NEXUS Qubit Analysis: Jump Rates and Efficiencies

Grace Wagner
Advisor: Dan Baxter
SULI Presentations
24 April 2024

a. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
b. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI).
Superconducting Qubits

- Qubits: quantum bits with information encoded on it
- Qubit Error: When any of the above information is lost
 - Decoherence Errors
 - Dephasing Errors

What are Qubit Errors?
What causes them?

McEwan et. al. 2021 shows that ionizing radiation and cosmic ray muons can cause qubit errors. (That’s one reason we’re doing this 100+ m underground)
Qubit Jumps

A **charge jump** in a qubit is when a particle is incident on the chip, causing the qubit to decohere, resulting in a **jump** in offset charge.

Ex. A cosmic ray muon passes through a qubit, resulting in a phonon being released, which causes errors in nearby qubits.

Correlated Qubit Error: when two qubits that are spatially nearby see errors that are correlated in time as well.

Correlated errors can not be solved with error correction.

Qubit spectroscopy versus charge

The applied offset charge, the red and blue lines trace the qubit parity. A jump is seen in the rightmost column.

Image credit: Wilen et. al. 2021

Correlated Errors + Quantum Computing = BAD

Correlated Errors + Particle Detection = GOOD
What is the goal?

Expanding on previous work and further quantifying it specifically...

- Analyzing and identifying the effect of ionizing radiation and cosmic ray muons on qubits using
 - 4 radiation configurations
 - Lead Shield Closed, No Source (SC)
 - Lead Shield Open, No Source (SO)
 - Lead Shield Closed, Barium – 133 Source
 - Lead Shield Closed, Cesium – 137 Source
Pt. by Pt. Jump Detection Code: Parameters

- **Least χ^2 Threshold**: Value of combined (rolling avg) least χ^2 that triggers jump finder
- **Jump Num. Limit**: Number of extended indices as buffer before jump can be detected from beginning of scan or last jump
- **Phase Dif. Limit**: Extended index difference that throws out 'non jumps' that were tagged (new phase isn't different enough)
- **Backoff**: Number of extended indices before a jump where window ends for calculating pre-jump phase
- **Combined χ^2 Cut**: If combined χ^2 is greater than this value, then a jump is confirmed to have happened in scan
Pt. by Pt. Jump Detection Code: χ^2 Analysis

1. Calculate χ^2 of each point in data (80 pts) with each point in template (608 pts)
2. Calculate the combined χ^2 for each point by summing the 608 points per point
3. Select minimum combined χ^2 for each point
4. When minimum combined χ^2 is above Least χ^2 Threshold, Jump is logged; combined χ^2 reset
 a. Phase before jump must be different by $|\text{Phase Diff. Limit}|$ to phase after jump

$$\chi^2 = \left(\frac{x_{\text{data}} - x_{\text{template}}}{\sigma_{\text{template}}}\right)^2$$

$$\chi_{\text{combo}}[n,] = \frac{1}{n + 1} \sum_{i=0}^{n} \chi^2[i,]$$
Pt. by Pt. Jump Detection Code: Index Matching

- In previous versions, jumps were considered correlated if they happened in two different qubits during the same scan (aka happened within nearly 6 minutes of each other)

- With Index matching, the code notes what index in a scan a jump is found; to match correlated jumps, the indices must be within a set window of each other
 - ex. if the window is 10 indices, then the window is ~45 seconds
 - Due to the combined χ^2 aspect, there is a slight delay for when jumps are found, which is reflected in the window size

![Graph showing Pt. by Pt. χ^2 Analysis](image)
Getting Efficiencies with Simulated Data

- Efficiency = (# of found jumps / # of Known Jumps) per Jump Size
 - Parameters are selected by testing the parameter space and selecting the parameters with the highest efficiency. Then the parameters are used on real data to get the false positive rates and compare those rates to previously used parameter sets (with similar efficiencies). The sets with fewer false positives is selected for rate calculations.

- An exponential is then fit to the efficiencies
The efficiencies are then calculated for a large set of simulated data, using the same parameters.

Interested in getting the efficiencies of jumps with a size greater than 0.1\(e\):
- Make new array with that portion of the curve and plot histogram
- Fit a Gaussian to get \(\mu\) and \(\sigma\)
Qubit Rates (Efficiencies Incorporated)

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4 SC</th>
<th>Q4 SO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eff.</td>
<td>0.963 ± 0.01</td>
<td>0.973 ± 0.01</td>
<td>1.062 ± 0.03</td>
<td>0.926 ± 0.02</td>
<td>1.036 ± 0.01</td>
</tr>
<tr>
<td>Raw Rate (mHz)</td>
<td>0.1647</td>
<td>0.1520</td>
<td>0.1773</td>
<td>0.1267</td>
<td>0.4185</td>
</tr>
<tr>
<td>Rate adj. with Eff.</td>
<td>0.158 ±</td>
<td>0.147 ±</td>
<td>0.188 ±</td>
<td>0.118 ±</td>
<td>0.435 ±</td>
</tr>
</tbody>
</table>

- Q1, Q2, and Q3 are all using SC (shield closed) templates for the respective qubit.
- We use two templates for Q4 due to the quality of the data. The amplitudes of the SC data varies more than it does in other qubits; using this template leads to much lower efficiency. The SO (shield open) template is more representative of the data for the SO configuration, as well as the Ba and Cs configurations.
Correlated Qubit Rates (Efficiencies Incorporated)

- Q1 & Q2 Rates (jumps/hour)
 - SC: 0.23 ± 0.10
 - SO: 0.88 ± 0.19
- Q3 & Q4 Rates
 - SC: 0.14 ± 0.08
 - SO: 0.88 ± 0.19

Credit to Arianna
Summary

- Qubit Errors: Any loss of information

 Correlated Errors + Quantum Computing = BAD

 Correlated Errors + Particle Detection = GOOD

- Correlated Errors are good news in particle detectors as they indicate energy deposits
Works Cited

- O’Malley Dissertation 2016
- Wilen et. al. 2021
- McEwan et. al. 2021
Back Up
Intro to Quantum Computing at Fermilab

Dilution Refrigerators: cryogenic cooling device that cools materials down to the millikelvin scale

- **LOUD**
 - Oxford Proteox

- **NEXUS (Northwestern Experimental Underground Site)**
 - MINOS Cavern

- **QUIET (Quantum Underground Instrumentation Experimental Testbed)**
 - MINOS Cavern
 - Oxford Proteox

What are we cooling down in the fridges?
Correlated Qubit Jumps

Image Credit: Wilen et. al. 2021