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From neutrinos searches to SBND
● SBND’s proximity (110 m) to the source (BNB) implies we’ll collect a large 

number of neutrinos.
● We are here to measure the un-oscillated flux for the SBN (Short-Baseline 

Neutrino) program; cross section and BSM searches will also be studied.
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Source: news.fnal.gov

Short-Baseline Neutrino Program at Fermilab 

Target SBND MicroBooNE ICARUS 
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From SBND to particle identification
● SBND is a LArTPC (Liquid Argon Time 

Projection Chamber), where charged particles 
passing through argon ionizes electrons. 

● As the electrons drift toward the anode, the 
location, arrival time, and the deposited charge 
is recorded on the wire planes.

○ 2D images formed on the three wire planes will be used 
to construct 3D images later.
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Source: https://lar.bnl.gov/wire-cell/

https://lar.bnl.gov/wire-cell/
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ML Reconstruction Chain
● The Scalable Particle Imaging with Neural 

Embeddings (SPINE) will be employed.
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- F. Drielsma: arXiv:2102.01033

https://arxiv.org/pdf/2102.01033
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Training and samples
● Multi-particle vertex multi-particle rain (MPVMPR) sample has 3 generators:

○ Out-of-time rain (MPR): trains for out-of-time cosmic activity
○ In-time rain (MPR): trains for in-time cosmic activity
○ Vertex (MPV): trains for neutrino activity

● 278k training, validation samples + ~50k testing samples
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MPV v01 parameters (source: NPML talk by B. Carlson)

SBND Preliminary 

https://indico.phys.ethz.ch/event/113/contributions/865/
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From images to space points
● Tomographic reconstruction: 

○ Reconstruct the space points created 
by particles passing through the LArTPC

○ Create a 3D image of an object by 
combining three 2D images taken from 
wire planes using Cluster3D.

○ Spurious or false signals (e.g. electronic 
noises) will be identified and “deghosted” 
using UResNet.
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- F. Drielsma: arXiv:2102.01033
- L. Dominé and K. Terao: PhysRevD.102.012005

https://arxiv.org/pdf/2102.01033
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
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From space points to fragments
● UResNet → Locates and names the space points: 

○ Semantic Segmentation: Classify the points into five classes (as listed below)
○ PPN identifies “points of interest”: Identify start and end points.

● Graph-SPICE → Clusters points into particle fragments (and later into particles)
○ For the tracks/showers that share the same vertex → Dense clustering by Graph-SPICE
○ For the breaking tracks (e.g. cathode crosser) or shower fragments → Aggregation (later)
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- Image from: SBN/ICARUS ML Workshop 2023
- F. Drielsma, et al.: Phys. Rev. D 104, 072004

https://indico.slac.stanford.edu/event/7979/
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004
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From fragments to particles
● We utilize GrapPA to do aggregation tasks: 

○ Aggregate fragments (broken tracks & shower fragments) into particles.
○ Aggregate particles into the original interactions.
○ Classify particles into five species (photons, electrons, muons, pions, or protons)
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Primaries or not Interactions (from the same parent or others) Particle types (five species)

SBND Prelim
inary 

SBND Prelim
inary 
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inary 
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Performance
● SPINE did an excellent job, even for the tricky tasks e.g. shower classification. 
● Primary PID accuracy 85.5%

○ Electron confusion comes from a class imbalance (more primary photons than electrons) during training.
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Reco True

SBND Preliminary SBND Preliminary 
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Performance
● SPINE did an excellent job, even for the tricky tasks e.g. shower classification. 
● Primary PID accuracy 85.5%

○ Electron confusion comes from a class imbalance (more primary photons than electrons) during training.
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Purity from primaries 
(from the latest MPVMPR sample)

Purity from primaries 
(from the previous MPVMPR sample)
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Example: dE/dx analysis
● The dE/dx vs. residual range plots among muons and pions:

○ SPINE achieved a great performance: They are basically matched the predicted curves.
○ Muons and pions have similar dE/dx profiles, but still distinguishable even with a tiny difference.
○ The discernible shift on proton’s plot comes from the ADC-MeV conversion factor for now.
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Summary
● SPINE is an ML reconstruction framework for event reconstruction, which is 

currently employed for ICARUS will be widely employed for SBND analyses.
● The reconstruction chain utilizes cutting-edge CNN and GNN to reconstruct the 

events.
● Particle and interaction types can be identified with high performance.

○ It’s “scalable” (performance won’t be affected by data amount/complexity)
○ And also, an “end-to-end” structure (a single integrated system)

● Resources
○ SPINE’s github page: DeepLearnPhysics/SPINE
○ Useful resources: ML workshop 2023
○ Original paper: arXiv:2102.01033
○ More about UResNet: PhysRevD.102.012005
○ More about GrapPA: Phys. Rev. D 104, 072004
○ SBND overview: NPML conference slides
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https://github.com/DeepLearnPhysics/spine/tree/develop
https://github.com/DeepLearnPhysics/icarus_ml_workshop_2023
https://arxiv.org/pdf/2102.01033
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004
https://indico.phys.ethz.ch/event/113/contributions/865/
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Thank you!
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Backups
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Tomographic Reconstruction
● “Ghosts”: 

○ spurious or false signals (e.g. electronic noises) arise from matching plane images.
● Deghost: 

○ Classify each voxel into two categories i.e. ghost and non-ghost → Identify and then bust them!
○ How? UResNet neural network will be used; it can help semantic segmentation too.
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Point Proposal Network (PPN)
● PPN identifies “points of interest”

○ Using a UResNet.
○ Labels start and end points of tracks, deltas, and start points of showers.
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(Dense) Clustering
● But we have to know “which is which” 
● → clustering will be required:

○ Finding connected voxels that touch each other will be necessary
■ However, some of the tracks/showers share the same vertex → Dense clustering
■ Besides, it would be challenging to identify some of the breaking tracks (e.g. cathode crosser) or gather 

the shower fragments → Aggregation
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Dense 
clustering

Graph-SPICEICARUS ML ICARUS MLICARUS ML
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Aggregation (for Particles)
● Now, we need to cope with the particle fragments:

○ Broken tracks & shower fragments.
● GrapPA (Graph Particle Aggregator) can help.

○ Node features: Particle centroid, dQ/dx, PCA, covariance matrix, PPN end points, directions
○ Aggregate fragments into particles.
○ Classify shower into primary/secondary.
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GrapPA ICARUS ML ICARUS ML
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Semantic Segmentation 

Backbone (L. Domine) 

UResNet {UNet + ResNet + Sparse Conv.) as the backbone feature extractor 

Input 

Encoder Decoder 

11 -------------------------- ----• ID 1111 
rn i ----------------- rn II 

rn1------ rn 11 
rn 11 

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAG) 

Output 

tconv-s2-fdec 

c:onv-fdec 

softmax 

- Residual connections 

- - - ► Concatenation 

Paper: PhysRevD.102.012005 
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Semantic Segmentation 
Backbone (L. Domine) 

UResNet (UNet + ResNet + Sparse Conv.) as the backbone feature extractor 

UNet 
• Downsizing -> expand 

receptive field 
• Skip connections-> 

preserve resolution 
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ML-based Reconstruction for LArTPCs, F. Drielsma (SLAG) 
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ResNet 
• Identity bypass + 

convolution -> learns 
residual transform 

• Speeds up learning, 
enables deeper networks 
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execution speed 
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Point Proposal Network (PPN) 
Architecture (L. Domine) 

The Point Proposal Network 

{PPN) identifies points of 
interest using decoder features: 

• Three CCN layers to 
progressively narrow ROI 

• Last layer reconstructs: 
o Relative position to 

voxel center of active 
voxel 

o Point type 

• Post-processing 
aggregates nearby points 

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC) 
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Graph particle aggregator {GrapPA} 

• and PID 
• Primary PIO accuracy 85.5% 
• Electron-photon confusion from poor class balancing during training 
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