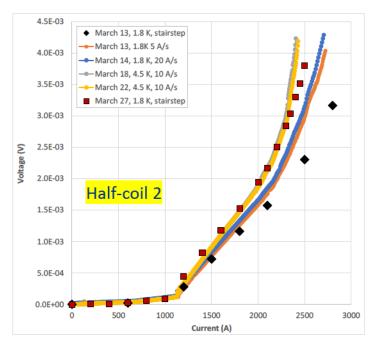


### **Typical V-I curves**



The half-coil 2 that limited the magnet performance also showed a much larger voltage than the half-coil 1


There was a drastic change of the resistance at ~1250 A in the half-coil 2 observed in all the ramps

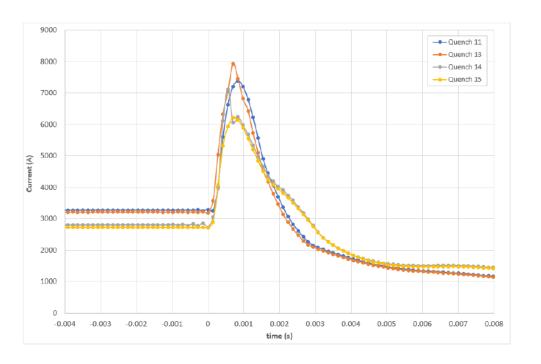

It is possible that some tapes in that coil were damaged thereby causing the current to cross over to other tapes

That coil was disassembled and is being inspected for possible damages using micro-CT scan



## **V-I ramp history**






The half-coil 1 practically did not show any reduction of the critical current during testing

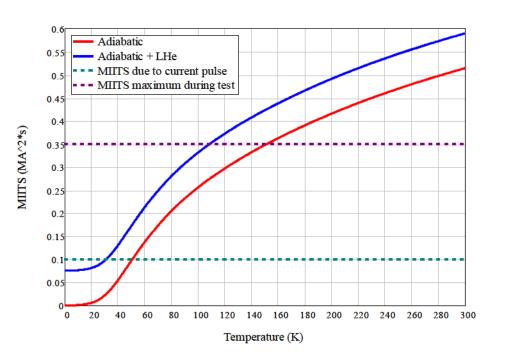
The half-coil 2 experienced a progressive reduction of the critical current during testing in addition a factor of 8 larger resistance comparing to half-coil 1



## Unexpected current pulses during testing



The magnet was protected by a 60 m $\Omega$  dump resistor to extract the stored energy


The existing dump activation system required a relatively large 400 V capacitors discharged across SCRs in series with the power supply and the magnet

Due to the low magnet inductance (73  $\mu$ H), it caused current pulses up to 8 kA in all the trips and quenches

The test facility will need an upgrade (likely replacing SCRs with IGBTs) before the next REBCO magnet test



## Adiabatic quench estimation (using Wilson's approach)



Due to the small cross-section area of the stabilizer (only 1.42 mm<sup>2</sup> per conductor), the magnet reaches high temperatures at a low number of MIITS

The maximum MIITS during the test was 0.35, corresponding to peak coil temperatures of 110-150 K

0.1 MIITS of that budget was just due to the current pulse

A uniform current distribution in the stabilizer is assumed, but may not be the case due to

Tapes not being fully transposed

A rapid dl/dt causing the skin effect

These could result in much higher temperatures and damage in some of the tapes



## **Summary**

A REBCO dipole magnet based on STAR® wire from AMPeers was fabricated and tested in liquid nitrogen in 2023 and liquid helium in 2024

The conductor demonstrated >90% Ic retention in liquid nitrogen

The magnet reached 1.5 T field in a 60-mm bore and 2.3 T in the coil

The magnet performance was limited by one half-coil. The damage could be caused by the test facility itself and is being investigated

The magnet did not burn despite 40 quenches, each one having ~8 kA pulses that exceeded the magnet transport current by a large margin

One half-coil did not have a reduction of the critical current during testing

Useful instrumentation data were collected that will be used for future magnets

The test indicated the need for upgrades to the test facility to test REBCO magnets

