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Foundation models are deep learning models pre-trained on large amounts of data which are
capable of generalizing to multiple datasets and/or downstream tasks. This work demonstrates how
data collected by the CMS experiment at the Large Hadron Collider can be useful in pre-training
foundation models for HEP. Specifically, we introduce the AspenOpenJets dataset, consisting of
approximately 180M high pT jets derived from CMS 2016 Open Data. We show how pre-training
the OmniJet-α foundation model on AspenOpenJets improves performance on generative tasks
with significant domain shift: generating boosted top and QCD jets from the simulated JetClass
dataset. In addition to demonstrating the power of pre-training of a jet-based foundation model on
actual proton-proton collision data, we provide the ML-ready derived AspenOpenJets dataset for
further public use.

I. INTRODUCTION

While particle physics has long used machine learning
techniques and is leading the way in adopting modern
deep learning methods, the development and application
of powerful foundation models – which have transformed
natural language processing and computer vision – is still
in its early stages in the field. A foundation model is a
model that has been pre-trained on a large amount of
data for a specific task, and that can be used for differ-
ent tasks downstream [1]. The pre-training thus serves
as a foundation, upon which the downstream tasks can
be built. Well-known foundation models include large
language models (LLMs) such as GPT-3 [2], BERT [3]
and LLaMA [4], image models such as DALL-E 2 [5] and
Imagen [6], and mixed-modality models such as CLIP [7]
and ALIGN [8].

There are several advantages to the use of foundation
models. One example is the potential to boost the per-
formance achievable on small datasets. Having access
to a model pre-trained on a larger, similar dataset pro-
vides a ‘head start’ for the downstream task, allowing it
to focus on the intricacies of the smaller dataset rather
than having to rediscover the general structure of the
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data. In addition, a foundation model can save both
human and computational resources. While pre-training
may be a resource-intensive task, the downstream models
would require less training, less data, and less time spent
on optimization compared to what would be required if
these models were built from scratch. Another interest-
ing aspect is that a trained foundation model could en-
able implicit sharing of data and resources between dif-
ferent parts of the research community, a sharing that
would not otherwise be possible.

Foundation models are poised to play a central role in
particle physics, especially in the context of experiments
at the Large Hadron Collider (LHC). They are able to
process the huge amounts of complex and diverse data
generated by the LHC and have the potential to integrate
multiple modalities - such as images, high-level event fea-
tures or particle four-vectors - allowing more comprehen-
sive data analyses. Current work on foundation models
for particle physics has mainly focused on different event
generation and classification tasks [9–14], investigating
pre-training strategies, encoding schemes and different
architectures, and quantifying the transfer learning and
generalization capabilities of these models.

The LHC experiments have made significant amounts
of data publicly available [15–19]. Previous open data
studies of CMS jets [20–22] have explored the substruc-
ture and energy flow of the jets. Foundation models can
leverage the LHC open data for training and fine-tuning,
potentially integrating different data modalities and data
from different experiments. Furthermore, training foun-
dation models on real data will result in a more accurate
representation of particle physics processes than train-
ing on simulations. Finally, foundation models trained
on a large variety of actual LHC data will help to pro-
mote transparency and collaboration in particle physics
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research.
In this paper we present the AspenOpenJets (AOJ)

dataset and study the transfer learning of foundation
models obtained with this dataset. The AOJ dataset
has been constructed from the CMS 2016 open data
‘JetHT’ [17, 18] and prepared in a form that allows easy
use of the dataset for phenomenological studies, espe-
cially for training machine learning models. With 180M
jets, AOJ is by far the largest dataset of its kind. We
demonstrate an application of this dataset in a founda-
tion model context, by pre-training the OmniJet-α [12]
foundation model on AOJ, which is expected to mostly
contain QCD jets, and then fine-tuning it to generate jets
from the JetClass [23] dataset of simulated jets. We do
two such fine-tunings: first for JetClass QCD jets, which
occupy a different kinematic region compared to the jets
in AOJ, and then for top jets, which differ significantly
in several features. We show that pre-training on AOJ
indeed benefits the downstream task, making it easier
for the model to generate these types of jets with fewer
training examples compared to if it had been trained from
scratch.

The utility of CMS open data in a pre-training set-
ting has been previously explored in [9], using 1M single-
lepton events at the object level which were collected by
CMS in 2015. Here we enlarge the scope and complexity
by several orders of magnitude to encompass 180M jet
events at the full constituent level. Furthermore, the au-
thors of [9] used event selections to shape the open data
into a similar topology to the intended target simulated
data. In our work, no such shaping is needed.

This paper is organized as follows. Section II describes
the CMS open data and the method used to derive AOJ.
It also includes a brief description of JetClass, which will
be used for the downstream task. Our application exam-
ple is described in section III, detailing the method and
results. Finally, we present our conclusions in section IV.
Links to the codebase and the AOJ dataset itself can be
found after the conclusions.

II. DATA

A. CMS open data

The CMS experiment [24] is a large general-purpose
detector at the LHC. CMS has recently released 16.4
fb−1 of data from their 2016 runs (G and H) [17, 18]
and a corresponding set of simulations. In contrast to
previous data releases [15, 16, 25], this data has been
provided in the simplified MINIAOD format [26], as well
as the even further simplified NANOAOD format [27]. In
these simplified analysis formats, the central CMS recon-
struction steps have been applied, discarding much of the
low-level content of the event in favor of a simplified de-
scription of the high-level objects (jets, electrons, muons,
etc.) commonly used in data analysis. These formats are
therefore significantly easier to use for those outside of

the collaboration.

The inner layers of CMS consist of a silicon pixel and
silicon strip tracker used to measure charged particle tra-
jectories. These are followed by a lead tungstate crystal
electromagnetic calorimeter and a brass and scintillator
hadronic calorimeter. These detector elements are en-
closed in a large solenoid, which produces a magnetic
field of 3.8T. Muon stations are located outside the iron
return yoke of the magnet. Events of interest are selected
using a two-stage trigger system. The first stage (L1) is
implemented in custom hardware to select potentially in-
teresting events within a fixed latency of about 4 µs [28]
using information from the calorimeters and muon sta-
tions. Events accepted by the L1 system are sent to the
high-level trigger (HLT), which consists of a dedicated
computing cluster which runs a speed-optimized version
of the full reconstruction. The HLT uses this more ac-
curate reconstruction of the event to select events to be
saved at a rate of approximately 1 kHz [29].

CMS uses a particle-flow algorithm [30], which com-
bines the information from the different detector systems
to reconstruct and identify each individual particle in an
event. Particles are classified as either muons, electrons,
photons, charged hadrons or neutral hadrons. Jets are
clustered from the particle-flow candidates in an event
using the anti-kt jet finding algorithm [31, 32]. The typ-
ical large-radius jet size used in CMS for jet substruc-
ture searches and measurements is R = 0.8, commonly
referred to as AK8 jets. For AK8 jets the pileup-per-
particle identification algorithm (PUPPI) [33, 34] is used
to mitigate the effect of pileup. The PUPPI algorithm
assigns a weight to each particle based on the probabil-
ity that it originates from the primary vertex or from
pileup. The momentum of AK8 jets is determined from
the weighted vector sum of all particles inside the jet. Ad-
ditional corrections are applied based on simulation and
data-driven measurements to better calibrate the mea-
sured jet momentum to the true momentum of the par-
ticle from the hard process [35].

The NANOAOD format does not natively store informa-
tion of the jet constituents. However, an extended ver-
sion (PFNANO), which does include this information, can
be easily produced from MINIAOD using tools provided
by CMS [36]. We therefore, for all data and simulations
samples used, start with the MINIAOD format, process it
to PFNANO and then apply our selections to select the jets
of interest for our dataset.

In order to construct the largest sample of jets pos-
sible, we consider all events from the ‘JetHT’ [17, 18]
Run-2 dataset released by CMS to this date. The ‘JetHT’
dataset includes all events that have been selected by one
of the HLT triggers related to jet momenta or total event
hadronic activity (HT). Because we do not specify a spe-
cific trigger, the sample consists of events from an inclu-
sive ‘or’ of any of the available triggers of this dataset.
We note that this choice works well for building a large
dataset for the purposes of foundation model training,
but may introduce subtle kinematic biases resulting from
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FIG. 1. Comparison of AspenOpenJets (AOJ) and QCD JetClass distributions for particle and jet level observables. The
last panel shows the average number of jet constituents for each particle species, accompanied by the corresponding 1σ standard
deviation bands.

the combined thresholds of the different triggers, which
would complicate its use in a physics-based analysis.

Events are required to pass several data-quality filters
commonly used within CMS to remove events that are
likely to cause problems in the reconstruction. AK8 jets
are required to have transverse momentum greater than
300GeV1. Jets are also required to have an absolute
value of pseudorapidity (η) less than 2.5, so that they fall
within the range of the CMS tracker. The AK8 jets are
also required to pass standard CMS quality criteria used
to reject leptons reconstructed as jets and jets that may
be poorly reconstructed. We construct our sample out of
all AK8 jets that pass these criteria, with no limitation
on the number of selected jets per event.

1The jet transverse momentum (pT ) distribution in fig. 1 extends
down to 250 GeV as it is computed directly from vector sum of
the jet constituents. Whereas, 300GeV threshold is applied to the
jet after additional corrections have been applied to the jet energy.

Applying these selections to the CMS open data yields
a dataset of 178 million jets, which we call the As-
penOpenJets (AOJ). Due to the large cross section of
QCD processes, the vast majority of these jets are ex-
pected to originate from light quarks and gluons. A small
fraction of the jets are expected to originate from the de-
cays of boosted heavy resonances. A rough estimate of
the number of boosted fully merged jets produced by W,
Z, top, and Higgs bosons in the bb̄ decay mode are esti-
mated with Monte Carlo (MC) simulations provided by
CMS [37], with the remainder assumed to originate from
QCD. The numbers are reported in Table I. More details
on the MC samples used are given in Appendix A.

For each jet we store its transverse momentum (pT ),
pseudorapidity (η), and azimuthal angular coordinate
(ϕ). We also store its mass, groomed with the softdrop
algorithm [38] as computed within the CMS reconstruc-
tion. Up to 150 constituents of the jet are stored. For
each constituent, its 4-momentum is stored in the format
(px, py, pz, E). We additionally store its transverse im-
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Jet type Approx. Number
QCD 1.8× 108

W 6.3× 105

Z 1.8× 105

top 1.3× 105

H → bb̄ 500

TABLE I. Breakdown of the expected number of jet types in
the AOJ dataset from MC simulations.

FIG. 2. The particle-level positional distribution of the As-
penOpenJets in the η− ϕ plane, illustrating the granularity
of the CMS detector. Note the appearance of vertical features
indicating the endcaps at |η| ∼ 1.6 and multiple “dead cells”
throughout the detector.

pact parameter (d0) and longitudinal impact parameter
(dz) with their uncertainties, the charge of the candi-
date, its particle-ID (PID) in the PDG format2 [39] and
its weight from the PUPPI algorithm. We also include
additional jet substructure quantities computed within
the CMS reconstruction, including the number of con-
stituents in the jet, N -subjettiness variables [40], various
jet-tagging observables from the CMS implementation of
ParticleNet [41, 42] and a regression of the jet mass from
ParticleNet [42].

In fig. 1 we show the distributions (red histograms) of
several particle and jet-level features, based on a sub-
sample of 700K jets. Interestingly, the effects of detector
granularity are seen as spikes in the particle η and ϕ
distributions. In fig. 2 we plot a 2D histogram in the
η − ϕ plane. A closer look reveals a grid-like structure
corresponding to the granularity of the detector. Fur-
thermore, there are vertical features indicating the end-
caps at |η| ∼ 1.6 and several “dead cells” throughout
the detector. The distribution of the subjettiness ratio
τ32 is consistent with the expectation that the AOJ is
predominantly composed of QCD jets. The last panel
in fig. 1 shows the average number of constituents per
jet for each PID, accompanied by the corresponding 1σ

2Note that neutral hadrons (h0) are assigned the PID = 130 of the
neutral kaon K0

L while positively/negatively charged hadrons (h±)
are assigned PID = ±211 of the charged pion.

standard deviation bands.

B. JetClass

The JetClass [23] dataset is based on simulations
and was first introduced in [10]. It contains both
particle-level and jet-level information for 125M simu-
lated jets, distributed over 10 different jet types and
divided into a training (100M), validation (5M) and
test (20M) set. The simulation is performed with Mad-
Graph5 aMC@NLO [43] for the hard process, followed
by Pythia [44] for parton showering and hadronization,
andDelphes [45] with the CMS detector [24] card for the
detector response. Jets are required to have a transverse
momentum of 500GeV < pT < 1000GeV and a pseudo-
rapidity η < 2, which is more restrictive than the criteria
used for AOJ. We overlay the JetClass QCD particle-
and jet-level distributions (blue histograms) in fig. 1 to
facilitate easy comparison with the corresponding AOJ
distributions.

III. EXPERIMENT

In this section, we demonstrate the usefulness of the
AOJ dataset in ML-related applications. In particular,
we pre-train a foundation model on the full AOJ dataset.

A. Method

The foundation model chosen for this work is Om-
niJet-α [12], a GPT-style [46] model that predicts
the next token in a sequence. The features of the jet
constituents3 are first converted into integer tokens us-
ing a VQ-VAE [11, 47–49] model, representing jets as
sequences of tokens. The backbone of OmniJet-α is
trained to predict the next token in these sequences. Af-
ter pre-training, the model can generate new sequences
autoregressively, which are then decoded by the frozen
VQ-VAE back into physical space. Additionally, the pre-
trained backbone weights can be loaded and used for
other tasks, such as jet classification. In this work, we
focus on dataset transfer learning for jet generation and
leave the exploration of task switching for future studies.
The features used for training are the constituent

kinematics (pT , ∆η, ∆ϕ), where ∆η = η − ηjet and
∆ϕ = ϕ − ϕjet represent the relative coordinates with
respect to the jet axis. Before tokenization, these fea-
tures were preprocessed using standardization. The AOJ
dataset was tokenized using a codebook size of 8192 to-
kens, employing VQ-VAE hyperparameters as outlined

3The jet constituents are pT ordered and up to the first 128 con-
stituents are considered when training the models.
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in [12], with two modifications: the number of attention
heads was reduced from 8 to 4 without sacrificing per-
formance, and the AdamW optimizer was replaced with
the Ranger optimizer [50]. A larger codebook with ∼32K
tokens was also tested but produced results comparable
to the 8K configuration. Therefore, we only present re-
sults for the 8K tokenization. The backbone model was
trained on the full 180M AOJ dataset with hyperparam-
eters as specified in [12]. The model was trained for 900K
steps on 12 GPUs with a batch size of 256 per GPU, and
the final state at the end of the training was selected as
the backbone model.

To evaluate the transfer learning capabilities of Om-
niJet-α , we devised a downstream task to test its abil-
ity to generate jets of a different type than those it was
pre-trained on, and to adapt to datasets with different
kinematic cuts. The fine-tuning process involved load-
ing the pre-trained backbone weights and retraining it
using jets from the JetClass [23] dataset. To systemati-
cally evaluate the performance of the model, we trained
it on six datasets with 102, 103, 104, 105, 106, 107 jets
to study the effect of dataset size D, and fine-tuned the
model separately on QCD jets (q/g) and top-quark jets
(t → bqq′) to evaluate its adaptability to different jet sub-
structure types. For each configuration, the model with
the lowest validation loss during fine-tuning was selected
for jet generation. To provide a baseline for compari-
son, we used a separate VQ-VAE tokenizer and trained
generative models with the same backbone architecture
from scratch using randomly initialized weights. This
VQ-VAE is the one from Ref. [12] that was trained on all
10 classes of the JetClass dataset. The generative mod-
els were trained on the tokenized QCD and top-quark
samples. This approach allowed us to quantify the per-
formance improvement achieved by pre-training on the
AOJ dataset.

Both training strategies used a batch size of 2564 per
GPU5 and a patience of 10 epochs. For training samples
with sizes up to 100K jets, the validation set was the
same size as the training set. For larger samples, we
used validation set sizes of 200K jets for 1M training
samples and 500K jets for 10M training samples.

B. Performance metrics

We consider two complementary evaluation metrics
that compare the 1D distribution of a high-level observ-
ableO between the generated jets and the target JetClass
reference data:

4For training samples of 100 jets, the batch size was reduced to 100.
5We used a single GPU to train the models with training sample
sizes less than or equal to 100K, and multiple GPUs for models
trained on more data.

• Kullback-Leibler divergence:

KLO(P ||Q) =
∑
x

P (x) log

(
P (x)

Q(x)

)
. (1)

The probability densities P (x) and Q(x) for the
observable O are obtained from the normalized
histogram bin counts and KLO(P ||Q) is com-
puted using scipy.stats.entropy [51]. Note that

KLO(P ||Q) is antisymmetric. In our results, we
take P to be the generated distribution and Q to
be the reference JetClass distribution.

• Wasserstein-1 distance:

WO
1 (P,Q) = min

π∈Π

∑
x,y

|x− y| π(x, y) . (2)

Here Π(P,Q) is the space of all joint ‘coupling’ dis-
tributions whose marginals are the observable O
distributions P and Q. This quantity is computed
with scipy.stats.wasserstein distance [51].

Unlike the KLO(P ||Q) divergence, WO
1 (P,Q) is

a symmetric similarity metric based on optimal
transport, i.e. the optimal cost plan that morphs
P into Q.

C. Results

A comparison of the two training strategies –“fine-
tuned” and “from scratch”– is presented in fig. 3 for QCD
and in fig. 4 for top-quark jets. The rows show various
high-level distributions, including jet pT , jet mass, sub-
jettiness ratios τ21 and τ32, and particle multiplicity N
(i.e. the number of constituents in a jet). The left-most
column in each figure displays the distributions generated
by the fine-tuned models, while the second column shows
the distributions generated by the models trained from
scratch. Each plot also includes the reference JetClass
distribution (200K reference jets) as a filled histogram
and, for additional context, the AOJ distributions (dot-
ted lines) in the left-most column.
Overall, we find that the pre-trained models are able

to achieve a performance gain when using a fraction of
the total fine-tuning data. This can be seen in the third
and last columns of fig. 3 and fig. 4, where the fine-
tuned models (blue lines) typically achieve better6 metric
scores than the models trained from scratch (red lines).

6However, there are instances where models trained from scratch
perform equally well on a single metric within uncertainties. For
example, this occurs with KLpT for training sample size D = 103.
This behavior can be attributed to the definition of KL diver-
gence, which penalizes high-probability regions in the generated
data where the true probability distribution is low. Therefore, it
is crucial to evaluate performance using multiple metrics to gain a
comprehensive understanding.
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FIG. 3. A comparison of the generation quality of models trained on QCD jets from JetClass, for different training sample
sizes D. The performance of a foundation model pre-trained on AOJ (far left) is compared to a model trained from scratch
(center left). The generation quality is compared across several high level features of the jets. Two quantitative metrics, the
Kullback-Leibler divergence (center right) and Wasserstein-1 distance (far right), are computed as a function of the training
sample size D to compare how well the generated jets from each model matches the target distribution from JetClass. We
also report the mean value and the envelopes over 5 trainings with different random seeds. When applicable, we also show
power-law fits ∝ D−γ to the metrics.

This is apparent for the KL divergence and Wasserstein-1
metrics across different training sample sizes below 1M
jets. However, as the available training data exceeds 1M
jets, we find that the fine-tuning begins to saturate, and
the fine-tuned and from-scratch models perform similarly
within uncertainties. In some features, the fine-tuned
models even exhibit a slight decrease in performance
compared to those trained entirely from scratch, indi-
cating a diminishing return from pre-training at larger
dataset scales. The reasons for this are unclear and would

require further study. One possibility is that the AOJ to-
kenization is suboptimal for describing JetClass and this
is exposed with enough JetClass training data. Another
possibility is that the pre-training itself can harm model
performance by locking in the weights to a suboptimal
part of parameter space, a phenomenon that has been
observed previously in the ML literature [52] and was
termed “ossification”.

We now examine in more detail the transfer learning
from AOJ to JetClass for QCD jets, as shown in fig. 3.
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FIG. 4. A comparison of the generation quality of models trained on top-quark jets from JetClass, for different training sample
sizes D. The performance of a foundation model pre-trained on AOJ (far left) is compared to a model trained from scratch
(center left). The generation quality is compared across several high level features of the jets. Two quantitative metrics, the
Kullback-Leibler divergence (center right) and Wasserstein-1 distance (far right), are computed as a function of the training
sample size D to compare how well the generated jets from each model matches the target distribution from JetClass. We
also report the mean value and the envelopes over 5 trainings with different random seeds. When applicable, we also show
power-law fits ∝ D−γ to the metrics.

The primary challenge in fine-tuning arises from the dif-
ferences in the domains of the jet pT distributions and
particle multiplicities between the two datasets. JetClass
imposes a narrower pT window between 500 GeV and
1000 GeV and tends to have around ∼ 30 particles per
jet on average, while AOJ only applies a lower cut around
250 GeV and has around ∼ 50 particles per jet on aver-
age. When fine-tuning, the pre-trained model must adapt
to these differences and learn to generate jets with fewer
particles and the new kinematic cuts. The results for the

pT distributions and particle multiplicities show how the
fine-tuned model smoothly interpolates between the AOJ
and JetClass as a function of the training sample size D.
Furthermore, the generation quality improves with in-
creasing training sample size, achieving almost optimal
results with a reduced sample size of 100K jets for the pT
distribution and 10K for the multiplicities. In contrast,
the randomly initialized models trained from scratch re-
quire a significantly larger dataset, approximately an or-
der of magnitude more jets, to achieve optimal perfor-
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mance. For the jet mass and the substructure observable
τ21, the fine-tuning performance saturates with a remark-
ably small number of training samples, resulting in an
almost flat dependence of the metrics on D. Specifically,
fine-tuning requires only about 1000 jets to reach optimal
performance, whereas training from scratch requires sig-
nificantly more data to achieve comparable results. This
is not too surprising, as the transfer from AOJ to JetClass
for these features does not require much effort, given the
similarity in the shapes of these distributions.

Next, we examine the results in fig. 4, which corre-
spond to top-quark jet generation. Since the AOJ dataset
is completely dominated by QCD jets, the transfer learn-
ing task between AOJ and JetClass becomes more chal-
lenging due to the change in jet type. For instance,
fine-tuning must map the low-mass Sudakov peak char-
acteristic of QCD jets to the top-quark resonance peak
at mt = 175 GeV. Additionally, the model must tran-
sition from generating 1-prong QCD jets to 3-pronged
top-quark jets, as reflected in the horizontal gap be-
tween the peaks in the τ32 substructure distributions.
Despite these obstacles, we find that transfer learning
consistently outperforms training from scratch when us-
ing smaller datasets. For example, the top-quark mass,
represented by the mode in the jet mass distribution, is
learned with good precision by the fine-tuned model us-
ing a training dataset of only 10K jets. In contrast, the
model trained from scratch requires an order of magni-
tude more data to achieve comparable performance. A
similar trend is observed for the τ32 distribution, where
transfer learning morphs the AOJ jets into JetClass top-
quark jets, achieving competitive results with only 100K
training jets. In comparison, models trained from scratch
fail to generate jets with a reliable substructure for train-
ing sample sizes below 1M jets.

D. Power-law scaling

Finally, we observe that the performance metrics for
the fine-tuned models, when not in the saturated regime,
follow a power-law scaling of the form D−γ with respect
to the training sample size D. Neural scaling laws, such
as these, have attracted broad interest and have been an-
alyzed extensively in various settings in recent years, see
[53] for a nice overview of the ML literature and original
references. In particular, they have been observed in the
context of jet classification [54]. We find that the expo-
nents for a wide range of high-level observables are consis-
tently within the range 0.2 < γ < 0.45 (see dashed lines
in fig. 3 and 4). This scaling behavior holds for both the
KL and Wasserstein-1 metrics and applies to both QCD
and top-quark, suggesting a form of universality. The
only exception to this scaling is the particle multiplicity
distribution, which shows a more irregular dependence
on the training sample size. Overall, this demonstrates
that the generative performance scales predictably and
uniformly with the training sample size across most high-

level observables, enabling a smooth and consistent trans-
fer learning between the AOJ and JetClass datasets.
In contrast, the randomly initialized models trained

from scratch do not satisfy such universal scaling across
most physical observables. The reason behind this may
be that these operate in the small-data regime [55], where
their performance is limited by the lack of sufficient
training data. In this regime, models can only perform
marginally better than random guessing, as each addi-
tional sample provides limited new information for learn-
ing. The breaking of scaling is particularly evident for the
jet substructure features, such as τ21 for QCD and τ32
for tops, and to a lesser extent for the jet mass, where
the performance metrics exhibit irregular and dataset-
dependent scaling as the training sample size increases.
Only after the model has seen sufficient training data,
approximately around 1M jets, does the training stabi-
lize, resulting in reliable jet substructure and jet mass
modeling. This discrepancy highlights the advantage of
pre-training in achieving a more robust and systematic
improvement in generative performance.

IV. CONCLUSION

We are releasing the AspenOpenJets (AOJ) dataset,
which comprises 180 million jets from CMS open data,
in a standard machine learning-friendly format. This
dataset provides an excellent resource for exploring foun-
dation models and other machine learning techniques
that use large, unlabelled datasets for pre-training.
In addition, we present the first jet-based foundation

model in high-energy physics trained on real collider data
from the AOJ dataset. By using this rich dataset to pre-
train a foundation model, we show that fine-tuning for
specific tasks - such as generating jets of different types
in different kinematic regions - yields significant perfor-
mance improvements over models trained from scratch.
In particular, the generative performance of our founda-
tion model scales predictably with training sample size,
facilitating effective transfer learning. This demonstrates
the power of foundation models to provide improved per-
formance even over significant domain shifts.
We hope that this study will encourage further en-

gagement with open data from LHC experiments, and
promote advances that bridge phenomenological studies
and deployment in actual experiments.
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Process CMS Dataset Name Cross Section (pb)
data /JetHT/Run2016G-UL2016 MiniAODv2-v2/MINIAOD -

/JetHT/Run2016H-UL2016 MiniAODv2-v2/MINIAOD -
QCD /QCD Pt 300to470 TuneCP5 13TeV pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v1/MINIAODSIM 7823

/QCD Pt 470to600 TuneCP5 13TeV pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v1/MINIAODSIM 648.2
/QCD Pt 600to800 TuneCP5 13TeV pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v1/MINIAODSIM 186.9
/QCD Pt 800to1000 TuneCP5 13TeV pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v1/MINIAODSIM 32.3

tt̄ /TTToHadronic TuneCP5 13TeV-powheg-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v1/MINIAODSIM 378.5
/TTToSemiLeptonic TuneCP5 13TeV-powheg-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v1/MINIAODSIM 365.2

W + jets /WJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v2/MINIAODSIM 315.6
/WJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v2/MINIAODSIM 68.6
/WJetsToQQ HT-800toInf TuneCP5 13TeV-madgraphMLM-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v2/MINIAODSIM 34.9

Z+ jets /ZJetsToQQ HT-400to600 TuneCP5 13TeV-madgraphMLM-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v2/MINIAODSIM 145.4
/ZJetsToQQ HT-600to800 TuneCP5 13TeV-madgraphMLM-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v2/MINIAODSIM 34.0
/ZJetsToQQ HT-800toInf TuneCP5 13TeV-madgraphMLM-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v2/MINIAODSIM 18.7

H→ bb̄ /GluGluHToBB Pt-200ToInf M-125 TuneCP5 MINLO 13TeV-powheg-pythia8/RunIISummer20UL16MiniAODv2-106X mcRun2 asymptotic v17-v2/MINIAODSIM 0.27

TABLE II. A list of the datasets used to construct AOJ and the Monte Carlo samples used to estimate its composition.
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CODE

The code that was used to create AspenOpen-
Jets from CMS open data can be found at
https://github.com/OzAmram/AOJProcessing, and the
code used for the OmniJet-α model and its train-
ing can be found at https://github.com/uhh-pd-
ml/omnijet alpha.

DATASET

The AspenOpenJets dataset can be found at
http://doi.org/10.25592/uhhfdm.16505.

Appendix A: CMS Samples

MC samples provided by CMS were used to estimate
the composition of the AOJ sample. CMS uses a va-
riety of generators for the simulation different physics
processes, including MADGRAPH5 aMC@NLO [43],
PYTHIA [44], and POWHEG [56–58]. Each sample
uses PYTHIA with the underlying event tune CP5 [59]
to simulate the parton shower and hadronization. All
samples use the NNLO NNPDF 3.1 parton distribu-
tion functions [60–62]. Some physics processes are split
into several samples covering different kinematic regions.
Each sample is normalized to the appropriate cross sec-
tion.
To estimate the number of fully merged W, Z, top, and

H→ bb̄ jets the corresponding MC samples were used. A
matching criteria was applied based on truth-level in-
formation from the generator to ensure the estimate re-
flected the number of fully-merged jets of each type. For
each heavy resonance, generator-level information was
used to check that all the quarks from the heavy reso-
nance decay were within ∆R < 0.8 of the reconstructed
AK8 jet found by our selection. The remaining 99.5%
of jets not estimated to be heavy resonance decays are
assumed to be QCD. The resulting numbers should be
considered rough estimates, as the MC modeling of these
signals is imperfect, and the estimates do not incorpo-
rate corrections to the simulated trigger and reconstruc-
tion efficiency typically employed in physics analyses by
CMS.
Table II lists the CMS data and MC samples used and

their corresponding cross sections.
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