
FERMILAB-PUB-24-0925-ETD-PPD

End-to-end workflow for machine learning-based qubit readout with QICK and hls4ml

Giuseppe Di Guglielmo,1, ∗ Botao Du,2 Javier Campos,1 Alexandra Boltasseva,3

Akash V. Dixit,4 Farah Fahim,1 Zhaxylyk Kudyshev,3 Santiago Lopez,2 Ruichao Ma,2

Gabriel N. Perdue,1 Nhan Tran,1 Omer Yesilyurt,3 and Daniel Bowring1

1Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
2Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA

3Elmore Family School of Electrical and Computer Engineering,
Birck Nanotechnology Center and Purdue Quantum Science and Engineering Institute,

Purdue University, West Lafayette, IN 47907, USA
4University of Chicago, Chicago, IL 60637, USA

(Dated: January 27, 2025)

We present an end-to-end workflow for superconducting qubit readout that embeds co-designed
Neural Networks (NNs) into the Quantum Instrumentation Control Kit (QICK). Capitalizing on the
custom firmware and software of the QICK platform, which is built on Xilinx RFSoC FPGAs, we
aim to leverage machine learning (ML) to address critical challenges in qubit readout accuracy and
scalability. The workflow utilizes the hls4ml package and employs quantization-aware training to
translate ML models into hardware-efficient FPGA implementations via user-friendly Python APIs.
We experimentally demonstrate the design, optimization, and integration of an ML algorithm for
single transmon qubit readout, achieving 96% single-shot fidelity with a latency of 32 ns and less
than 16% FPGA look-up table resource utilization. Our results offer the community an accessible
workflow to advance ML-driven readout and adaptive control in quantum information processing
applications.

Keywords: Quantum Computing; Superconducting Qubit Readout; Machine Learning; Radio Frequency
System-on-Chip (RFSoC)

I. INTRODUCTION

Quantum technologies hold the promise to transform
a range of applications from computation and communi-
cation to sensing. Realizing these quantum advantages,
however, requires scaling from current small-scale proto-
types to large-scale quantum processors with increasingly
complex qubit arrays. As the number of qubits grows,
so does the need for a commensurately scalable and effi-
cient classical co-processing infrastructure. The software,
firmware, and hardware responsible for controlling and
reading out the quantum states must not only support
the expanding qubit counts but also maintain the high
fidelity and low latency critical for successful quantum
operations.

Superconducting (SC) qubits have emerged as a lead-
ing platform for building large-scale quantum processors
[1]. The rapid progress is thanks to the scalability of the
lithographically fabricated superconducting circuits, the
instrumentation ecosystem available at the operating fre-
quencies of SC qubits, and advances in cryogenic systems
to reach the millikelvin temperatures required for their
quantum operation. Noisy Intermediate-Scale Quantum
(NISQ) devices with more than a hundred qubits are
now in operation, showing significant progress towards
computational quantum advantages [2–4]. As these de-
vices increase in complexity, there is a growing need for
integrated control and readout solutions that combine

∗ gdg@fnal.gov

functionality, flexibility, ease of deployment, and cost-
effectiveness.
Recent developments in Radio Frequency System-on-

Chip (RFSoC) technologies are accelerating this effort [5–
8]. By combining the capabilities of Field-Programmable
Gate Arrays (FPGAs) with RF data converters, RFSoC-
based systems provide real-time signal generation via
direct digital synthesis in the microwave domain, effi-
cient readout via fast analog-to-digital conversion, and
low-latency signal processing. In particular, the Quan-
tum Instrumentation Control Kit (QICK) [5, 9] has seen
growing adoption among laboratories developing super-
conducting qubits, as well as other experimental plat-
forms.
In parallel to this hardware development, there is a

crucial need to integrate the classical and quantum hard-
ware with a robust and scalable software stack. Software
challenges include device calibration and tune-up, mul-
tiplexed readout, and fast adaptive control. These chal-
lenges span both classical and quantum control in the
presence of noise, crosstalk, and other errors. For future
fault-tolerant quantum machines, fast, high-fidelity mea-
surements across large systems and real-time, low-latency
adaptive feedback control are essential [10, 11].
The rise of machine learning (ML) tools in classic com-

puting provides a powerful toolset to develop adaptive,
heuristic algorithms for qubit readout and control. In
particular, ML can be used in readout to account for
effects that are difficult to compute analytically, such as
non-linear behaviors in the time-evolution of signal traces
including noise, multi-qubit correlations and crosstalk,
and the evolution of the system dynamics over time due

ar
X

iv
:2

50
1.

14
66

3v
1

 [q
ua

nt
-p

h]
 2

4
Ja

n
20

25

mailto:gdg@fnal.gov

2

Super-
conducting
qubit device

ML model for
qubit state

discriminator

Quantized
ML model

High-level
synthesis
for FPGAs

Quantum
Instrumentation

Control Kit QKeras

Model conversion
& optimization

Readout
data

Validation
& co-design

Firmware
integration

FIG. 1. Overview of the QICK and hls4ml workflow.

to external effects [12–16]. Ultimately, an active learn-
ing ML approach can provide a path to high-fidelity au-
tonomous and adaptive qubit readout control systems.
Toward this goal, it is important to develop a platform
for researchers to study, train, and deploy ML algo-
rithms, bringing together expertise in quantum systems,
machine learning, and readout electronics that meet the
constraints of state-of-the-art experiments.

In this paper, we present an open-source workflow
based on QICK and hls4ml to advance ML-based quan-
tum control. The open-source hls4ml package [17, 18]
enables users to translate ML models into low-level logic
descriptions using High-Level Synthesis tools through ac-
cessible Python APIs. This allows for algorithm and ex-
periment design without requiring detailed firmware de-
velopment knowledge for FPGAs. Specifically, hls4ml
supports the optimization of neural network designs in
hardware with techniques such as quantization-aware
training [19] and pruning [20], which minimize hardware
resources and latency by tuning high-level parameters.

We demonstrate an ML-based qubit readout algorithm
on QICK, integrating a neural network designed through
hls4ml. This includes developing and deploying an end-
to-end workflow for ML-based superconducting qubit
readout and providing open-source tools for others to use
in their research. Our initial demonstration focuses on
the readout of a single superconducting transmon qubit.
The ML implementation achieves a single-shot readout
fidelity of 96% with a latency of 32 ns and the maximum
FPGA resource usage of Look-Up Tables (LUTs) of 16%.
The open-source end-to-end workflow for designing and
integrating NN models into QICK is illustrated in Fig-
ure 1. The code is made publicly available at Ref. [21].

This paper is organized as follows. In Section 2, we
describe the setup for the superconducting qubit system
under study, visualize the readout data, and describe
non-ML-based readout methods. In Section 3, we detail
the NN model training and optimization with hls4ml
for the available resources within the QICK readout sys-

tem. Section 4 describes the integration of the hls4ml
neural network intellectual property (IP) block with the
QICK firmware and hardware. We conclude in Section
5, describing the results of this study and what future
capabilities this will enable.

II. SUPERCONDUCTING QUBIT READOUT

A. Background

In superconducting (SC) qubits, quantum information
is encoded as excitations of electromagnetic resonances
formed by SC circuit elements. The transmon qubit [22],
a workhorse in contemporary SC quantum processors,
can be described as an anharmonic microwave resonator,
where the SC Josephson junction provides the anhar-
monicity. The computational basis of the transmon con-
sists of its two lowest energy levels, denoted as |0⟩ and
|1⟩, which correspond to zero and one excitation (mi-
crowave photon) in the transmon, respectively. The an-
harmonicity of the transmon ensures unequal level spac-
ing, enabling coherent control within the computational
subspace using resonant microwave pulses.
The quantum state of a transmon qubit is measured by

coupling the transmon to a linear microwave resonator
[23, 24]. The dispersive interaction between the read-
out resonator and the qubit induces a frequency shift in
the resonator that depends on the qubit state. Conse-
quently, the qubit states can be distinguished by probing
the readout resonator at a frequency near its resonance
and monitoring the transmitted or reflected quadrature
signals. In a typical projective measurement, the quan-
tum state collapses into one of the basis states, and the
readout produces a single binary outcome.
Scaling SC quantum processors toward fault-tolerant

operation and quantum error correction requires high-
fidelity single-shot readout with minimal measurement
duration. Achieving this fidelity depends on several de-
sign considerations that influence the distinguishability
of the qubit states |0⟩ and |1⟩ [23]. These factors include
the linewidth of the readout resonator, the magnitude
of the dispersive shift, noise from downstream amplifiers,
and the number of photons collected during the measure-
ment. The latter is determined by the integration time
and the readout power.

B. Control and readout hardware

The experiments in this work are conducted on a fre-
quency tunable multi-transmon device, as described in
[25]. The hardware setup for qubit control and read-
out is illustrated in Fig. 2. The ML-based qubit read-
out is performed on a single qubit of frequency ωq =
2π × 4.50GHz, with all other qubits far-detuned in fre-
quency and effectively decoupled. The corresponding
readout resonator has frequency ωr = 2π × 6.32GHz,

3

Dilution refrigerator

Transmon qubit chipRead

Drive

Flux

Read

ZCU216 w/ QICK

Gens DACtProc

NN
Classifier

Demod
& Bin

ADC

{I_n,Q_n}

BRAM

P
ython &

 Zynq

FIG. 2. Experimental setup. The Xilinx RFSoC ZCU216
runs on custom QICK firmware and software for qubit con-
trol and readout. The qubit readout and drive pulses are
combined before entering the fridge; the flux pulse is used for
qubit cooling. The readout signal is amplified before being
digitalized by the ADC.

and linewidth κr = 2π × 1.5MHz from its coupling to
the readout transmission line. The qubit-resonator cou-
pling is g = 2π×65MHz, giving a qubit-state-dependent
dispersive shift of 2χ = 0.4MHz. At the operating fre-
quency, the transmon qubit has a relaxation time of
T1 = 32µs, and a dephasing time T ∗

2 = 1.7µs.
The Xilinx ZCU216 RFSoC evaluation board is run-

ning a modified version of the QICK firmware with an
integrated ML classifier. We utilize a mixer-free setup
without any external local oscillators [9]: The microwave
pulses for qubit control and readout are directly syn-
thesized with the ZCU216’s 6.88GS/s digital to analog
converters (DACs). rly, the readout signal from the SC
qubit device is directly digitized by the ZCU216’s analog
to digital converters (ADCs) running at 6.88GS/s and
demodulated on the FPGA to generate the time-series
quadrature signals I(t) and Q(t).

C. Single-shot qubit readout

To characterize the readout fidelity, we first prepare
the transmon qubit in the computational basis of ground
state |0⟩ and excited state |1⟩.

In our device, the transmon qubit has an excited state
population of approximately 6% at thermal equilibrium
due to coupling to environmental noise. To reduce state
preparation error from the thermal population, we per-
form a cooling step at the beginning of each experiment
which utilizes the readout resonator as a dissipative cold
reservoir. By applying an AC signal of frequency ωr−ωq

on the flux control line to modulate the transmon fre-
quency, the transmon parametrically couples to the res-
onator and relaxes towards a lower excited state pop-
ulation [25]. Here, we use a flux modulation pulse of
duration 2.3 µs, and an amplitude that modulates the
qubit frequency by approximately ±36MHz. This corre-
sponds to an effective resonant qubit-resonator coupling
of geff = 2π × 0.65MHz. The modulation pulse, with
a frequency at the qubit-resonator detuning of approxi-

mately 1.8GHz, is generated using a separate DAC chan-
nel on the QICK-controlled ZCU216. With the cooling
sequence, we prepare the qubit ground state with less
than 1.6% thermal population, limited by the thermal
population in the readout resonator.repare the excited
state, we first perform the cooling step and then apply a
resonant microwave π-pulse at the qubit frequency with
a Gaussian width σ = 46ns and total length 4σ. The π-
pulse error is ≤ 0.4%, characterized by measuring qubit
population after applying repeated π-pulses.
Immediately following the initial state preparation, we

send a 2.5µs square-shaped readout pulse to the readout
resonator. After interacting with the coupled resonator-
qubit system, the readout pulse returned to the ZCU216
and is digitized by the ADC to a discrete-time series
of quadrature values {In, Qn}, where n labels the dis-
crete time steps. In our QICK setup, the readout pulse
length of 2.5µs corresponds to 770 ADC clock cycles, i.e.
n = {1, ..., 770}. The experiment is repeated with a cy-
cling period of 100 µs to collect statistics. For the labeled
training data, we used 500,000 shots each for qubits pre-
pared in |0⟩ and |1⟩. In the standard QICK firmware,
the time series can either be saved in the on-board mem-
ory for offline processing, or time-averaged in real-time
and saved as average values for each readout {Ī , Q̄}. Ad-
ditionally, the time-averaged values can be compared to
a pre-configured threshold in real-time on the FPGA to
yield a binary output and be used as logic input for con-
ditional qubit control. In our current implementation of
ML-based readout, the time-series {In, Qn} is streamed
to the NN classifier block on the FPGA and the NN
prediction outputs are saved in the programmable logic
block memories (BRAM), as shown in Fig. 2.

D. Readout Fidelity from threshold methods

Figure 3(a) shows representative single-shot readout
data and the time-series I/Q trajectories averaged over
all training shots. The trajectories for states |0⟩ and |1⟩
separate within the first 100 clock cycles (approximately
325 ns), limited by the linewidth of the resonator. Be-
yond this initial period, the photon number in the res-
onator stabilizes, resulting in a near-constant separation
between the average |0⟩ and |1⟩ trajectories.

We plot the time-averaged readout signal in the I/Q
plane in Fig. 3(b), revealing two distinct Gaussian-like
distributions. A simple threshold can be applied to the
time-averaged I/Q signal to predict the qubit state and
quantify readout fidelity. By projecting the I/Q signal
along the axis connecting the average values of the |0⟩
and |1⟩ state distributions, we generate the histogram
shown in Fig. 3(c), with the optimal threshold indicated
by the gray dashed line.

The single-shot readout fidelity is defined as F ≡ 1 −
1
2 (P (0|1) + P (1|0)). Here, P (0|1) is the probability of
a qubit prepared in the excited state being misclassified
as the ground state, and P (1|0) is the probability of the

4

0 100 200 300 400 500 600 700
Time (ADC clock cycle)

−2000

0

2000
Q

 -
AD

C
 u

ni
t

0
1

−200 0 200
I - ADC unit

−200

0

200

Q
 -

AD
C

 u
ni

t

0 200
Counts

−200

0

200
Q

 -
AD

C
 u

ni
t

0
1

a.

b. c.

FIG. 3. Typical single shot readout signal. The readout
phase is adjusted to optimize the signal in Q quadrature.
(a) Single-shot readout trajectory and averaged readout tra-
jectory. (b)(c) Time-averaged single-shot readout signal in
the I-Q plane and its histogram (showing 5000 shots for bet-
ter visibility). The gray dashed line represents the readout
threshold for optimized readout fidelity.

reverse classification error.

Using the full readout data (770 clock cycles), the
thresholding (TH) method yields a single-shot fidelity of
F = 95.80 ± 0.03%, with P (0|1) ≈ 6.05 ± 0.04% and
P (1|0) ≈ 2.34±0.02%. Error bars represent the standard
error of the mean, based on the training dataset size. The
distinguishability of the qubit states is initially limited by
the resonator bandwidth, and diminishes at longer times
due to qubit relaxation. Therefore, a weighted time aver-
age of the I/Q signal can enhance performance when the
threshold is applied. Using the optimal weights given by
the matched-filter (MF) method [26] with the full read-
out window, we obtain F = 95.76 ± 0.03%, comparable
to the simple thresholding (TH) method.

The observed single-shot infidelity results from several
factors, including residual thermal population, qubit re-
laxation, and signal-to-noise ratio (SNR) of the amplifier
chain. Residual thermal population (≈ 1.6%) contributes
to errors in both P (0|1) and P (1|0). Additionally, qubit
relaxation during the readout window (T1 decay) ac-
counts for ≈ 4% contribution to P (0|1). These effects
are evident in the histogram as asymmetric tails of the
Gaussian distributions. The remaining infidelity (< 1%)
arises from finite SNR in the readout amplifier chain and
potential readout-induced qubit transitions not captured
by T1 decay. Higher readout fidelity can be achieved by
employing quantum-limited amplifiers to enhance SNR
[27], incorporating Purcell filters to reduce qubit relax-
ation and allow faster readout [28, 29], and optimizing

readout pulse shaping to minimize state-changing errors
and readout duration [30].
To utilize the data more efficiently and reduce the

size of the neural network (NN) classifier, we analyze
the readout fidelity with truncated single-shot data, lim-
iting the readout window to 400 clock cycles start-
ing at different locations within the readout period, as
shown in Fig. 7. Using the threshold (TH) method, we
achieve an optimized fidelity of F = 96.04± 0.03% with
P (0|1) ≈ 5.56± 0.04% and P (1|0) ≈ 2.35± 0.02% when
truncating the window to [100,500] clock cycles. The
matched-filter (MF) method yields a comparable fidelity
of F = 96.01 ± 0.03% for the same truncation window.
A detailed discussion of truncation window optimization
for the NN method is provided in Sec.III B.

III. NEURAL NETWORK MODEL CO-DESIGN

A. Design strategy

The primary objective of the neural network model is
to facilitate efficient and accurate qubit readout within
the firmware design pipeline. Recently, various neu-
ral network architectures have found direct applications
with transmon qubit systems. Recurrent neural net-
works (RNNs), designed for sequential data, have been
utilized to infer individual quantum trajectories of a su-
perconducting qubit’s evolution [31, 32]. Autoencoders
are used for superconducting qubits by pretraining on
qubit readout signals to extract relevant features, which
are then used for enhanced classification performance in
a supervised manner [33]. For direct qubit state classifi-
cation, convolutional neural networks (CNNs) and mul-
tilayer perceptrons (MLPs) have been proposed due to
their simplicity and ability to mitigate cross-talk effects
in multi-qubit configurations [34], [35].
In line with previous comparisons between NN mod-

els [34, 35], we found that different types of neural net-
work architectures perform similarly for the qubit clas-
sification problem, with MLPs having a slight edge in
classification accuracy. Beyond accuracy, the choice of
NN architecture is highly constrained by the system re-
quirements, available FPGA resources, and strict latency
constraints. Co-design of the algorithm is a Pareto op-
timization between algorithm fidelity and NN resources
and latency. Dense MLPs, due to their straightforward
design, often require fewer computational resources than
more complex architectures like RNNs, CNNs, or au-
toencoders. Considering these factors, we selected an
MLP for binary classification to distinguish between the
ground and excited states of qubits. The model’s sim-
plicity ensures effective integration into the QICK system
without overwhelming computational resources.
To that end, we start with a simple 2-layer MLP neu-

ral network architecture as illustrated in Fig. 4. We have
explored other MLP and CNN architectures, including
more and less hidden layers, and we find a 2-layer ar-

5

FIG. 4. Visualization of a two-layer neural network architec-
ture with an 800-dimensional input, a dense layer with batch
normalization followed by another dense layer with a sigmoid
activation function.

chitecture is sufficient for this task. The optimal archi-
tecture may be different for other tasks such as different
experimental setups or multiple qubits. To demonstrate
our general co-design principles to minimize FPGA re-
sources while maximizing fidelity performance, we focus
on the following:

• Hyperparameter design space exploration: Reduc-
ing the overall network size, i.e. weights and com-
putations, through hyperparameter design space
exploration – this includes optimizing the readout
window start time and size and the number of neu-
rons in the hidden layers.

• Hardware optimization: Quantization of the NN
through quantization-aware training (QAT) meth-
ods – the resources of the NN approximately scale
quadratically with the precision of the operations
and embedding quantization into the training pro-
cess with QAT often yields an overall lower pre-
cision model. Further hardware optimization can
be done at the implementation level by tuning the
amount of parallelization of the model computa-
tions in hardware. For such low-latency applica-
tions, we generally try to “unroll” (parallelize) the
computations as much as is allowed while balancing
FPGA resources.

The model consists of dense and batch normalization
layers. A batch normalization layer is valuable for such
an architecture given the bit width of inputs and the
use of fixed-point calculations in quantized neural net-
works to optimize FPGA resources – described in more
detail below. Among other benefits of batch normaliza-
tion, scaling the logits prevents computational overflows.
We utilized the Adam optimizer [36] and a binary cross-
entropy loss function for optimization, and processed the
network’s output with a sigmoid function to produce a
probability distribution over the classes. We employed
gradient descent with a learning rate of 10−4. Each train-
ing iteration was completed in approximately 29 seconds
on NVIDIA A100 GPU.

To design the NN classifier, we adopt hls4ml [17, 18],
an open-source software framework that bridges the gap
between high-level machine learning models and low-
level hardware implementation. hls4ml converts ma-
chine learning algorithms, especially neural networks,
from frameworks like TensorFlow or PyTorch into hard-
ware descriptions in C++ for high-level synthesis (HLS)

0 50 100 150 200 250 300 350
Readout window start location (ADC clock cycle)

50
100
150
200
250
300
350
400
450
500
550
600
650
700
770

W
in

do
w

 s
iz

e
(A

D
C

 c
lo

ck
 c

yc
le

)

0.5406 0.6530 0.7481 0.7974 0.8230 0.8281 0.8319 0.8319
0.6563 0.7771 0.8512 0.8843 0.8964 0.9005 0.8998 0.8979
0.7786 0.8654 0.9086 0.9237 0.9298 0.9287 0.9283 0.9253
0.8655 0.9144 0.9360 0.9437 0.9450 0.9437 0.9407 0.9379
0.9149 0.9394 0.9490 0.9524 0.9523 0.9495 0.9466 0.9439
0.9399 0.9508 0.9558 0.9562 0.9554 0.9524 0.9499 0.9466
0.9507 0.9569 0.9591 0.9588 0.9568 0.9540 0.9512 0.9480
0.9571 0.9598 0.9603 0.9594 0.9575 0.9549 0.9517 0.9490
0.9596 0.9610 0.9607 0.9596 0.9575 0.9550 0.9521
0.9610 0.9616 0.9610 0.9597 0.9577 0.9550
0.9616 0.9617 0.9610 0.9598 0.9576
0.9615 0.9619 0.9610 0.9597
0.9617 0.9617 0.9610
0.9615 0.9615
0.9614

0.90 0.92 0.94 0.96

Fidelity

FIG. 5. Analysis of NN with four hidden neurons performance
as a function of the starting time of the readout window (in
clock cycles) on the x axis and the size of the readout window
on the y axis. The z axis is the fidelity of the model.

tools such as AMD/Xilinx Vivado HLS [37]. In partic-
ular, we will use the QKeras [38] front-end that inter-
faces with hls4ml in order to perform QAT. The hls4ml
tool generates a dataflow architecture on FPGA, which is
well-suited for neural network computations’ parallel and
pipelined nature. In this architecture, each neural net-
work layer can be implemented as a separate hardware
module, and data moves sequentially from one module
(layer) to the next with minimum buffering. This allows
for continuous data processing and minimizes latency.

B. Hyperparameter Design Space Exploration

Figure 5 shows the fidelity of an optimized neural net-
work with four hidden neurons (hn) using varying read-
out window sizes and starting locations. The smallest
window size is 50 clock cycles (CLK) and increments by
50 CLKs up to 700 CLKs, followed by an evaluation
on the full readout window. This process is repeated
for starting locations, beginning at 0 CLK and increas-
ing in 50 CLK increments up to 350. The results in-
dicate that starting the readout window later generally
improves performance, especially with smaller window
sizes. However, this improvement plateaus at around
100-150 CLKs. Similarly, larger windows lead to bet-
ter performance, though the benefits diminish beyond
approximately 400 CLKs. Based on these findings, we
focus on a starting location of 100 CLKs, as it provides
high fidelity with the smallest effective window size (400
CLKs). We repeated this design space exploration for the
second NN version with 64 hidden neurons, as well as for
thresholding and matched filtering methods, observing
similar trends as shown in Figure 5.
Figure 6 presents the design space exploration of both

2-layer NN variants, comparing their performance based
on the number of trainable parameters and test fidelity

6

103 104 105

Model Parameter Count

0.958

0.959

0.960

0.961

0.962
Fid

el
ity

350

400
450

650

350

400

450 650

TH method
MF method
NN (4 hn)
NN (64 hn)

FIG. 6. Model size (in parameter count) versus fidelity. Each
point on the graph corresponds to a different window size
ranging from 350 to 650 clock cycles.

across different readout window sizes. All results are
based on data starting at 100 CLKs. The exploration
includes window sizes starting from 350 CLKs and in-
creasing in 50 CLK increments, up to 650 CLKs. As
seen in Figure 5, the most critical features for state dis-
crimination appear after the first 100 ADC clock cycles.
Therefore, we exclude the first 100 ADC units in our
exploration. The graph indicates that test accuracy im-
proves with the number of parameters, reaching a peak
at a readout window size of 400 CLKs, beyond which ad-
ditional parameters provide minimal improvement. Both
NN variants show similar performance within this range,
demonstrating that smaller NNs can achieve the same fi-
delity as larger architectures, making them more efficient.
This may suggest that the smaller NN is less prone to
overparameterization and overfitting, making it a more
efficient choice for state discrimination and FPGA inte-
gration.

Figure 7 illustrates how fidelity varies as we change
the starting position of the 400-CLK readout window of
the 2-layer NN with 4 hidden neurons, thresholding, and
match filtering methods. All methods show a similar
trend: fidelity initially increases with the readout start
window location, peaks around the 100–150 ADC clock
cycle mark, and then gradually declines. This is con-
sistent with the time it takes to populate the readout
resonator, seen previously in the average trajectory data
in Fig. 3. When the readout window starts too late,
the decrease in fidelity can be associated with qubit T1

decay. The NN method generally has a slightly higher
fidelity than the TH and MF methods across most loca-
tions. Both methods achieve the highest fidelity when the
readout window begins around 100 ADC CLKs. Moving
forward, we will focus on a 400 CLK readout window
starting at 100 CLKs.

0 50 100 150 200 250 300 350
Readout Start Window Location (ADC clock cycle)

0.948

0.950

0.952

0.954

0.956

0.958

0.960

Fid
el

ity

TH method
MF method
NN method (4 hn)

FIG. 7. Optimal selected neural network hyperparameters
(red line) with 400 clock cycle readout window starting at
100 clock cylces compared against the threshold and match
filter methods.

C. Hardware optimization

A co-design approach is taken to optimize neural net-
works for FPGA implementation. Typically, all param-
eters and data are represented using fixed-point preci-
sion, as opposed to the standard 32-bit floating-point
notation used during the training and evaluation phases.
For FPGA deployment, all data is quantized to fixed-
point, which results in some level of performance degra-
dation compared to floating-point notation. To address
this, we employ quantization aware training (QAT). This
approach helps improve the accuracy of the quantized
models on FPGAs by simulating quantization during the
training process [39, 40]. Neural networks learn to oper-
ate within the constraints of lower precision (e.g., 8-bit
integers). The benefits of QAT are two-fold: it mini-
mizes the accuracy loss due to quantization and signif-
icantly reduces model size, making it easier to deploy
on devices with limited memory and hardware resources.
Quantized models can achieve faster inference times due
to the reduced computational complexity of arithmetic
operations, which are crucial for real-time processing ap-
plications. All parameters and activations are quantized
using uniform symmetric quantization. Data from the
ADC units are fed directly to the network as 14-bit un-
signed integers.

In future work, normalizing the ADC data should be
studied for robustness against drifts in the readout signal.
We explore different quantization schemes to evaluate the
impact of precision on fidelity. The two NN models we
tested have 800×64×1 and 800×4×1 parameters, and we
explore their performance when using full precision (32-
bit floating-point) and reduced precision, including 6-bit
fixed-point, 3-bit fixed-point, and ternary (2-bit) repre-
sentations. Both models show stable performance using
32-bit floating point (32FP). 6-bit and 3-bit quantiza-
tion shows a slight drop compared to 32FP, but remains
close. Ternary quantization performance, restricted to
−1, 0, or 1, is similar to 6-bit and 3-bit performance
for this single quibit classification task. All quantization

7

schemes followed the same pattern as 32FP, peaking at
100 CLKs around 96% fidelity, then declining at the same
rate. We opt to proceed with the 800 × 4 × 1 NN using
ternary weights to minimize both hardware footprint and
latency.

With a resource-optimized neural network implemen-
tation, we can fully parallelize the hardware implementa-
tion by unrolling the matrix multiplications. This enables
us to minimize the computational latency of the ternary
neural network. We can tune the FPGA resources of the
neural network in hls4ml by configuring this paralleliza-
tion factor, but we choose to fully unroll the hardware
implementation for the lowest latency. After synthesis,
we find the hardware implementation takes 10 clock cy-
cles in total – 8 clock cycles for the computation itself
and 2 clock cycles to store the results in BRAM. With
a 3.22 ns clock cycle, the total latency is 32 ns. The 8
clock cycles is driven by the multiplication latency and
the number of hidden layers in the neural network.

IV. MODEL INTEGRATION: QICK+hls4ml

A. QICK firmware

The QICK system adopts a software-based approach in
which users can access the system remotely using Jupyter
notebooks. QICK includes, in addition to software appli-
cations, Processing System (PS) and Programmable Logic
(PL), as shown in Fig. 2. The PS in the AMD/Xilinx
UltraScale+ device integrates a Zynq system and DDR4
memory, while Linux OS runs on the multicore ARM pro-
cessor. QICK uses PYNQ software libraries and drivers
to simplify the software-firmware interaction and, in par-
ticular, provides the PL with an easy solution for direct
memory access (DMA). The firmware on the PL inte-
grates Readout and Signal Generator blocks, which are
controlled by the timed processor (tProc). The tProc
implements custom instructions to produce, for example,
pulses to control and readout qubits via the Signal Gen-
erator blocks. In QICK, data flows between firmware
components and software applications through the AXI
Interconnect, which is also the backbone for integrating
our NN classifier IP.

B. Neural network classifier integration

Our NN classifier IP follows the loosely coupled model
for hardware accelerators [41]. A tightly coupled accel-
erator would be designed and integrated closely with the
tProc, increasing its complexity, sharing its caches, and
possibly stalling the computation. Meanwhile, loosely
coupled accelerators can be designed separately, easily
maintained, and independently integrated. They operate
on larger data sets and alternate coarse-grain computa-
tion with data transfer phases. In QICK, we integrated
the IP as a device managed with Linux device drivers

running on the processing system’s ARM cores. To in-
terface the classifier with the rest of the QICK system, we
encapsulated the hls4ml-generated NN implementation
(NN hls4ml) in a top-level wrapper (NN axi) synthesized
in Vivado HLS and described below.

trigger

ap_clk

in

config

ap_rst_n

out

NN_axi

AXI-Stream

AXI4-Lite

BRAM-Ctrl

HLS-inferred
reset and clock ports

No-protocol port
(simple signal)

+
+

+

FIG. 8. The interface of the NN classifier as a Vivado IP
integrated into the QICK firmware. AXI interfaces configure
and stream readout data; a BRAM interface connects the IP
with an external buffer on the programmable logic.

C. IP interface

Figure 8 shows the interface of the top-level wrapper
(NN axi) and NN classifier synthesized with AMD/Xilinx
Vivado HLS as an IP for the integration in the QICK
Vivado project. Four main ports are explicitly defined in
the wrapper specifications for HLS:

• Port config receives the configuration information
from the software via memory-mapped registers,
which are bundled together in the AXI4-Lite proto-
col. For example, the user can configure the read-
out window offset and scaling factor at runtime.

• Port in receives input data from the QICK Read-
out block as a discrete-time series of quadrature
values (In, Qn). The series is defined as a 32-bit
wide stream and uses the AXI-Stream (AXIS) pro-
tocol with no TREADY or TLAST side-channel signals.
Each 32-bit word packs two 14-bit I and Q val-
ues with four bits of zero padding. Typically, with
an AXIS protocol, the TREADY signal allows the re-
ceiver to control the pace of the data transfer, indi-
cating to the transmitter when it is ready to accept
more data (i.e., backpressure). In QICK, the lack
of backpressure towards the Readout block means
that the receiver must always be ready to accept
data.

• Port out transfers the classifier output logit val-
ues to a memory buffer on the programmable logic
block memories (BRAM). The buffer size is 128KB,
which allows the storage of 16,384 consecutive pre-
dictions. The BRAMs are mapped to the main
memory via AXI4-Lite and function as high-speed,
local memory within the PL, allowing the NN to
save the prediction in a buffer with minimum de-
lay. The AXI4-Lite interface provides a communi-
cation link between the software running on the

8

Configure Load Compute Store
clk

trigger

in_TVALID

in_TREADY

in_TDATA [31:0] I,Q I,Q I,Q I,Q

out_rst

out_en

out_we [3:0] 0xf

out_addr [31:0] addr addr+4

out_din [31:0] logit_g logit_e

out_dout [31:0] logit_g logit_e

readout_offset

window_size

inference_latency

on_chip_store_latency

in
o
u
t

FIG. 9. Waveforms at the classifier IP interface for a single readout.

RFSoC processor and the BRAMs, enabling ac-
cess to the prediction results at a lower throughput.
The BRAMs on the PL and their corresponding re-
gions in the main memory operate independently,
with the PL logic directly managing the data in the
BRAMs, while the AXI4-Lite interface allows the
processor to interact with this data in a controlled
manner following a loosely coupled paradigm.

• Port trigger receives the trigger signal from the
tProc that controls the classifier execution. No
HLS-generated protocol is specified for this port,
and the associated signal is used directly in the con-
trol logic of the IP.

Vivado HLS automatically infers additional ports for
clock and reset signals and adds them to the final IP
interface, as shown in Figure 8.

D. Behavior and Timing

The classifier IP execution has four phases: configura-
tion, data loading, NN computation, and storage of the
prediction results. First, the software application config-
ures the accelerator via memory-mapped registers. Read-
out data is then streamed over an AXI-stream interface
during the loading phase and transferred to the IP’s pri-
vate local memory. The NN prediction results are saved
locally to BRAM in the PL and finally transferred to the
system’s main memory through an AXI4-Lite interface.

Figure 9 shows the behavior of the classifier as wave-
forms at the IP interface for a single readout trace. The
clock period is 3.25 ns. After a pulse of the trigger
signal, the classifier loads the input data from the in
channel, which has a data lane (in TDATA) that is 32-bits
wide to pack two 14-bit I and Q values. Data constantly
stream from the ADC to the readout block and into
the classifier; thus the valid signal (in TVALID) is mostly
high. Since the classifier IP does not push back, the ready

signal (in TREADY) is only shown as a reference. The user
can configure an additional delay (the readout offset)
counted in clock cycles from the rising edge of the trig-
ger pulse. The duration of the load phase in clock cycles
is the window size of the trained neural network. The
inference latency depends on the complexity of the
neural network, and varies between 5 and 20 clock cycles
for the different NN models we tested. Finally, the IP
takes two more clock cycles (on chip store latency) to
store the inference results locally in the programmable
logic in BRAMs through a simple memory interface out.

E. Software API and Usage

We defined a comprehensive Python API that runs on
the RFSoC processor and interacts with the NN classi-
fier integrated with the rest of QICK system on the pro-
grammable logic. These functions enable users to reset,
configure, and retrieve predictions from the classifier, as
well as debug and inspect the classifier’s internal state.
Once the bitstream is loaded on the FPGA, the first

function to be called is reset classifier. This func-
tion ensures that the classifier is in a clean state by re-
setting its configuration and state registers. Depending
on the needs of the application, a deep reset may be per-
formed to zero out specific memory locations, providing
a fresh start for subsequent operations. The parameters
index lo and index hi allow for selective resetting of a
range of memory indices.
After resetting, the classifier is configured using the

configure classifier function. This step involves set-
ting parameters such as the readout offset or the
scaling factor, which define the operational character-
istics of the classifier. Additionally, the debug parameter
can be set to true to enable detailed logging of the con-
figuration process, aiding in debugging and fine-tuning.
After the initial state preparation, we use a QICK pro-

gram that runs on the tProc and sends a square-shaped

9

Memory Resources Computational Resources
FF BRAM LUT DSP

ZCU216 850,560 1,080 425,280 4,272
QICK 89,783 (10.56%) 309 (28.61%) 60,057 (14.12%) 481 (11.26%)
QICK+NN 124,152 (14.60%) 341 (31.57%) 126,726 (29.80%) 481 (11.26%)
NN +4.04% +2.96% +15.60% +0.00%

TABLE I. Overall FPGA resources available on Zynq UltraScale+ RFSoC ZCU216 and resource utilization for QICK and its
ML-enhanced version. The memory resources are flip-flops (FF) and block RAMs (BRAM); the computational resources are
look-up tables (LUT) and data-signal processors (DSP).

readout pulse to the readout resonator. The ADC digi-
tizes the returned readout signal to a discrete-time series
of quadrature values In, Qn that feeds our classifier. At
this point, to monitor the classifier’s performance, the
get classifier prediction count function returns the
total number of predictions made by the classifier. This
count starts at zero upon initialization or after a reset,
providing a clear indication of how many pulses have been
sent and predictions have been processed.

The get classifier prediction functions allow
users to retrieve the classifier’s output for a specific index
or a range of indices. These outputs are returned as tu-
ples containing logits for the ground and excited states,
which can be further analyzed or used in subsequent pro-
cessing stages.

Finally, to inspect the classifier’s internal state, the
print classifier buffer function prints the contents
of the classifier’s buffer for a specified range of indices.
This is particularly useful for verifying that the classifier
has processed the data correctly and can be an essential
tool for debugging.

F. Performance and Implementation

In summary, our final implementation of the NN model
performs single-qubit state discrimination with a readout
pulse length of 500 clock cycles (1.6µs). Using an ADC
offset of 100 clock cycles, the last 400 clock cycles of
the readout signal are streamed to the NN block. The
NN takes 8 clock cycles to perform the inference and
an additional 2 clock cycles to store the inference result
in a memory buffer, corresponding to a total latency of
10 clock cycles (32 ns) following the end of the readout
window.

With the NN integrated readout, we performed
500,000 single-shot readout experiments for both the
ground- and excited-state readouts. To directly assess
the NN discriminator’s performance, we record both the
NN predicted outputs and the raw time-series I/Q data
for each single-shot experiment. The NN state discrim-
inator resulted in a readout fidelity of F = 96%, com-
parable to the performance of the simple thresholding or
matched filter methods over the same readout window.
For a single-qubit system, we expect similar performance
and will now be able to deploy this end-to-end flow in

more complex and dynamic systems – discussed in more
detail in Section V.
Table I shows the resource requirements for implement-

ing the model in FPGA. Over the columns, we report
the memory resources as flip-flops (FF), basic memory
elements used to store binary data, and Block RAMs,
dedicated memory blocks that can store up to 36 kilobits
on the programmable logic; the computational resources
are look-up tables (LUT), configurable logic blocks used
for implementing logic functions, and digital signal pro-
cessors (DSPs), specialized hardware units for efficient
computation of operations like multiplications and addi-
tions. The row denoted by ZCU216 shows the overall
resources available on the chip of our target development
board (Zynq UltraScale+ RFSoC ZCU216). The second
row shows the resources required by the QICK platform,
while the third row details the combined resources for
the QICK plus the NN IP; in both cases, we report the
absolute value and the percentage of usage for each re-
source (in parentheses). Finally, the last row indicates
the overhead of the NN IP alone. The NN IP requires
additional resources of 4.04% for FFs, 2.96% for BRAMs,
and 15.6% for LUTs. Finally, in terms of performance,
once the readout data has been loaded, the algorithm
latency is ten clock cycles: eight cycles for the NN infer-
ence and two cycles to store the results in the external
BRAMs.

V. SUMMARY AND OUTLOOK

This study introduces a comprehensive workflow for
enhancing the readout of superconducting qubits by in-
corporating co-designed NN into the QICK hardware
platform. Using hls4ml to efficiently co-design NNs on
programmable logic, the workflow addresses critical chal-
lenges such as improving accuracy, reducing latency, and
preserving quantum states during readout. The NN algo-
rithm is optimized using ternary quantization and par-
allelization methods to run with a low latency of 32 ns
following the qubit readout process, consuming less than
16% of the FPGA look-up table resources and less for
other resources. Performance evaluations show that this
approach achieves fidelity comparable to conventional
techniques like thresholding and matched filtering for sin-
gle qubit readout. This open-source framework demon-

10

strates the feasibility of NN-based readout for supercon-
ducting qubits. It provides a valuable tool for researchers
to explore innovative quantum computing methodologies
that integrate machine learning with high-level synthesis
for efficient hardware deployment.

There are increasingly more studies on embedded, real-
time, ML-based qubit readout such as in Ref [12, 42, 43].
However, the experiments from which the data come and,
thus, the algorithmic approaches, optimization, and im-
plementation vary. To make direct comparisons of dif-
ferent approaches and new methods as they are devel-
oped, it is valuable, as a community, to have publicly
available benchmarks, including common datasets and
reproducible results. To that end, we have made our
dataset available on Zenodo [44] and the code to repro-
duce the algorithm training and implementation available
at Ref [21]. We hope that this will be useful for future
studies and encourage more datasets and benchmarks to
be made available as systems grow in complexity.

One near-term upcoming for our platform for user ex-
perimentation is to integrate output of the NN block into
the conditional logic of QICK to run readout experiments
including real-time ML feedback control. This will also
be updated and included in our publicly available code
repository.

There are several directions of exploration that follow-
on directly from this work towards realizing the ultimate
goal of an adaptive and continuously optimized readout
system. For example, model-based readout [45] and rein-
forcement learning methods [46] are promising for contin-
uous and autonomous qubit readout. This could be in-
tegrated directly with the QICK and hls4ml platforms.
While our demonstration algorithm uses a straightfor-
ward dense neural network architecture, there is sig-
nificant potential for developing more performant and
resource-optimized algorithms in hardware using addi-
tional codesign methods such as pruning [20] or other
efficient architectures amenable to time-series data [47].
Relatedly, developing robust algorithms to changing in-
strument conditions [48] can also aid in improved con-
tinuous learning. These directions of exploration are es-
pecially valuable as readout systems grow in complexity
for multi-qubit systems, and ML approaches are already
proving to be powerful [12–15].

In the longer term, we plan to deploy the control and
readout logic in the cryostat as a more scalable solution

for quantum computers with many thousands of qubits.
Placing an SoC that integrates programmable logic as
embedded FPGAs in a cryostat for quantum readout is
motivated by the need to minimize thermal noise, en-
hance signal integrity, and reduce latency. The close
proximity of the logic to the qubits within the cryostat
minimizes signal loss and noise introduction, leading to
a more accurate and reliable quantum readout. Addi-
tionally, the reduced latency in signal processing is es-
sential for real-time quantum error correction and feed-
back, where even minor delays can impact system perfor-
mance. Integrating classical control hardware with quan-
tum hardware in the same cryogenic environment also
simplifies system design, improves efficiency, and sup-
ports scalability as quantum computing systems become
more complex [49, 50].

ACKNOWLEDGEMENTS

We would like to thank Sho Uemura, Leandro Ste-
fanazzi, and Gustavo Cancelo of the QICK development
team for their technical assistance.

This document was prepared using the resources of
the Fermi National Accelerator Laboratory (Fermilab),
a U.S. Department of Energy, Office of Science, Office
of High Energy Physics HEP User Facility. Fermilab is
managed by Fermi Forward Discovery Group, LLC, act-
ing under Contract No. 89243024CSC000002.

G.N.P. was supported for this work by the Department
of Energy (DOE), Office of Science, Office of High En-
ergy Physics, QuantISED program grant “HEP Machine
Learning and Optimization Go Quantum,” identification
number 0000240323. N.T. and J.C. are supported by
the U.S. Department of Energy (DOE), Office of Science,
Office of Advanced Scientific Computing Research under
the “Real-time Data Reduction Codesign at the Extreme
Edge for Science” Project (DE-FOA-0002501). G.D.G. is
supported by Fermi Research Alliance, LLC under Con-
tract No. DE-AC02-07CH11359 with the Department of
Energy (DOE), Office of Science, Office of High Energy
Physics. B.D., S.L., R.M., and D.B. are supported by
the U.S. Department of Energy, Office of Science, Na-
tional Quantum Information Science Research Centers,
Quantum Science Center.

[1] M. Kjaergaard, M. E. Schwartz, J. Braumüller,
P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D.
Oliver, Superconducting qubits: Current state of play,
Annual Review of Condensed Matter Physics 11,
369–395 (2020).

[2] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den
Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility of
quantum computing before fault tolerance, Nature 618,

500 (2023).
[3] Google Quantum AI and Collaborators, Quantum er-

ror correction below the surface code threshold, Nature
10.1038/s41586-024-08449-y (2024).

[4] D. Gao, D. Fan, C. Zha, J. Bei, G. Cai, J. Cai,
S. Cao, X. Zeng, F. Chen, J. Chen, et al., Establish-
ing a new benchmark in quantum computational ad-
vantage with 105-qubit zuchongzhi 3.0 processor (2024),
arXiv:2412.11924 [quant-ph].

https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://doi.org/10.1146/annurev-conmatphys-031119-050605
https://www.nature.com/articles/s41586-023-06096-3
https://www.nature.com/articles/s41586-023-06096-3
https://doi.org/10.1038/s41586-024-08449-y
https://arxiv.org/abs/2412.11924
https://arxiv.org/abs/2412.11924
https://arxiv.org/abs/2412.11924
https://arxiv.org/abs/2412.11924

11

[5] L. Stefanazzi, K. Treptow, N. Wilcer, C. Stoughton,
C. Bradford, S. Uemura, S. Zorzetti, S. Montella, G. Can-
celo, S. Sussman, A. Houck, S. Saxena, H. Arnaldi,
A. Agrawal, H. Zhang, C. Ding, and D. I. Schuster, The
QICK (quantum instrumentation control kit): Readout
and control for qubits and detectors, Rev. Sci. Instrum.
93, 044709 (2022).

[6] Y. Xu, G. Huang, J. Balewski, R. Naik, A. Morvan,
B. Mitchell, K. Nowrouzi, D. I. Santiago, and I. Siddiqi,
Qubic: An open-source fpga-based control and measure-
ment system for superconducting quantum information
processors, IEEE Transactions on Quantum Engineering
2, 1 (2021).

[7] M. O. Tholén, R. Borgani, G. R. Di Carlo, A. Bengtsson,
C. Križan, M. Kudra, G. Tancredi, J. Bylander, P. Dels-
ing, S. Gasparinetti, and D. B. Haviland, Measurement
and control of a superconducting quantum processor with
a fully integrated radio-frequency system on a chip, Rev.
Sci. Instrum. 93, 104711 (2022).

[8] K. H. Park, Y. S. Yap, Y. P. Tan, C. Hufnagel, L. H.
Nguyen, K. H. Lau, P. Bore, S. Efthymiou, S. Carrazza,
R. P. Budoyo, and R. Dumke, ICARUS-Q: Integrated
control and readout unit for scalable quantum processors,
Rev. Sci. Instrum. 93, 104704 (2022).

[9] C. Ding, M. Di Federico, M. Hatridge, A. Houck,
S. Leger, J. Martinez, C. Miao, D. S. I, L. Stefanazzi,
C. Stoughton, S. Sussman, K. Treptow, S. Uemura,
N. Wilcer, H. Zhang, C. Zhou, and G. Cancelo, Experi-
mental advances with the QICK (quantum instrumenta-
tion control kit) for superconducting quantum hardware,
Phys. Rev. Res. 6, 013305 (2024).

[10] M. E. Beverland, P. Murali, M. Troyer, K. M. Svore,
T. Hoefler, V. Kliuchnikov, G. H. Low, M. Soeken,
A. Sundaram, and A. Vaschillo, Assessing require-
ments to scale to practical quantum advantage (2022),
arXiv:2211.07629 [quant-ph].

[11] M. Mohseni, A. Scherer, K. G. Johnson, O. Wertheim,
M. Otten, N. A. Aadit, K. M. Bresniker, K. Y. Cam-
sari, B. Chapman, S. Chatterjee, G. A. Dagnew, A. Es-
posito, F. Fahim, M. Fiorentino, A. Khalid, X. Kong,
B. Kulchytskyy, R. Li, P. A. Lott, I. L. Markov, R. F.
McDermott, G. Pedretti, A. Gajjar, A. Silva, J. Sorebo,
P. Spentzouris, Z. Steiner, B. Torosov, D. Venturelli, R. J.
Visser, Z. Webb, X. Zhan, Y. Cohen, P. Ronagh, A. Ho,
R. G. Beausoleil, and J. M. Martinis, How to build a
quantum supercomputer: Scaling challenges and oppor-
tunities (2024), arXiv:2411.10406 [quant-ph].

[12] P. K. Gautam, S. Kalipatnapu, S. H, U. Singhal, B. Lien-
hard, V. Singh, and C. S. Thakur, Low-latency machine
learning fpga accelerator for multi-qubit-state discrimi-
nation (2024), arXiv:2407.03852 [quant-ph].

[13] P. Duan, Z. F. Chen, Q. Zhou, W. C. Kong, H. F. Zhang,
and G. P. Guo, Mitigating crosstalk-induced qubit read-
out error with shallow-neural-network discrimination,
Physical Review Applied 16, 1 (2021).

[14] E. Magesan, J. M. Gambetta, A. D. Córcoles, and
J. M. Chow, Machine learning for discriminating quan-
tum measurement trajectories and improving readout,
Phys. Rev. Lett. 114, 200501 (2015).

[15] S. Maurya, C. N. Mude, W. D. Oliver, B. Lienhard, and
S. Tannu, Scaling qubit readout with hardware efficient
machine learning architectures, in Proceedings of the 50th
Annual International Symposium on Computer Architec-
ture, ISCA ’23 (Association for Computing Machinery,

New York, NY, USA, 2023).
[16] N. R. Vora, Y. Xu, A. Hashim, N. Fruitwala,

H. N. Nguyen, H. Liao, J. Balewski, A. Rajagopala,
K. Nowrouzi, Q. Ji, K. B. Whaley, I. Siddiqi, P. Nguyen,
and G. Huang, Ml-powered fpga-based real-time quan-
tum state discrimination enabling mid-circuit measure-
ments (2024), arXiv:2406.18807 [quant-ph].

[17] J. Duarte et al., Fast inference of deep neural networks
in FPGAs for particle physics, JINST 13 (07), P07027,
arXiv:1804.06913 [physics.ins-det].

[18] FastML Team, fastmachinelearning/hls4ml (2023).
[19] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,

A. Howard, H. Adam, and D. Kalenichenko, Quantiza-
tion and training of neural networks for efficient integer-
arithmetic-only inference (2017), arXiv:1712.05877
[cs.LG].

[20] H. Cheng, M. Zhang, and J. Q. Shi, A survey on deep
neural network pruning: Taxonomy, comparison, analy-
sis, and recommendations, IEEE Transactions on Pattern
Analysis and Machine Intelligence 46, 10558 (2024).

[21] ML Quantum Readout, https://github.com/

fastmachinelearning/ml-quantum-readout (2024).
[22] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I.

Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Charge-insensitive qubit design de-
rived from the cooper pair box, Phys. Rev. A 76, 042319
(2007).

[23] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gus-
tavsson, and W. D. Oliver, A quantum engineer’s guide
to superconducting qubits, Appl. Phys. Rev. 6, 021318
(2019).

[24] Y. Y. Gao, M. A. Rol, S. Touzard, and C. Wang, Practi-
cal guide for building superconducting quantum devices,
PRX Quantum 2, 040202 (2021).

[25] B. Du, R. Suresh, S. López, J. Cadiente, and R. Ma,
Probing site-resolved current in strongly interacting su-
perconducting circuit lattices, Phys. Rev. Lett. 133,
060601 (2024).

[26] C. A. Ryan, B. R. Johnson, J. M. Gambetta, J. M. Chow,
M. P. da Silva, O. E. Dial, and T. A. Ohki, Tomography
via correlation of noisy measurement records, Phys. Rev.
A 91, 022118 (2015).

[27] C. Macklin, K. O’Brien, D. Hover, M. E. Schwartz,
V. Bolkhovsky, X. Zhang, W. D. Oliver, and I. Siddiqi,
A near–quantum-limited josephson traveling-wave para-
metric amplifier, Science 350, 307 (2015).

[28] E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly,
R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth,
A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, Fast accurate state measurement with super-
conducting qubits, Phys. Rev. Lett. 112, 190504 (2014).

[29] J. Heinsoo, C. K. Andersen, A. Remm, S. Krinner,
T. Walter, Y. Salathé, S. Gasparinetti, J.-C. Besse,
A. Potočnik, A. Wallraff, and C. Eichler, Rapid high-
fidelity multiplexed readout of superconducting qubits,
Phys. Rev. Appl. 10, 034040 (2018).

[30] D. T. McClure, H. Paik, L. S. Bishop, M. Steffen, J. M.
Chow, and J. M. Gambetta, Rapid driven reset of a qubit
readout resonator, Phys. Rev. Appl. 5, 011001 (2016).

[31] E. Flurin, L. S. Martin, S. Hacohen-Gourgy, and I. Sid-
diqi, Using a recurrent neural network to reconstruct
quantum dynamics of a superconducting qubit from
physical observations, Phys. Rev. X 10, 011006 (2020).

http://dx.doi.org/10.1063/5.0076249
http://dx.doi.org/10.1063/5.0076249
https://doi.org/10.1109/TQE.2021.3116540
https://doi.org/10.1109/TQE.2021.3116540
https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/5.0101398/19816899/104711_1_online.pdf
https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/5.0101398/19816899/104711_1_online.pdf
https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/5.0081232/16599601/104704_1_online.pdf
https://doi.org/10.1103/PhysRevResearch.6.013305
https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/2211.07629
https://arxiv.org/abs/2411.10406
https://arxiv.org/abs/2411.10406
https://arxiv.org/abs/2411.10406
https://arxiv.org/abs/2411.10406
https://arxiv.org/abs/2407.03852
https://arxiv.org/abs/2407.03852
https://arxiv.org/abs/2407.03852
https://arxiv.org/abs/2407.03852
https://doi.org/10.1103/PhysRevApplied.16.024063
https://doi.org/10.1103/PhysRevLett.114.200501
https://doi.org/10.1145/3579371.3589042
https://doi.org/10.1145/3579371.3589042
https://doi.org/10.1145/3579371.3589042
https://arxiv.org/abs/2406.18807
https://arxiv.org/abs/2406.18807
https://arxiv.org/abs/2406.18807
https://arxiv.org/abs/2406.18807
https://doi.org/10.1088/1748-0221/13/07/P07027
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/1804.06913
https://doi.org/10.5281/zenodo.1201549
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://doi.org/10.1109/TPAMI.2024.3447085
https://doi.org/10.1109/TPAMI.2024.3447085
https://github.com/fastmachinelearning/ml-quantum-readout
https://github.com/fastmachinelearning/ml-quantum-readout
https://link.aps.org/doi/10.1103/PhysRevA.76.042319
https://link.aps.org/doi/10.1103/PhysRevA.76.042319
https://doi.org/10.1063/1.5089550
https://doi.org/10.1063/1.5089550
https://doi.org/10.1103/PRXQuantum.2.040202
https://doi.org/10.1103/PhysRevLett.133.060601
https://doi.org/10.1103/PhysRevLett.133.060601
https://doi.org/10.1103/PhysRevA.91.022118
https://doi.org/10.1103/PhysRevA.91.022118
https://doi.org/10.1126/science.aaa8525
https://doi.org/10.1103/PhysRevLett.112.190504
https://doi.org/10.1103/PhysRevApplied.10.034040
https://doi.org/10.1103/PhysRevApplied.5.011001
https://doi.org/10.1103/PhysRevX.10.011006

12

[32] G. Koolstra, N. Stevenson, S. Barzili, L. Burns, K. Siva,
S. Greenfield, W. Livingston, A. Hashim, R. K. Naik,
J. M. Kreikebaum, K. P. O’Brien, D. I. Santiago, J. Dres-
sel, and I. Siddiqi, Monitoring fast superconducting qubit
dynamics using a neural network, Phys. Rev. X 12,
031017 (2022).

[33] P. Luchi, P. E. Trevisanutto, A. Roggero, J. L. DuBois,
Y. J. Rosen, F. Turro, V. Amitrano, and F. Pederiva,
Enhancing qubit readout with autoencoders, Phys. Rev.
Appl. 20, 014045 (2023).

[34] B. Lienhard, A. Vepsäläinen, L. C. Govia, C. R. Hof-
fer, J. Y. Qiu, D. Ristè, M. Ware, D. Kim, R. Winik,
A. Melville, B. Niedzielski, J. Yoder, G. J. Ribeill,
T. A. Ohki, H. K. Krovi, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, Deep-neural-network discrimination
of multiplexed superconducting-qubit states, Phys. Rev.
Appl. 17, 014024 (2022).

[35] R. Navarathna, T. Jones, T. Moghaddam, A. Kulikov,
R. Beriwal, M. Jerger, P. Pakkiam, and A. Fedorov, Neu-
ral networks for on-the-fly single-shot state classification,
Applied Physics Letters 119, 114003 (2021).

[36] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization (2017), arXiv:1412.6980 [cs.LG].

[37] Xilinx, Vivado high-level synthesis (2024).
[38] Google, Qkeras (2020).
[39] J. Chen, Y. Gai, Z. Yao, M. W. Mahoney, and J. E. Gon-

zalez, A statistical framework for low-bitwidth training of
deep neural networks, in Proceedings of the 34th Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS ’20 (Curran Associates Inc., Red Hook, NY,
USA, 2020).

[40] J. Chen, L. Zheng, Z. Yao, D. Wang, I. Stoica, M. W. Ma-
honey, and J. Gonzalez, Actnn: Reducing training mem-
ory footprint via 2-bit activation compressed training, in
Proc. 38th Int. Conf. on Mach. Learn. (2021) pp. 1803–
1813.

[41] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P.
Carloni, An analysis of accelerator coupling in heteroge-
neous architectures, in ACM/EDAC/IEEE Design Au-
tomation Conference (DAC) (2015) pp. 1–6.

[42] B. Lienhard, A. Vepsäläinen, L. C. Govia, C. R. Hof-
fer, J. Y. Qiu, D. Ristè, M. Ware, D. Kim, R. Winik,
A. Melville, B. Niedzielski, J. Yoder, G. J. Ribeill,
T. A. Ohki, H. K. Krovi, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, Deep-neural-network discrimination
of multiplexed superconducting-qubit states, Phys. Rev.
Appl. 17, 014024 (2022).

[43] N. R. Vora, Y. Xu, A. Hasim, N. Fruitwala, N. Nguyen,

H. Liao, J. Balewski, A. Rajagopala, K. Nowrouzi, Q. Ji,
K. B. Whaley, I. Siddiqi, P. Nguyen, and G. Huang,
QubiCML: ML-Powered Real-Time Quantum State Dis-
crimination Enabling Mid-Circuit Measurements , in
2024 IEEE International Conference on Quantum Com-
puting and Engineering (QCE) (IEEE Computer Society,
2024) pp. 414–415.

[44] Data for ”End-to-end workflow for machine learning-
based qubit readout with QICK and hls4ml” (2024).

[45] A. Bengtsson, A. Opremcak, M. Khezri, D. Sank,
A. Bourassa, K. J. Satzinger, S. Hong, C. Erickson, B. J.
Lester, K. C. Miao, A. N. Korotkov, J. Kelly, Z. Chen,
and P. V. Klimov, Model-based optimization of super-
conducting qubit readout, Phys. Rev. Lett. 132, 100603
(2024).

[46] A. Chatterjee, J. Schwinger, and Y. Y. Gao, Demonstra-
tion of enhanced qubit readout via reinforcement learning
(2024), arXiv:2412.04053 [quant-ph].

[47] A. Gu, I. Johnson, A. Timalsina, A. Rudra, and
C. Ré, How to train your hippo: State space mod-
els with generalized orthogonal basis projections (2022),
arXiv:2206.12037 [cs.LG].

[48] T. Baldi, J. Campos, B. Hawks, J. Ngadiuba, N. Tran,
D. Diaz, J. Duarte, R. Kastner, A. Meza, M. Quinnan,
O. Weng, C. Geniesse, A. Gholami, M. W. Mahoney,
V. Loncar, P. Harris, J. Agar, and S. Qin, Reliable edge
machine learning hardware for scientific applications, in
2024 IEEE 42nd VLSI Test Symposium (VTS) (2024)
pp. 1–5.

[49] S. Chakraborty, D. J. Frank, K. Tien, P. Rosno, M. Yeck,
J. A. Glick, R. Robertazzi, R. Richetta, J. F. Bulzac-
chelli, D. Underwood, D. Ramirez, D. Yilma, A. Davies,
R. V. Joshi, S. D. Chambers, S. Lekuch, K. Inoue,
D. Wisnieff, C. W. Baks, D. S. Bethune, J. Timmerwilke,
T. Fox, P. Song, B. R. Johnson, B. P. Gaucher, and D. J.
Friedman, A cryo-CMOS low-power semi-autonomous
transmon qubit state controller in 14-nm FinFET tech-
nology, IEEE Journal of Solid-State Circuits 57, 3258
(2022).

[50] D. J. Frank, S. Chakraborty, K. Tien, P. Rosno, T. Fox,
M. Yeck, J. A. Glick, R. Robertazzi, R. Richetta, J. F.
Bulzacchelli, D. Ramirez, D. Yilma, A. Davies, R. V.
Joshi, S. D. Chambers, S. Lekuch, K. Inoue, D. Under-
wood, D. Wisnieff, C. Baks, D. Bethune, J. Timmer-
wilke, B. R. Johnson, B. P. Gaucher, and D. J. Friedman,
A cryo-CMOS low-power semi-autonomous qubit state
controller in 14nm FinFET technology, in 2022 IEEE
International Solid-State Circuits Conference (ISSCC),
Vol. 65 (2022) pp. 360–362.

https://doi.org/10.1103/PhysRevX.12.031017
https://doi.org/10.1103/PhysRevX.12.031017
https://doi.org/10.1103/PhysRevApplied.20.014045
https://doi.org/10.1103/PhysRevApplied.20.014045
https://doi.org/10.1103/PhysRevApplied.17.014024
https://doi.org/10.1103/PhysRevApplied.17.014024
https://doi.org/10.1063/5.0065011
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://github.com/google/qkeras
https://dl.acm.org/doi/10.5555/3495724.3495799
https://dl.acm.org/doi/10.5555/3495724.3495799
https://dl.acm.org/doi/10.5555/3495724.3495799
https://arxiv.org/abs/2104.14129
https://doi.org/10.1145/2744769.2744794
https://doi.org/10.1145/2744769.2744794
https://doi.org/10.1103/PhysRevApplied.17.014024
https://doi.org/10.1103/PhysRevApplied.17.014024
https://doi.org/10.1109/QCE60285.2024.10332
https://doi.org/10.1109/QCE60285.2024.10332
https://doi.org/10.5281/zenodo.14427490
https://doi.org/10.5281/zenodo.14427490
https://doi.org/10.1103/PhysRevLett.132.100603
https://doi.org/10.1103/PhysRevLett.132.100603
https://arxiv.org/abs/2412.04053
https://arxiv.org/abs/2412.04053
https://arxiv.org/abs/2412.04053
https://arxiv.org/abs/2206.12037
https://arxiv.org/abs/2206.12037
https://arxiv.org/abs/2206.12037
https://doi.org/10.1109/VTS60656.2024.10538639
https://doi.org/10.1109/JSSC.2022.3201775
https://doi.org/10.1109/JSSC.2022.3201775
https://doi.org/10.1109/ISSCC42614.2022.9731538
https://doi.org/10.1109/ISSCC42614.2022.9731538

	End-to-end workflow for machine learning-based qubit readout with QICK and hls4ml
	Abstract
	Introduction
	Superconducting Qubit Readout
	Background
	Control and readout hardware
	Single-shot qubit readout
	Readout Fidelity from threshold methods

	Neural Network Model Co-design
	Design strategy
	Hyperparameter Design Space Exploration
	Hardware optimization

	Model integration: QICK+hls4ml
	QICK firmware
	Neural network classifier integration
	IP interface
	Behavior and Timing
	Software API and Usage
	Performance and Implementation

	Summary and Outlook
	Acknowledgements
	References

