Designing Track for Electrospinning Unit and Cost-Effective Laser Scanning System

Leopoldo Ruffolo, SULI 2024-Fermilab-Marquette University; Sujit Bidhar, Fermilab

Electrospinning Unit Track

Background:
- There was an already existing electrospinning unit (Fig. 1).
- The problem is that the nozzles are stationary, causing nanofiber mat to build up in certain spots on the collector, as seen in Figure 1.

Objective:
- Design track for electrospinning unit and prevent mat build up.

Methodology:
- First constraint in design is that it needs to be made mostly from plastic, due to high voltage.
- Second constraint is that the design needs to be compact given the lack of space seen in Figure 1.
- Third constraint is that the track needed to have a variable stroke length of at least 2 inches.

Results:
- The track will be composed of plastic, save the metal screws, track beams, and motor.
- The track will incorporate a 12V DC motor, leftmost item in Figure 3.
- The final design has a stroke from 0 to 3 inches.

Laser Scanning System

Background:
- Sample surface is altered by interacting with proton beam e.g., swelling on order of microns (Fig 4).
- Existing devices are typically very expensive and produce large data files that are hard to handle.

Objective:
- Design a simple surface scanner using a laser module and a linear stage motor.

Methodology:
- Needed to redesign existing laser mount to add stability and adjustablility. Designed and made mount seen in Figure 5.
- Velocity of stage motor is not constant. Sampled 7 speeds 5 times and used these equations, σ\%\text{Err} = \sigma/v_{\text{avg}} and %\text{Err} = \left|\frac{v_{\text{expected}} - v_{\text{actual}}}{v_{\text{expected}}}\right|, to make results in Figures 7 and 8.
- Needed to determine the optimum sampling rate of laser. Used $t_s = \lambda_s/\left(\text{x} + v_{\text{scan}}\right)$, explained in Figure 9.
- Needed to optimize the frequency pass filter on the laser. Used $0.5 + \frac{x_v + v_{\text{scan}}}{\lambda_s} \leq f_{\text{HP}}$ for high pass filter and $\frac{x_v + v_{\text{scan}}}{\lambda_s} \leq f_{\text{LP}}$ for low pass filter. Their baseline noise values are displayed in Figure 10.

Results:
- The motor was ran at $v_{\text{scan}} = 0.1\text{mm/s}$, while the laser had settings of $t_s = 1000\mu\text{s}$ and $f_{\text{LP}} = 100\text{Hz}$.
- Similar peak-to-peak results from both systems $= 100\mu\text{m}$; varying peak-to-trough results, $= 35\mu\text{m}$ and $= 9\mu\text{m}$ respectively.
- Data file from laser scanner was significantly smaller than one from microscope.

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).

Fermi National Accelerator Laboratory