

SBND Analysis using ML Reconstruction Chain

Castaly Fan

on behalf of the SBND collaboration

New Perspectives 2024

July 8, 2024

This document was prepared by the SBNS Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, Office of High Energy Physics HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

From neutrinos searches to SBND

- **SBND**'s proximity (110 m) to the source (BNB) implies we'll collect *a large number* of neutrinos.
- We are here to measure the *un-oscillated* flux for the SBN (Short-Baseline Neutrino) program; cross section and BSM searches will also be studied.

Castaly Fan | New Perspectives 2024 | 07/08/2024

🗲 Fermilab

Source: https://lar.bnl.gov/wire-cell/

From SBND to particle identification

- SBND is a LArTPC (Liquid Argon Time Projection Chamber), where charged particles passing through argon ionizes electrons.
- As the electrons drift toward the anode, the location, arrival time, and the deposited charge is recorded on the wire planes.
 - 2D images formed on the three wire planes will be used to construct 3D images later.

ML Reconstruction Chain

• The Scalable Particle Imaging with Neural Embeddings (SPINE) will be employed.

SPINE

F. Drielsma: <u>arXiv:2102.01033</u>

UF FLORIDA

Training and samples

- Multi-particle vertex multi-particle rain (**MPVMPR**) sample has 3 generators:
 - Out-of-time rain (MPR): trains for out-of-time cosmic activity
 - In-time rain (MPR): trains for in-time cosmic activity
 - Vertex (MPV): trains for neutrino activity
- 278k training, validation samples + ~50k testing samples

	Mu	ıltiMax	: 7						
	Mu	ıltiMin	: 2		±	± _	_0±	n	11
	Ра	rticlePara	meter:	{	e	μ π		P	1
		PDGCode	:		[-11,11,	-13,13], [1	11], [211,-2:	11], [2212], [22]]
		MinMulti	:		0,	0,	0,	0,	0]
		MaxMulti	:		1,	2,	2,	4,	2]
		ProbWeig	ht :		З,	1,	1,	З,	1]
GeV	\rightarrow	 KERange 	:		[0.0,3.0],	[0.0,1.0],	[0.0,1.0],	[0.0,1.0],	[0.0,1.0]]
		MomRange	:		1			SBND Preli	minary

MPV v01 parameters (source: NPML talk by B. Carlson)

From images to space points

- Tomographic reconstruction:
 - Reconstruct the **space points** created by particles passing through the LArTPC
 - Create a 3D image of an object by combining three 2D images taken from wire planes using <u>Cluster3D.</u>
 - Spurious or false signals (e.g. electronic noises) will be identified and "deghosted" using <u>UResNet</u>.

- F. Drielsma: arXiv:2102.01033

UF FI OR IDA

L. Dominé and K. Terao: <u>PhysRevD.102.012005</u>

From space points to fragments

- <u>UResNet</u> \rightarrow Locates and names the space points:
 - Semantic Segmentation: Classify the points into five classes (as listed below)
 - <u>PPN</u> identifies "points of interest": Identify start and end points.
- <u>Graph-SPICE</u> \rightarrow **Clusters** points into particle fragments (and later into particles)
 - \circ For the tracks/showers that *share the same vertex* \rightarrow **Dense clustering** by Graph-SPICE
 - For the *breaking tracks* (e.g. cathode crosser) or *shower fragments* \rightarrow **Aggregation** (later)

Fermilab

From fragments to particles

- We utilize <u>GrapPA</u> to do aggregation tasks:
 - Aggregate fragments (broken tracks & shower fragments) into **particles**.
 - Aggregate particles into the original **interactions**.
 - Classify particles into five species (photons, electrons, muons, pions, or protons)

Interactions (from the same parent or others)

Particle types (five species)

Primaries or not

UF FLORIDA

Performance

- SPINE did an excellent job, even for the tricky tasks e.g. shower classification.
- Primary PID accuracy 85.5%
 - Electron confusion comes from a class imbalance (more primary photons than electrons) during training.

Performance

- SPINE did an excellent job, even for the tricky tasks e.g. shower classification.
- Primary PID accuracy 85.5%
 - Electron confusion comes from a class imbalance (more primary photons than electrons) during training.

Example: dE/dx analysis

- The *dE/dx vs. residual range* plots among muons and pions:
 - SPINE achieved a great performance: They are basically matched the predicted curves.
 - Muons and pions have similar dE/dx profiles, but still distinguishable even with a tiny difference.
 - The discernible shift on proton's plot comes from the ADC-MeV conversion factor for now.

Castaly Fan | New Perspectives 2024 | 07/08/2024

🚰 Fermilab

Summary

SPINE

- SPINE is an ML reconstruction framework for event reconstruction, which is currently employed for ICARUS will be widely employed for SBND analyses.
- The reconstruction chain utilizes cutting-edge CNN and GNN to reconstruct the events.
- Particle and interaction types can be identified with high performance.
 - It's "scalable" (performance won't be affected by data amount/complexity)
 - And also, an "end-to-end" structure (a single integrated system)
- Resources
 - SPINE's github page: <u>DeepLearnPhysics/SPINE</u>
 - Useful resources: <u>ML workshop 2023</u>
 - Original paper: <u>arXiv:2102.01033</u>
 - More about UResNet: <u>PhysRevD.102.012005</u>
 - More about GrapPA: Phys. Rev. D 104, 072004
 - SBND overview: <u>NPML conference slides</u>

Thank you!

Castaly Fan | New Perspectives 2024 | 07/08/2024

UF FLORIDA

‡ Fermilab

ROBE

Castaly Fan | New Perspectives 2024 | 07/08/2024

16

‡ Fermilab

Tomographic Reconstruction

- "Ghosts":
 - spurious or false signals (e.g. electronic noises) arise from matching plane images.
- Deghost:

UF FI OR ID

- \circ Classify each voxel into two categories i.e. ghost and non-ghost \rightarrow Identify and then bust them!
- How? **UResNet** neural network will be used; it can help semantic segmentation too.

🛠 Fermilab

Point Proposal Network (PPN)

- **PPN** identifies "points of interest"
 - Using a UResNet.
 - Labels start and end points of tracks, deltas, and start points of showers.

(Dense) Clustering

- But we have to know "which is which"
- → **clustering** will be required:
 - Finding connected voxels that touch each other will be necessary
 - However, some of the tracks/showers share the same vertex \rightarrow **Dense clustering**
 - Besides, it would be challenging to identify some of the *breaking tracks* (e.g. cathode crosser) or gather the *shower fragments* → <u>Aggregation</u>

Dense) Glustering

Aggregation (for Particles)

- Now, we need to cope with the particle fragments:
 - Broken tracks & shower fragments. Ο
- **GrapPA** (Graph Particle Aggregator) can help.
 - Node features: Particle centroid, dQ/dx, PCA, covariance matrix, PPN end points, directions Ο
 - Aggregate fragments into **particles**. 0
 - Classify shower into primary/secondary. Ο

Particles nai Cluster3D UResNet Identification L HRoch

Semantic Segmentation

Backbone (L. Dominé)

UResNet (UNet + ResNet + Sparse Conv.) as the backbone feature extractor

ML-based Reconstruction for LArTPCs, F. Drielsma (SLAC)

Castaly Fan | New Perspectives 2024 | 07/08/2024

21

14

Fermilab

Semantic Segmentation

Backbone (L. Dominé)

UResNet (<u>UNet</u> + <u>ResNet</u> + <u>Sparse Conv.</u>) as the **backbone feature extractor**

UNet

- Downsizing -> expand receptive field
- Skip connections -> preserve resolution

ResNet

- Identity bypass + convolution -> learns residual transform
- Speeds up learning, enables deeper networks

Sparse Convolutions

- Only applies convolutions on active pixels
- Saves memory, execution speed (dramatically)

+ conv 1v1

FI ORIDA

Point Proposal Network (PPN)

Architecture (L. Dominé)

The Point Proposal Network (PPN) identifies **points of interest** using decoder features:

- Three CCN layers to progressively narrow ROI
- Last layer reconstructs:
 - Relative position to voxel center of active voxel
 - Point type
- Post-processing aggregates nearby points

Castaly Fan | New Perspectives 2024 | 07/08/2024

Fermilab

Graph particle aggregator (GrapPA)

- Aggregates particles into interactions and identifies primaries and PID
- Primary PID accuracy 85.5%
- Electron-photon confusion from poor class balancing during training

