

FERMILAB-SLIDES-24-0118-SOMS

Science

Evaluating radiation impact on transmon qubits in above and underground facilities

Tanay Roy, Francesco De Dominicis, Ambra Mariani, Mustafa Bal, Nicola Casali, Ivan Colantoni, Francesco Crisa, Angelo Cruciani, Fernando Ferroni, Dounia L Helis, Lorenzo Pagnanini, Valerio Pettinacci, Roman M Pilipenko, Stefano Pirro, Andrei Puiu, Alexander Romanenko, David v Zanten, Shaojiang Zhu, Anna Grassellino, Laura Cardani

SQMS division, Fermilab

RISQ 2024 Workshop 30 May 2024

National Quantum Initiative Act (2018)

10 yr plan to accelerate the development of quantum information science & technology applications.

> DOE shall establish and operate **NQI Science Research Centers** to conduct basic research to accelerate scientific breakthroughs in quantum information science and technology.

5 NQI DOE centers (2020)

SUPERCONDUCTING QUANTUM MATERIALS & SYSTEMS CENTER

Quantum Systems Accelerator

SQMS Center highlights

SQMS brings together hundreds of experts from more than 30 DOE national labs, academia, industry and other federal and international entities to bring transformational advances in QIS

The Quantum Garage

Tour tomorrow

8 extra large dilution refrigerators, numerous qubits and cavities, nanofab tools and materials science capabilities

Superconducting devices

2D Transmons

Bal et al. npj Quant. Info. 10, 43 (2024) Roy et al. PoS LATTICE2023, 127

3D SRF cavities

Science & Technology Innovation Chain

Decoherence channels in 2D

- Two-level systems (TLS)
- Bulk substrate losses
- Quasiparticles

Surface encapsulation

Average
$$T_1 = 320 \ \mu s$$

Best $T_1 = 600 \ \mu s$

ATERIALS & SYSTEMS CENTE

Decoherence channels in 2D

• Two-level systems (TLS)

Effect of radiation

Martinis, npj Quant. Info. 7:90 (2021) Wilen *et al.*, Nature 594, 369 (2021) Cardani *et al.*, Nat. Comm. 12, 2733 (2021) McEwen *et al.*, Nat. Phys. 18, 107 (2022) Thorbeck *et al.*, arXiv:2210.04780 (2022) Cardani *et al.*, Eur. Phys. J. C 83:94 (2023) Harrington *et al.*, arXiv:2402.03208 (2024) Li *et al.*, arXiv:2402.04245 (2024) McEwen *et al.*, arXiv:2402.15644 (2024) and others...

Experimental locations

LNGS: deep underground

FNAL: above-ground

Simulated rates

- □ Far sources (can be shielded)
 - Muon particles
 - Environmental gamma rays
- □ Close sources (can't be shielded)
 - Radioactive contaminations

Source	FNAL (ev/10 ³ s)	LNGS w. shields (ev/10 ³ s)
Lab γ rays	46 ± 2	1.3 ± 0.1
Muons	8.0 <u>±</u> 0.5	< 10 ⁻⁵
Contaminations	2.7 <u>±</u> 0.5	2.7 ± 0.5
Total	57 ± 3	$\textbf{4.0} \pm \textbf{0.6}$

12 Cardani *et al.*, Eur. Phys. J. C 83:94 (2023)

Devices under study

• 4 transmons

• Similar frequency, geometry

•
$$T_1 \sim 100 \ \mu s$$

Parameter	Q1	$\mathbf{Q2}$	Q3	$\mathbf{Q4}$	Units
Material	Nb/Au	Nb/Ta	Nb/Ta	Nb/Ta	N/A
Qubit frequency	4717.4	4455.4	4451.3	4294.8	MHz
Readout frequency	7206.8	7055.0	6886.5	6714.5	MHz
Qubit π pulse length	0.150	0.091	0.124	0.160	μs
Qubit average T ₁	84	141	131	214	μs
Readout pulse length	4.5	3.8	4.0	8.0	μs
Waiting period	5.0	10.0	5.0	5.0	μs
Cooldown period	50.0	70.0	70.0	10.0	μs
One iteration period	64.550	87.929	84.324	31.660	μs

Comparison of standard T₁

FNAL

$T_{\rm 1}$ of same qubit shows similar avg. and fluctuations

Detection protocol

Signal detection

Different pulse shapes

Above-ground measurements

Missed events

19

Baseline fluctuations

- Lasts for sub-second to about a minute
- Visible on all qubits
- Not associated with preceding pulses

New analysis strategy

Time [ms]

Underground data

Comparison with above-ground data

Other sources of noise produce
radiation-like signatures

Qubit	Rate (ev/10 ³ s)	Observed /simulated
Q1 (1)	23 ± 4	5.75
Q1 (2)	10 ± 1	2.50
Q2	5 ± 1	0.09
Q3	1100 ± 10	19.30
Q4	45 ± 2	0.79

Different total rates

Underground measurements with Th sources

Transmons are sensitive to strong γ source

Underground measurements with Th sources

Thorium

Study of TLS activation

$|g\rangle \rightarrow |e\rangle$ transition

Radiation impact on computation

r = Rate of impact $\Delta T = Time window$

$$P_{impact} = 1 - e^{-r.\Delta T}$$

 $P_{impact} < 0.1\%$ if $\Delta T < 17$ ms (unshielded) $\Delta T < 250$ ms (shielded)

$$P_{impact} < 10^{-4}$$
 for modern transmons

Summary

- Above and underground comparative study using single qubits
- QP burst events last for several milli-seconds
- > Radiation unlikely to play a major role in T_1 drops at short timescales
- > Radiation should not limit single-qubit errors of contemporary devices

Next steps

- Understanding the source of QP bursts
- Test on different materials and geometry
- Coincidence measurements on same and different chips
- Investigate sporadic instabilities
- > Make qubits resilient against sudden T_1 drops

arXiv: 2405.18355

THANK YOU

This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under contract number DE-AC02-07CH11359, and by the Italian Ministry of Foreign Affairs and International Cooperation, grant number US23GR09.

Extra slides

IQ blobs

Before reset

IQ blobs

Before reset

Readout fidelity

Different pulse shapes

Sporadic fluctuations

.

Time distribution

Extras

FindMaximum[-Exp[-t/1] + Exp[-t/150], {t, 4}]

 $\{0.960485, \{t \rightarrow 5.04426\}\}$

FindMaximum[-Exp[-t/0.6] + Exp[-t/150], {t, 4}] $\{0.974157, \{t \rightarrow 3.32618\}\}$

FindMaximum[-Exp[-t/1.6] + Exp[-t/150], {t, 4}] $\{0.942066, \{t \rightarrow 7.34334\}\}$

PCB: K(40), Th(232), and U(238) JJ thickness 40/90 nm

Readout Fidelity

