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Abstract. In this work, we introduce a new iterative quantum algorithm, called

Iterative Symphonic Tunneling for Satisfiability problems (IST-SAT), which solves

quantum spin glass optimization problems using high-frequency oscillating transverse

fields. IST-SAT operates as a sequence of iterations, in which bitstrings returned

from one iteration are used to set spin-dependent phases in oscillating transverse fields

in the next iteration. Over several iterations, the novel mechanism of the algorithm

steers the system toward the problem ground state. We benchmark IST-SAT on sets

of hard MAX-3-XORSAT problem instances with exact state vector simulation, and

report polynomial speedups over trotterized adiabatic quantum computation (TAQC)

and the best known semi-greedy classical algorithm. When IST-SAT is seeded with a

sufficiently good initial approximation, the algorithm converges to exact solution(s) in

a polynomial number of iterations. Our numerical results identify a critial Hamming

radius(CHR), or quality of initial approximation, where the time-to-solution crosses

from exponential to polynomial scaling in problem size. By combining IST-SAT with

future classical or quantum approximation algorithms, larger gains may be achieved.

The mechanism we present in this work thus presents a new path toward achieving

quantum advantage in optimization.
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1. Introduction

Binary constraint satisfaction problems represent a promising opportunity to achieve

practical quantum advantage in real-world problems found in optimization, artificial

intelligence, and cryptography. In the worst case, and often, the typical case, these

problems are exponentially hard to solve or even approximate for classical machines.

Therefore, an efficient solution mechanism would have broad impacts and applicability.

So far however, demonstrating consistent quantum advantage with heuristic

algorithms has remained elusive. A wide array of heuristic quantum algorithms such

as analog quantum annealing [1, 2, 3, 4, 5, 6, 7], adiabatic quantum computing (AQC)

[8, 9], quantum approximation optimization algorithms (QAOA) [10], and more exotic

variations such as adaptive derivative assembled problem tailored (ADAPT)-QAOA

[11], recursive QAOA [12], QAOA supplemented with amplitude amplification [13], and

energy matching/population transfer algorithms [14, 15, 16, 17], have been proposed

for spin glass optimization. Their empirical performance, however, has been decidedly

mixed, and the frequently observed quadratic speedups from schedule optimization (a

scheme dating back to the adiabatic formulation of Grover’s search [18]) are fragile and

likely not feasible at large N [19]. Furthermore, if the problem Hamiltonian is stoquastic

[20], quantum Monte Carlo [21, 22, 23, 24, 25] can simulate small systems sizes in the

quadratic (incoherent) scaling limit.

Motivated by the recent search for applications of quantum algorithms to machine

learning, variational quantum algorithms have also also been applied to spin glass

optimization problems [26]. Yet, large gains from these methods may be limited by the

cost of computing gradients and may often get stuck in local minima and encounter

barren plateaus, or loss of variance in the optimization landscape [27, 28]. Thus,

the full capabilities of quantum computing in this space, and potential asymptotic

limits for very general algorithms in this class, deserve further exploration. Given that

beyond-quadratic speedups are critical to achieve useful quantum advantage [29], new

mechanisms that expand the quantum optimization toolbox for reaching exact solutions

[30], or even approximate solutions may have significant impacts.

In this work, we propose a non-classical steering mechanism that guides quantum

optimization algorithms towards the true ground state in spin glass problems. We

demonstrate this mechanism by introducing a new heuristic quantum algorithm which

we call Iterative Symphonic Tunneling for Satisfiability problems (IST-SAT). The IST-

SAT algorithm modifies quasi-continuous time Trotterized AQC (TAQC), with total

evolution time increasing linearly with N , by adding a monochromatic fast oscillating

field along Y to all spins. The addition of the oscillating field is inspired by a recently

discovered mechanism termed symphonic tunneling which has exponentially accelerated

macroscopic quantum tunneling rates between ferromagnetic ground states [31, 32]. IST-
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SAT builds on this work by expanding the use of high frequency oscillating transverse

fields to quantum optimization. We consider disordered spin glass instances drawn from

the MAX-3-XORSAT problem class [30], where the problem Hamiltonian HP is diagonal

in Z and the DC transverse field is along X. In contrast to accelerating collective

tunneling in the transverse-field Ising model (TFIM) where the classical ground states

are known a priori and there is no frustration [32], applying a uniform oscillating field

with identical frequencies and phases to all sites produces no meaningful benefits for

finding low energy states of MAX-3-XORSAT problems.

To formulate the IST-SAT algorithm, we propose an iterative strategy, where

bitstrings returned from TAQC are used to set spin-dependent phases for the oscillating

drive terms in subsequent iterations of the algorithm. We define the list of phases

P = [φ1, φ2, . . . , φN ], with φj ∈ {0, π} assigned to each spin. We test the performance

of IST-SAT on the planted partial solution problem (PPSP) class defined in [33], and

with extensive exact state-vector simulations. Our results show that when the phase

pattern more closely matches the pattern of bits in the planted classical ground state

G, the probabilities of reaching G and states nearby to the global optima increase

monotonically. Our simulations identify a critical Hamming radius (CHR) rc where

the time to find G in iterative optimization scales polynomially, starting from any

bitstring with Hamming distance DH ≤ rcN from G. IST-SAT achieves a polynomial

speedup over both trotterized AQC (TAQC) and the best-known quasi-greedy classical

algorithm for this problem. We also demonstrate that using TAQC as a seed algorithm

for classical methods yields meaningful polynomial speedups over both algorithms on

their own. Taken together, these results suggest new and promising routes to gradient-

free quantum optimization, through a new non-classical steering mechanism to find

ground-states with quantum algorithms.

2. Problem and algorithm definitions

In contrast to many problems where asymptotic exponential scaling is not reached until

prohibitively large system sizes for classical computers and NISQ era devices [34], 3-

XORSAT problems have exponential scaling that is typically observed at small N . We

test IST-SAT on the MAX-3-XORSAT [30] problem, defined on a random 3-uniform

hypergraph consisting of NC three-body constraint terms. The problem Hamiltonian is

given by

HP = −
NC∑
ijk

VijkZiZjZk, Vijk = ±1, (1)

where for a given bitstring a constraint is satisfied if ⟨VijkZiZjZk⟩ = +1, and unsatisfied

otherwise. Since the problem is linear, Gaussian elimination can be used to check if the

problem is satisfiable in polynomial time. However, when not all the constraints can be

satisfied, finding the lowest energy state(s) is known to be NP-hard [35].

This work utilizes a family of instances called planted partial solution problems
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Figure 1. Schematic of the IST-SAT algorithm. An approximate algorithm–which can

include random guessing and high-depth TAQC–in (a) is used to find “seed strings” (b)

for the phase pattern in the HST drive Hamiltonian. The local phases {φ1, φ2, . . . , φN}
in HST are set from bits of the seed states using the key (c), which we denote with

colored Ry rotations in (d). After providing the algorithm an initial phase pattern

P0, the iterative process described in (e) continues, where the circuit is run for M

shots, generating new seed strings which are converted to phase patterns. A new

phase pattern Pi is then selected to be used in the next iteration. The total number

of ”REPEATS” is set by the ratio of total runtime and Trotter step, t/dt (see text).

(PPSPs), used in recent quantum approximation algorithms for MAX-3-XORSAT

[33]. To construct a PPSP we first pick a random hypergraph with N variables that

participate in NC constraints with NC ≫ N , a fixed small fraction ϵ (we use ϵ = 0.1

in this work), and a random bitstring G to be the planted ground state. We randomly

select (1− ϵ)NC constraints to be satisfied in G (by choosing the signs of the Vijk)

with the remaining left unsatisfied. For small ϵ and NC ≫ N , this construction makes

G a unique ground state with high probability (the SAT/UNSAT transition here is

at NC/N ∼ 0.92 [36]). We note that the PPSP instances in this work can be more

difficult than 3-regular hypergraphs studied in previous work [37, 38], which are easy to

approximate and can be solved efficiently if satisfiable. Throughout this work, we used

the set of constraint densities NC/N ∈ {1.5, 2, 4} to test the performance of IST-SAT

over several densities above the SAT/UNSAT transition.

IST-SAT starts from the “standard” quasi-continuous time AQC method of

interpolating between a transverse field “driver” Hamiltonian and the problem

Hamiltonian with Trotterized evolution from t = 0 to t = tf :

H(t) = f(t)HD + g(t)HP , HD = −
∑
j

Xj, (2)

f(0) = g(tf ) = 1, f(tf ) = g(0) = 0.

We interpolate between the problem and driver Hamiltonians using the following

functions

f(t) =
√

1− t/tf , g(t) =
√
t/tf , (3)

The choices of f(t) and g(t) empirically outperform linear interpolation, producing a

better prefactor and modestly better scaling with N , though we expect the asymptotic
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scaling of the two schedules may converge for this problem. We let the total evolution

time tf grow linearly with N .

IST-SAT modifies the base Hamiltonian in equation 2 by adding a high-frequency

monochromatic oscillating field

HST(t) = α
∑
j

Yj sin(ωt+ φj). (4)

Within HST(t), the parameters φj = {0, π} are single-qubit phases, and α = αs lnN is

the drive strength. The total Hamiltonian is then given by

H(t) = f(t)HD + g(t)HP + h(t)HST (t), (5)

where h(t) is a smooth function with initial and final conditions h(t = 0), h(tf ) = 0. In

this work, we used h(t) = 4
√

(1− t/tf )(t/tf ), αs = 0.6 and ω = 2π×6 lnN . The choice

of α and ω both increasing logarithmically with N minimizes heating [39, 40] while

ensuring that the novel low-frequency terms generated by the high frequency drive have

constant magnitude. Time evolution is implemented via Trotterization and gate-based

exact state-vector simulation using the qulacs python package [41].

The schematic work-flow of the IST-SAT algorithm is shown in Fig. 1, which begins

with an approximate algorithm. The initial approximation algorithm can be a greedy

classical approach, simulated annealing, or a quantum algorithm such as AQC/TAQC

or QAOA. The initial approximate algorithm is used to obtain seed strings which are

used to set phases in the high frequency AC drive HST(t). We note the method of

phase selection in HST is distinct from warm start methods [42], where preparing a

good initial state with high overlap to the ground state is costly, and still expected to

be hard. Instead, IST-SAT starts from the initial superposition state |+⟩⊗N , and sets

parameters in the time-dependent Hamiltonian HST(t). In one iteration of IST-SAT,

the binary configuration of a selected seed string is used to form the phase pattern P ,

which sets parametrizes the quantum circuit in figure 1. After evolving the circuit, new

measurements in the z-basis generate M new phase patterns that may be used in further

iterations.

For the time evolution of equation 5, we used a mean evolution time of tf = N/32,

with dt = 0.4/ω to ensure high frequencies are appropriately sampled. The total circuit

depth thus scales as N lnN problem Hamiltonian applications. All data is averaged over

1000 random problem instances for each N . The total run-time is total averaged between

T = 2tf/3 and T = 4tf/3, for all simulations of IST-SAT and TAQC. This averaging

procedure has shown to effectively smooth out unpredictable diabatic effects that can

make reliably estimating scaling difficult [31], particularly when success probabilities

decay exponentially with N . The parameters used in this work are the result of trial

and error on small system sizes. Therefore further parameter optimization techniques

are expected to produce further benefits.
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Figure 2. Exponential to polynomial scaling transition for IST-SAT seeded with

random initial phase patterns P0, with fraction (1−r) of the bits matching the planted

solution. For constraint densities NC/N = 1.5, 2, 4 (left, middle, right), the plot shows

the probability of returning a solution within DH ≤ rN/2 flips of the nearest solution.

For probability calculations with DH ≤ rN , refer to Appendix A.

3. Performance results of IST-SAT

The results from state-vector simulation of IST-SAT shown in figure 2, demonstrate

that an appropriately chosen phase pattern dramatically accelerates a collective

rearrangement of spins at the transition from the initial paramagnetic state to ground

states of the problem Hamiltonian. Of course, this choice of phase pattern is not obvious

since solutions to the problem are generally not known, and the purpose of the algorithm

is to find it. If the phases are chosen randomly, the protocol in equation 5 shows no

scaling advantage over the uniform field protocol in equation 2 with a modest prefactor

disadvantage. Conversely, if we let φj = πbj, where bj ∈ {0, 1} is the value of bit j

in the planted solution G, PGS (tf ) is empirically constant with linear runtime tf ∝ N

(see the r = 0 data in figure 2), compared to exponential decay in the uniform field

case shown in Appendix B, with an exponent predicted analytically in [33]. Making this

choice requires knowledge of G, and thus a solution to the problem, so it’s not obvious

that this discovery will help.

The observation that supports IST-SAT is as follows: suppose the phases φj

are guessed correctly with some probability r ≥ 1/2, based on the values of each

bit in G. We note that the relative phases in P are most crucial. As r increases

toward 1, the probabilities of finding any approximate solution nearest in Hamming

distance monotonically increase at equivalent total evolution time, as shown in figure

2. Therefore, using the bitstrings from previous iterations of IST-SAT to construct the

phase pattern for subsequent iterations yields solutions that are progressively closer to

the ground state, enabling the algorithm to converge rapidly.

The results obtained from simulation in this work consistently present an empirical

critical Hamming radius (CHR) rc, which depends on NC/N and the unsatisfied fraction

ϵ in the planted solution. We define the CHR rc in the following way: suppose each local

phase is guessed correctly (relative to the planted solution) with probability 1−r. Then,

for linearly growing tf , rc is defined to be the largest value of r such that the probability

of returning states with a Hamming distance ≤ rN is constant with increasing N . For
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NC/N = {1.5, 2, 4} and ϵ = 0.1, we respectively observe rc ≃ {1/4, 1/4, 1/3}, which
demonstrates that problems with larger constraint densities are solved with comparably

worse initial approximations. In simulations of smaller systems with larger constraint

densities (data not shown), the CHR are observed to be consistent with rc ≃ 1/3.

Therefore, if the approximate seed strings are within some r < rc, the bitstrings

returned each round in IST-SAT will get closer and closer to the global optimum; with

rc defined in this way, we expect convergence from a string less than rcN flips to the

planted solution in a polynomial number of algorithm iterations. If we start from strings

which are more than rc flips away, iterating phase patterns are still expected to converge

to a global optima faster than the TAQC algorithm IST-SAT uses as a starting point.

This is demonstrated by a smaller scaling exponent which can be inferred from the

smaller slopes for curves with rc < r < 1/2 in Appendix B as compared to the TAQC

data, though the quantitative analysis of scaling is more complex in that case.

Throughout this paper, we define the time-to-solution (TTS) as the exponent b

obtained from exponential fits to numerical data presented in this work. We use the

function f(N) = a2bN , where a is a pre-factor constant, and b is the exponent which

indicates the expected number of shots it takes to reach the a ground state of the

problem. Hence, when b ≥ 0, IST-SAT returns solutions scaling as a polynomial in N ,

while b < 0 implies an exponentially increasing with number of iterations to reach a

global minima.

Table 1. Inferred time-to-solution (TTS) to reach a global optima for various

algorithms: a semi-greedy classical (SGC) algorithm [37], TAQC [10], SGC seeded

with TAQC, and IST-SAT seeded with TAQC. The TTS (defined above in section 3)

is derived from the scaling exponent b in numerical fits to simulation data.

Algorithm set-up NC/N = 1.5 NC/N = 2 NC/N = 4

SGC -0.092 -0.15 -0.050

TAQC -0.11 -0.17 -0.20

TAQC→SGC -0.073 -0.081 -0.025

TAQC→IST-SAT -0.026 -0.053 -0.027

For the TAQC→SGC sequence in table 1, we report the combination with the

least exponentially decaying exponent from Appendix D. For the TAQC→IST-SAT

sequence, we report the TAQC exponent from Appendix B corresponding to the

approximation distance equal to the critical Hamming radius (d = rc) of IST-SAT.

The full set of exponents for other distances d ̸= rc may be found in tables in

the referenced appendices. The inferred TTS demonstrates that IST-SAT obtains a

significant polynomial speed-up over SGC and TAQC at all constraint densities. The

performance of TAQC→IST-SAT out-performs TAQC→SGC at NC/N = {1.5, 2}, while
demonstrating comparatively worse performance at NC/N = 4. We attribute this

difference due to the warm-started SGC algorithm not reaching expected asymptotic

exponential decay at NC/N = 4 until system sizes beyond our simulation capabilities
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(N > 200), while TAQC and IST-SAT demonstrate the expected asymptotic scaling

in small problem sizes. Furtherperformance results of the warm-started SGC algorithm

may be found in Appendix D.

TAQC

Figure 3. Average energy ⟨E⟩ returned from IST-SAT with a lower frequency drive

ω10π lnN (Appendix E) and TAQC, normalized by the ground state energy EGS .

Energy is obtained using HP as the cost function. Here, we run a single iteration of

IST-SAT, and use 10,000 samples (bitstrings) from the wave function in exact state

vector simulation. The legend in the center figure specifies the fraction of incorrect

bits rN used in the seed state protocol.

To examine the quality of strings returned from IST-SAT, we plot the average

energy ⟨E⟩ (normalized by EGS) in figure 3. We note that the data reported in figure 3

were obtained using a lower frequency of ω = 10π lnN , compared to the data reported

in figure 2. Interestingly, the rapid convergence to any global optima is based only on

Hamming distance DH and remains uncorrelated with the energies E of the returned

states. However, we still observe monotonically increasing average string qualities as

IST-SAT is seeded with better phase patterns. Our very first formulation of IST-SAT

used a variation of the quasi-greedy algorithm in [37] to gather the initial seed states,

and we observed no improvement over random guessing in making this choice for reasons

discussed below. This is supported by the result that, unless r is very close to one, the

average energy returned by IST-SAT is somewhat worse than that of TAQC for all

other parameters equal (see the supplemental information for figures). We attribute

this observation to there being many local minima with energies close to EGS, and the

effect of the high frequency oscillating drive is to steer the evolving state away from

them and toward |G⟩ and its local excitations, which may be higher in energy even if

they are much closer in Hamming distance.

While naive classical seeding was unsuccessful, matching the observed rc ≃
{1/4, 1/4, 1/3} with the corresponding distance probabilities for TAQC yields

significantly reduced asymptotic time to solution if strings from TAQC (or equivalently,

random phase patterns) are used for initial seeding. Selecting fractions of the TAQC

strings based on their energies yielded no benefit over randomly sampling the TAQC

output distribution.

Interestingly, the results demonstrate that even when the initial seed string is

chosen relative to a single solution (the planted solution), the probability of reaching
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other equally valid solutions remains robust. This result is clearly observed at the

smallest constraint density (NC/N = 1.5), where each problem instance tends to have

several global optima. At larger constraint densities of NC/N = {2, 4}, the probability

of reaching any solution more closely matches the probability of reaching the planted

solution, which is unique with higher probability. In Appendix A, we discuss the choice of

phase pattern, convergence to the planted solution in particular, and the exact solution

statistics of the problem instances used in this work.

4. Conclusion

We have introduced IST-SAT, a quantum algorithm that uses a non-classical steering

mechanism based on high frequency oscillating drives that guides the algorithm towards

the global minima of hard optimization problems. IST-SAT is a unique feedback-based

quantum algorithm which does not require the calculation of any gradients or averages

used in the original variational QAOA proposal, or more recent versions such as recursive

QAOA [12]. These costly methods require hundreds to thousands of shots to calculate

accurately. The core mechanism for how the phase pattern appropriately guides the

optimization is only understood by analogy to other work in a simpler system [32],

where we expect a careful analytical derivation of the speedups observed in this work

to inform further algorithm innovations.

Regarding seed algorithms for IST-SAT, it may be the case that other classical

or quantum algorithms could provide further benefits to for finding good initial

approximations. For example, an algorithm that breaks HP into exactly solvable sub-

problems may obtain sets of relative phase patterns which potentially yield significant

improvements. Future work may also test versions of IST-SAT by assigning each group

of spins a different frequency (not just a different phase pattern), for better averaging,

as in the earlier multi-frequency AC optimization schemes [43, 19, 44, 31] that inspired

this work.

While all phase patterns were set using discrete offsets of {0, π} in this work, we

expect that more sophisticated phase pattern selection protocols would further improve

IST-SAT. An interesting future direction could consider using semi-definite programs

to selecting phases in the HST drive in a continuous interval φj = [0, π], building off

recent improvements to a variational quantum algorithm [45] for quantum Max-Cut. We

expect that the core mechanism of IST-SAT is broadly applicable to other problems in

optimization, such as Max-Cut or low auto-correlated binary sequences (LABS), which

we leave for future exploration. Finally, it is expected that this IST-SAT is not single-

error fragile, in contrast to recently proposed quantum algorithms for MAX-3-XORSAT

[33], thus motivating future experiments on near-term quantum devices.
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Appendix

Appendix A. Further details on performance of IST-SAT

Appendix A.1. Phase pattern selection and convergence to the planted solution

Figure A1. Convergence of IST-SAT to the (top row) nearest solution in Hamming

distance and (bottom row) the planted solution. Initial phase patterns P0 were chosen

from random seed strings with (1 − r) of the bits correctly chosen relative to the

planted solution. We include the r = 0 case from the top row as the r∗ = 0 case in

the bottom row (blue diamonds) to show how IST-SAT targets the planted solution

at high constraint densities.

We report the convergence of IST-SAT to the nearest solution in Hamming distance

and the planted solution in particular shown in figure A1. Notably, the results for

convergence to any solution at NC/N = 1.5 demonstrate a positive exponent for all

fractions r of the random approximate seed string. All exponential fits for the top row

of figure A1 can be found in Appendix A.2. When considering the convergence to the

planted solution in particular, the performance of IST-SAT notably degrades at r = 0.

W attribute this behavior to the problem instances containing several global minima

(multiple ground states) at lower constraint density, which is supported by exact solution

statistics provided in Appendix A.3. As discussed in the main text, while performance of

reaching the planted solution degrades, IST-SAT remains robust to finding other global

optima equal in energy to the planted solution.

While low constraint densities have more ground states, the number of solutions is

typically very small at larger constraint density (NC/N = 4), where the convergence to

any solution and the convergence to the planted solution are nearly identical (see right
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column of figure A1). This alignment in convergence suggests that IST-SAT targets

not only the solution to which the pattern was pre-selected for, but all equally valid

solutions. Therefore, in the problem instances we tested in this work, a pattern selected

relative to one solution remains robust to finding other global minima. These results

are supported by exact solution statistics in Appendix A.3 for the MAX-3-XORSAT

problem instances we consider in this work.

Appendix A.2. Performance of IST-SAT with random approximate seed strings

Table A1. Exponential fits to the numerical data presented for IST-SAT seeded

with random approximate seed strings for probabilities P (DH ≤ rN) (see top row of

figure A1) and P (DH ≤ rN/2) (see figure 2). In this table, we report the exponent b

from fitting the numerical data to a2bN . The exponents corresponding to the critical

Hamming radius are highlighted in bold text.

(a)

Guessing error r NC/N = 1.5 NC/N = 2 NC/N = 4

1/3 0.013 -0.013 0.00045

3/10 0.012 -0.0031 0.021

1/4 0.017 0.022 0.046

1/8 0.045 0.062 0.077

(b)

Guessing error r NC/N = 1.5 NC/N = 2 NC/N = 4

1/3 -0.024 -0.038 0.0013

3/10 -0.016 -0.020 0.028

1/4 -0.00087 0.012 0.056

1/8 0.041 0.060 0.084

Appendix A.3. Exact solution statistics at small problem sizes

a) b) c)

Figure A2. (a) Percentage of problem instances (from the total 1000 instances) with

more than one ground state, including the PPS. For each system size N = 8 − 24,

we computed exact ground states using brute-force methods. (b) Average number of

ground states per problem instance. (c) Pairwise Hamming distance DH within the

set of ground states. The N = 8, 9, 12 cases have only one ground state, which is the

PPS.
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To produce figure A2, we calculated the exact number of exact solutions via brute force

search to N = 24, for 1000 problem instances at each system size. In figure A2 (a-b), the

problem instances at NC/N = {1.5, 2} tend to have more than one ground state, while

at NC/N = 4, the planted solution tends to be a unique ground state. These statistics

support the results shown in figure A1, where the convergence to the any solution does

not show any exponential decay for all approximate seed state distances. For the largest

constraint density we present in this work (NC/N = 4), the planted solution is nearly

always the unique global optima.

When a given instance has multiple ground states, we further would like to

understand how these solutions are correlated. In figure A2 (c) we report the pairwise

Hamming distance between ground states, which demonstrates that even when a

problem contains several solutions, the solutions tend to very close to each other

measured in Hamming distance. This strong correlation demonstrates that solutions

tend to be only a few bit flips away from each other on average. These statistics support

the claim that when the phase patterns are selected only relative to one solution (the

planted solution, which is known), IST-SAT is robust to finding other global minima

due a small pairwise Hamming distance withing the set of optimal solutions. Future

work may consider other problems with instances in which there are no such strong

correlations are expected.

Appendix B. Seeding with trotterized adiabatic quantum computation

Figure B1. Probabilities of TAQC returning approximate strings within a Hamming

distance DH ≤ dN from the nearest solution for (left to right) NC/N = {1.5, 2, 4}.
Data are fit to lines a2bN , where the exponents b are reported in Appendix B.

In this section, we consider the capabilities of TAQC as a seed algorithm for IST-

SAT. Specifically, we report the approximation performance of the TAQC and SGC

algorithms in terms of Hamming distance to any ground state. In figure B1, we show

the probabilities of reaching approximate solutions, measured by an approximation in

Hamming distance DH ≤ dN to the nearest solution, where d is some fraction in the

range [0, 1/2]. Exact solutions are measured by d = 0, while d = 1/2 is equivalent to

random guessing, and 0 < d < 1/2 are approximate solutions.
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Table B1. Exponential fits to the numerical data presented for TAQC in figure B1.

In this table, we report the parameters b obtained from fitting the function a2bN to

the probabilities P (DH ≤ dN) of finding states close in Hamming distance DH for

different distances dN or fewer flips away from the nearest solution. We include the

fitting results for the set of constraint densities NC/N = {1.5, 2, 4}. We denote the

fraction d for each constraint density associated to rc in bold face text.

Fractional Hamming distance d NC/N = 1.5 NC/N = 2 NC/N = 4

1/3 -0.0050 -0.038 -0.027

3/10 -0.013 -0.044 -0.027

1/4 -0.026 -0.053 -0.030

1/8 -0.056 -0.075 -0.037

0(PGS) -0.11 -0.17 -0.20

Appendix C. Performance of the semi-greedy classical algorithm

Figure C1. Probabilities of SGC returning approximate strings within a Hamming

distance DH ≤ dN from the planted solution for (left to right) NC/N = {1.5, 2, 4}.
Data is plotted as P (DH ≤ dN)+PGS to estimate the probability of finding any ground

state. Data are fit to lines a2bN , where the exponents b are reported in Appendix C.

Table C1. Exponential fits to a2bN for the SGC data presented in figure C1.

Fractional Hamming distance d NC/N = 1.5 NC/N = 2 NC/N = 4

1/3 -0.053 -0.049 -0.040

3/10 -0.065 -0.059 -0.044

1/4 -0.084 -0.077 -0.048

1/8 -0.11 -0.12 -0.050

0(PGS) -0.092 -0.15 -0.050

Appendix D. Warm starting the semi-greedy classical algorithm

To further approximate the critical Hamming radius for our PPSPs we applied a

classical semi-greedy descent to random problem instances with constraint densities

NC/N = {1.5, 2, 4}. The algorithm is a modified version of the simple greedy algorithm
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introduced in [37] and later applied to hypergraphs in [33]. To approximate the critical

Hamming radius, we ran the semi-greedy algorithm on random hypergraphs for the

stated constraint densities. The initial states started from distances rN flips away

from the planted solution to show the SGC algorithm performance when starting from

approximate solutions nearby the planted solution.

Figure D1. Probabilities of finding the ground state of random hypergraphs for

NC/N = {1.5, 2, 4} using 100,000 trials on each constraint density and each value of

rN . The data was fit to a2bN using problem sizes from N = 40 to N = 100. The

results for the 4N constraint density demonstrated unusual behaviors at smaller N , so

we ran it to N = 200 to try and find convergent behavior. The fits were calculated on

the data points from N = 100 to N = 200. We found that the seeding the algorithm

from farther away resulted in an increasing probability in finding the ground state

with N , however it is clear that these trends eventually become an exponential decay

in finding the ground state. With all of that considered, the algorithm still performs

best when seeded with values close to the ground state.
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Table D1. In (a), we report the exponential fits to the warm started SGC algorithm

for various guessing errors r ∈ [1/16, 1/3] shown in figure D1. In (b), we report the

inferred performance of the algorithm set-up: TAQC→SGC, where TAQC is used to

produce a string to warm start the SGC algorithm. The exponents in (b) are calculating

by adding the exponent from TAQC in Appendix B to the exponents in (a), at fractions

d = r, where d is the approximation distance of TAQC, and r is the guessing error for

the warm start of the SGC algorithm. We highlight the best combination of exponents

in (b) using bold text, which are reported in table 1 in the main text.

(a)

Guessing error r NC/N = 1.5 NC/N = 2 NC/N = 4

1/3 -0.075 -0.063 0.00093

3/10 -0.060 -0.046 0.0017

1/4 -0.042 -0.028 -0.00040

1/8 -0.022 -0.013 -0.00077

1/10 -0.021 -0.012 -0.00076

1/12 -0.021 -0.012 -0.00076

1/16 -0.021 -0.011 -0.00075

(b)

Guessing error r NC/N = 1.5 NC/N = 2 NC/N = 4

1/3 -0.080 -0.10 -0.026

3/10 -0.073 -0.09 -0.025

1/4 -0.068 -0.081 -0.030

1/8 -0.078 -0.088 -0.038

Appendix E. Performance of IST-SAT with low frequency AC drives

In this section, we report the results obtained for IST-SAT with lower frequency of

ω = 10π lnN and shorter run-time that was simulated to larger system size (N = 30).

While this parameter set under performs higher frequency drives and with longer run-

times as presented in the main text, the empirical radii of convergence we identify do

not change significantly, except at NC/N = 1.5, where the difference is performance is

most significant. One may consider a finer-grid search to identify how exactly rc scales

with the constraint density NC/N and fraction ϵ of unsatisfied constraints in the ground

state.
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Figure E1. Convergence of IST-SAT to the planted solution. Probabilities of

returning a solution with probabilities P (DH ≤ rN) and P (DH ≤ rN/2) are presented

in the top and bottom row respectively. A critical Hamming radius rc can be readily

identified in these plots by dashed lines, which are approximately the first fraction r

to obtain constant probability with increasing N .

Shown in figure E1, we observe monotonically increasing probabilities of returning

solutions that approximate the PPS at different approximation ratios rN in terms of

Hamming distance DH. We identify a critical Hamming radius rc for each constraint

density NC/N = {1.5, 2, 4} respectively as rc = {1/8, 1/4, 1/3}.
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Table E1. Exponential fits to the low frequency IST-SAT data presented in figure E1.

We report the exponents b from fitting data to a2bN where (a) is P (DH ≤ rN) data,

and (b) is the fit to P (DH ≤ rN/2) data. The exponents lying at the approximate

radii of convergence rc = {1/8, 1/4, 1/3} for Nc/N = {1.5, 2, 4} (respectively) are

highlighted in bold text. The −− entries represent data where exponential fits could

not accurately represent the data.

(a)

Guessing error r NC/N = 1.5 NC/N = 2 NC/N = 4

1/3 0.034 0.022 -0.000083

3/10 0.030 0.00095 -0.016

1/4 0.014 -0.0089 -0.039

1/8 -0.010 -0.036 –

(b)

Guessing error r NC/N = 1.5 NC/N = 2 NC/N = 4

1/3 0.078 0.044 -0.030

3/10 0.063 0.024 -0.022

1/4 0.040 0.0013 -0.047

1/8 0.0051 -0.030 –
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