FERMILAB-SLIDES-24-0157-V

Optimal Transport for e/π⁰ Particle Classification in LArTPC Neutrino Experiments

Chuyue "Michaelia" Fang University of California, Santa Barbara 7/8/2024

> This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

LArTPC Neutrino Detectors and MicroBooNE

 $Operational\ Principle\ of\ MicroBooNE\ LArTPC \qquad MicroBooNE\ Event\ Display\ of\ A\ Charged\ Current\ \nu_{\mu}\ Interaction$

- π^{0} is a crucial background to oscillation experiments and BSM searches
- both e and π° present as EM showers, making it a reconstruction challenge to separate them
- currently using <u>MicroBooNE Public Datasets</u> for samples input

What is Optimal Transport?

- "the general problem of moving one distribution of probability mass to another as efficiently as possible"
- provides a transport plan and an optimal transport distance, which is used to compare two probability distributions

Why Optimal Transport?

- advantages of optimal transport
 - $\circ~$ optimal transport performs well with sparse dataset
 - more transparent in how it's achieving the results
 - can be used as pre-processing for further analysis (ex.kNN)
- optimal transport has different variants and metrics which each has their own benefits
 - \circ currently using 2-Wasserstein distance

Optimal Transport in HEP

- optimal transport has been used for jet classification in LHC data by several groups, including <u>N. Craig</u> and <u>J. Howard</u> at UCSB who we're working with
- optimal transport outperforms traditional methods in jet classification; it's competitive with standard machine learning methods and it's also easy to interpret

e/π° Events in LArTPC

- e produces one EM shower starting at the vertex
- π° decays into two photons which produce two EM showers at a distance away from the vertex
- we aim to use OT for classification without directly reconstructing the EM showers separately

Identifying Principal Axis of a 3D Reconstructed Event

3D Reconstructed e⁻ event with identified largest cluster

3D Reconstructed π^{0} event with identified largest cluster

 $\pi^{\scriptscriptstyle 0}$ event with principal axis

proximity clustering finds largest cluster Principal Component Analysis (PCA) on largest cluster to identify principal axis of the event

Taking Planar Projections of 3D Reconstructed Sample

- π^0 300 10 -10 -20 0 10 20 10 20 X (cm) Rotated π° event π^0 -20 20 40 0 X (cm)
- Planar projection of π° event

rotate all the spacepoints so that principal axis aligns with Z-axis project all spacepoints onto

XY-plane

Optimal Transport Computation

- e and $\pi^{_0}$ samples are separated into 8 different energy bins
- optimal transport distances are computed between events in the same energy bin with equal numbers of e and π° events
 - planar projections of 3D reconstructed samples are used as input
- OT distances are used for classification
 - different machine learning methods could be used for classification with OT distances as input

Results - Performance of Optimal Transport

- using a cut on OT distances
 accuracy: 0.764
- using OT distances as input for machine learning methods
 - \circ k-Nearest Neighbors (kNN)
 - accuracy: 0.786
 - Support Vector Machine (SVM)
 - accuracy: 0.809

Optimal Transport Distance for π° and e Events Compared to Electron Events for First Energy Bin

π^{0} Kinematic Variables

 π^{0} event with high shower asymmetry

 π° event with large opening angle

 π^{0} event with low shower asymmetry

 π^{0} event with small opening angle

shower asymmetry (psubleading : pprimary ratio)

opening angle between two showers

Performance Compared with Kinematic Variables

- accuracy increases with less shower asymmetry as expected
- low accuracy at high end for opening angle

Summary

- application of optimal transport for LArTPC neutrino experiments
 - have implemented optimal transport on MicroBooNE public datasets
 - \circ overall able to separate π° from e using OT distances
 - finalizing first implementation of optimal transport for neutrino event classification
 - possible future implementation in SBN and DUNE analyses

Backup slide - p-Wasserstein distance

$$W_p(\mathcal{E}, \tilde{\mathcal{E}}) = \min_{g_{ij} \in \Gamma(\mathcal{E}, \tilde{\mathcal{E}})} \left(\sum_{ij} g_{ij} \|x_i - \tilde{x}_j\|^p \right)^{1/p}$$