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We present results for the dominant light-quark connected contribution to the long-distance
window (LD) of the hadronic vacuum polarization contribution (HVP) to the muon g − 2 from
lattice quantum chromodynamics (QCD). Specifically, with a new determination of the lattice
scale on MILC’s physical-mass HISQ ensembles, using the Ω− baryon mass, we obtain a result
of all,LD

µ (conn.) = 401.2(2.3)stat(3.6)syst[4.3]total × 10−10. In addition, following up on our recent
work on the short- (SD) and intermediate-distance (W) windows, we report updated values for
these quantities with this new scale-setting determination. Summing these individual window con-
tributions enables a sub-percent precision determination of the light-quark-connected contribution
to HVP of all

µ(conn.) = 656.2(1.9)stat(4.0)syst[4.4]total × 10−10. Finally, as a consistency check, we
verify that an independent analysis of the full contribution is in agreement with the sum of individ-
ual windows. We discuss our future plans for improvements of our HVP calculations to meet the
target precision of the Fermilab g-2 experiment.

INTRODUCTION

The muon’s anomalous magnetic moment or “muon
(g−2)” is one of the most sensitive probes of the Standard
Model of particle physics, with both the experimental re-
sults [1, 2] and the Standard Model prediction [3] reach-
ing precisions well below one part per million. Tensions
between theory and experiment in this quantity have long
captured the attention of particle physicists since the re-
sults of the E821 experiment at Brookhaven [4]. With
forthcoming experimental results from Fermilab [2] and
J-PARC [5, 6] expected to improve further the accuracy
of the muon (g − 2) measurement, concurrent improve-
ments in the Standard Model theoretical calculation are
urgently needed.

Although they are a relatively small part of the total
prediction, the contributions to the muon (g − 2) from
hadronic physics are among the most challenging to cal-
culate due to strong-coupling effects. The muon does not
feel the strong force directly, so these contributions arise
from corrections to either the photon two-point function
(hadronic vacuum polarization, or HVP), or the photon
four-point function (hadronic light-by-light scattering, or
HLbL). As described in detail in Ref. [3], both HVP
and HLbL can be estimated either from dispersive the-
ory relying on experimental measurements of hadronic
processes or calculated ab initio using lattice QCD.
Of these quantities, HLbL represents a smaller contri-

bution to muon (g−2) but is also more difficult to calcu-
late precisely. While previous summary reports from the
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Muon g − 2 Theory Initiative [3, 7] already found good
agreement between dispersive evaluations [8–21] and lat-
tice QCD calculations [22, 23], more recent lattice and
dispersive results [24–54] are rapidly pushing this quan-
tity towards the precision goals needed for the final muon
(g − 2) experimental results.
For HVP, rapid progress on the lattice QCD side [55–

67] has revealed tensions between lattice HVP results and
data-driven dispersive estimates [7, 68]. Efforts to under-
stand these tensions, as well as to cross-check systematic
effects in lattice calculations from different groups, have
led to widespread study of HVP restricted to Euclidean
windows [69], which isolate the contribution from a par-
ticular temporal range. Corresponding dispersive esti-
mates of HVP restricted to the same windows [68, 70–
73] can be studied and compared with lattice results, an
approach that can help shed light on these tensions.

In this work, we present results for the dominant long-
distance window (LD) contribution to HVP, specifically
the connected contributions from light (up and down)
quarks in the isospin-symmetric limit, which comprise
about 90% of the total HVP. LD quantities suffer from
large statistical noise and are sensitive to systematic ef-
fects from finite lattice volume and scale-setting [74] un-
certainties. This work employs the high-statistics lat-
tice datasets that were used to study the short- and
intermediate-distance contributions in Ref. [67], a com-
panion paper to this work. In addition, here we set the
lattice scale at high precision using the mass of the Ω−

baryon [75, 76]. The combination of high statistics and
improved scale setting allows us to achieve greatly im-
proved precision for the LD HVP as well as for the full
light-quark connected HVP by summing our LD result
with the other window observables calculated in Ref. [67],
and updated here with the improved scale setting.

DEFINITIONS

The leading-order hadronic-vacuum-polarization con-
tribution to the muon anomalous magnetic moment aµ ≡
(g − 2)µ/2 is obtained via

aHVP,LO
µ = 4α2

∫ ∞

0

dt C(t)K̃(t), (1)

where α is the fine-structure constant, the kernel K̃
stems from quantum electrodynamics (QED) [77, 78],

and C(t) = 1
3

∑3
k=1

∑
x

〈
Jk(x, t)Jk(0)

〉
is the Euclidean-

time two-point correlation function of the electromag-
netic current Jµ(x) =

∑
f qf ψ̄f (x)γ

µψf (x), which is
summed over all quark flavors f ∈ {u, d, s, c, b, t} of elec-
tric charge qf . Lattice-QCD calculations of aHVP,LO

µ sep-
arately compute the contributions from each quark fla-
vor and from connected and disconnected Wick contrac-
tions. Additionally, these calculations are performed in
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FIG. 1. The SD (red), W (black), and LD (blue) window
functions as defined in the text, overlaid with raw lattice data
for the LQC vector correlator convolved with the integration
kernel C(t)K̃(t) (green crosses) on our 0.06 fm ensemble.

the isospin-symmetric limit in pure QCD with the effects
of strong-isospin breaking and QED added as corrections;
these correction terms have been studied in Ref. [67]. In
this work, we focus on the dominant isospin-symmetric,
light-quark connected (LQC) contribution allµ(conn.).

In addition to the complete LQC allµ(conn.) defined by
Eq. (1), which we refer to here as the “full” contribution,
one may consider window observables [69] that restrict
the Euclidean-time region over which C(t) is integrated,

awin
µ = 4α2

∫ ∞

0

dt C(t)K̃(t)Wwin (t) . (2)

While there are many ways to define such a window func-
tion, in this work we focus on the “long-distance” window
defined by

WLD(t) =
1

2

[
1 + tanh

(
t− t1
∆

)]
, (3)

with t1 = 1 fm, and ∆ = 0.15 fm. This window is com-
plemented by the “short-” and “intermediate-distance”
windows, defined in Eqs. (2.9)–(2.12) of Ref. [67] and
studied there in detail, to cover the full integration re-
gion. The functions for the three complementary win-
dows (SD, W, and LD) are shown in Fig. 1. The LD
window covers the tail of the integrand, also shown in
Fig. 1, where statistical errors increase significantly. Our
strategies for alleviating this issue are discussed in detail
below and in the appendix.

PHYSICAL INPUTS

This calculation makes use of ensembles of four-flavor
gauge-field configurations. Converting the lattice results
into physical units requires the selection of a set of phys-
ical inputs that determine the quark masses and the lat-
tice spacing (or scale). The masses of the u, d, s, and c
quarks are determined by the masses of the π+,K0, K+,



3

and D+
s mesons. In the “isospin-symmetric, pure-QCD

world” that corresponds to work done here, where the
up- and down-quark masses are taken to be equal and
QED effects are removed, we define the physical point
with Mπ+ = 134.977 MeV, MK = 494.496 MeV, and
MDs

= 1967.02 MeV. In this prescription, we work with
the physical light-quark mass ml ≡ (mu + md)/2. We
direct the reader to our previous work for more details
[67].

We set the lattice scale using the Ω− baryon mass
[75, 76]. To fix the scale to the pure-QCD world, we
use the value of MΩ = 1.67126(32) GeV [75, 76], which
has had the QED effects subtracted. We also consider a
secondary scale setting based on the pion decay constant
fπ [79–81] using the physical value fπ = 0.13050(13) GeV
[82], allowing a consistency check between the two most
commonly used scale-setting observables for allµ(conn.).
Values for aMΩ and afπ on the ensembles used in this
work are given in Table I.

LATTICE ENSEMBLES AND CORRELATION
FUNCTIONS

The lattice ensembles and correlation function datasets
employed in this work are described in detail in our
companion paper, Ref. [67]. Briefly, this work employs
gauge field ensembles generated by the MILC collabo-
ration [83–85] with light, strange, and charm quarks in
the sea (all tuned to their physical values) spanning the
range of lattice spacings of a ≈ 0.15–0.06 fm, as sum-
marized in Table I.1 Further details on the quark masses
and corresponding meson masses are given in Table II of
Ref. [67]. The vector-current two-point correlation func-
tion datasets are described in Table IV of Ref. [67] and
the corresponding renormalization factors ZV are taken
from Refs. [87, 88] and listed in Table III of Ref. [67]. We
use the “local” and “one-link” current datasets, which
correspond to two different discretizations of the vector
current, on the a ≈ 0.12, 0.09, 0.06 fm ensembles, all of
which were generated using low-mode averaging (LMA)
[89–91]. In addition, our analysis includes new correla-
tion function datasets generated on 957 configurations of
the a ≈ 0.15 fm ensemble using LMA with 1000 eigen-
vectors.

ANALYSIS STRATEGY

Our overall strategy for HVP observables is described
in our companion paper, Ref. [67]. In particular, the

1 The 0.09 fm ensemble was, in-part, generated by the CalLat
collaboration [86] using retuned values of the quark masses de-
termined by MILC [79].

blinding procedure, lattice corrections, continuum fit
functions and strategy for performing the continuum ex-
trapolations, the Bayesian Model Averaging (BMA), and
systematic error estimates follow the detailed description
of Ref. [67]. As in Ref. [67], each individual HVP ob-
servable was multiplied with an unknown blinding factor,
which was removed only after the analysis was finalized.
Long-distance HVP observables are affected by the

well-known, rapid growth of statistical errors in the
vector-current correlation functions [92]. While the exact
low-modes used in the generation of the correlators help
to reduce the statistical errors at large Euclidean times,
these errors are still a significant source of uncertainty.
We address this issue with a correlator-reconstruction
strategy to replace C(t) at large times. In Ref. [93], a
precise reconstruction of the vector-current correlator at
large times, obtained from an exclusive channel study
of the two-pion contributions, was used to test the fit
method (described below). The fit was found to provide
a reliable, albeit less precise, description of the vector-
current correlator in the long time region. Hence, our re-
sults are obtained with this approach; we also employ the
bounding method [69] as a cross-check (see appendix).

FIT METHOD

In this approach, the correlation-function data are fit
over the range tmin ≤ t ≤ tmax to a function matching the
expected spectral decomposition. The noisy correlation
function data is then replaced with the fit reconstruction
at large Euclidean distances, t ≥ t⋆, where t⋆ is a hyper-
parameter that we optimize by minimizing the overall
variance of aµ.
The spectral decompositions of the staggered corre-

lation functions employed in this analysis contain two
towers of states, one of which has an oscillating phase,
yielding the following fit function:

Cfit(t) = const. +

Nstates∑
n=0

[
Z2
n

(
e−Ent + e−En(T−t)

)]
+ (−1)t

Mstates∑
m=0

[
Z2
m,osc

(
e−Em,osct + e−Em,osc(T−t)

)]
,

(4)

where the energies (En, Em,osc), amplitudes (Zn, Zm,osc),
and constant term are the parameters obtained from the
fit. Here, T = aNt is the temporal extent of the lattice,
and the term that is constant in time separation t in-
corporates the leading additional finite-T effects [93, 94].
The vector-current correlators are too noisy to resolve
precisely the low-lying two-pion states that contribute to
the correlator at large times. Hence, the low-lying spec-
trum obtained with the fit method is only approximate,
representing a mix of the ρ meson and two-pion states.
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TABLE I. Ensemble parameters used in this work. The first column lists the approximate lattice spacings in fm. The second
column gives the spatial length L of the lattices in fm. The third column lists the volumes of the lattices in number of space-time
points. The fourth column gives the sea-quark masses in lattice-spacing units. The fifth column lists the Ω− baryon mass in
lattice units, aMΩ [75, 76]. The sixth column lists the values of afπ.

≈ a/fm L/fm N3
s ×Nt amsea

l /amsea
s /amsea

c aMΩ afπ
0.15 4.85 323 × 48 0.002426/0.0673/0.8447 1.3246(26) 0.100269(44)
0.12 5.81 483 × 64 0.001907/0.05252/0.6382 1.0494(17) 0.080330(62)
0.09 5.61 643 × 96 0.001326/0.03636/0.4313 0.75372(97) 0.058177(63)
0.06 5.45 963 × 128 0.0008/0.022/0.260 0.4834(11) 0.037553(32)

Rather than using a single fit Ansatz, we carry out
a model average over multiple values of tmin using the
Bayesian Akaike information criterion (BAIC) with the
data-subset penalty [95, 96], holding tmax fixed at a
value beyond which the noise-to-signal rises above 85%.
The value of tmin is allowed to vary over a restricted
range, as described in the appendix. Log-normal priors
are employed for the energies and amplitudes, following
Ref. [97]; the prior for the constant term is set based
on the energy and amplitude priors to match the lead-
ing constant contribution of Z2

0e
−EπT . Choices of fit hy-

perparameters and results for ground-state energies are
given in the appendix.

Our final C(t) which enters into Eqs. (1) and (2), in
order to obtain aµ on each ensemble, is obtained by tak-
ing the raw data C(t) for t < t⋆ and Crecon.(t) for t ≥ t⋆;
the latter corresponds to the prediction of the fit model
Eq. (4) evaluated in the limit T → ∞. Other variations
of the analysis choices, such as changing the number of
states, have been tested and have negligible impact on
the results.

Following the correlator reconstruction, to calculate
aµ, we extend the independent time range of our cor-
relation function dataset from Nt/2 + 1 to 2Nt using
the infinite-T correlator-reconstruction and then inte-
grate Eqs. (1) and (2) using the trapezoidal rule. All
error propagation is carried out using gvar [98], cross-
checked using jackknife resampling.

LATTICE CORRECTIONS

We perform explicit corrections for finite volume (FV),
pion-mass (Mπ) mistuning, and (optionally) taste break-
ing (TB) in that order, using the effective field theory
(EFT) based correction schemes described in Ref. [67].

The finite spatial-volume and TB corrections used for
the LQC contribution are shown in the appendix; Mπ-
mistuning corrections are small due to the accurate tun-
ing of the ensemble masses and hence are not shown. We
also include a finite-time correction using next-to-leading
order chiral perturbation theory (NLO χPT) [55]; we find
the size of this correction is sub-permille.

CONTINUUM EXTRAPOLATIONS

The continuum extrapolations of our all,LDµ (conn.) and

allµ(conn.) data are based on the form aµ(a,MA) =

aµ
[
1 + F a(a) + FM (MA)

]
where FM (MA) accounts for

residual sea-quark-mass–mistuning effects and is given in
Eq. (3.7) of Ref. [67] and

F a(a) = Ca2,n(aΛ)
2αn

s +
m∑

k=2

Ca2k(aΛ)2k, (5)

where n = 1, 2 (n = 0) for the local (one-link) current,
and m = 2, 3. In joint fits to data obtained from the
local and one-link currents, the parameters in FM (MA)
and aµ are shared.
We first employ the empirical Bayes procedure dis-

cussed in Sec. III.C of Ref. [67] to obtain guidance for
the choice of scale Λ and the relevant terms in the con-
tinuum fit function. The procedure is performed for both
currents independently and jointly, and separately for
data corrected and not corrected for TB effects. After
varying the correction schemes and windows, as well as
correlator-reconstruction methods, we find Λ ≈ 0.5 GeV
for data corrected for TB effects and Λ ≈ 1.0 GeV for
uncorrected data, reflecting the fact that discretization
effects are larger in the uncorrected allµ(conn.) data. The
empirical Bayes analysis further reveals that the data cor-
rected for TB is sensitive to discretization terms up to a4

whereas the uncorrected data is sensitive to terms up to
a6. Hence, we consider variations of the functions F a(a)
where m = 2 (quadratic) or m = 3 (cubic). For the
quadratic fits, we consider a variation where the 0.15 fm
data point is dropped. For datasets not corrected for TB
effects, we perform only joint fits and fix n = 2 for the
local current, to account for the dominant TB effects [59].

CONTINUUM EXTRAPOLATION BMA

The systematic uncertainties associated with analy-
sis or model choices are estimated using BMA [95, 99].
This procedure and relevant formulae are detailed in
Refs. [59, 67]. In the BMA, we include variations
for all FV, Mπ-mistuning and TB correction schemes
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FIG. 2. Continuum extrapolations of the long-distance win-
dow observable all,LD

µ (conn.). Data points shown are cor-
rected for FV and Mπ mistuning using the CM scheme. Blue
unfilled (purple filled) points are from the local (one-link) cur-
rent. Squares (circles) represent data corrected (uncorrected)
for TB using the CM scheme. Different extrapolations are
obtained from variations of the fit functions and ensembles
included.

TABLE II. Approximate absolute error budgets (in units of
10−10) for the uncertainties reported in Eqs. (6)–(9). From
left to right, the contributions to the error are Monte Carlo
statistics and tmin variations in the correlator reconstructions
for all,LD

µ and all
µ , continuum extrapolation and TB correc-

tions, FV and Mπ-mistuning corrections, scale setting, and
current renormalization.

stat., a → 0, ∆FV,
Contrib. tmin ∆TB ∆Mπ a ZV Total

all, SD
µ 0.009 0.056 — 0.024 0.062 0.087

all,W
µ 0.14 0.38 0.32 0.31 0.17 0.62

all,LD
µ 2.3 2.7 1.4 1.9 0.2 4.3

all
µ 2.0 3.0 1.8 1.8 0.3 4.4

discussed in the appendix, namely NNLO χPT, chi-
ral model (CM), and Meyer-Lellouch-Lüscher-Gounaris-
Sakurai (MLLGS). We always correct both currents using
the same scheme. Extrapolations using MLLGS exclude
the coarsest data point (0.15 fm) as discussed in Ref. [67].
FV and Mπ-mistuning corrections are always included,
along with a 10% associated uncertainty to capture dif-
ferences between EFT-based and data-driven corrections
[55, 63, 65]. Variations with and without TB corrections
are considered.

We perform continuum extrapolations using all fit
function variations described above, including fits that
exclude one of the two currents entirely [67]. Sample in-
dividual results from the continuum extrapolation BMA
for all,LDµ (conn.) are shown in Fig. 2. Additional results
and details, including with the alternative fπ scale set-
ting, are shown in the appendix.

RESULTS

Here we report our main results, which use MΩ scale
setting and the fit method for correlator reconstructions.
Error budgets for all listed quantities below are given
in Table II. Additional results for fπ scale setting or
the bounding method are given in the appendix. First,
we update our results for all, SDµ (conn.) and all,Wµ (conn.)
from Ref. [67].2,3 We find

all, SDµ (conn.) = 48.119(9)(87)[87]× 10−10, (6)

all,Wµ (conn.) = 206.96(14)(60)[62]× 10−10, (7)

where the uncertainties are statistical (second column of
Table II), systematic (third to sixth columns of Table II)
and total. These new determinations are, unsurprisingly,
completely consistent with our previous results, given
that the analysis is fixed. For the long-distance window
we obtain,

all,LDµ (conn.) = 401.2(2.3)(3.6)[4.3]× 10−10. (8)

Summing the LQC contribution in the three windows,
Eqs. (6)–(8), with the correlation matrix given in the
appendix, yields

allµ(conn.) = 656.2(1.9)(4.0)[4.4]× 10−10. (9)

Finally, from the independent analysis of the
full integration region we obtain all,Fullµ (conn.) =
655.2(2.4)(4.5)[5.1] × 10−10, a result that is completely
consistent with Eq. (9) with a correlated difference of
1.1(5.4)× 10−10.

SUMMARY AND OUTLOOK

As part of our ongoing lattice QCD project to calcu-
late the complete HVP with few-permille precision, we
have calculated all,LDµ (conn.) at 1.1% precision, while we

obtain allµ(conn.) with a total uncertainty of 0.67%, the
most precise determination of this important quantity
from lattice QCD to date.4 These results are made pos-
sible by the high-statistics correlation function data set
we have generated to date [67], as well as the new high-
precision scale-setting using the Ω− baryon mass [75, 76].
A comparison of our results for all,LDµ (conn.), us-

ing both MΩ and fπ scale settings, with those of the

2 The values of aMΩ and afπ that we use on our ensemble with
a ≈ 0.04 fm are 0.3608(25) and 0.028099(28), respectively.

3 Two corrupted configurations were removed from the 0.04 fm
one-link dataset. Additionally, missing correlations in the one-
link renormalization factors, arising from the fact the 0.04 value
comes from a fit to the factors at coarser spacings, were included.

4 Our results for all,LD
µ (conn.) and allµ(conn.) obtained from fπ

scale setting are at 0.98% and 0.61% precision, respectively.
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FIG. 3. Comparison of our lattice determinations
for all,LD

µ (conn.) (filled red circles) labeled “Fermi-
lab/HPQCD/MILC 24” with nf = 2 + 1 (black
squares) lattice-QCD calculations by Mainz/CLS 24 [65],
RBC/UKQCD 24 [63]. The inner error bar shown for our
result is from Monte Carlo statistics. Also shown is a data-
driven evaluation of all,LD

µ (conn.) using e+e− cross section
data (green triangle) by Benton et al. 24 [68].

RBC/UKQCD [63] and Mainz [65] collaborations as well
as a data-driven evaluation [68] is shown in Fig. 3.
Using the same scale setting in the comparisons with
other lattice-QCD results, we find that our result is
lower than RBC/UKQCD 24 (MΩ) and Mainz 24 (fπ)
by 1.6σ and 3.6σ, respectively, while being higher than
the data-driven evaluation of Ref. [68] by 2.4σ, if using
MΩ. In Fig. 4 we compare our result for allµ(conn.) with
previous lattice-QCD calculations as well as the data-
driven evaluations of Ref. [68]. Focusing on the three
most precise lattice-QCD results, we find significances
of 0.3σ with BMW 21 (MΩ), 1.5σ with RBC/UKQCD
24 (MΩ), and 3.5σ with Mainz 24 (fπ). We find a dif-
ference of 1.5σ with our previous result of Ref. [97], if
using the fπ scale. For a more direct comparison with
Ref. [97] we take our result from the direct analysis of
the full integration region obtained with fπ scale set-
ting of all,Fullµ (conn.) = 651.1(4.8) × 10−10 (see the ap-
pendix), which yields a significance of 1.3σ. Finally, we
find that our result in Eq. (9) differs from the data-driven
evaluation of Ref. [68] by 4.0σ (2.9σ) if using the KNT
(DHMZ) compilations, confirming the tensions between
lattice-QCD and data-driven evaluations seen previously
and in windowed HVP observables. More precise lattice-
QCD calculations are clearly needed.

Looking towards future improvements of our HVP cal-
culations, we are generating correlators on ensembles
with both a finer lattice spacing a ≈ 0.04 fm and with
a larger spatial length L ≈ 11 fm at a ≈ 0.09 fm, both
of which will help to address significant sources of un-
certainty (as shown in Table II.) We also plan to add
exclusive two-pion channel correlator data, which is ex-
pected to greatly improve the statistical precision for LD
HVP, even for staggered fermions [93], as well as parallel
improved calculations of subleading contributions due to
quark-disconnected diagrams and isospin-breaking effects
[67]. Taken all together, we expect that these improve-
ments will allow us to meet the target precision set by
the Fermilab g − 2 experiment.

600 625 650 675 700
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FIG. 4. Comparison of our lattice determinations
for all

µ(conn.) (filled red circles) labeled “Fermi-
lab/HPQCD/MILC 24” with nf = 2 + 1 + 1 (black
circles) and nf = 2 + 1 (black squares) lattice-QCD cal-
culations by Mainz/CLS 24 [65], RBC/UKQCD 24 [63],
Aubin et al. 22 [56], BMW 21 [55], Lehner & Meyer 20 [100],
Aubin et al. 19 [101], ETM 18/19 [102], Mainz/CLS 19 [103],
PACS 19 [104], and RBC/UKQCD 18 [69]. Our previous
determination, Fermilab/HPQCD/MILC 19 [105], is shown
with an unfilled red circle. Inner error bars indicate the
reported statistical uncertainty. Also shown are data-driven
evaluations of all

µ(conn.) using e+e− cross section data (green
triangles) by Benton et al. 24 [68].
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Appendix A: Additional fit method results

Figure 5 shows individual fit results for the ground
state parameters as a function of tmin/a, compared with
the corresponding BMA results. The allowed range of
tmin is [tmin:min, tmin:max], where tmin:min is selected as
the first timeslice in the plateau in the ground-state fit
parameters versus tmin starting near 1.35 fm for all en-
sembles and currents, and tmin:max is obtained by requir-
ing that at least 9 data points are present to ensure that
there are enough degrees of freedom to determine all fit
parameters. Choices of fit hyperparameters and results
for ground-state energies are tabulated in Table III. Note
the convergence of E0,fit between the two different cur-
rents seen as a→ 0, reflecting the vanishing of TB effects
as the continuum limit is approached.

Appendix B: Bounding method

As an alternative to fitting the data, one can use an
Ansatz for replacing data in the region where a single ex-
ponential dominates the spectral decomposition Eq. (4).
This enables bounds to be imposed on C(t) from ob-
serving that the true ground state in C(t) is an in-
teracting two-pion state with vector quantum numbers,
which has lower energy than the mass of the ρ me-
son. A lower bound on this energy (and thus an up-
per bound on the exponentially decaying C(t)) comes
from Eππ,free = 2

√
(2π/L)2 +M2

π , the energy of two P-
wave non-interacting pions in a finite volume.5 An upper
bound on the true ground-state energy (giving a lower
bound on C(t)) is provided by the ground-state energy
E0,fit taken from the fitting method and corresponding
BMA over tmin. The bounding functions are defined from
the correlator data point C(tc) by the relations

Clower(t)e
−E0,fittc = C(tc)e

−E0,fitt, (10)

5 In principle, one should instead use the interacting energy; how-
ever, the approximate use of the free energy here is well within
the current precision of allµ(conn.). See Refs. [93, 106] for further
discussion.
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TABLE III. Description of operator measurements, hyperparameters, and ground-state energies used in the two correlator-
reconstruction approaches employed in this work. The range of data points used to compute the bounding method result is
from tc to tmax.

≈ a/fm J op. # configs tmin/fm range tmax/fm t⋆/fm E0,fit/GeV tc/fm

0.15
local 957 [1.1, 1.6] 3.0 2.5 0.712(11) 2.8

one-link 957 [0.9, 1.7] 3.1 2.0 0.7498(84) 2.7

0.12
local 1060 [1.4, 2.2] 3.4 3.2 0.685(26) 3.2

one-link 1060 [1.2, 2.2] 3.4 2.7 0.715(12) 3.0

0.09
local 993 [1.3, 2.7] 3.5 2.8 0.692(13) 3.2

one-link 993 [1.3, 2.6] 3.4 2.8 0.704(12) 3.1

0.06
local 1009 [1.4, 3.2] 3.7 2.5 0.681(11) 3.1

one-link 900 [1.4, 3.1] 3.6 2.6 0.682(11) 3.1

Cupper(t)C
0
ππ(tc, T ) = C(tc)e

−Eππt, (11)

where, for the upper bound, C0
ππ(tc, T ) ≡ e−Eππtc +

e−Eππ(T−tc)+2e−EππT/2 includes the leading corrections
from the finite temporal extent T .
For both bounds, a time value tc is selected such that

the data are replaced with the bound for t ≥ tc. The
value of tc is determined for each C(t) as the point where
the upper and lower bounds meet, which we define as the
time tc where the absolute differences between upper and
lower bound values at tc/a and tc/a+1 are less than the
standard deviation of the correlated average (Cupper +
Clower)/2 at each of the two points. The resulting tc
values are tabulated in Table III.
Once tc is determined, the bound is used to replace

the data for t ≥ tc. To mitigate the effect of statistical
fluctuations, this replacement is done by averaging over
the (even) range of points from tc to tmax, inclusively,
where tmax is the same as the value used in the fitting
method above; if the number of time slices in this range
is odd, the value of tc/a is increased by 1. In addition, a
systematic error is added equal to the difference in central
values from repeating this procedure on the left and right
(even, i.e, possibly overlapping) halves of the full range
from tc to tmax [106]. An example of the results from this
procedure for the local current on the 0.06 fm ensemble
is shown in Fig. 6 (left).
We compare the results of the two correlator-

reconstruction approaches in Fig. 7. We find close agree-
ment between the two approaches in most cases. How-
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ever, on our finest ensemble (a ≈ 0.06 fm), we ob-
serve that the bounding method approach does not han-
dle significant correlated fluctuations in late time slices,
which result in the tail of the correlator exhibiting non-
exponential behavior, as can be seen in Fig. 6 (right),
whereas the fit takes these correlations into account. Due
to this difference, we adopt the fit method as our main
result instead of attempting to average or combine it with
the bounding method.

Appendix C: Lattice correction results

Results for FV and TB corrections are shown in Fig. 8.
We consider three sub-windows of Eq. (3) from which we
compute the corrections, where the boundaries are given
by t1 = 0.4, 1, 1.5 fm. These choices of t1 are motivated
by boundaries of the W, W2 and LD windows and the
regions of validity of the various EFT-based correction
schemes [56]. For a more detailed discussion of this ap-
proach see Sec. X and Sec. III.C of Refs. [56, 59]. Figure 8
shows that the expected dependencies on the lattice spac-
ing, lattice volume, pion mass, and correction region are
largely followed.

Appendix D: Details of BMA scheme

We use BMA to estimate systematic uncertainties asso-
ciated with the various analysis choices that are included.
We perform model averages at two stages in the analysis:
over tmin variations to obtain correlator reconstructions,
and then over the continuum extrapolation and lattice
correction models. The mean and covariance from the
BMA are given by

⟨A⟩ =
NM∑
n=1

⟨A⟩n pr (Mn | D) , (12)

Cov[A,B] =

NM∑
n=1

Covn[A,B] pr (Mn | D)

+

NM∑
n=1

⟨A⟩n ⟨B⟩n pr (Mn | D)− ⟨A⟩ ⟨B⟩ ,

(13)

where A and B are each functions of the parameters
of each model Mn, NM is the number of models, and
the probability of model M given the data D is defined
through the BAIC weight [95],

pr(M | D) ≡ pr(M) exp

[
−1

2

(
χ2
data (a

⋆) + 2k + 2Ncut

)]
.

(14)
χ2
data is the standard chi-squared function not includ-

ing the priors, a⋆ is the posterior mode (i.e., the set of

parameters that minimizes the augmented chi-squared
function [107]), k is the number of parameters in each
model M , and Ncut is the number of data points cut
from the dataset (tmin for correlator fits and the number
of omitted ensembles for each current for continuum ex-
trapolations). The factor pr(M ) is the prior probability
of a given M , which we take to be uniform for correlator
fits and as in Ref. [67] for continuum extrapolations.
The probability weights defined in Eq. (14) can be used

to assess the relative weight of specific analysis choices
in the BMA. Comparison of these weights can identify
whether a particular correction scheme or fit-function
variation is preferred or suppressed by the averaging pro-
cedure. This is achieved by computing the “subset prob-
ability” of the model subset S by the relative posterior
probability of the variations contained in S:

pr(S|D) =
∑

Mi∈S

pr(Mi|D). (15)

The subset probability encapsulates the relative weight
of the models in a given subset compared with the whole
model space as informed by the data (see, e.g., the pie
charts in Fig. 11).
The first line of Eq. (13) gives the statistical and para-

metric contributions to the covariance, and the second
line gives the systematic contribution from the spread of
the different model variations in the average; we refer to
the latter as “systematic covariance” here. In principle,
the exact treatment of the systematic covariance requires
including every combination of analysis choices through
every stage of the analysis, e.g., every tmin variation for
every lattice spacing and current and every continuum
extrapolation model. The number of such combinations
is computationally infeasible. For the present analysis,
we neglect the systematic covariances between the cor-
relator fits on each lattice spacing and current; this as-
sumption is equivalent to assuming the choice of tmin is
independent between each lattice spacing and current.
We also neglect this systematic covariance between the
choices of tmin and the different continuum extrapola-
tion models. These reasonable assumptions allow us to
perform independent model averages and compose their
results in series. For emphasis, the systematic contribu-
tions to the variances after each model average are not
neglected, merely the systematic covariance between sep-
arate model averages.
In order to propagate statistical and parametric corre-

lations though the series of model averages, it is useful to
consider Eq. (13) in the case where one of the arguments
is constant across the model space, e.g., ⟨B⟩n = ⟨B⟩.
This will be true for scale-setting parameters, current
renormalization factors, raw correlator data, and the re-
sults of other systematically independent model averages.
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In the example above, it follows that

Cov[A,B] =

NM∑
n=1

Covn[A,B] pr (Mn | D) , (16)

where the bar denotes the parameter that is constant
over the models Mn.

The above outlines the procedure used to obtain sta-
tistical and parametric covariances for continuum values
of allµ(conn.) on each window. We also conservatively ac-
count for systematic correlations due to the shared use
of lattice correction models on each window following the

procedure in Ref. [67]. Additional systematic correlations
due to common continuummodel variations between win-
dows, which were not relevant in Ref. [67], were consid-
ered and found to be negligible. These correlations will
be reconsidered in future works when determining other
full HVP observables beyond the LQC contribution.

Our procedure for obtaining complete error bud-
gets from the respective BMA analyses is described in
Refs. [59, 67]. In particular, we decompose the final un-
certainty into its various contributions as described in
Appendix A of Ref. [108]; the statistical and parametric
contributions are computed approximately by using the
best correlator fit, as determined by the BAIC, at each
lattice spacing and current.

Appendix E: Additional results

Here we collect additional results for the various scale-
setting schemes and correlator-reconstruction strate-
gies considered. The final results for these variations
are listed in Table IV. Updated comparison plots for
all, SDµ (conn.) and all,Wµ (conn.) are given in Figs. 9 and 10,
respectively. For the fit method correlator-reconstruction
strategy, we give covariance matrices for results usingMΩ

and fπ scale setting in Tables V and VI, respectively, and
error budgets for results using fπ scale setting are given in
Table VII. Results for the continuum extrapolation BMA
using the MΩ scale for all,LDµ (conn.) with the fit method
are given in Fig. 11. We also give analogous results with
each of these three analysis choices varied individually,
i.e., using the fπ scale in Fig. 12, for all,Fullµ (conn.) in
Fig. 13, and with the bounding method in Fig. 14.
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TABLE IV. Final results for aµ (in units of 10−10). The first column lists the specific LQC contribution. Columns two and
three give results using the fit method (or just raw data in the case of all, SD

µ (conn.) and all,W
µ (conn.)) based on scale setting

via MΩ or fπ, respectively. Similarly, columns four and five are results from the bounding method.

Fit (or raw data) Bounding
Contrib. MΩ fπ MΩ fπ
all, SD
µ 48.119(10)(86)[87] 48.118(11)(85)[86] — —

all,W
µ 206.87(14)(60)[62] 206.89(15)(45)[47] — —

all,LD
µ 401.1(2.3)(3.6)[4.3] 397.4(2.2)(3.2)[3.9] 406.4(3.5)(3.8)[5.2] 402.2(3.4)(3.4)[4.8]

all,Full
µ 655.1(2.4)(4.5)[5.1] 651.1(2.4)(4.2)[4.8] 660.6(3.7)(5.0)[6.2] 656.2(3.6)(4.7)[5.9]

all
µ 656.2(1.9)(4.0)[4.4] 652.4(1.9)(3.5)[4.0] 661.5(3.1)(4.3)[5.3] 657.2(3.1)(3.8)[4.9]

46.5 47.5 48.5 49.5

1010 all, SD
µ (conn.)

Fermilab/HPQCD/MILC 24 (MΩ)

Fermilab/HPQCD/MILC 24 (fπ)

Fermilab/HPQCD/MILC 24 (w0[fπ])

Spiegel & Lehner 24

BMW 24

Mainz/CLS 24

RBC/UKQCD 23

ETMC 22

Benton et al . 24

FIG. 9. Comparison of our lattice determina-

tions for all, SD
µ (conn.) (red circles) labeled “Fer-

milab/HPQCD/MILC 24 (MΩ)” and “Fermi-
lab/HPQCD/MILC 24 (fπ)” to our value from [67] (light
red circles) labeled “Fermilab/HPQCD/MILC 24 (w0[fπ])”
and nf = 2 + 1 + 1 (black circles) and nf = 2 + 1 (black
squares) lattice-QCD calculations by Spiegel & Lehner 24
[64], BMW 24 [61], Mainz/CLS 24 [62], RBC/UKQCD 23
[60] and ETMC 22 [57]. The inner error bar shown for our
result is from Monte Carlo statistics. Also shown is a data-
driven evaluation of all, SD

µ (conn.) using e+e− cross section
data (green triangle) by Benton et al. 24 [68].
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FIG. 10. Comparison of our lattice determina-

tions for all,W
µ (conn.) (red circles) labeled “Fer-

milab/HPQCD/MILC 24 (MΩ)” and “Fermi-
lab/HPQCD/MILC 24 (fπ)” with our value from [67] (light
red circles) labeled “Fermilab/HPQCD/MILC 24 (w0[fπ])”
and nf = 2 + 1 + 1 (black circles) and nf = 2 + 1
(black squares) lattice-QCD calculations by BMW 24 [61],
RBC/UKQCD 23 [60], Mainz/CLS 22 [58], Aubin et al. 22
[56], χQCD 22 [109], ETMC 22 [57] and Lehner & Meyer 20
[100]. Our previous result, Fermilab/HPQCD/MILC 23, is
shown in light red. BMW 21 [55], Aubin et al. 19 [101] and
RBC/UKQCD 18 [69], shown in gray, have been superseded.
The inner error bar shown for our result is from Monte
Carlo statistics. Also shown is a data-driven evaluation of
all,W
µ (conn.) using e+e− cross section data (green triangle)

by Benton et al. 23 [68, 71].

TABLE V. Correlation matrix for the LQC contributions to the window observables using MΩ scale setting and (where
applicable) the fit method correlator-reconstruction strategy.

all, SD
µ all,W

µ all,LD
µ all

µ

all, SD
µ 1 0.08 0.00 0.01

all,W
µ 0.08 1 0.23 0.21

all,LD
µ 0.00 0.23 1 0.36

all,Full
µ 0.01 0.21 0.36 1.

TABLE VI. Correlation matrix for the LQC contributions to the window observables using fπ scale setting and (where appli-
cable) the fit method correlator-reconstruction strategy.

all, SD
µ all,W

µ all,LD
µ all,Full

µ

all, SD
µ 1 0.21 0.02 0.03

all,W
µ 0.21 1 0.20 0.14

all,LD
µ 0.02 0.20 1 0.33

all,Full
µ 0.03 0.14 0.33 1

Contrib. stat.,
tmin

a→ 0,
∆TB

∆FV,
∆Mπ

a ZV Total

all, SDµ 0.010 0.054 — 0.010 0.065 0.086
all,Wµ 0.15 0.18 0.33 0.15 0.19 0.47
all,LDµ 2.2 2.6 1.5 1.4 0.2 3.9
allµ 2.0 2.7 1.7 1.4 0.3 4.0

TABLE VII. Approximate absolute error budgets (in units

of 10−10) for the uncertainties reported in Table IV for the
fπ results using the fit method. From left to right, the con-
tributions to the error are Monte Carlo statistics and tmin

variation in the correlator fits (where applicable), continuum
extrapolation and TB corrections, FV and Mπ-mistuning
corrections, scale setting, and current renormalization.
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FIG. 11. Left plot : Results of the BMA procedure applied to all,LD
µ (conn.) using the fit method for correlator-reconstruction

and MΩ for scale setting. Upper left panel : Histogram of all continuum extrapolations used in the BMA weighted by pr(M |D),
the inner light-red band includes statistical and parametric errors corresponding to the first term in Eq. (13), while the outer
is the total error. Upper right panel : The subset of datasets and extrapolations corresponding to correcting the local (blue
unfilled) and one-link (purple filled) currents with lattice corrections from the CM correction scheme. Different extrapolations
correspond to variations of the fit function and ensembles included. Lower panels : The best fits according to the model
probability, Eq. (14). The middle panel shows the fit results, where joint fits are indicated with mixed-filled symbols. The
bottom one shows the corresponding Q values [110]. In both panels, the correction schemes employed for ∆FV, ∆Mπ and ∆TB

are indicated by the symbols’ color, according to the legend in the middle panel. Right plot : Breakdown of the results from the
BMA applied to all,LD

µ (conn.). Left panel : From top to bottom, the first, main result (BMA) includes all datasets, schemes,
and other variations. The next block of results vary the schemes for FV, Mπ-mistuning and TB corrections. The next two
correspond to different euclidean-time integration regions over which the corrections are computed. Next is a division of all the
models into whether TB corrections were applied. The following three are continuum extrapolations to either both currents
jointly or one of the currents individually. The next six are subsets with specific continuum fit functions, corresponding to
quadratic and cubic, as well as omitting the 0.15 fm ensemble. The unfilled circles correspond to the local current, the filled to
the one-link current. The next two correspond to continuum fits with or without the sea-quark-mass–mistuning term. The final
three are subsets with differing leading powers of αs in the fit function where, again, unfilled symbols are the local current and
the filled symbols are one-link. The inner error bars on the data points include statistical and parametric errors corresponding
to the first term in Eq. (13), while the outer are the total errors. Right panels : Pie charts showing the contributions to the BMA
corresponding to the groupings in the left panel. The percentages are computed from Eq. (15) for the particular subsets. In
the case of the continuum fit function subsets, which are broken up into local and one-link current variations, the left pie-chart
corresponds to the local current and the right to the one-link.



16

0.005 0.01 0.015 0.02 0.025
a2 [fm2]

local

one-link

∆FV, ∆TB, ∆Mπ(CM)

∆FV, ∆Mπ(CM)

0.0 0.1 0.2 0.2

260

310

360

410

460

Fits: 216

aµ(BMA)

400

410

420 +∆FV, ∆Mπ
, ∆TB No TB NLO NNLO CM MLLGS

0.00.0050.010.0150.020.0250.03

pr(M |D)

0.5

1.0

Q
10

10
a
ll
,L

D
µ

(c
on

n
.)

390 400 410

1010 all,LD
µ (conn.)

a2α2
s + . . .

a2αs + . . .

a2 + . . .

FM(MA) off
FM(MA) on

cubic
quad. w/o 0.15

quad.

w/o local
w/o one-link

Joint fits

w/o TB
w/ TB

[1.5,∞]
[1,∞]

MLLGS
CM

χPT NNLO

BMA

[1,∞]

[1.5,∞]

w/ TB w/o TB

FM (MA) on

FM (MA) off

a2αs + . . .

a2α2
s + . . .

FIG. 12. Results of the BMA procedure applied to all,LD
µ (conn.) using the fit method correlator-reconstruction approach and

fπ for scale setting. See Fig. 11 for a complete description of the plot. The same axis scale is employed here from that plot.
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FIG. 13. Results of the BMA procedure applied to all,Full
µ (conn.) using the fit method correlator-reconstruction approach and

MΩ for scale setting. See Fig. 11 for a complete description of the plot.
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FIG. 14. Results of the BMA procedure applied to all,LD
µ (conn.) using the bounding method correlator-reconstruction approach

and MΩ for scale setting. See Fig. 11 for a complete description of the plot. The same axis scale is employed here from that
plot.
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