Astronomical Spectroscopy with Skipper CCDs: First Results from a Skipper CCD Focal Plane Prototype at SIFS

Edgar Marrufo, Alex Drlica-Wagner, Brandon Roach, Marco Bonati, et al. June 17, 2024

> This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

🗲 Fermilab

UNIVERSITY OF

CHICAGO

FERMILAB-SLIDES-24-0128-V

• Skipper CCDs

CCDs: Metal-Oxide-Semiconductor capacitors.

• Radiation interacting in the Si substrate (photoelectric effect) produces electron-hole pairs

3

Correlated Double Sampling:
1. Pedestal integration
2. Signal integration
3. Charge = Signal-Pedestal

$$P_i = \frac{1}{t_i} \left(\int_{t_i + \tau}^{2t_i + \tau} x(t) dt - \int_0^{t_i} x(t) dt \right)$$

Still sensitive to low frequency noise

Skipper CCD Readout

- 1. Pedestal integration
- 2. Signal integration
- 3. Charge = Signal-Pedestal
- 4. Repeat N times
- 5. Pixel Value = average of all N samples

Low frequency noise is reduced by the averaging of samples

Skipper CCDs

Skipper CCDs optimized for light detection (Astronomy-NUV/O/NIR)

Leveraging Skipper CCD technology to enable scientific breakthroughs

Skipper CCDs as X-ray detectors in space (CubeSat) Skipper CCDs for rare particle searches (dark matter detection)

Skipper CCD Development

The ultimate test for the Skipper CCD, yet to be achieved, is to detect the single photo-electron. Skipper cameras have been constructed which employ ultra high gain, in excess of 100 ADC counts per electron. Assuming that the noise can be lowered to 0.2 e- rms using multiple sampling, there is no fundamental reason why the photo-electron can't be detected. It will be interesting to see if the CCD can accomplish this feat in the near future.

READ NOISE = 7.6 e" rms


```
READ NOISE = 0.97 e<sup>-</sup> rms
```

 $N_{s} = 64$

[1990ASPC....8...18J]

Cosmic Unresolved X-ray Background Instrument Using CCDs (CUBIC) (NSA-CUBIC: 1994)

https://doi.org/10.1117/12.162838

Each CCD has four amplifiers; two standard floating diffusion amplifiers, and two floating gate amplifiers ("skipper" amplifiers). As *CUBIC* will not use the floating gate amplifiers, we have concentrated our testing on the diffusion amplifiers.

Applications in Cosmology

Credit: Jinyi Yang, Steward Observatory/University of Arizona

Astronomy-optimized
 Skipper CCDs

A Skipper CCD Prototype for SOAR

- Demonstrate the performance of the Skipper CCD in real observing scenarios.
- Verify that Skipper CCDs retain the desirable characteristics of thick, pchannel, fully depleted astronomy-grade CCDs.
- Develop tools for optimizing signal-tonoise and readout time for the Skipper CCD.
- Develop analysis tools for astronomical data collected with Skipper CCDs.
- Demonstrate the ability to do astronomy with Skipper CCDs in the low-signal, low-background regime.

The SOAR Integral Field Spectrograph (SIFS)

Skipper CCD Focal Plane for SIFS

Skipper CCDs: Noise Characteristics

- Amplifier yield of 97%; detector yield of 75%.
- Performance is fairly stable across detectors and amplifiers.

Skipper CCDs: Absolute Quantum Efficiency

- Absolute QE measurements depend on a precise calibration of the incident power at the CCD (nontrivial).
- Instrumented testing system with two NIST-traceable photodiodes:
 - Mounted on integrating sphere
 - Mounted on an AstroSkipper package and put inside the vacuum chamber
- Cross-calibrate power measurement between both photodiodes:
 - Absolute calibration for "scaling" integrating sphere readings
 - Measurement repeatability

Skipper CCDs: Absolute Quantum Efficiency

AstroSkippers retain the high QE of the thick, fully depleted DESI detectors from LBNL

Skipper CCDs: Photon Transfer Curves

AstroSkippers have linear behavior and allow you to dive below the noise floor.

Skipper CCDs: Direct Gain Measurements

Skipper CCDs: Photon Counting and Low-Signal Linearity

- We can measure the gain from the peak-to-peak spacing ($[\mu_i \mu_{i-1}]$) or the position of the i^{th} peak ($[\mu_i \mu_0]/i$).
- Gain calculated from the PTC agrees with the gain measured from electron peaks to within $\sim 1\%$.

CIC is generated when switching clocks between high- and low-voltage states. CIC can be an appreciable background for measurements in the single-photon regime.

Dark matter experiments with Skipper CCDs use low clock voltages to reduce CIC.

For SIFS, we need higher voltages to increase full-well capacity (\sim 1,000 e- for science images and >40,000 e- for calibration products).

Skipper CCDs: Clock Induced Charge vs Full Well Capacity

Simultaneous optimization of full-well and CIC.

- Low voltages ($\Delta H \sim 2V$; e.g., SENSEI)
 - Full-well capacity ~900 e-
 - CIC < 1.45×10^{-3} e-/pixel/frame (upper limit on CIC from this measurement technique)
- Intermediate voltages ($\Delta H \sim 6V$)
 - Full-well capacity ~10,000 e-
 - CIC ~ 1 e-/pixel/frame
- High voltages ($\Delta H \sim 9V$)
 - Full-well capacity >40,000 e-
 - CIC ~ 3 e-/pixel/frame

Parameter	Goal	Measured	Units
Single-Sample Readout Noise $(N_{samp} = 1)$	3.5	< 4.3	e ⁻ rms/pixel
Multi-Sample Readout Noise $(N_{\text{samp}} = 400)$	0.18	0.18	e^- rms/pixel
Cosmetic Defects	10%	< 0.45%	
Dark Current	$< 8 imes 10^{-3}$	$2 imes 10^{-4}$	$e^-/pixel/s$
Clock Induced Charge	1.52×10^{-4}	3	e^- /pixel/frame
Full-Well Capacity	> 40,000	$\sim 40,000-60,000$	e^-
Non-linearity	< 1.5%	< 0.05% and $< 1.5%$ (low signals)	
Charge Transfer Inefficiency	$<1\times10^{-5}$	3.44×10^{-7}	
Charge Diffusion (PSF)	< 15	< 7.5	$\mu { m m}$
Absolute Quantum Efficiency	> 80%	$\gtrsim 80\%$ (450nm to 980nm); $\gtrsim 90\% (600nm$ to 900nm)	

AstroSkipper characterization results meet target goals based on DECam and red DESI detector requirements

Observation Optimization

The microlens array collects light from the astronomical target and channels the light into the fibers, which are arranged into a pseudo-slit.

Slit/Grating

Dispersed onto CCD

Wavelength direction runs along the Skipper CCDs' rows and the fibers' spatial position runs along the detectors' columns.

Skipper CCDs: Observation Optimization (Readout Time)

Skipper CCDs: Observation Optimization (Regions of Interest)

arXiv:2012.10414

More on Commissioning:

Skipper CCD mosaic on the SOAR integral field spectrograph (Presenter: Braulio Cancino)
 20 June 2024 • 17:30 - 19:00 Room G5, North - 1F

• Results

Skipper CCDs: First On-Sky Demonstration

Skipper CCDs: First On-Sky Demonstration (Photon-Counting)

Region of interest N_{samp} is optimized to minimize backgrounds and demonstrate S/N improvements for SIFS.

10

Signal-to-Noise (Shot Noise Dominated Regime)

• Planned Science

ALPs or other eV-scale DM may decay into monoenergetic photons, producing a spectral line.

For two-photon decays, each photon has observed wavelength λ = 2480 Å * (10 eV) * (1+z).

Moderate-redshift (z ~ 1-2) galaxy clusters have several advantages for ALP searches:

- Large DM masses constrained by SZ observations (e.g., ACT or SPT)
- Increases ALP mass reach for a given wavelength bandpass by a factor (1+z).

Ultra-faint-Dwarf Galaxy Candidate Member Star

Outlook

Outlook

See Guillermo Fernandez Moroni's presentation (19 June 2024 • 11:10 -11:30 Room G312/313)

Fast-readout technologies with single-electron resolution. Testing of first prototypes is ongoing.

[10.1002/asna.20230072]

Multi-amplifier-sensing (MAS) Skipper CCD. Charge is transferred along a serial register with M amplifiers. Readout is performed in parallel with each amplifier.

We plan to test 4k x 4k MAS devices on SIFS.

Please check these presentations to learn more about MAS:

- Sub-electron noise Multi-Amplifier Sensing CCDs for spectroscopy (Kenneth Lin, et al.) 19 June 2024 • 10:30 - 10:50 Room G312/313
- First Demonstration of Single-Quantum Measurements with a Multi-Amplifier Sensing Charge-Coupled ٠ Device (Guillermo Fernandez Moroni, et al.) 19 June 2024 • 10:50 - 11:10 Room G312/313

• Extra Slides

Skipper CCD: smart readout

FIG. 4. (Top) Image using EOI technique. (Bottom) *N* for each pixel.

Two approaches during DAQ: Region-of-interest (ROI) and Energy-of-interest (EOI). Decreases overall sensor readout time.

Skipper CCDs: Data Pipeline

