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Millicharged particles are generic in theories of dark sectors. A cosmic or local abundance of them

may be produced by the early universe, stellar environments, or the decay or annihilation of dark

matter/dark energy. Furthermore, if such particles are light, these production channels result

in a background of millicharged radiation. We show that light-shining-through-wall experiments

employing superconducting RF cavities can also be used as “direct deflection” experiments to

search for this relativistic background. The millicharged plasma is first subjected to an oscillating

electromagnetic field of a driven cavity, which causes charge separation in the form of charge and

current perturbations. In turn, these perturbations can propagate outwards and resonantly excite

electromagnetic fields in a well-shielded cavity placed nearby, enabling detection. We estimate that

future versions of the existing Dark SRF experiment can probe orders of magnitude of currently

unexplored parameter space, including millicharges produced from the Sun, the cosmic neutrino

background, or other mechanisms that generate a thermal abundance with energy density as small

as ∼ 10−4 that of the cosmic microwave background.
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Conventions and Notation

In this work, we use a mostly-negative spacetime metric ηµν = diag(+1,−1,−1,−1) and natural units, h̄ = c =

kB = 1, with rationalized Heaviside–Lorentz units for electromagnetic fields. We define the Fourier transform f(k) of a

function f(x), as well as its inverse transform, as

f(k) =

∫
d4x eik·x f(x) , f(x) =

∫
d4k

(2π)4
e−ik·x f(k) . (1)

For a four-momentum kµ = (ω,k), we denote k2 = ω2 − |k|2. Throughout, we will also adopt the notation where

prime “′” superscripts are meant to indicate dark sector quantities. Furthermore, tildes, as in f̃(k) and f̃(x), indicate

that a function (including its argument) is evaluated in the rest frame of the plasma, whereas the absence of a tilde

corresponds to the laboratory frame.
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I. INTRODUCTION

Throughout its history, the universe has been an efficient factory for visible radiation. Most notably, we see this today

in the form of the cosmic microwave background, starlight, and high-energy cosmic rays, which are efficiently produced

by the hot and dense plasmas found in the early universe, stellar environments, or other late-time astrophysical systems.

The efficiency of such reactions implies that even extremely feebly-coupled particles could be similarly produced. This

is known to be the case for solar and supernova neutrinos, and expected to hold for neutrinos produced thermally in

the early universe, constituting the cosmic neutrino background.

It is thus generic to expect that new feebly-coupled particles beyond the Standard Model (SM) could be sourced in

large numbers through analogous cosmological or astrophysical processes [1–5]. Such “dark radiation” is typically

searched for in one of two ways. First, for primordial radiation, its gravitational coupling can leave indirect telltale

signatures in cosmological observations of, e.g., the cosmic microwave background [6, 7] and the abundance of light

nuclei [8–10]. Second, if dark radiation possesses non-gravitational interactions with the SM, it can be detected directly

with sensitive calorimetric or electromagnetic sensors. Although this latter strategy has been most actively explored in

the development of helioscopes searching for new particles emitted by the Sun [11–16] (and to some degree primordial

dark radiation [17–20]), such a program has not been as widely pursued.

Millicharged particles (mCPs), i.e., particles with an effective electromagnetic charge qχ much smaller than that

of the electron, are a generic class of dark sector particles. This is because it is reasonable that the dark sector has

a massless (or approximately massless) U(1)′ gauge boson with stable matter that is charged under it. This U(1)′

can kinetically-mix with our photon, resulting in the dark sector matter acquiring a small effective electromagnetic

charge [21]. If these matter particles are light, it is reasonable that there is a relativistic abundance of them today,

manifesting as dark radiation. In this paper, we devise a strategy to detect such millicharged dark radiation.

In particular, we focus on light-shining-through-wall (LSW) experiments. Although the original aim of such

experiments is to directly produce and detect new light particles coupled to electromagnetism, we show that they

are also inadvertently sensitive to a relativistic background of mCPs. Millicharged particles are deflected as they

pass through a driven electromagnetic field, setting up collective phase-space disturbances that can propagate into a

shielded region and excite small signal fields. Such a “direct deflection” setup using quasistatic lumped element LC

circuits was originally proposed in Ref. [22] to detect millicharged dark matter. Here, we show that LSW experiments

using pairs of radio-frequency (RF) cavities can operate in a similar manner to search for millicharged radiation. We

focus specifically on the sensitivity of superconducting RF (SRF) cavities, such as those used in the Dark SRF LSW

experiment [23, 24], since these can achieve extremely large quality factors, Q ∼ few × 1011 [25]. Large Q-factors

resonantly enhance the strength of the driven electromagnetic field and the detectable signal field, both of which

benefit the overall sensitivity of a LSW experiment. While we focus solely on the prospects to detect a background of

millicharged radiation (relativistic particles), we note that related works have previously explored the capability of

Dark SRF to detect millicharged dark matter [26] (non-relativistic particles), as well as directly produce and detect

ultralight mCPs [27] (a controlled source of new particles, as opposed to an isotropic background).

The remainder of this work is as follows. In Sec. II, we provide a conceptual overview of the class of models and

signals discussed throughout this work. In Sec. III, we summarize the formalism used to determine the response of a

millicharged plasma to a driven electromagnetic field similar to those used in RF cavities. Here, we also provide a

general discussion on the sensitivity of a LSW experiment, and list the experimental assumptions that enter into our

projections. The results of these detailed calculations are then applied to a couple of concrete examples of millicharged

dark radiation. In Sec. IV, we consider millicharged radiation that is produced from the Sun and thermalizes through
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self-interactions. Then, in Sec. V, we apply our formalism to millicharged radiation that arises cosmologically, such

as from dark matter decay or annihilation, a dynamical dark energy component, or directly or indirectly from the

cosmic neutrino background. In each of these examples, we find that a future version of Dark SRF has the potential to

explore a wide range of new parameter space for such models. Finally, we conclude in Sec. VI and discuss directions

for future investigation. A series of appendices is also included, which discusses many of the technical details alluded

to throughout the main body.

II. CONCEPTUAL OVERVIEW

Before providing the technical details required to determine the behavior of relativistic plasmas, we begin by giving

a brief overview of the models, signals, and experimental setup discussed in this work. We will consider a model of

dark QED that includes a dark fermion χ charged under a dark photon A′
µ that is kinetically-mixed with the SM

photon Aµ,

L ⊃ −1

4
FµνF

µν − 1

4
F ′
µνF

′µν +
ϵ

2
FµνF

′µν −Aµ J
µ −A′

µ J
′µ . (2)

Above, Fµν and F ′
µν are the field-strengths for Aµ and A′

µ, respectively, ϵ is the small dimensionless kinetic mixing

parameter, Jµ is the SM electromagnetic current, J ′µ = e′ χ̄γµχ is the dark current, and e′ =
√
4πα′ is the dark

gauge coupling. For simplicity, we will take χ and A′ to be sufficiently light that they can be well-approximated as

massless. To leading order in ϵ ≪ 1, Eq. 2 can be diagonalized by redefining the dark photon field as A′ → A′ + ϵA.

In this basis, it is clear that in addition to its interaction with A′, χ inherits a small effective “millicharge” under

normal electromagnetism, qχ ≃ ϵ e′/e, in units of the standard electric charge e, whereas SM currents only couple to

the SM photon. If, alternatively, the A′ possesses a small mass mA′ , then χ is effectively millicharged under normal

electromagnetism only on length scales smaller than the Compton wavelength ∼ m−1
A′ [22]. Throughout this work, we

will consider mA′ ≪ 10−7 eV, corresponding to millicharge-like interactions on meter and longer length scales.

The strongest bounds on light mCPs come from astrophysical considerations. The millicharge coupling enables

copious pair-production of χ+ and χ− in the solar core, which occurs most efficiently through the decays of SM plasmons.

Such processes lead to extra energy loss in the Sun and are bounded to contribute less than 1.5% of the observed solar

luminosity from helioseismology and solar neutrino data, translating to an upper limit of qχ <∼ 2× 10−14 [28]. Similar

reactions can also modify the stellar evolution of red giant stars, which has been used to derive the updated bound

qχ <∼ 6× 10−15 [29].

In this work, we focus on “direct deflection” experiments, which were proposed in Ref. [22] and further investigated

in Ref. [14] as a laboratory probe of non-relativistic mCPs. Here, we show that analogous setups can also search for a

relativistic background of low-energy mCPs (of cosmological or astrophysical origin) with sensitivity extending beyond

current astrophysical limits. As shown schematically in Fig. 1, this detection scheme involves two regions. The first,

referred to as the “deflector,” involves strong electric and magnetic fields with amplitudes Edef and Bdef, extending

over a shielded region of length Ldef and oscillating at frequency ωdef. The trajectories of mCPs passing through this

region are electromagnetically deflected, setting up small millicharge ρχ and millicurrent Jχ density perturbations.

These perturbations propagate at relativistic speeds into a separate shielded “detector” region, generating signal

electromagnetic fields that oscillate at the same frequency. An electromagnetic detector tuned to ωdef can resonantly

amplify such fields, enhancing the sensitivity to small couplings. Such setups thus operate analogously to LSW

experiments, where instead of producing and detecting new particles, the system induces and detects disturbances in a

background of feebly-interacting particles.
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assume very good vacuum at the level of LIGO, which is P ⇠ 10�12 atm, which corresponds to a gas density of
nN ' 2.5⇥ 107 cm�3 ⇥ (295 K/T ).
After a time ttrap, the ambient density of mCPs outside the cavendish shell is the number of captured mCPs, which

follows from Eq. 15,

n̄� ' 3

4

n�VE ttrap
Rtrap

, (17)

where now n̄� is the ambient density around the cavendish setup, n� is the density outside of the external trap, and
VE is the electric drift velocity outside the trapping shell.
Inside the trap, the small density of normal matter means that the captured mCPs e↵ectively free-stream. In

particular, we find that for the largest charges we consider, the mean-free path in such low pressure environments is
typically � 103 km. Thus, as the mCPs rush in towards the cavendish shell, they pick up a significant velocity, which
just follows from energy conservation, which gives

v� '
s

3Ttrap

m�
+

2eq�
m�

�0

�
1�R0/Rtrap

�
, (18)

where Ttrap is the temperature of the trap shell and �0 is the voltage of the cavendish shell. Since this velocity is
much greater than the initial thermal one, this can significantly reduce the scattering cross section, thus lowering the
di↵usion time through the cavendish shell.

Aside from the di↵usion time through the cavendish shell, another relevant timescale is the time to fall from the
trap shell to the cavendish shell. Parametrizing the potential energy as U(r) = �eq� �0 R0/r and the total energy as

E = Ttrap + U(Rtrap) ' U(Rtrap), the velocity is thus v = �dr/dt =
p

2(E � U(r))/m�. The integrated version of
this is

tfall =

r
m�

2 eq� �0 R0

Z Rtrap

R0

drq
r�1 �R�1

trap

' ⇡

2
p
2

s
m� R3

trap

eq� �0 R0
, (19)

where tfall is the time it takes to go from the trap shell to the cavendish shell and in the second equality we took
R0 ! 0 in the integral.

When this infall time and di↵usion time through the cavendish shell is shorter than the oscillation timescale of the
cavendish shell, and if the thermalization length scale is smaller than the shell thickness, then the resulting voltage
di↵erence inside the cavendish shell is

��� ' eq�n̄�

6

R3
trap

R0

�
1� r2/R2

0

�
' 1

8

�
1� r2/R2

0

� Rtrap

R0
Etrap Rtrap �� ttrap , (20)

where in the last equality �� is the conductivity of mCPs in the environment external to the trap shell. Compared to
Eq. 16, the main benefit of Eq. 20 is that ttrap can be much larger than the inverse-frequency of the cavendish shell.
Jµ
�
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Figure 1. A schematic of the “direct deflection” experimental concept discussed throughout this work. In a typical light-shining-

through-wall experiment employing RF cavities, a “deflector” cavity is driven to high-field. A quiet “detector” cavity, tuned to

the same frequency, is placed nearby. If a feebly-coupled background plasma of millicharged χ± radiation is present, the driven

electromagnetic fields of the deflector cavity create disturbances in the plasma in the form of charge and current densities Jµ
χ

that oscillate at the same frequency as the driven cavity. This alternating wave train of millicharges and millicurrents is able to

propagate unimpeded throughout the experiment, resonantly exciting electromagnetic fields in the shielded detector cavity.

In the weak-coupling, collisionless, and quasistatic regime (to be discussed further below), the mCP perturbations

can be estimated from the force imparted by the deflector Fdef = eqχ |Edef + vχ ×Bdef| ∼ eqχEdef, by noting that the

change in the velocity of an mCP with energy Eχ and velocity vχ is δvχ ∼ eqχ Edef δtdef/Eχ, where δtdef ∼ Ldef/vχ is

the timescale that the mCP experiences a coherent electromagnetic deflection, set by the mCP transit time. This

estimate holds in the limit that the deflector is quasistatic, i.e., ωdef ≪ vχ/Ldef. The amplitude of the current

perturbations induced inside the deflector is thus [14, 22]1

|Jχ| ∼ eqχ nχ δvχ ∼ ω̃2
p

vχ
Edef Ldef , (3)

where ω̃p ∼ eqχ
√

nχ/Eχ is the contribution to the plasma frequency of the SM photon from the background of mCPs

with number density nχ. Alternatively, Eq. 3 follows from the Drude model for the conductivity σ of a collisionless

plasma, i.e., σ = |Jχ|/Edef ∼ δtdef ω̃
2
p.

Note that Eq. 3 is akin to the standard result of Debye screening, which states that a weakly-coupled background

of charged particles partially screens the deflector’s electric potential A0
def ∼ Edef Ldef, setting up a charge density

of ρχ ∼ |Jχ|/vχ ∼ (ω̃p/vχ)
2 A0

def (see, e.g., Ref. [30] for a qualitative discussion). In particular, when the plasma is

isotropic in the frame of a static deflector, the induced density tracks the local value of the potential, ρχ(x) ∝ A0
def(x),

such that no perturbations exist where the laboratory is electrically grounded. This would seem to imply that no charge

densities should propagate out of a shielded deflector. However, provided that certain criteria are met, ρχ and Jχ can

indeed propagate into a separate shielded “detector region.” For instance, if the deflector (i.e., laboratory) frame is

distinct from the rest frame of the plasma, the relative “wind” of charged particles in the lab frame allows the charge and

current perturbations to propagate downstream [22]. Also, on timescales shorter than the transit time δtdef ∼ Ldef/vχ,

the behavior of the plasma exhibits transient behavior that deviates from the ρχ(x) ∝ A0
def(x) steady-state solution.

Hence, in either case of an mCP wind or non-quasistatic deflector, the perturbations can penetrate the detector at a

level parametrically similar to Eq. 3. This is shown in detail in the next section, which outlines the formalism to more

1 Here, we have used the force imparted transverse to the incoming direction of the mCP, since the longitudinal component of the

acceleration is suppressed by γ2
χ, where γχ is boost of an individual mCP. In later sections, we will quantify the relative bulk motion of

the plasma by γ (without a “χ” subscript).
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accurately describe the response of the mCP background, incorporating the complete magnetohydrodynamic response

of relativistic mCPs. For instance, as we will see, this treatment accounts for modifications to the simple estimate in

Eq. 3 that can arise as a result of collective backreactions from long-ranged inter-mCP interactions.

As emphasized above, Eq. 3 applies to the quasistatic case where ωdef ≪ vχ/Ldef. For much higher frequencies, we

instead expect a strong suppression in ρχ and Jχ, since in this case an mCP does not experience a coherent force

as it traverses the deflector. As a result, past studies, which have focused on non-relativistic populations of mCPs

with vχ ≪ 1, identified LC circuit resonators as the ideal detector to operate at sub-GHz frequencies [14, 22]. In this

work, we instead focus on relativistic plasmas, implying that RF cavities with ωdef ∼ 1/Ldef can be used as both the

deflector and detector, analogous to the existing Dark SRF LSW experiment employing superconducting cavities [24].

Also note that from Eq. 3 the perturbations scale inversely with the characteristic energy of the plasma, |Jχ| ∝ ω̃2
p ∝

1/Eχ. As a result, the sensitivity of a direct deflection setup is enhanced for lower energy systems. In this work, we

will focus on two low-energy examples that arise in a relativistic context: the so-called “dark solar wind” population of

mCPs produced from the Sun [31], as well as cosmological populations of dark radiation with characteristic temperature

≪ meV. Before discussing the sensitivity to each scenario, in the next section we first provide a summary of our

formalism, which can be generally applied to ultrarelativistic plasmas.

III. DEFLECTING DARK RADIATION

A. Plasma Formalism

This section discusses the general formalism used to determine the millicharged plasma’s response to a driven

electromagnetic field and may be skipped for those readers solely interested in its application when determining the

sensitivity to concrete examples. In this subsection and in the appendices, we will work with quantities evaluated in

the rest frame of the mCP plasma (denoted with tildes). We treat the mCPs and the dark photons collectively as an

ultrarelativistic thermal plasma, described by a temperature T̃χ much greater than the particle masses (note that

the plasma temperature is only well-defined in its rest frame). For instance, T̃χ determines the number density as

ñχ = 3ζ(3) gχ T̃ 3
χ/4π

2 ≃ 0.4 T̃ 3
χ with gχ = 4 for the spin-states of χ± [32].

The response of an mCP population to the deflector is well-captured by fluid variables (e.g., charge and current

densities) in the limit that there are many mCPs within the deflector. As an example, taking the deflector to be

a spherical cavity of radius Ldef in the laboratory frame and the relative motion of the plasma and the laboratory

to be described by the Lorentz factor γ, the typical number of mCPs inside the deflector in the plasma frame

is then Ñχ ∼ ñχ (4π/3)L
3
def/γ. To be well-approximated as a fluid, we will then demand that Ñχ

>∼ 102, such

that the relative size of Poisson fluctuation in the total mCP number is small, 1/Ñ
1/2
χ

<∼ 0.1, corresponding to

T̃χ
>∼ 10−3 meV× γ1/3 (m/Ldef).

2

We will also approximate the plasma response in the weak-field and collisionless limits [33, 34]. The plasma is

said to be in the weak-field regime when its potential energy is small compared to its kinetic energy ∼ 3 T̃χ. The

potential energy of the mCP interacting with the deflector is, eqχ Ẽdef L̃def ∼ eqχ γ Edef Ldef, whereas the typical

interaction energy between neighboring mCPs in the plasma is α′ ñ1/3
χ . Thus, for Edef ∼ 0.1 T and Ldef ∼ 1 m, the

weak-field condition is satisfied for T̃χ
>∼ 10−5 meV × γ

(
qχ/10

−14
)
and α′ <∼ 1. The plasma is in the collisionless

2 We stress that here Ñχ is defined in the plasma frame. Due to loss of the notion of simultaneity between frames, the number of mCPs

that are simultaneously inside the deflector is frame-dependent.
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regime on timescales smaller than the inverse momentum-exchange rate ∼
(
α′ 2 T̃χ

)−1
[35–37]. Therefore, the plasma

is collisionless within the time it takes to traverse the deflector provided that α′ 2 T̃χ
<∼ γ/Ldef, or equivalently

α′ <∼ 10−4 × γ (meV/T̃χ) (m/Ldef).

As a toy example, let us consider such a plasma consisting of charged particles χ± that couple only to the SM

electromagnetic field. We will therefore ignore in this section the role of the dark photon, but will address this point

later. We wish to describe the currents Jµ
χ in the plasma that are induced as a result of the deflector, the latter of

which is described as a stiff source-current Jµ
def. In the plasma frame, Maxwell’s equations are given by

∂µF̃
µν(x) = J̃ν

χ(x) + J̃ν
def(x) . (4)

In the weak-field limit, the plasma response is approximately linear in the electromagnetic field, such that in

momentum-space the current induced in the plasma is

J̃µ
χ (k) = Π̃µν(k) Ãν(k) . (5)

The tensor Π̃µν can be derived from either the Vlasov (transport) equations [38, 39] or thermal field theory [40] (the

two approaches have been shown to give equivalent results [41–44]). In Appendix A 2, we provide a derivation of Π̃µν

using the Vlasov equation for an ultrarelativistic plasma. As shown there, Π̃µν(k) depends on the plasma frequency ω̃p

in the plasma rest frame, which is generally defined as [1]

ω̃2
p = (eqχ)

2 ñχ

〈
1− ṽ2χ/3

Ẽχ

〉
, (6)

where the brackets involve an average over phase space of the mCP velocity ṽχ and energy Ẽχ in the plasma rest frame.

Using Eq. 5 in the Fourier transform of Eq. 4 then yields [44]

(
k2 ηµν − kµ kν + Π̃µν

)
Ãν(k) = −J̃µ

def(k) . (7)

As discussed in Appendix A 3, the above equation can be solved after decomposing Π̃µν into its longitudinal Π̃L and

transverse Π̃T components. In Coulomb gauge, ki Ãi(k) = 0, this procedure gives

Ã0(k) =
J̃0
def(k)

|k|2 + (|k|/ω)2 Π̃L

, Ãi(k) =
J̃ i
def(k)− (kiω/|k|2) J̃0

def(k)

|k|2 − ω2 − Π̃T

. (8)

The poles in the above expressions determine the longitudinal and transverse plasma dispersion relations, ω2+Π̃L(k) = 0

and ω2 − |k|2 + Π̃T (k) = 0, respectively. The currents induced in the plasma are then determined by using Eq. 8 in

Eq. 5 (see also Eq. A29)

J̃0
χ(k) = − Π̃L

ω2 + Π̃L

J̃0
def(k) (9)

J̃ i
χ(k) =

Π̃T

|k|2 − ω2 − Π̃T

J̃ i
def(k)−

(
Π̃L

ω2 + Π̃L

+
Π̃T

|k|2 − ω2 − Π̃T

)
ω ki

|k|2 J̃0
def(k) . (10)

Finally, we evaluate J̃µ
χ (x) by taking the inverse-Fourier transform of the above momentum-space expressions, which

in our case needs to be done numerically (see Appendix B for additional details).

As a simple example, let us take the deflector to consist of a static test charge qdef at rest in the plasma frame,

such that J̃0
def(x) = eqdef δ

3(x). From Appendix A1, the static (ω → 0) limit of the longitudinal plasma tensor is

Π̃L ≃ 3 (ω̃p ω/|k|)2. Using this in Eq. 9 and inverse-Fourier-transforming to position-space then gives the standard
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result, J̃0
χ(x) = −3ω̃2

p Ã0
def(x) exp(−

√
3 ω̃p |x|), where Ã0

def(x) = eqdef/(4π|x|) is the electric potential of the deflector.

Thus, within a distance ∼ ω̃−1
p from the deflector, the charge density induced in the plasma agrees with the parametric

form given in Sec. II.

The above result, in which case Debye screening gives rise to a plasma charge density that is directly proportional to

the local electric potential, occurs in the special case where the deflector is static and the momentum distribution of

the plasma is isotropic in the lab frame. However, in our work, we will consider a deflector that is not stationary in

the plasma frame, which can arise if it oscillates in time or has a significant relative motion with respect to the plasma.

Importantly, the time it takes for the plasma to respond to the deflector is roughly the crossing time of a single particle.

As a result, the plasma response continually lags behind that of a rapidly oscillating deflector, screening instead an

earlier electromagnetic configuration. This is known as dynamical Debye screening [45, 46]. In the next section, we

numerically evaluate results for such a deflector in the plasma frame, and then boost into the laboratory frame, in

order to determine the induced response for various representative choices of model and experimental parameters.

B. Perturbing a Relativistic Plasma

In this section, we determine the form of the plasma current Jµ
χ = (ρχ,Jχ) induced in the laboratory (i.e., deflector)

frame. This coordinate system is denoted by symbols without tildes, with the origin defined to be at the center of the

deflector. When investigating the effect of the relative motion between the laboratory and plasma frames, we will

take the resulting plasma “wind” in the laboratory frame to be oriented along the −ẑ direction. Along these lines, we

will dominantly focus on two representative cases, quantified by the boost γ of this wind: γ = 1, corresponding to no

relative motion between the deflector and plasma, and γ = 893, corresponding to a large wind with the particular

value of γ motivated by the “dark solar wind” scenario investigated later in Sec. IV.

As discussed in the previous subsection, the deflector is incorporated by the four-current Jµ
def. As a representative

example, we take the deflector in the lab frame to be composed of two separate localized contributions separated by a

distance d along the z-direction, Jµ
def(x) =

(
Jµ
cap(x+ d ẑ/2) + Jµ

cap(x− d ẑ/2)
)
e−iωdeft, where a contribution of a single

piece Jµ
cap(x) is defined to be

J0
cap(x) = Jdef

z

Ldef
e−z2/L2

def cos (x/Ldef) cos (y/Ldef)

Jx
cap(x) = Jy

cap(x) = 0

Jz
cap(x) = − iJdef

2
ωdef Ldef e

−z2/L2
def cos (x/Ldef) cos (y/Ldef) , (11)

and the amplitude Jdef ∼ Bdef/Ldef controls the overall strength of the current. Note that the form of Jµ
cap(x)

corresponds to a source that is exponentially localized within a distance Ldef to the x − y plane at z = 0 and is

periodic over the same length scale in the transverse x and y directions. Thus, in the static ωdef → 0 limit, Jµ
cap(x) is

a fixed charge distribution qualitatively similar to a parallel plate capacitor in the x− y plane with a sinusoidal charge

profile. The deflector Jµ
def(x) is a sum of two such contributions, one localized near z = −d/2 and one at z = d/2.

Our motivation for Eq. 11 is as follows: 1) it obeys charge continuity, 2) it admits a closed-form Fourier transform

(see Appendix B), and 3) for a particular value of the separation d, the electromagnetic fields that Jµ
def sources decay

exponentially with |z| (analogous to a shielded deflector) and are qualitatively similar to those employed in LSW

experiments for |x| <∼ Ldef. This is satisfied by fixing d = π Ldef/
√
(ωdef Ldef)2 − 2 for ωdef Ldef >

√
2 and d = 0 for

ωdef Ldef <
√
2.
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Figure 2. The electromagnetic fields Edef and Bdef directly sourced by the deflector of width ∼ Ldef (Eq. 11) and frequency

ωdef = 2.4L−1
def, independent of the plasma, evaluated in the x− z plane at y = 0 and t = Ldef. In both panels, the dark gray

arrows show the direction of Re(Edef) projected onto the x− z plane. In the left- and right-panels, the color contours show the

magnitude |Re(Edef)| and |Re(Bdef)|, respectively, normalized by Jdef Ldef.

To demonstrate this last point, we solve Maxwell’s equations with a source given by Eq. 11 in order to determine

the electric Edef and magnetic Bdef fields directly generated by the deflector, independent of the plasma. Our results

are displayed in Fig. 2, which shows the direction of Re(Edef) in both panels, as well as the magnitude |Re(Edef)| and
|Re(Bdef)| in the left- and right-panels, respectively. Here, we fix the deflector frequency to be ωdef = 2.4/Ldef, where

the numerical prefactor is motivated by the form of the TM010 mode of a cylindrical cavity of radius Ldef [47]. We find

that Edef ∼ Bdef ∼ Jdef Ldef are approximately constant within a distance Ldef of the origin and are exponentially-

suppressed for |z| >∼ Ldef (the precise value of the separation d ∼ Ldef is fixed to guarantee this), with Edef dominantly

aligned along the z-axis for |x| <∼ Ldef. This is qualitatively similar to the cavity-mode structure of the TM010 mode

employed in the Dark SRF LSW experiment [24]. Indeed, we find that when integrated over the volume defined by√
|x|2 + |y|2 , |z| ≤ πLdef/2, Edef and Bdef have O(1) overlap with the TM010 modes of a cylindrical cavity aligned

along the z-direction and centered at |x| = 0.

To determine the induced plasma current Jµ
χ (x), we first Lorentz boost the deflector current Jµ

def(x) to the plasma

frame, Fourier transform to momentum-space, use this in Eqs. 9 and 10 to obtain J̃µ
χ (k), and then numerically perform

an inverse-Fourier transform back to position-space.3 The fact that Jµ
def(x) is sinusoidal in t, x, and y implies that

the corresponding Fourier integrals are trivial. This is an important simplification for our analysis, which makes the

highly-oscillatory integrals amenable to numerical evaluation. This same sinusoidal profile, however, implies that

the source is infinitely extended along the transverse directions; while this is unrealistic, we expect our results to be

accurate up to O(1) factors as long as we limit ourselves to |x| <∼ Ldef since at these locations the fields sourced by

Jµ
def are qualitatively similar to those of LSW cavity modes, as discussed above.

The induced plasma current oscillates with the same time-dependence as the deflector, Jµ
χ (x) = Jµ

χ (x) e
−iωdeft. In

Fig. 3, we show the spatial profile of the vector-current Re(Jχ), as well as the magnitude |Re(Jχ)|, in the x− z plane

at t = Ldef and y = 0, for the case where the plasma is either at rest in the lab frame with no boost γ = 1 (left-panel)

or has a large relative boost γ = 893 along the −z direction (right-panel). In both cases, we also fix ωdef = 2.4/Ldef

3 As a consistency check, we have confirmed that our numerically obtained Jµ
χ (x) obeys charge continuity.
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Figure 3. The plasma current Jχ in the lab-frame, evaluated in the x − z plane at y = 0 and t = Ldef, fixing the plasma

frequency to ω̃p = 10−2 L−1
def and deflector frequency to ωdef = 2.4L−1

def. In both panels, the dark gray arrows show the direction

of Re(Jχ) projected onto the x− z plane, and the contours show the magnitude |Re(Jχ)|, normalized by Jχ (Eq. 12). In the

left-panel, we consider the plasma to be at rest in the lab frame with no boost γ = 1, whereas in the right-panel we take it to

have a large relative boost γ = 893 along the −z direction (corresponding to the scenario investigated in Sec. IV). The boundary

of the shaded gray region is where |Edef(x)| = 1% of its maximal value, thus defining the region in which the deflector fields are

dominantly localized.

and ω̃p = 10−2/Ldef. From this, we see that for
√

|x|2 + |z|2 <∼ Ldef, Jχ is aligned or anti-aligned with the z-axis in

both panels, which is qualitatively similar to the deflector’s electric field Edef in Fig. 2. Furthermore, Jχ oscillates

spatially with period ∼ Ldef away from the deflector, corresponding to wave trains of alternating charge that propagate

outward from the source. For the case of γ = 1, these pulses propagate symmetrically along the ±z directions and

are strongly-peaked near the source (|z| <∼ Ldef), whereas for γ ≫ 1 they propagate out to much larger distances

predominantly downwind along the −z direction. In presenting our results, we have normalized the magnitude of the

plasma current by a constant Jχ that is comparable to the heuristic estimate in Eq. 3 with Edef ∼ Jdef Ldef,

Jχ ≡ (ω̃p Ldef)
2Jdef/10 , (12)

where we have fixed the overall numerical prefactor such that |Jχ| = O(1)× Jχ near the deflector.

The ω̃2
p scaling of Eqs. 3 and 12 applies to the ω̃p

<∼ L−1
def and ωdef

<∼ few× L−1
def regime. To more generally illustrate

the behavior of Jχ with varying plasma and deflector frequencies, we show in Fig. 4 the magnitude |Jχ| at a fixed

position far from the deflector, as a function of either ω̃p (left-panel) or ωdef (right-panel), and for two representative

choices of the relative boost γ between the plasma and lab frames. Fixing ωdef ∼ 1/Ldef in the left-panel, we see that

for ω̃p ≪ ωdef the induced current scales with the plasma frequency as |Jχ| ∝ ω̃2
p, in agreement with the heuristic

discussion of Sec. II. Instead, when ω̃p ≫ γ ωdef, we find that the current is suppressed by the large plasma frequency,

scaling instead as |Jχ| ∝ 1/ω̃2
p.

The reason for this turnover near ω̃p ∼ γ ωdef is simple to understand. In the plasma frame, the frequency of the

deflector is boosted to ω̃def ∼ γ ωdef. If ω̃def
<∼ ω̃p, then the deflector is unable to excite on-shell plasmon excitations

which propagate out to large distances. In this case, in the plasma frame the deflector drags along with it a cloud of

charged particles of size limited by the Debye length ∼ ω̃−1
p . Boosting back into the proper frame of this cloud (i.e., the

rest frame of the deflector), this length scale is inverse-Lorentz-contracted along the longitudinal direction to γ ω̃−1
p .
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Figure 4. The magnitude of the induced plasma current |Jχ| in the lab frame, normalized by Edef/Ldef, where Edef is the

maximum size of the electromagnetic field directly sourced in the interior of the deflector. Left: |Jχ| as a function of the plasma

frequency ω̃p for various boosts γ of the plasma in the lab frame, evaluated at the position x = (0, 0,−5Ldef) and fixing the

deflector frequency to ωdef = 2.4/Ldef. The solid lines correspond to a numerical evaluation, whereas the dotted lines show the

simple fitting formula of Eq. 13. Right: As in the left-panel, except showing |Jχ| as a function of ωdef, evaluated at the position

x = (0, 0,−5Ldef − d/2), fixing ω̃p = 10−2/Ldef. The separation d is fixed as a function of ωdef following the discussion below

Eq. 11. We do not show our results for ωdef ∼ (0.5 − 2)/Ldef, since in this range our prescription for d gives rise to a large

unshielded component of Edef ∼ Bdef, and so displays features that are not directly relevant when applying our results to a

shielded cavity.

Thus, if γ ω̃−1
p

<∼ Ldef, then the plasma backreacts and efficiently screens the effect of the deflector. In other words, Jχ

becomes suppressed in the large ω̃p limit once ω̃p
>∼ γ ωdef and ω̃p

>∼ γ/Ldef (which for our choice of parameters are

roughly equivalent criteria, since ωdef ∼ 1/Ldef).

In the right-panel of Fig. 4, we instead fix the plasma frequency to be small (ω̃p ≪ 1/|z| ≪ 1/Ldef) and show |Jχ|
as a function of the deflector frequency ωdef. We see that regardless of the boost γ, Jχ is suppressed for rapidly

oscillating deflectors, ωdef ≫ L−1
def. As discussed in Sec. II, this is due to the fact that the oscillation timescale ∼ ω−1

def

is shorter than the transit time of a relativistic plasma particle ∼ Ldef, such that it is not coherently deflected by the

electromagnetic field. Instead, we see that for a quasistatic deflector ωdef ≪ L−1
def, the size of the induced current is

strongly suppressed if γ = 1, corresponding to no relative motion between the plasma and lab frames; as discussed in

Sec. II, this is due to the fact that for γ = 1 and ωdef ≪ L−1
def, the leading order response of the plasma tracks the local

value of the electric potential. If away from the deflector the local value of the electric potential is small, the leading

contribution enters at O(ωdef Ldef), yielding |Jχ| ∼ ωdef Ldef Jχ.

To summarize, our results show that for a relativistic plasma the optimal choice for ωdef (i.e., one that enhances |Jχ|
independent of γ) is ωdef ∼ L−1

def, analogous to a resonant cavity. In this case, ωdef is large enough to generate a signal

that propagates out of the deflector independent of γ, but not so large that the deflector oscillates many times within

the transit time of a single plasma particle. In the next section, we will consider the sensitivity of such a setup. In this

case, we find that at a distance ∼ several×Ldef downwind from the deflector, our results can be roughly approximated

by

|Jχ| ∼ aγ
Edef

Ldef
min

(
ω̃p Ldef , 1 ,

bγ γ

ω̃p Ldef

)2

e−iωdeft , (13)
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where Edef ∼ Bdef refers to the maximum amplitude of the electromagnetic field evaluated inside the deflector cavity,

and aγ and bγ are defined to be aγ ≡ 10−2, bγ ≡ 1 for γ ∼ 1 and aγ ≡ 1, bγ ≡ 10−2 for γ ≫ 1. Eq. 13 is shown as

dotted lines in the left-panel of Fig. 4, which demonstrates that for most values of ω̃p it adequately captures the main

qualitative behavior of the response, up to O(1) factors. We note that this fit does not capture the significant signal

enhancement evident in our numerical estimate for ω̃p ∼ γ ωdef ∼ γ L−1
def, which is due to a coherent deflection of the

traversing mCPs for our particular choice of the deflector current Jµ
def.

Before proceeding, we remind the reader that this calculation was performed assuming that the plasma particles χ

only couple to the SM photon. However, as discussed above, we are interested in the possibility that these interactions

are mediated indirectly via an ultralight kinetically-mixed dark photon A′. In this case, χ couples directly to A′, and

indirectly to electromagnetism with an effective millicharge on distance scales smaller than the dark photon Compton

wavelength ∼ m−1
A′ . As a result, self-interactions mediated by the A′ can backreact on current densities induced in the

millicharged plasma when ω̃′
p
>∼ γ max(ωdef , 1/Ldef), where ω̃′

p = e′ ω̃p/(eqχ) is the contribution of χ to the A′ plasma

frequency. In this case, provided that the dark photon is longer-ranged than the experimental setup (mA′ ≪ L−1
def), the

millicharged plasma generates an effective visible millicurrent of nearly the same form as in Eq. 13, after making the

replacements ω̃p → ω̃′
p and Jχ → ϵ2 Jχ,

|Jχ(x)| ∼ aγ ϵ
2 Edef

Ldef
min

(
ω̃′
p Ldef , 1 ,

bγ γ

ω̃′
p Ldef

)2

e−iωdeft , (14)

which maintains the expected scaling |Jχ| ∝ ϵ2 ω̃′ 2
p = ω̃2

p in the limit of small coupling.

C. Experimental Reach

The previous section determined the form of the current densities Jχ induced in the millicharge plasma from an

oscillating electromagnetic field, such as those driven in resonant cavities (see Eq. 14). Next, we review how Jχ

can in turn excite small electromagnetic fields in a nearby shielded cavity, which we refer to as the detector. More

concretely, we will focus on a scenario analogous to the existing Dark SRF LSW experiment, which has recently

conducted a pathfinder run [24] employing two resonant cavities tuned to the same frequency. One such cavity is

driven at high power, with the goal of directly producing new particles, such as dark photons, that can resonantly

excite small electromagnetic fields in a shielded detector cavity tuned to the same frequency. Although inadvertent,

this same experiment also operates as a direct deflection setup, with the driven cavity functioning as the deflector for

a background of relativistic mCPs.

Dark SRF employs TM010 modes in both cavities, which are longitudinally aligned with respect to the directions

of their electric field profiles, Edef and Edet. In the previous section, we saw that a similar electromagnetic field

configuration can also source a millicharge current density Jχ with a spatial profile similar to that of a TM010 mode.

The ability for this millicurrent to excite the same mode Edet in the detector cavity is dictated by the resonant form of

the signal power [47],

Psig =
Q

ωdef

∣∣ ∫ d3x Jχ ·E∗
det

∣∣2
∫
d3x |Edet|2

≡ Q

ωdef
η2 |Jχ|2 Vdet , (15)

where Q is the quality factor of the detector cavity, the integrals are over the volume Vdet of the detector cavity, and

in the second equality |Jχ| is the characteristic amplitude of the induced millicurrent given in Eq. 14. In the second

equality, we have also defined the dimensionless overlap form factor η, which is O(1) in the case where the spatial

profiles of Jχ and Edet are optimally matched. In our estimates, we will adopt η = 1.
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Let us first consider the existing sensitivity of the recent Dark SRF pathfinder run, adopting representative

experimental parameters of ωdef = 2π ×GHz, Q = 3× 1010, Edef = 5 MV/m, and Vdet = π (10 cm)3. After a total

data-taking time of a few hours, this run observed no excess power in the detector cavity above thermal noise, setting

an upper bound of Psig
<∼ 3× 10−16 W, which was limited by an unwanted frequency offset between the two cavities.

Equating this to Eq. 15 gives an existing sensitivity of |Jχ| ≃ 5× 10−13 A/m2. Future runs of Dark SRF are expected

to significantly enhance this sensitivity with better frequency matching, larger fields and quality factors, reduced noise

temperatures, and an optimized signal analysis.

Therefore, to estimate the ultimate reach of a future experiment, we adopt the following upgraded experimental

parameters: Q = 1012, Edef = 60 MV/m, and deflector/detector volumes as large as Vdef = Vdet ∼ 1 m3. We also

assume that the deflector cavity’s phase is actively monitored, which enables an optimized signal analysis with a

corresponding signal-to-noise ratio given by SNR = Psig tint/Tdet, where tint = 1 yr is the total observation time and

Tdet = 10 mK is the temperature of the detector cavity [23]. Demanding that SNR >∼ 1 then gives a future sensitivity

to millicurrents of size |Jχ| ≃ 3× 10−24 A/m2 × (1 m/Ldef)
2, where we took Vdef = Vdet = π L3

def and ωdef = 2.4/Ldef

(corresponding to a cylindrical cavity of radius and length Ldef).

To summarize, we will adopt the following sensitivity to |Jχ| for the existing pathfinder or future reach of Dark SRF,

|Jχ| ∼




5× 10−13 A/m2 (existing pathfinder)

3× 10−24 A/m2 × (1 m/Ldef)
2 (future) .

(16)

In the sections below, we apply the second line of Eq. 16 to determine Dark SRF’s ultimate sensitivity to two scenarios

involving relativistic backgrounds of mCPs. First in Sec. IV, we will consider astrophysical mCPs that are produced

from the Sun. For sufficiently large self-couplings α′, such particles can thermalize through self-interactions in the solar

interior, forming a so-called “dark solar wind,” as recently investigated in Ref. [31]. Then, in Sec. V, we will consider

cosmological sources of mCPs, such as those generated from a thermal bath in the early universe or at much later

times through a dynamical dark energy component or dark matter decay/annihilation. We will also investigate models

in which the lightest SM neutrino has a small effective millicharge or neutrinos equilibrate with a light millicharged

sector after neutrino-photon decoupling, such that the cosmic neutrino background directly or indirectly gives rise to

the class of signals discussed throughout this work, respectively.

IV. DARK SOLAR WIND

Light mCPs can be created in large numbers from rare thermal processes in the extreme environment of the solar

interior. It is commonly assumed that such particles simply free-stream out of the Sun unscathed, each carrying away

energy comparable to the temperature of the solar core ∼ keV. While this is often the case, self-interactions mediated

by the dark photon can drastically alter this scenario, as recently highlighted in Ref. [31]. The degree to which this is

true is determined both by the millicharge qχ, which sets the initial density of mCPs produced in the solar core, and

the dark fine-structure constant α′, which controls the strength of self-interactions. In particular, for

α′ >∼ 5× 10−6 ×
(
10−14/qχ

)1/2
, (17)

number-changing processes (such as χχ → χχA′) become highly efficient, leading to local thermalization of the mCP-A′

plasma in the Sun [31]. As a result, the mean free path of the mCPs is drastically shortened, causing them to behave

collectively as a fluid on solar length scales.
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Before number-changing processes become efficient, the phase space of the initial free-streaming mCPs is far from

thermal, with a number density very small compared to that of a thermal population with the same characteristic

energy per particle. Thermalization correspondingly enhances the number density at the expense of lowering the

typical mCP energy. This thermalized plasma behaves as an adiabatically expanding fluid driven by its own thermal

pressure, accelerating radially outward to increasingly ultrarelativistic bulk velocities as it moves away from the Sun.

The resulting steady-state outflow, referred to as the “dark solar wind” [31], is orders of magnitude more dense and

less energetic (≪ keV per particle) compared to a free-streaming population of the same luminosity.

The underlying fluid equations governing the evolution of the dark solar wind were solved in Ref. [31]. Here, we

simply quote the results. Evaluated at Earth, the boost describing the relative bulk motion of the fluid is γ ≃ 893,

while the temperature and number density in the plasma frame are approximately

T̃χ ≃ 10−4 eV×
(
qχ/10

−14
)1/2

, ñχ ≃ 150 cm−3 ×
(
qχ/10

−14
)3/2

. (18)

In turn, these quantities imply a lab-frame per-particle energy and plasma-frame dark plasma frequency of

Eχ ≃ 0.5 eV×
(
qχ/10

−14
)1/2

, ω̃′
p ≃ 1 GHz×

(
qχ/10

−14
)1/2 (

α′/10−5
)1/2

. (19)

For the largest viable couplings, qχ ∼ 10−14, the resulting energy flux of mCPs is six orders of magnitude greater than

the local kinetic energy flux of galactic DM. Despite this, the dark solar wind is challenging to detect in conventional

underground dark matter direct detection experiments searching for elastic scattering. This is because the typical

energy exchanged in an mCP-electron collision is ∼ αpχ ∼ meV× (qχ/10
−14)1/2, well below the thresholds of existing

and future sensors. However, note that the direct deflection signals discussed in Sec. III C benefit from the small

energy of the plasma. Indeed, ω̃′
p is enhanced both by the larger number density and smaller mCP energy seeded

by thermalization. For the largest viable values of qχ, both effects together enhance ω̃′
p by roughly a factor of ∼ 103

compared to a non-thermalized free-streaming population produced by the Sun.4 Since the millicurrent Jχ induced by

a deflector scales as ω̃′ 2
p in the weak-coupling limit (as in Eq. 13), thermalization of solar mCPs enhances the class of

signals detectable with a direct deflection experiment.

Before applying the formalism of Sec. III, we note that an additional complication arises from the fact that the

same self-interaction processes that drive the dark solar wind population towards a thermal distribution also damp

the perturbations induced by the deflector. In particular, Sec. III applies strictly to plasmas that are collisionless on

length scales comparable to the size of the deflector-detector setup. The typical distance traversed between collisions

by an mCP of the dark solar wind is ∼ γ / (α′ 2 T̃χ) ≃ 2 m× (1/α′)2 (10−14/qχ)
1/2, which is longer than the size of an

experiment in the parameter space of interest. Thus, on laboratory length scales, we may approximate the dark solar

wind as collisionless.

To determine the future sensitivity of the Dark SRF LSW experiment to the dark solar wind, we apply the general

results of Eqs. 14 and 16. Note that since Eq. 14 applies to regions downwind of the deflector, our projections assume

that the axis connecting the two cavities in a LSW experiment is aligned with the Earth-Sun axis. In Fig. 5, we show

the ultimate sensitivity of Dark SRF in the qχ − α′ plane, fixing the kinetic mixing parameter in terms of the two

other couplings, ϵ = eqχ/
√
4πα′.

The sensitivity to qχ is a non-trivial function of α′. For α′ below the critical value in Eq. 17, the mCP population

does not efficiently thermalize and simply free-streams out of the Sun. In this case, we determine the dark plasma

4 This comparison involves evaluating the plasma frequency in the rest frame for the dark solar wind and the laboratory frame for the

free-streaming case. Hence, this is valid up to O(1) factors, since the plasma frequency is controlled by the Lorentz invariant ratio nχ/Eχ.
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Figure 5. The projected direct deflection sensitivity of the Dark SRF light-shining-through-wall experiment to millicharged

particles emitted by the Sun, in the plane spanned by the millicharge qχ = ϵ e′/e and self-coupling α′ = e′ 2/4π, where ϵ is the

kinetic mixing parameter and e′ is the dark photon coupling. The solid or dashed red lines assume an experimental setup of size

Ldef = 1 m or Ldef = 10 cm, respectively. Also shown in gray are existing constraints derived from considerations of stellar

energy loss [28, 29]. We show the Red Giant bound as a dotted line, since the robustness of these constraints has been recently

called into question in Ref. [48] (although see the discussion in Refs. [29, 49]). Above the black line, millicharged particles

thermalize in the solar interior through self-interactions mediated by the dark photon, leading to an enhanced signal in direct

deflection experiments.

frequency ω̃2
p ∼ 4πα′nχ/Eχ at Earth using nχ ≃ (Lχ/4πr

2
⊕)/Eχ, where Eχ ∼ 5 keV is the typical mCP energy and the

mCP luminosity Lχ is related to the total solar luminosity L⊙ by Lχ ≃ 4× 10−2 L⊙ (qχ/10
−14)2 [28, 31, 50]. Instead,

for α′ slightly above the critical value in Eq. 17, the dark solar wind develops, and the mCP plasma does not efficiently

backreact within the length scales and timescales set by the experiment. For much larger α′, the backreaction from

collective mCP self-interactions screens the perturbations induced by the deflector before reaching the detector cavity,

thereby suppressing the signal. As discussed in Sec. III B, such backreactions occur when ω̃p ≫ γ/Ldef. We find that

the resulting range of self-couplings for which a LSW experiment has optimal sensitivity to the dark solar wind is

approximately

10−5 ×
(
10−14/qχ

)1/2 <∼ α′ <∼ 10−4 ×
(
10−14/qχ

) (
1 m/Ldef

)2
. (20)

In Fig. 5, we consider two possible sizes of the cavities, Ldef = 10 cm and Ldef = 1 m, and correspondingly fix the

separation of the cavities to be ∼ few× Ldef and the operating frequency to be ωdef = 2.4/Ldef. From Eq. 16, larger

setups can probe smaller values of the millicharge qχ in the weak-self-coupling regime. However, since the experimental

size and cavity oscillation period decrease as Ldef is reduced, it is more difficult for the mCP plasma to backreact

for smaller values of Ldef. As a result, smaller experimental setups can probe larger values of the self-coupling α′, as

given by Eq. 20. Regardless, in either case, future iterations of Dark SRF can be sensitive to a wide range of mCP

parameter space.
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V. COSMOLOGICAL DARK RADIATION

A relativistic background of mCPs can also be sourced cosmologically, resulting in an approximately isotropic

population of millicharged dark radiation. The present abundance of dark radiation is generally quantified by

normalizing its present day energy density by the critical energy density, ΩDR = ρDR/ρcrit. In the case of dark radiation

in the early universe, ρDR is alternatively parametrized in terms of the additional effective number of neutrino species,

∆Neff = (8/7) (11/4)4/3 (ρDR/ργ), such that ΩDR can be reexpressed as ΩDR ≃ 1.2 × 10−5 ∆Neff. An additional

cosmological population of dark radiation, beyond the contribution of Neff ≃ 3 by the cosmic neutrino background, is

constrained by Planck and ACT observations of the cosmic microwave background to contribute ∆Neff
<∼ O(0.1), with

the precise value of this upper bound depending on whether such radiation is free-streaming or fluid-like [51–53].

The simplest scenario arises when dark radiation is described by a thermal distribution with temperature T̃χ. In this

case, the resulting energy density and dark plasma frequency are ρ̃DR = (π2/30) g′∗ T̃
4
χ and ω̃′

p = e′ T̃χ/3, respectively.

Here, g′∗ is the total effective relativistic degrees of freedom in the dark sector, which is g′∗ = 11/2 for a single pair of

fermionic mCPs and a dark photon. The dark plasma frequency can then be related straightforwardly to ΩDR by

ω̃′
p ≃ 93 GHz×

(
e′/g′ 1/4∗

) (
ΩDR/10

−5
)1/4

. (21)

In this section, we will consider various cosmological sources for ΩDR. An irreducible contribution arises from the

out-of-equilibrium decay of SM plasmons in the early universe [54, 55]. In this case, the corresponding density

depends directly on the size of the millicharge; ΩDR ≃ 2.5 × 10−16 ×
(
qχ/10

−14
)2

[55]. Millicharged radiation

can also arise from dark matter decay or annihilation. For instance, current limits allow as much as ∼ 4% of

the present dark matter density having decayed into dark radiation [56], corresponding to ΩDR
<∼ 10−2. For dark

matter annihilations to mCPs, let us consider the galactic center, which contributes a local millicharge density of

ΩDR ∼ 10−4 × (MeV/m
DM

) (σv/10−26 cm3 s−1), where m
DM

is the dark matter mass, σv is its annihilation rate

to mCPs, and we have taken a J-factor of ∼ 1024 GeV2/cm5 for the inner region of the Milky Way [57]. Recent

work has also investigated radiation sourced by the kinetic energy of a dynamical dark energy component, leading to

ΩDR
<∼ 3× 10−2 [58–60]. The population of millicharged radiation from any of these sources initially possesses a non-

thermal distribution. However, thermalization can easily occur through self-interactions, analogous to the discussion in

Sec. IV. For these examples, we assume this to be the case, and utilize Eq. 21 to determine the corresponding plasma

frequency.

As another example, we consider the possibility that the lightest SM neutrino ν of the cosmic neutrino background

possesses a small effective millicharge, which can arise in scenarios similar to the “portalino” models of Refs. [61, 62].

In this case, electroweak symmetry breaking mixes the active neutrino ν with a sterile neutrino N . If there also exists

a dark fermion N± directly charged under a dark U(1)′, then spontaneous symmetry breaking of the U(1)′ can mix N

and N±, thereby giving ν a small dark charge. If the A′ of this U(1)′ kinetically-mixes with SM electromagnetism,

then on length scales smaller than m−1
A′ the SM-like neutrino inherits a small effective millicharge, suppressed by the

size of the kinetic mixing as well as the ν −N and N −N± mass-mixings. Since a single cosmic neutrino contributes

Neff = 1, this scenario corresponds to ΩDR ≃ 1.2× 10−5. There exist stringent limits on a neutrino millicharge [63–65].

The strongest of these are model-dependent. For instance, limits derived from tests of matter-neutrality assume that

the millicharge is unbroken in the four-Fermi n ↔ peν̄e interaction [66]. However, this need not be the case when the

effective millicharge is generated by a broken U(1)′. Furthermore, astrophysical limits derived from the coupling of

neutrinos to magnetic fields [67] do not apply if the effective range of the interaction, set by m−1
A′ , is small compared

to astrophysical length scales. In this work, we adopt the most model-independent of these limits, which is set by
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Figure 6. As in Fig. 5, but instead for cosmological millicharged dark radiation. Left: Sensitivity of Dark SRF in the qχ − α′

plane, for experimental setups of size Ldef = 1 m (solid red) or Ldef = 10 cm (dashed red), fixing the density parameter of

millicharged radiation to ΩDR = 3× 10−2, corresponding to millicharges sourced by a dynamical dark energy component. Above

the black line, the dark solar wind of Sec. IV contributes an irreducible local abundance of millicharged radiation. Right:

Sensitivity of Dark SRF in the qχ − ΩDR plane, for an experimental setup of size Ldef = 1 m, fixing the self-coupling to be

sufficiently small such that backreactions from self-interactions are negligible on laboratory length scales. As benchmark values

of ΩDR, we show scenarios where millicharged radiation is sourced by dark energy, the cosmic neutrino background (CνB), or

when it is a small subcomponent of the total radiation energy density with ∆Neff = 0.1.

considerations of stellar energy loss [28, 29]. We postpone a more complete investigation of these models to future

studies.

The cosmic neutrino background may also indirectly contribute to millicharged radiation. In particular, a related

scenario arises if the cosmic neutrino background equilibrates with a distinct relativistic mCP population well after

neutrino-photon decoupling [68–70]. If the initial pre-equilibrated energy density of the mCPs is negligible compared

to that of the SM radiation bath, then Neff ≃ 3 is initially unmodified compared to its standard value. When the

mCPs thermalize with the SM neutrinos, the temperature of the mCPs increases, thereby lowering the temperature of

the neutrinos compared to that of the photon bath. Since equilibration conserves energy, the ν +mCP population still

contributes only Neff ≃ 3 after equilibration, with the relative energy density in the mCPs controlled by the ratio

of relativistic degrees of freedom g′∗/g
ν
∗ , where gν∗ = 21/4. Hence, for g′∗ ≫ gν∗ , the majority of the apparent energy

density in the cosmic neutrino background is instead made up of mCPs at late times, analogous to the “neutrinoless

universe” investigated in Ref. [71].

As discussed in Sec. III, the signal in a direct deflection experiment depends strongly on the relative motion between

the plasma and laboratory frames. For cosmological sources of millicharged radiation, the preferred frames of the

laboratory and plasma approximately coincide, with a small offset controlled by the velocity ∼ 10−3 of the solar system.

To leading order, we can ignore this correction and adopt γ = 1 in quantifying the relative boost between the plasma

and laboratory frames. In regards to the particular experimental setup, the use of RF cavities employing ωdef Ldef ∼ 1

is crucial to generating a signal in this case, since it vanishes in the quasistatic limit (ωdef Ldef ≪ 1) for γ = 1 (see

Sec. III).

The projected sensitivity of Dark SRF to cosmological sources of millicharged dark radiation is shown in Fig. 6,

fixing the experimental benchmarks as in Secs. III C and IV. In the left-panel, we consider two setups of different size,
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Ldef = 10 cm and Ldef = 1 m, and show the sensitivity in the qχ − α′ plane, fixing the millicharged dark radiation

density to ΩDR = 3× 10−2 (corresponding to mCPs produced by dark energy). For the same reasons as discussed

in Sec. IV, larger setups can explore smaller millicharges, while smaller cavities are able to probe larger values of

the self-coupling (corresponding to stronger plasma backreactions). For small α′, backreactions from self-interactions

of the dark plasma can be ignored. For sufficiently large qχ and α′, the dark solar wind from Sec. IV contributes a

significant density at Earth, which can potentially modify the local density of an independent cosmological population.

Since the projected sensitivity of the experimental setup discussed here does not explore new parameter space in this

regime, we do not investigate this possibility further.

To further explore the weak-coupling regime, in the right-panel of Fig. 6 we instead show the Dark SRF sensitivity

in the qχ − ΩDR plane, fixing Ldef = 1 m and α′ to be sufficiently small such that self-interactions can be ignored

on laboratory length scales. In this panel, we show the various ΩDR benchmarks discussed above, in the case that

millicharged dark radiation arises from dark energy, dark matter decay, the cosmic neutrino background, or some other

subcomponent of the total primordial radiation density with ∆Neff = 0.1. We see that Dark SRF can explore orders of

magnitude of new parameter space for a cosmological abundance of millicharged dark radiation, including that arising

from the millicharge of the cosmic neutrino background. The sensitivity to such models is parametrically enhanced

compared to that of the dark solar wind in Sec. IV. This is largely due to the fact that unlike the dark solar wind, we

have considered less-restrictive examples of cosmological dark radiation, treating the density ΩDR as a free parameter

independent of the couplings qχ and α′.

Before concluding this section, we note that terrestrial, solar, and galactic magnetic fields can significantly impede

the propagation of mCPs in the solar system if the interaction mediated by the dark photon is long-ranged on the

relevant length scales. For instance, for dark photons longer-ranged than an Earth radius, mA′ <∼ R−1
⊕ ∼ 10−14 eV,

Earth’s magnetic field B⊕ ∼ 0.5 G can significantly modify the terrestrial density of such radiation when the mCP

gyroradius rg ∼ Ẽχ/(eqχ B⊕) is much smaller than R⊕ [72], where Ẽχ ∼ 3 T̃χ is the typical energy of mCP radiation.

Similarly, for dark photons longer-ranged than a solar radius mA′ <∼ R−1
⊙ ∼ 10−16 eV, we expect solar modulation to

suppresses the local abundance of mCPs with energy Ẽχ ∼ 3 T̃χ
<∼ 0.2 GeV× qχ [73, 74]. Finally, if the dark photon

is long-ranged on galactic length scales, the local abundance of millicharged radiation may be affected by galactic

supernova remnants [75, 76]. However, note that these effects need not apply in our parameter space of interest, since

we only require that mCPs possess an effective charge on meter-sized length scales.

VI. DISCUSSION AND CONCLUSION

In this work, we have explored a new approach to detect a relativistic background of millicharged particles using

light-shining-through-wall experiments, where a cavity is driven with strong electromagnetic fields and placed nearby

a quiet shielded cavity. Inadvertently, these setups can also operate as direct deflection experiments. Millicharged

radiation passing through the driven cavity is deflected, setting up propagating disturbances of feebly-coupled charges

and currents that can resonantly excite small signal fields in the detection cavity.

We have focused on the existing Dark SRF light-shining-through-wall experiment, since it employs high-Q supercon-

ducting RF cavities, which enhances both the strength of the driven fields, as well as the resonant sensitivity of the

detection cavity. In particular, our estimates show that a future version of Dark SRF can probe orders of magnitude of

unexplored parameter space for relativistic millicharges produced by the Sun or cosmologically in the early or late

universe. Such a setup has the potential to measure the abundance of the cosmic neutrino background if it possess a
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small effective electromagnetic charge, or cosmological dark radiation with an energy density four orders of magnitude

smaller than that of the cosmic microwave background.

In future work, it would be interesting to pursue more dedicated experimental approaches. For instance, multiple

deflecting cavities can be used (analogous to a LINAC) in order to multiplicatively increase the signal, or larger

magnetic field configurations can be employed to focus the millicharge radiation into a smaller experimental area. Also

note that in the weak-coupling regime, the signal strength in a direct deflection setup is controlled by the millicharge

plasma frequency, which scales favorably with larger number densities and smaller characteristic energies. While we

have focused on thermal populations of millicharged radiation, this implies that direct deflection setups would have

enhanced sensitivity to populations of millicharges with high-occupancy in the lowest momentum-modes, such as those

created by parametric resonance or tachyonic instabilities. Generalizations of this approach may also be adapted

to search for dark radiation coupled to a non-electromagnetic force, such as one mediated by a new spin-coupled

boson. However, in this case an experiment needs to contend with strong constraints on the existence of such new

light mediators.
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Figure A.1. Left: The longitudinal and transverse components of the linear response tensor, given in Eqs. A9 and A10. Right:

The longitudinal (L) and transverse (T ) dispersion relations of an ultrarelativistic plasma, using Eqs. A7−A10. We also show

the light cone ω = |k| for comparison.

Appendix A: Plasma Formalism Details

In this appendix, we provide some of the technical details needed to determine the response of a plasma to an

external electromagnetic field.

1. Isotropic, Ultrarelativistic, Collisionless Plasma

In the rest frame of the plasma, we take it be isotropic. In this case, the spatial part of the linear response tensor

Π̃ij can be decomposed into its longitudinal and transverse components,

Π̃L (ω, |k|) = −kikj
|k|2 Π̃ij(k) (A1)

Π̃T (ω, |k|) = 1

2

(
ηij +

kikj
|k|2

)
Π̃ij(k) , (A2)

as follows [44]

Π̃ij(k) = −kikj

|k|2 Π̃L (ω, |k|) +
(
ηij +

kikj

|k|2
)

Π̃T (ω, |k|) . (A3)

Charge continuity and gauge invariance of the induced current J̃µ
χ (k) = Π̃µν(k) Ãν(k) imply kµ Π̃

µν(k) = 0 and

kν Π̃
µν(k) = 0, respectively. These can be used to construct the remaining components of Π̃µν(k) in terms of Π̃L [44],

Π̃00(k) =
kikj
ω2

Π̃ij(k) = −|k|2
ω2

Π̃L (ω, |k|) (A4)

Π̃i0(k) = −kj
ω
Π̃ij(k) = −ki

ω
Π̃L (ω, |k|) (A5)

Π̃0j(k) = −ki
ω
Π̃ij(k) = −kj

ω
Π̃L (ω, |k|) . (A6)
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By requiring that non-trivial solutions Ãµ(k) ̸= 0 to the sourceless Maxwell’s equations exist, we obtain the dispersion

relations, which for an isotropic plasma decompose into two parts [44]

Longitudinal: ω2 + Π̃L (ω, |k|) = 0 (A7)

Transverse: ω2 − |k|2 + Π̃T (ω, |k|) = 0 . (A8)

Note that Π̃L,T (ω, |k|) and the corresponding dispersion relations are gauge-invariant [44, 77]. For an isotropic,

ultrarelativistic, and collisionless plasma, the longitudinal and transversal components of the linear response tensor

are [32, 46, 77–79]

Π̃L (ω, |k|) =
(
− ω2

|k2|

)
× 3ω̃2

p

(
ω

2|k|Λ− 1

)
(A9)

Π̃T (ω, |k|) = (−1)× 3

2
ω̃2
p

ω2

|k|2
[
1−

(
1− |k|2

ω2

)
ω

2|k|Λ
]

(A10)

Λ = ln
ω + |k|
ω − |k| = ln

∣∣∣∣
ω + |k|
ω − |k|

∣∣∣∣− iΘ
(
|k|2 − ω2

)
, (A11)

where in the second equality of the last line we have picked the sign of Im(Λ) such that a plane wave ϕ̃(x) ∝ e−iωt+ik.x ∝
e−Im |k|x∥ (where x∥ = x.k̂) propagating in the frame of the plasma with a real positive ω and with Re |k| > 0 will

have Im |k| > 0, meaning that it decays instead of grows, due to Landau damping when |k|2 > ω2.5 In Appendix A 2,

we provide a derivation of these expressions for Π̃L and Π̃T . We plot Π̃L,T and the corresponding dispersion relations

in Fig. A.1.

We emphasize that the definitions of Π̃L,T vary in the literature. Our definitions follow that of Ref. [44] (M08) and

differ from that used in, e.g., Refs. [32, 78–81] (T08) which are, again, different from those used in, e.g., Refs. [46, 77]

(C06). If these definitions were to lead to the same longitudinal and transverse dispersion relations, the Π̃L,T must

be related as Π̃M08
L = (−ω2/|k|2)Π̃T08

L =
(
−ω2|k|2/k2

)
Π̃C06

L and Π̃M08
T = (−1)Π̃T08

T = (−1)Π̃C06
T . Note also that

sometimes, e.g., in Ref. [46, 81], the Π̃L,T are expressed in terms of the Debye screening mass m̃2
D = 3ω̃2

p [46, 82] instead

of the what we refer to as the plasma frequency, ω̃p. In our definition, the plasma frequency ω̃p is the lowest frequency

at which plasma waves can propagate, i.e., the value of ω that solves Eqs. A7 and A8 in the limit |k| → 0. The

plasma frequency of an ultrarelativistic e± plasma at a temperature T̃ , for example, is ω̃p = eT̃ /3 [32, 45, 78, 79, 82].

Furthermore, while in our notation k2 = kµk
µ and |k|2 = kiki, other variations are often used in the literature.

2. Vlasov Derivation of the Linear Response Tensor of Ultrarelativistic Pair-Plasma

The induced currents Jµ
χ (x) in a plasma of ±eqχ charged plasma particles χ± can be expressed in terms of its

distribution functions f±(x, p) [44, 45]

Jµ
χ (x) = 2eqχ

∫
d3p

(2π)3
pµ

p · u [f+(x, p)− f−(x, p)] = 2eqχ

∫
d3p

(2π)3
pµ

p · u [δf+(x, p)− δf−(x, p)] , (A12)

where the factor of two accounts for spin degrees of freedom, uµ is the velocity of the plasma wind, and the 4-

momentum pµ is on-shell. In the second equality, we defined δf± = f± − feq as the deviation of the distribution

function f±(x, p) of the plasma particles from their thermal equilibrium distribution in the absence of a chemical

5 From Eq. A8, we see that Im |k| = Im Π̃T /(2Re |k|). Thus, Im |k| > 0 requires Im Π̃T > 0 for |k|2 > ω2, which is indeed the case for

the choice of sign of the imaginary part of Π̃T in Eq. A11.
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potential feq(p) =
[
ep·u/T̃ + 1

]−1

, and we assumed that the equilibrium plasma has Jµ
χ (x) = 0. For a collisionless

plasma, the evolution of the distribution function f±(x, p) is governed by the Vlasov equation,

pµ∂µf±(x, p)∓ eqχFµν(x)p
µ ∂f±(x, p)

∂pν
= 0 . (A13)

In the weak-field regime, this can be solved perturbatively in Aµ. To first order in Aµ, and after Fourier-transforming,

the solution is given by

δf±(k, p) =± eqχ

T̃
feq(p) [1− feq(p)]

[
u ·A(k)− (k · u)[p ·A(k)]

k · p

]
, (A14)

where p is the 4-momentum of a χ particle, and k is the wavenumber associated with coordinate position x. Since this

is linear in Aµ, the resulting induced dark current Jµ
χ can be written as

Jµ
χ (k) = Πµν(k, u)Aν(k) . (A15)

Matching Eqs. A12 and A14 with Eq. A15, we find

Πµν(k, u) =
4(eqχ)

2

T̃

∫
d3p

(2π)3(p · u)feq(p) [1− feq(p)]

[
pµuν − (k · u)pµpν

(k · p)

]
. (A16)

Note that the description in this subsection is thus far covariant. To evaluate the above integral, we: (1) move to

the plasma frame by setting uµ = δµ0, (2) take the ultrarelativistic plasma temperature limit p0 ≃ |p|, (3) define

p̂µ = pµ/|p|, and (4) define cos θ = p̂iki/|k|. The integral then simplifies as follows,

Π̃µν(k) =
2(eqχ)

2

T̃

∫ ∞

0

|p|2d|p|
π2

feq(|p|) [1− feq(|p|)] Π̂µν = 3ω̃2
pΠ̂

µν , (A17)

where we have expressed the |p| integral in terms of the plasma frequency ω̃p = eqχT̃ /3,

2(eqχ)
2

T̃

∫ ∞

0

|p|2d|p|
π2

feq(|p|) [1− feq(|p|)] = 3ω̃2
p , (A18)

and collected the remaining angular integral in

Π̂µν =

∫
dΩ

4π

[
p̂µδν0 −

ω

ω − |k| cos θ p̂
µp̂ν
]

. (A19)

Using Eqs. A1, A17, and A19, the longitudinal part of Π̃µν(k) can be evaluated as

Π̃L (ω, |k|) = −kikj
|k|2

(
3ω̃2

pΠ̂
ij
)
= 3ω̃2

p

∫
dΩ

4π

cos2 θ

1− (|k|/ω) cos θ = −3ω̃2
p

ω2

|k|2
[

ω

2|k|Λ− 1

]
. (A20)

Using Eqs. A2, A17, and A19, the transverse part of Π̃µν can be evaluated as

Π̃T (ω, |k|) = 1

2

(
ηij +

kikj
|k|2

)(
3ω2

pΠ̂
ij
)
= 3ω̃2

p

∫
dΩ

4π

1

2

1− cos2 θ

1− (|k|/ω) cos θ

= −3ω̃2
p

ω2

2|k|2
[
1−

(
1− |k|2

ω2

)
ω

2|k|Λ
]

, (A21)

in agreement with Eqs A9−A11, which were adapted from Refs. [32, 46, 77–79]. Π̃L,T specifies all of the entries of the

linear response tensor in the plasma frame Π̃µν(k) via Eqs. A3−A6. Πµν(k) in an arbitrary frame can be found by the

substitution ω → k · u and ω2 − |k|2 → k2.
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3. Solving Maxwell’s Equations in Coulomb Gauge

In order to invert the Fourier-transformed Maxwell’s equations in the plasma frame (Eq. 7), one needs to pick a

gauge. In this paper, we adopt Coulomb gauge

kiÃ
i(k) = 0 . (A22)

Maxwell’s equations then reduce to

(
|k|2 − Π̃00

)
Ã0(k)− Π̃0iÃi(k) = J̃0

def(k) (A23)
(
kiω − Π̃i0

)
Ã0(k)−

(
k2ηij + Π̃ij

)
Ãj(k) = J̃ i

def(k) . (A24)

Moreover, Eqs. A22 and A3 imply

Π̃ijÃj(k) = Π̃T Ã
i(k) . (A25)

Using Eqs. A4, A6, and A22 in Eq. A23 and Eqs. A5, A25, and A22 in Eq. A24, we find

Ã0(k) =
1

|k|2
J̃0
def(k)

1 + Π̃L/ω2
(A26)

Ãi(k) =
J̃ i
def(k)− (kiω/|k|2)J̃0

def(k)

|k|2 − ω2 − Π̃T

. (A27)

The induced currents are given by Eq. 5

J̃0
χ(k) =− Π̃L

ω2 + Π̃L

J̃0
def(k) (A28)

J̃ i
χ(k) =

Π̃T

|k|2 − ω2 − Π̃T

J̃ i
def(k)−

(
Π̃L

ω2 + Π̃L

+
Π̃T

|k|2 − ω2 − Π̃T

)
kiω

|k|2 J̃
0
def(k) , (A29)

where we have used Eqs. A4, A6, and A22 to arrive at the first line and used Eqs. A5, A25, and A22 to arrive at the

second line. It can be shown that if the external currents obey charge continuity, kµJ̃
µ
def(k) = 0, then the induced

currents also obey charge continuity, kµJ̃
µ
χ (k) = 0, manifestly.

Appendix B: Response of an Ultrarelativistic Plasma to an Oscillating Deflector

1. Zero Wind Velocity

Here, we derive the expressions for the induced currents Jµ
χ in the absence of a plasma wind in the laboratory frame,

γ = 1. The Fourier-transformed deflector currents are

J0
def(k) = (−kz) i4π7/2JdefL

2
defe

− (kz)2L2
def

4 ∆γ=1(k) (B1)

Jz
def(k) = (−ωdef) i4π

7/2JdefL
2
defe

− (kz)2L2
def

4 ∆γ=1(k) , (B2)

where

∆γ=1(k) =δ (ω − ωdef)

[
δ
(
kx − L−1

def

)
+ δ

(
kx + L−1

def

)

2

][
δ
(
ky − L−1

def

)
+ δ

(
ky + L−1

def

)

2

]
. (B3)
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From Eqs. A28, A29, B1, and B2, we find

J0,z
χ (x) =

iJdefL
2
def

4π1/2
e−iωdeft cos

(
x

Ldef

)
cos

(
y

Ldef

)∫ +∞

−∞
dkzeik

zze−
(kz)2L2

def
4

[
Ξ0,z
γ=1(k)

]
ω=ωdef, |kx,y|=L−1

def

(B4)

Jx
χ(x) = −JdefL

2
def

4π1/2
e−iωdeft sin

(
x

Ldef

)
cos

(
y

Ldef

)∫ +∞

−∞
dkzeik

zze−
(kz)2L2

def
4

[
Ξx
γ=1(k)

]
ω=ωdef, |kx,y|=L−1

def

(B5)

Jy
χ(x) = −JdefL

2
def

4π1/2
e−iωdeft cos

(
x

Ldef

)
sin

(
y

Ldef

)∫ +∞

−∞
dkzeik

zze−
(kz)2L2

def
4

[
Ξy
γ=1(k)

]
ω=ωdef, |kx,y|=L−1

def

, (B6)

where the remaining kz integral must be done numerically, and

Ξµ
γ=1(k) =





− ΠL

ω2 +ΠL
(−kz) for µ = 0

ΠT

|k|2 − ω2 −ΠT
(−ωdef)−

(
ΠL

ω2 +ΠL
+

ΠT

|k|2 − ω2 −ΠT

)
kzω

|k|2 (−kz) for µ = z

−
(

ΠL

ω2 +ΠL
+

ΠT

|k|2 − ω2 −ΠT

)
L−1
def ω

|k|2 (−kz) for µ = x, y .

(B7)

2. Non-zero Wind Velocity

Above, we have adopted the notation where the presence (absence) of a tilde on a function indicates that the function

including its argument is evaluated in the plasma (laboratory) frame. In this subsection only, to keep expressions

concise we abuse this notation by sometimes writing lab-frame quantities as functions of plasma-frame coordinates,

e.g., J0
def(k̃), or vice versa, e.g., J̃0

χ(x).

In the case of a non-zero plasma wind, γ > 1, we first compute quantities of interest in the plasma frame, where

the plasma response is easier to understand, and then Lorentz transform to the lab frame. We start by expressing

the lab-frame deflector currents Jµ
def(x) in terms of plasma-frame coordinates Jµ

def(x̃) using the following Lorentz

tranformation of coordinates

t̃ = γ (t+ vz) , z̃ = γ (z + vt) , x̃ = x, ỹ = y . (B8)

Next, we Fourier transform Jµ
def(x̃) with respect to the plasma-frame coordinates x̃,

J0
def

(
k̃
)
=(γωdef − ω̃)

i4π7/2JdefL
2
def

γ2v
e
− (ω̃−γωdef)

2L2
def

4γ2v2 ∆γ>1

(
k̃
)

(B9)

Jz
def

(
k̃
)
=(−γωdefv)

i4π7/2JdefL
2
def

γ2v
e
− (ω̃−γωdef)

2L2
def

4γ2v2 ∆γ>1

(
k̃
)

, (B10)

where

∆γ>1

(
k̃
)
=δ

(
ω̃ − ωdef

γ
− k̃zv

)[
δ
(
kx − L−1

def

)
+ δ

(
kx + L−1

def

)

2

][
δ
(
ky − L−1

def

)
+ δ

(
ky + L−1

def

)

2

]
. (B11)

Using the Lorentz transformations,

J̃0
def = γ

(
J0
def + vJz

def

)
, J̃z

def = γ
(
Jz
def + vJ0

def

)
, J̃x

def = Jx
def , J̃y

def = Jy
def , (B12)

we obtain the momentum-space deflector currents in the plasma frame,

J̃0
def

(
k̃
)
=

(
ωdef

γ
− ω̃

)
i4π7/2JdefL

2
def

γv
e
− (ω̃−γωdef)

2L2
def

4γ2v2 ∆γ>1

(
k̃
)

(B13)

J̃z
def

(
k̃
)
=(−ω̃v)

i4π7/2JdefL
2
def

γv
e
− (ω̃−γωdef)

2L2
def

4γ2v2 ∆γ>1

(
k̃
)

. (B14)
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Then, Eqs. A28 and B13 as well as Eqs. A29, B13, B14, and B8 give6

J̃0,z
χ (x) =

iJdefL
2
def

4π1/2γv2
e−iωdeft cos

(
x

Ldef

)
cos

(
y

Ldef

)∫ ∞

−∞
dω̃ ei

ω̃−γωdef
γv ze

− (ω̃−γωdef)
2L2

def
4γ2v2

[
Ξ0,z
γ>1

(
k̃
)]

k̃z=
ω̃−ωdef/γ

v ,|kx,y|=L−1
def

J̃x
χ(x) = − JdefL

2
def

4π1/2γv2
e−iωdeft sin

(
x

Ldef

)
cos

(
y

Ldef

)∫ ∞

−∞
dω̃ ei

ω̃−γωdef
γv ze

− (ω̃−γωdef)
2L2

def
4γ2v2

[
Ξx
γ>1

(
k̃
)]

k̃z=
ω̃−ωdef/γ

v ,|kx,y|=L−1
def

J̃y
χ(x) = − JdefL

2
def

4π1/2γv2
e−iωdeft cos

(
x

Ldef

)
sin

(
y

Ldef

)∫ ∞

−∞
dω̃ ei

ω̃−γωdef
γv ze

− (ω̃−γωdef)
2L2

def
4γ2v2

[
Ξy
γ>1

(
k̃
)]

k̃z=
ω̃−ωdef/γ

v ,|kx,y|=L−1
def

(B15)

where

Ξµ
γ>1

(
k̃
)
=





− Π̃L

ω̃2 + Π̃L

(
ωdef

γ
− ω̃

)
for µ = 0

Π̃T

|k̃|2 − ω̃2 − Π̃T

(−ω̃v)−
(

Π̃L

ω̃2 + Π̃L

+
Π̃T

|k̃|2 − ω̃2 − Π̃T

)
k̃zω̃

|k̃|2

(
ωdef

γ
− ω̃

)
for µ = z

−
(

Π̃L

ω̃2 + Π̃L

+
Π̃T

|k̃|2 − ω̃2 − Π̃T

)
L−1
def ω̃

|k̃|2

(
ωdef

γ
− ω̃

)
for µ = x, y .

(B16)

Finally, the lab-frame induced currents Jµ
χ (x) are found using the inverse of Eq. B12.

3. Regimes of Plasma Response

It is well known that an oscillating deflector at rest in the plasma frame either excites on-shell, propagating plasma

waves or gets Debye shielded, depending on whether its frequency is above or below the plasma frequency ω̃p [40, 83].

The boundary between the two regimes becomes less trivial when the deflector is not at rest in the plasma frame. In

this section, we chart the different regimes of the ultrarelativistic-plasma response to a moving deflector.

a. Weak backreaction: ω̃p ≪ L−1
def

The longitudinal and transverse propagators in the plasma can be inferred from Eq. 8. They reduce to those of

the vacuum when ω̃2 ≫ |Π̃L| in the longitudinal case and kµk
µ ≫ |Π̃T | in the transverse case. The deflector can

excite modes with ω <∼ ωdef ∼ L−1
def, kx,y = L−1

def , and |kz| <∼ L−1
def, which means typically ω̃ = γ (ω − vkz) <∼ γL−1

def and

kµk
µ ∼ L−2

def. On the other hand, as displayed in Fig. A.1, we have |Π̃L| ∼ |Π̃T | <∼ ω̃2
p.

7 Hence, the longitudinal and

transverse plasma responses are negligible when ω̃p ≪ γL−1
def and ω̃p ≪ L−1

def, respectively. We refer to the regime

ω̃p ≪ L−1
def, where both the longitudinal and transverse responses are negligible, as the weak-backreaction regime.

Intuitively, in this regime the deflector operates at such a high plasma-frame frequency/wavenumber that the plasma

does not have enough time to react in a significant way. Using Eq. 5 in the lab frame and using that the magnitude of

the linear response tensor is typically |Πµν | ∼ ω̃2
p, we can estimate the magnitude of the induced current as Jχ ∼ ω̃2

p ϕ,

6 Here, we use the three delta functions in Eq. B11 to evaluate the kx, ky , k̃z integrals, leaving the ω̃ integral as the remaining non-trivial

integral. Since one of the Dirac deltas imposes k̃z = (ω̃ − ωdef/γ)/v, one cannot easily take the v → 0 limit to recover the zero wind

velocity results. Nevertheless, we checked numerically that the γ > 1 results reduce to the γ = 1 ones as we bring γ close to 1. Had

we evaluated the ω̃, kx, ky first using the three delta functions, we would be left with a k̃z integral instead. In the limit v → 0, this k̃z

integral reduces trivially to the γ = 1 results, Eqs. B4−B6.
7 This is true unless ω̃/|k̃| ≃ 1 which has a negligible phase-space measure in the weak-backreaction regime, but more generally can be

important as discussed below.
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where ϕ is the electric potential. Since the plasma response is negligible in this regime, the total electric potential is

approximately equal to that sourced by the deflector, ϕ ≃ ϕdef ∼ BdefLdef. It follows that

Jχ ∼ (ω̃p Ldef)
2
ϕdef . (B17)

Outside of the weak-backreaction regime, the gauge field Aµ
χ sourced by the induced plasma current Jµ

χ contributes

significantly to the total gauge field Aµ which, in turn, affects the generation of Jµ
χ . In that case, the gauge field Aµ

must be solved self-consistently to all orders in the plasma frequency ω̃p.

b. On-shell plasmon excitations: ω̃p
<∼ γL−1

def

The Fourier-transformed deflector current in the plasma frame has the form J̃µ
def(k) ∝ δ [ωdef/γ − kµv

µ], where vµ

is the four-velocity of the deflector. Thus, only modes satisfying kµv
µ = ωdef/γ can be excited by the deflector.8

Plasma modes satisfying this resonance condition are excited by the deflector. However, unless they are on-shell, they

will subsequently decay due to Landau damping. Propagating (on-shell) plasma modes can be excited if the (ω,k)

phase-space defined by kµv
µ = ωdef/γ intersects with the plasma dispersion relations, displayed in Figs. A.1 and B.2.

To see if this is the case, we rewrite kµv
µ = ωdef/γ in terms of cos θ̃ = k̃z/|k̃|,
|k̃|
ω̃p

(
1− v cos θ̃

)
+

ω̃ − |k̃|
ω̃p

=
ωdef

γω̃p
. (B18)

Let us determine the smallest ωdef relative to γ ω̃p that leads to excitation of on-shell plasma waves. This amounts to

finding the minimum value of the left-hand side when the dispersion relations are imposed. The first term can be as

small as ∼ |k̃|/(γ2ω̃p) when θ̃ <∼ 1/γ ≪ 1.9 The second term, although more involved, can be understood through

Fig. B.2, which indicates that

ω̃L − |k̃|
ω̃p

≃ min

[
O(1) ,

2|k̃|
ω̃p

e
−2

(
|k̃|2

3ω̃2
p
+1

)]
,

ω̃T − |k̃|
ω̃p

≃ min

[
O(1) ,

3ω̃p

4|k̃|

]
. (B19)

Considering the sum of ∼ |k̃|/(γ2ω̃p) and each of the above, we find that the left-hand side of Eq. B18 is minimized

when |k̃|/ω̃p ∼ 2 at a value ∼ γ−2 for longitudinal modes, while it is minimized when |k̃|/ω̃p ∼ γ at a value ∼ γ−1

for transverse modes.10 Therefore, for ωdef ∼ L−1
def, the conditions for exciting on-shell plasma waves are ω̃p

<∼ γL−1
def

for longitudinal modes and ω̃p
<∼ L−1

def for transverse modes. In cases where the plasma frequency lies in the range

L−1
def

<∼ ω̃p
<∼ γL−1

def, the deflector excites on-shell plasmons which backreact significantly on the total gauge field Aµ.

c. Dynamical Debye screening: ω̃p
>∼ γL−1

def

When ω̃p
>∼ ω̃def ∼ γL−1

def, the deflector excites only plasma waves with imaginary wavenumbers. The latter means

the plasma waves decay spatially, i.e., the deflector is Debye screened.

8 Alternatively, this resonance condition can also be seen in position-space where the deflector current reads J̃µ
def(x) ∝ e−iΦdef , with

Φdef = ωdef t = γ ωdef

(
t̃− vz̃

)
as per a simple Lorentz transformation t = γ(t̃− vz̃). Along the worldline of a particle moving with the

deflector z̃ = vt̃ + constant, the deflector phase evolves as dΦdef/dt̃ = ωdef/γ (i.e., the usual special-relativistic time-dilation effect),

which is to be matched with the Doppler shifted frequencies of plasma waves kµvµ. Note also that the Cherenkov resonance condition for

a static deflector, kµvµ = ω − k.v = 0, is recovered in the limit ωdef → 0 [33, 44].
9 Excited modes with θ̃ <∼ 1/γ in the plasma frame can have lab-frame angles of θ = O(1), which follows from inverse relativistic-beaming

cos θ = (cos θ̃ − v)/(1− v cos θ̃).
10 Since the first and second terms in the left-hand side of Eq. B18 are both positive and have opposite monotonic behaviors, their sum is

minimized when these terms are comparable.
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Figure B.2. The deviation of the dispersion relation from the light cone ω = |k|. Analytical approximations to the dispersion

relations, which are valid at |k|/ωp
>∼ 2, are also shown.

Appendix C: Electromagnetic Fields of the Deflector

The gauge potentials sourced by the deflector in the lab frame are given by

A0
def(k) =

J0
def(k)

|k|2 , Adef(k) =
Jdef(k)− (ωk/|k|2)J0

def

|k|2 − ω2
. (C1)

The deflector’s electric and magnetic fields can be computed from these gauge potentials through the following relations

Edef(k) = −ikA0
def(k) + iωAdef , Bdef(k) = ik×Adef(k) . (C2)

It follows that

Ez
def(x) =

iJdefL
2
def

4π1/2
e−iωdeft cos

(
x

Ldef

)
cos

(
y

Ldef

)∫ +∞

−∞
dkzeik

zze−
(kz)2L2

def
4 [Ξz

E(k)]ω=ωdef, |kx,y|=L−1
def

(C3)

Ex
def(x) = −JdefL

2
def

4π1/2
e−iωdeft sin

(
x

Ldef

)
cos

(
y

Ldef

)∫ +∞

−∞
dkzeik

zze−
(kz)2L2

def
4 [Ξx

E(k)]ω=ωdef, |kx,y|=L−1
def

(C4)

Ey
def(x) = −JdefL

2
def

4π1/2
e−iωdeft cos

(
x

Ldef

)
sin

(
y

Ldef

)∫ +∞

−∞
dkzeik

zze−
(kz)2L2

def
4 [Ξy

E(k)]ω=ωdef, |kx,y|=L−1
def

, (C5)

and

Bz
def(x) = 0 (C6)

Bx
def(x) =

JdefL
2
def

4π1/2
e−iωdeft cos

(
x

Ldef

)
sin

(
y

Ldef

)∫ +∞

−∞
dkzeik

zze−
(kz)2L2

def
4 [ΞB(k)]ω=ωdef, |kx,y|=L−1

def
(C7)

By
def(x) = −JdefL

2
def

4π1/2
e−iωdeft sin

(
x

Ldef

)
cos

(
y

Ldef

)∫ +∞

−∞
dkzeik

zze−
(kz)2L2

def
4 [ΞB(k)]ω=ωdef, |kx,y|=L−1

def
, (C8)

where

Ξi
E(k) =





−ikz
−kz

|k|2 + iω
(−ω)−

(
ωkz/|k|2

)
(−kz)

|k|2 − ω2
, for i = z

−iL−1
def

−kz

|k|2 + iω
−
(
ωL−1

def/|k|2
)
(−kz)

|k|2 − ω2
, for i = x, y

(C9)

ΞB(k) = −iL−1
def

−ω

|k|2 − ω2
. (C10)
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The electric and magnetic fields of the TM010 mode are

ETM010
= −E0J0

(
2.4
√
x2 + y2

R

)
ei

2.4
R tẑ , BTM010

= iE0J1

(
2.4
√
x2 + y2

R

)
ei

2.4
R tϕ̂ . (C11)

where J0 and J1 are Bessel functions of zeroth and first order, respectively.
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